target/arm: Fix typo in helper_sve_movz_d
[qemu/ar7.git] / target / arm / helper.c
blob8b07bf214eccef3880a51afc1e243b09d0c6769a
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27 unsigned int attrs:8; /* as in the MAIR register encoding */
28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32 MMUAccessType access_type, ARMMMUIdx mmu_idx,
33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34 target_ulong *page_size,
35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40 target_ulong *page_size_ptr,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46 bool ns;
47 bool nsc;
48 uint8_t sregion;
49 bool srvalid;
50 uint8_t iregion;
51 bool irvalid;
52 } V8M_SAttributes;
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56 V8M_SAttributes *sattrs);
57 #endif
59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 int nregs;
63 /* VFP data registers are always little-endian. */
64 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
65 if (reg < nregs) {
66 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
67 return 8;
69 if (arm_feature(env, ARM_FEATURE_NEON)) {
70 /* Aliases for Q regs. */
71 nregs += 16;
72 if (reg < nregs) {
73 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
74 stq_le_p(buf, q[0]);
75 stq_le_p(buf + 8, q[1]);
76 return 16;
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
84 return 0;
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
89 int nregs;
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
94 return 8;
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
100 q[0] = ldq_le_p(buf);
101 q[1] = ldq_le_p(buf + 8);
102 return 16;
105 switch (reg - nregs) {
106 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
107 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
108 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
110 return 0;
113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
119 uint64_t *q = aa64_vfp_qreg(env, reg);
120 stq_le_p(buf, q[0]);
121 stq_le_p(buf + 8, q[1]);
122 return 16;
124 case 32:
125 /* FPSR */
126 stl_p(buf, vfp_get_fpsr(env));
127 return 4;
128 case 33:
129 /* FPCR */
130 stl_p(buf, vfp_get_fpcr(env));
131 return 4;
132 default:
133 return 0;
137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
139 switch (reg) {
140 case 0 ... 31:
141 /* 128 bit FP register */
143 uint64_t *q = aa64_vfp_qreg(env, reg);
144 q[0] = ldq_le_p(buf);
145 q[1] = ldq_le_p(buf + 8);
146 return 16;
148 case 32:
149 /* FPSR */
150 vfp_set_fpsr(env, ldl_p(buf));
151 return 4;
152 case 33:
153 /* FPCR */
154 vfp_set_fpcr(env, ldl_p(buf));
155 return 4;
156 default:
157 return 0;
161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 return CPREG_FIELD64(env, ri);
166 } else {
167 return CPREG_FIELD32(env, ri);
171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
172 uint64_t value)
174 assert(ri->fieldoffset);
175 if (cpreg_field_is_64bit(ri)) {
176 CPREG_FIELD64(env, ri) = value;
177 } else {
178 CPREG_FIELD32(env, ri) = value;
182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
184 return (char *)env + ri->fieldoffset;
187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
189 /* Raw read of a coprocessor register (as needed for migration, etc). */
190 if (ri->type & ARM_CP_CONST) {
191 return ri->resetvalue;
192 } else if (ri->raw_readfn) {
193 return ri->raw_readfn(env, ri);
194 } else if (ri->readfn) {
195 return ri->readfn(env, ri);
196 } else {
197 return raw_read(env, ri);
201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
202 uint64_t v)
204 /* Raw write of a coprocessor register (as needed for migration, etc).
205 * Note that constant registers are treated as write-ignored; the
206 * caller should check for success by whether a readback gives the
207 * value written.
209 if (ri->type & ARM_CP_CONST) {
210 return;
211 } else if (ri->raw_writefn) {
212 ri->raw_writefn(env, ri, v);
213 } else if (ri->writefn) {
214 ri->writefn(env, ri, v);
215 } else {
216 raw_write(env, ri, v);
220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
222 ARMCPU *cpu = arm_env_get_cpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_xml.cpregs_keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
245 /* Return true if the regdef would cause an assertion if you called
246 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
247 * program bug for it not to have the NO_RAW flag).
248 * NB that returning false here doesn't necessarily mean that calling
249 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
250 * read/write access functions which are safe for raw use" from "has
251 * read/write access functions which have side effects but has forgotten
252 * to provide raw access functions".
253 * The tests here line up with the conditions in read/write_raw_cp_reg()
254 * and assertions in raw_read()/raw_write().
256 if ((ri->type & ARM_CP_CONST) ||
257 ri->fieldoffset ||
258 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
259 return false;
261 return true;
264 bool write_cpustate_to_list(ARMCPU *cpu)
266 /* Write the coprocessor state from cpu->env to the (index,value) list. */
267 int i;
268 bool ok = true;
270 for (i = 0; i < cpu->cpreg_array_len; i++) {
271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272 const ARMCPRegInfo *ri;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 if (!ri) {
276 ok = false;
277 continue;
279 if (ri->type & ARM_CP_NO_RAW) {
280 continue;
282 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
284 return ok;
287 bool write_list_to_cpustate(ARMCPU *cpu)
289 int i;
290 bool ok = true;
292 for (i = 0; i < cpu->cpreg_array_len; i++) {
293 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
294 uint64_t v = cpu->cpreg_values[i];
295 const ARMCPRegInfo *ri;
297 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
298 if (!ri) {
299 ok = false;
300 continue;
302 if (ri->type & ARM_CP_NO_RAW) {
303 continue;
305 /* Write value and confirm it reads back as written
306 * (to catch read-only registers and partially read-only
307 * registers where the incoming migration value doesn't match)
309 write_raw_cp_reg(&cpu->env, ri, v);
310 if (read_raw_cp_reg(&cpu->env, ri) != v) {
311 ok = false;
314 return ok;
317 static void add_cpreg_to_list(gpointer key, gpointer opaque)
319 ARMCPU *cpu = opaque;
320 uint64_t regidx;
321 const ARMCPRegInfo *ri;
323 regidx = *(uint32_t *)key;
324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
326 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
327 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
328 /* The value array need not be initialized at this point */
329 cpu->cpreg_array_len++;
333 static void count_cpreg(gpointer key, gpointer opaque)
335 ARMCPU *cpu = opaque;
336 uint64_t regidx;
337 const ARMCPRegInfo *ri;
339 regidx = *(uint32_t *)key;
340 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
342 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
343 cpu->cpreg_array_len++;
347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
349 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
350 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
352 if (aidx > bidx) {
353 return 1;
355 if (aidx < bidx) {
356 return -1;
358 return 0;
361 void init_cpreg_list(ARMCPU *cpu)
363 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
364 * Note that we require cpreg_tuples[] to be sorted by key ID.
366 GList *keys;
367 int arraylen;
369 keys = g_hash_table_get_keys(cpu->cp_regs);
370 keys = g_list_sort(keys, cpreg_key_compare);
372 cpu->cpreg_array_len = 0;
374 g_list_foreach(keys, count_cpreg, cpu);
376 arraylen = cpu->cpreg_array_len;
377 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
378 cpu->cpreg_values = g_new(uint64_t, arraylen);
379 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
380 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
381 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
382 cpu->cpreg_array_len = 0;
384 g_list_foreach(keys, add_cpreg_to_list, cpu);
386 assert(cpu->cpreg_array_len == arraylen);
388 g_list_free(keys);
392 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
393 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
395 * access_el3_aa32ns: Used to check AArch32 register views.
396 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
398 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
399 const ARMCPRegInfo *ri,
400 bool isread)
402 bool secure = arm_is_secure_below_el3(env);
404 assert(!arm_el_is_aa64(env, 3));
405 if (secure) {
406 return CP_ACCESS_TRAP_UNCATEGORIZED;
408 return CP_ACCESS_OK;
411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
412 const ARMCPRegInfo *ri,
413 bool isread)
415 if (!arm_el_is_aa64(env, 3)) {
416 return access_el3_aa32ns(env, ri, isread);
418 return CP_ACCESS_OK;
421 /* Some secure-only AArch32 registers trap to EL3 if used from
422 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
423 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
424 * We assume that the .access field is set to PL1_RW.
426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
427 const ARMCPRegInfo *ri,
428 bool isread)
430 if (arm_current_el(env) == 3) {
431 return CP_ACCESS_OK;
433 if (arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL3;
436 /* This will be EL1 NS and EL2 NS, which just UNDEF */
437 return CP_ACCESS_TRAP_UNCATEGORIZED;
440 /* Check for traps to "powerdown debug" registers, which are controlled
441 * by MDCR.TDOSA
443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
444 bool isread)
446 int el = arm_current_el(env);
447 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
448 (env->cp15.mdcr_el2 & MDCR_TDE) ||
449 (env->cp15.hcr_el2 & HCR_TGE);
451 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
455 return CP_ACCESS_TRAP_EL3;
457 return CP_ACCESS_OK;
460 /* Check for traps to "debug ROM" registers, which are controlled
461 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
464 bool isread)
466 int el = arm_current_el(env);
467 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
468 (env->cp15.mdcr_el2 & MDCR_TDE) ||
469 (env->cp15.hcr_el2 & HCR_TGE);
471 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
472 return CP_ACCESS_TRAP_EL2;
474 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
475 return CP_ACCESS_TRAP_EL3;
477 return CP_ACCESS_OK;
480 /* Check for traps to general debug registers, which are controlled
481 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
484 bool isread)
486 int el = arm_current_el(env);
487 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
488 (env->cp15.mdcr_el2 & MDCR_TDE) ||
489 (env->cp15.hcr_el2 & HCR_TGE);
491 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
492 return CP_ACCESS_TRAP_EL2;
494 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
495 return CP_ACCESS_TRAP_EL3;
497 return CP_ACCESS_OK;
500 /* Check for traps to performance monitor registers, which are controlled
501 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
504 bool isread)
506 int el = arm_current_el(env);
508 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
509 && !arm_is_secure_below_el3(env)) {
510 return CP_ACCESS_TRAP_EL2;
512 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
513 return CP_ACCESS_TRAP_EL3;
515 return CP_ACCESS_OK;
518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 ARMCPU *cpu = arm_env_get_cpu(env);
522 raw_write(env, ri, value);
523 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
528 ARMCPU *cpu = arm_env_get_cpu(env);
530 if (raw_read(env, ri) != value) {
531 /* Unlike real hardware the qemu TLB uses virtual addresses,
532 * not modified virtual addresses, so this causes a TLB flush.
534 tlb_flush(CPU(cpu));
535 raw_write(env, ri, value);
539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 ARMCPU *cpu = arm_env_get_cpu(env);
544 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
545 && !extended_addresses_enabled(env)) {
546 /* For VMSA (when not using the LPAE long descriptor page table
547 * format) this register includes the ASID, so do a TLB flush.
548 * For PMSA it is purely a process ID and no action is needed.
550 tlb_flush(CPU(cpu));
552 raw_write(env, ri, value);
555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
556 uint64_t value)
558 /* Invalidate all (TLBIALL) */
559 ARMCPU *cpu = arm_env_get_cpu(env);
561 tlb_flush(CPU(cpu));
564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
568 ARMCPU *cpu = arm_env_get_cpu(env);
570 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
576 /* Invalidate by ASID (TLBIASID) */
577 ARMCPU *cpu = arm_env_get_cpu(env);
579 tlb_flush(CPU(cpu));
582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
586 ARMCPU *cpu = arm_env_get_cpu(env);
588 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
591 /* IS variants of TLB operations must affect all cores */
592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = ENV_GET_CPU(env);
597 tlb_flush_all_cpus_synced(cs);
600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
603 CPUState *cs = ENV_GET_CPU(env);
605 tlb_flush_all_cpus_synced(cs);
608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609 uint64_t value)
611 CPUState *cs = ENV_GET_CPU(env);
613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
617 uint64_t value)
619 CPUState *cs = ENV_GET_CPU(env);
621 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t value)
627 CPUState *cs = ENV_GET_CPU(env);
629 tlb_flush_by_mmuidx(cs,
630 ARMMMUIdxBit_S12NSE1 |
631 ARMMMUIdxBit_S12NSE0 |
632 ARMMMUIdxBit_S2NS);
635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs,
641 ARMMMUIdxBit_S12NSE1 |
642 ARMMMUIdxBit_S12NSE0 |
643 ARMMMUIdxBit_S2NS);
646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
649 /* Invalidate by IPA. This has to invalidate any structures that
650 * contain only stage 2 translation information, but does not need
651 * to apply to structures that contain combined stage 1 and stage 2
652 * translation information.
653 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr;
658 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
659 return;
662 pageaddr = sextract64(value << 12, 0, 40);
664 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
670 CPUState *cs = ENV_GET_CPU(env);
671 uint64_t pageaddr;
673 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
674 return;
677 pageaddr = sextract64(value << 12, 0, 40);
679 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
680 ARMMMUIdxBit_S2NS);
683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 uint64_t value)
686 CPUState *cs = ENV_GET_CPU(env);
688 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 CPUState *cs = ENV_GET_CPU(env);
696 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
700 uint64_t value)
702 CPUState *cs = ENV_GET_CPU(env);
703 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709 uint64_t value)
711 CPUState *cs = ENV_GET_CPU(env);
712 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
715 ARMMMUIdxBit_S1E2);
718 static const ARMCPRegInfo cp_reginfo[] = {
719 /* Define the secure and non-secure FCSE identifier CP registers
720 * separately because there is no secure bank in V8 (no _EL3). This allows
721 * the secure register to be properly reset and migrated. There is also no
722 * v8 EL1 version of the register so the non-secure instance stands alone.
724 { .name = "FCSEIDR",
725 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
726 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
727 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
728 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
729 { .name = "FCSEIDR_S",
730 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
731 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
732 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
733 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
734 /* Define the secure and non-secure context identifier CP registers
735 * separately because there is no secure bank in V8 (no _EL3). This allows
736 * the secure register to be properly reset and migrated. In the
737 * non-secure case, the 32-bit register will have reset and migration
738 * disabled during registration as it is handled by the 64-bit instance.
740 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
741 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
742 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
743 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
744 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
745 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
746 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
747 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
748 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
749 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
750 REGINFO_SENTINEL
753 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
754 /* NB: Some of these registers exist in v8 but with more precise
755 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
757 /* MMU Domain access control / MPU write buffer control */
758 { .name = "DACR",
759 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
760 .access = PL1_RW, .resetvalue = 0,
761 .writefn = dacr_write, .raw_writefn = raw_write,
762 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
763 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
764 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
765 * For v6 and v5, these mappings are overly broad.
767 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
768 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
769 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
770 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
771 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
772 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
773 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
774 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
775 /* Cache maintenance ops; some of this space may be overridden later. */
776 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
777 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
778 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
779 REGINFO_SENTINEL
782 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
783 /* Not all pre-v6 cores implemented this WFI, so this is slightly
784 * over-broad.
786 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
787 .access = PL1_W, .type = ARM_CP_WFI },
788 REGINFO_SENTINEL
791 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
792 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
793 * is UNPREDICTABLE; we choose to NOP as most implementations do).
795 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
796 .access = PL1_W, .type = ARM_CP_WFI },
797 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
798 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
799 * OMAPCP will override this space.
801 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
802 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
803 .resetvalue = 0 },
804 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
806 .resetvalue = 0 },
807 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
808 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
809 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
810 .resetvalue = 0 },
811 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
812 * implementing it as RAZ means the "debug architecture version" bits
813 * will read as a reserved value, which should cause Linux to not try
814 * to use the debug hardware.
816 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
817 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
818 /* MMU TLB control. Note that the wildcarding means we cover not just
819 * the unified TLB ops but also the dside/iside/inner-shareable variants.
821 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
822 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
823 .type = ARM_CP_NO_RAW },
824 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
825 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
826 .type = ARM_CP_NO_RAW },
827 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
828 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
829 .type = ARM_CP_NO_RAW },
830 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
831 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
832 .type = ARM_CP_NO_RAW },
833 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
834 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
835 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
836 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
837 REGINFO_SENTINEL
840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
841 uint64_t value)
843 uint32_t mask = 0;
845 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
846 if (!arm_feature(env, ARM_FEATURE_V8)) {
847 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
848 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
849 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
851 if (arm_feature(env, ARM_FEATURE_VFP)) {
852 /* VFP coprocessor: cp10 & cp11 [23:20] */
853 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
855 if (!arm_feature(env, ARM_FEATURE_NEON)) {
856 /* ASEDIS [31] bit is RAO/WI */
857 value |= (1 << 31);
860 /* VFPv3 and upwards with NEON implement 32 double precision
861 * registers (D0-D31).
863 if (!arm_feature(env, ARM_FEATURE_NEON) ||
864 !arm_feature(env, ARM_FEATURE_VFP3)) {
865 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
866 value |= (1 << 30);
869 value &= mask;
871 env->cp15.cpacr_el1 = value;
874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
876 /* Call cpacr_write() so that we reset with the correct RAO bits set
877 * for our CPU features.
879 cpacr_write(env, ri, 0);
882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
883 bool isread)
885 if (arm_feature(env, ARM_FEATURE_V8)) {
886 /* Check if CPACR accesses are to be trapped to EL2 */
887 if (arm_current_el(env) == 1 &&
888 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
889 return CP_ACCESS_TRAP_EL2;
890 /* Check if CPACR accesses are to be trapped to EL3 */
891 } else if (arm_current_el(env) < 3 &&
892 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
893 return CP_ACCESS_TRAP_EL3;
897 return CP_ACCESS_OK;
900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
901 bool isread)
903 /* Check if CPTR accesses are set to trap to EL3 */
904 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
905 return CP_ACCESS_TRAP_EL3;
908 return CP_ACCESS_OK;
911 static const ARMCPRegInfo v6_cp_reginfo[] = {
912 /* prefetch by MVA in v6, NOP in v7 */
913 { .name = "MVA_prefetch",
914 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
915 .access = PL1_W, .type = ARM_CP_NOP },
916 /* We need to break the TB after ISB to execute self-modifying code
917 * correctly and also to take any pending interrupts immediately.
918 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
920 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
921 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
922 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
923 .access = PL0_W, .type = ARM_CP_NOP },
924 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
925 .access = PL0_W, .type = ARM_CP_NOP },
926 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
927 .access = PL1_RW,
928 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
929 offsetof(CPUARMState, cp15.ifar_ns) },
930 .resetvalue = 0, },
931 /* Watchpoint Fault Address Register : should actually only be present
932 * for 1136, 1176, 11MPCore.
934 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
935 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
936 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
937 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
939 .resetfn = cpacr_reset, .writefn = cpacr_write },
940 REGINFO_SENTINEL
943 /* Definitions for the PMU registers */
944 #define PMCRN_MASK 0xf800
945 #define PMCRN_SHIFT 11
946 #define PMCRD 0x8
947 #define PMCRC 0x4
948 #define PMCRE 0x1
950 static inline uint32_t pmu_num_counters(CPUARMState *env)
952 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
956 static inline uint64_t pmu_counter_mask(CPUARMState *env)
958 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
962 bool isread)
964 /* Performance monitor registers user accessibility is controlled
965 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
966 * trapping to EL2 or EL3 for other accesses.
968 int el = arm_current_el(env);
970 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
971 return CP_ACCESS_TRAP;
973 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
974 && !arm_is_secure_below_el3(env)) {
975 return CP_ACCESS_TRAP_EL2;
977 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
978 return CP_ACCESS_TRAP_EL3;
981 return CP_ACCESS_OK;
984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
985 const ARMCPRegInfo *ri,
986 bool isread)
988 /* ER: event counter read trap control */
989 if (arm_feature(env, ARM_FEATURE_V8)
990 && arm_current_el(env) == 0
991 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
992 && isread) {
993 return CP_ACCESS_OK;
996 return pmreg_access(env, ri, isread);
999 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1000 const ARMCPRegInfo *ri,
1001 bool isread)
1003 /* SW: software increment write trap control */
1004 if (arm_feature(env, ARM_FEATURE_V8)
1005 && arm_current_el(env) == 0
1006 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1007 && !isread) {
1008 return CP_ACCESS_OK;
1011 return pmreg_access(env, ri, isread);
1014 #ifndef CONFIG_USER_ONLY
1016 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1017 const ARMCPRegInfo *ri,
1018 bool isread)
1020 /* ER: event counter read trap control */
1021 if (arm_feature(env, ARM_FEATURE_V8)
1022 && arm_current_el(env) == 0
1023 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1024 return CP_ACCESS_OK;
1027 return pmreg_access(env, ri, isread);
1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1031 const ARMCPRegInfo *ri,
1032 bool isread)
1034 /* CR: cycle counter read trap control */
1035 if (arm_feature(env, ARM_FEATURE_V8)
1036 && arm_current_el(env) == 0
1037 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1038 && isread) {
1039 return CP_ACCESS_OK;
1042 return pmreg_access(env, ri, isread);
1045 static inline bool arm_ccnt_enabled(CPUARMState *env)
1047 /* This does not support checking PMCCFILTR_EL0 register */
1049 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1050 return false;
1053 return true;
1056 void pmccntr_sync(CPUARMState *env)
1058 uint64_t temp_ticks;
1060 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 if (env->cp15.c9_pmcr & PMCRD) {
1064 /* Increment once every 64 processor clock cycles */
1065 temp_ticks /= 64;
1068 if (arm_ccnt_enabled(env)) {
1069 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1074 uint64_t value)
1076 pmccntr_sync(env);
1078 if (value & PMCRC) {
1079 /* The counter has been reset */
1080 env->cp15.c15_ccnt = 0;
1083 /* only the DP, X, D and E bits are writable */
1084 env->cp15.c9_pmcr &= ~0x39;
1085 env->cp15.c9_pmcr |= (value & 0x39);
1087 pmccntr_sync(env);
1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1092 uint64_t total_ticks;
1094 if (!arm_ccnt_enabled(env)) {
1095 /* Counter is disabled, do not change value */
1096 return env->cp15.c15_ccnt;
1099 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1100 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1102 if (env->cp15.c9_pmcr & PMCRD) {
1103 /* Increment once every 64 processor clock cycles */
1104 total_ticks /= 64;
1106 return total_ticks - env->cp15.c15_ccnt;
1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1112 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1113 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1114 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1115 * accessed.
1117 env->cp15.c9_pmselr = value & 0x1f;
1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121 uint64_t value)
1123 uint64_t total_ticks;
1125 if (!arm_ccnt_enabled(env)) {
1126 /* Counter is disabled, set the absolute value */
1127 env->cp15.c15_ccnt = value;
1128 return;
1131 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1132 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1134 if (env->cp15.c9_pmcr & PMCRD) {
1135 /* Increment once every 64 processor clock cycles */
1136 total_ticks /= 64;
1138 env->cp15.c15_ccnt = total_ticks - value;
1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1142 uint64_t value)
1144 uint64_t cur_val = pmccntr_read(env, NULL);
1146 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1149 #else /* CONFIG_USER_ONLY */
1151 void pmccntr_sync(CPUARMState *env)
1155 #endif
1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1160 pmccntr_sync(env);
1161 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1162 pmccntr_sync(env);
1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1168 value &= pmu_counter_mask(env);
1169 env->cp15.c9_pmcnten |= value;
1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
1175 value &= pmu_counter_mask(env);
1176 env->cp15.c9_pmcnten &= ~value;
1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1180 uint64_t value)
1182 env->cp15.c9_pmovsr &= ~value;
1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186 uint64_t value)
1188 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1189 * PMSELR value is equal to or greater than the number of implemented
1190 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1192 if (env->cp15.c9_pmselr == 0x1f) {
1193 pmccfiltr_write(env, ri, value);
1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1199 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1200 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1202 if (env->cp15.c9_pmselr == 0x1f) {
1203 return env->cp15.pmccfiltr_el0;
1204 } else {
1205 return 0;
1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1210 uint64_t value)
1212 if (arm_feature(env, ARM_FEATURE_V8)) {
1213 env->cp15.c9_pmuserenr = value & 0xf;
1214 } else {
1215 env->cp15.c9_pmuserenr = value & 1;
1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 /* We have no event counters so only the C bit can be changed */
1223 value &= pmu_counter_mask(env);
1224 env->cp15.c9_pminten |= value;
1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1228 uint64_t value)
1230 value &= pmu_counter_mask(env);
1231 env->cp15.c9_pminten &= ~value;
1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1237 /* Note that even though the AArch64 view of this register has bits
1238 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1239 * architectural requirements for bits which are RES0 only in some
1240 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1241 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1243 raw_write(env, ri, value & ~0x1FULL);
1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1248 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1249 * For bits that vary between AArch32/64, code needs to check the
1250 * current execution mode before directly using the feature bit.
1252 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1254 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1255 valid_mask &= ~SCR_HCE;
1257 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1258 * supported if EL2 exists. The bit is UNK/SBZP when
1259 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1260 * when EL2 is unavailable.
1261 * On ARMv8, this bit is always available.
1263 if (arm_feature(env, ARM_FEATURE_V7) &&
1264 !arm_feature(env, ARM_FEATURE_V8)) {
1265 valid_mask &= ~SCR_SMD;
1269 /* Clear all-context RES0 bits. */
1270 value &= valid_mask;
1271 raw_write(env, ri, value);
1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1276 ARMCPU *cpu = arm_env_get_cpu(env);
1278 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1279 * bank
1281 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1282 ri->secure & ARM_CP_SECSTATE_S);
1284 return cpu->ccsidr[index];
1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1288 uint64_t value)
1290 raw_write(env, ri, value & 0xf);
1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1295 CPUState *cs = ENV_GET_CPU(env);
1296 uint64_t ret = 0;
1298 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1299 ret |= CPSR_I;
1301 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1302 ret |= CPSR_F;
1304 /* External aborts are not possible in QEMU so A bit is always clear */
1305 return ret;
1308 static const ARMCPRegInfo v7_cp_reginfo[] = {
1309 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1310 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1311 .access = PL1_W, .type = ARM_CP_NOP },
1312 /* Performance monitors are implementation defined in v7,
1313 * but with an ARM recommended set of registers, which we
1314 * follow (although we don't actually implement any counters)
1316 * Performance registers fall into three categories:
1317 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1318 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1319 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1320 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1321 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1323 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1324 .access = PL0_RW, .type = ARM_CP_ALIAS,
1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1326 .writefn = pmcntenset_write,
1327 .accessfn = pmreg_access,
1328 .raw_writefn = raw_write },
1329 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1331 .access = PL0_RW, .accessfn = pmreg_access,
1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1333 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1334 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1335 .access = PL0_RW,
1336 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1337 .accessfn = pmreg_access,
1338 .writefn = pmcntenclr_write,
1339 .type = ARM_CP_ALIAS },
1340 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1342 .access = PL0_RW, .accessfn = pmreg_access,
1343 .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1345 .writefn = pmcntenclr_write },
1346 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1347 .access = PL0_RW,
1348 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1349 .accessfn = pmreg_access,
1350 .writefn = pmovsr_write,
1351 .raw_writefn = raw_write },
1352 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1354 .access = PL0_RW, .accessfn = pmreg_access,
1355 .type = ARM_CP_ALIAS,
1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1357 .writefn = pmovsr_write,
1358 .raw_writefn = raw_write },
1359 /* Unimplemented so WI. */
1360 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1361 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1362 #ifndef CONFIG_USER_ONLY
1363 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1364 .access = PL0_RW, .type = ARM_CP_ALIAS,
1365 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1366 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1367 .raw_writefn = raw_write},
1368 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1369 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1370 .access = PL0_RW, .accessfn = pmreg_access_selr,
1371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1372 .writefn = pmselr_write, .raw_writefn = raw_write, },
1373 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1374 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1375 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1376 .accessfn = pmreg_access_ccntr },
1377 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1379 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1380 .type = ARM_CP_IO,
1381 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1382 #endif
1383 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1385 .writefn = pmccfiltr_write,
1386 .access = PL0_RW, .accessfn = pmreg_access,
1387 .type = ARM_CP_IO,
1388 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1389 .resetvalue = 0, },
1390 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1391 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1392 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1393 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1394 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1395 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1396 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1397 /* Unimplemented, RAZ/WI. */
1398 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1399 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1400 .accessfn = pmreg_access_xevcntr },
1401 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1402 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1404 .resetvalue = 0,
1405 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1406 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1408 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1409 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1410 .resetvalue = 0,
1411 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1412 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1413 .access = PL1_RW, .accessfn = access_tpm,
1414 .type = ARM_CP_ALIAS | ARM_CP_IO,
1415 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1416 .resetvalue = 0,
1417 .writefn = pmintenset_write, .raw_writefn = raw_write },
1418 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1419 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1420 .access = PL1_RW, .accessfn = access_tpm,
1421 .type = ARM_CP_IO,
1422 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1423 .writefn = pmintenset_write, .raw_writefn = raw_write,
1424 .resetvalue = 0x0 },
1425 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1426 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1428 .writefn = pmintenclr_write, },
1429 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1430 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1431 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1432 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1433 .writefn = pmintenclr_write },
1434 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1435 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1436 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1437 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1438 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1439 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1441 offsetof(CPUARMState, cp15.csselr_ns) } },
1442 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1443 * just RAZ for all cores:
1445 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1446 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1448 /* Auxiliary fault status registers: these also are IMPDEF, and we
1449 * choose to RAZ/WI for all cores.
1451 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1452 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1454 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1455 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1456 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1457 /* MAIR can just read-as-written because we don't implement caches
1458 * and so don't need to care about memory attributes.
1460 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1461 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1463 .resetvalue = 0 },
1464 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1465 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1466 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1467 .resetvalue = 0 },
1468 /* For non-long-descriptor page tables these are PRRR and NMRR;
1469 * regardless they still act as reads-as-written for QEMU.
1471 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1472 * allows them to assign the correct fieldoffset based on the endianness
1473 * handled in the field definitions.
1475 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1476 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1477 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1478 offsetof(CPUARMState, cp15.mair0_ns) },
1479 .resetfn = arm_cp_reset_ignore },
1480 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1481 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1483 offsetof(CPUARMState, cp15.mair1_ns) },
1484 .resetfn = arm_cp_reset_ignore },
1485 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1486 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1487 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1488 /* 32 bit ITLB invalidates */
1489 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1491 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1493 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1495 /* 32 bit DTLB invalidates */
1496 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1498 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1500 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1502 /* 32 bit TLB invalidates */
1503 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1504 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1505 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1506 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1507 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1508 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1509 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1511 REGINFO_SENTINEL
1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1515 /* 32 bit TLB invalidates, Inner Shareable */
1516 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1518 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1519 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1520 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1521 .type = ARM_CP_NO_RAW, .access = PL1_W,
1522 .writefn = tlbiasid_is_write },
1523 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1524 .type = ARM_CP_NO_RAW, .access = PL1_W,
1525 .writefn = tlbimvaa_is_write },
1526 REGINFO_SENTINEL
1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530 uint64_t value)
1532 value &= 1;
1533 env->teecr = value;
1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1537 bool isread)
1539 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1540 return CP_ACCESS_TRAP;
1542 return CP_ACCESS_OK;
1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1546 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1547 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1548 .resetvalue = 0,
1549 .writefn = teecr_write },
1550 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1551 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1552 .accessfn = teehbr_access, .resetvalue = 0 },
1553 REGINFO_SENTINEL
1556 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1557 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1558 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1559 .access = PL0_RW,
1560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1561 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1562 .access = PL0_RW,
1563 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1564 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1565 .resetfn = arm_cp_reset_ignore },
1566 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1567 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1568 .access = PL0_R|PL1_W,
1569 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1570 .resetvalue = 0},
1571 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1572 .access = PL0_R|PL1_W,
1573 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1574 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1575 .resetfn = arm_cp_reset_ignore },
1576 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1577 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1578 .access = PL1_RW,
1579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1580 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1581 .access = PL1_RW,
1582 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1583 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1584 .resetvalue = 0 },
1585 REGINFO_SENTINEL
1588 #ifndef CONFIG_USER_ONLY
1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1591 bool isread)
1593 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1594 * Writable only at the highest implemented exception level.
1596 int el = arm_current_el(env);
1598 switch (el) {
1599 case 0:
1600 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1601 return CP_ACCESS_TRAP;
1603 break;
1604 case 1:
1605 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1606 arm_is_secure_below_el3(env)) {
1607 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1608 return CP_ACCESS_TRAP_UNCATEGORIZED;
1610 break;
1611 case 2:
1612 case 3:
1613 break;
1616 if (!isread && el < arm_highest_el(env)) {
1617 return CP_ACCESS_TRAP_UNCATEGORIZED;
1620 return CP_ACCESS_OK;
1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1624 bool isread)
1626 unsigned int cur_el = arm_current_el(env);
1627 bool secure = arm_is_secure(env);
1629 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1630 if (cur_el == 0 &&
1631 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1632 return CP_ACCESS_TRAP;
1635 if (arm_feature(env, ARM_FEATURE_EL2) &&
1636 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1637 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1638 return CP_ACCESS_TRAP_EL2;
1640 return CP_ACCESS_OK;
1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1644 bool isread)
1646 unsigned int cur_el = arm_current_el(env);
1647 bool secure = arm_is_secure(env);
1649 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1650 * EL0[PV]TEN is zero.
1652 if (cur_el == 0 &&
1653 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1654 return CP_ACCESS_TRAP;
1657 if (arm_feature(env, ARM_FEATURE_EL2) &&
1658 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1659 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1660 return CP_ACCESS_TRAP_EL2;
1662 return CP_ACCESS_OK;
1665 static CPAccessResult gt_pct_access(CPUARMState *env,
1666 const ARMCPRegInfo *ri,
1667 bool isread)
1669 return gt_counter_access(env, GTIMER_PHYS, isread);
1672 static CPAccessResult gt_vct_access(CPUARMState *env,
1673 const ARMCPRegInfo *ri,
1674 bool isread)
1676 return gt_counter_access(env, GTIMER_VIRT, isread);
1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1680 bool isread)
1682 return gt_timer_access(env, GTIMER_PHYS, isread);
1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1686 bool isread)
1688 return gt_timer_access(env, GTIMER_VIRT, isread);
1691 static CPAccessResult gt_stimer_access(CPUARMState *env,
1692 const ARMCPRegInfo *ri,
1693 bool isread)
1695 /* The AArch64 register view of the secure physical timer is
1696 * always accessible from EL3, and configurably accessible from
1697 * Secure EL1.
1699 switch (arm_current_el(env)) {
1700 case 1:
1701 if (!arm_is_secure(env)) {
1702 return CP_ACCESS_TRAP;
1704 if (!(env->cp15.scr_el3 & SCR_ST)) {
1705 return CP_ACCESS_TRAP_EL3;
1707 return CP_ACCESS_OK;
1708 case 0:
1709 case 2:
1710 return CP_ACCESS_TRAP;
1711 case 3:
1712 return CP_ACCESS_OK;
1713 default:
1714 g_assert_not_reached();
1718 static uint64_t gt_get_countervalue(CPUARMState *env)
1720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1727 if (gt->ctl & 1) {
1728 /* Timer enabled: calculate and set current ISTATUS, irq, and
1729 * reset timer to when ISTATUS next has to change
1731 uint64_t offset = timeridx == GTIMER_VIRT ?
1732 cpu->env.cp15.cntvoff_el2 : 0;
1733 uint64_t count = gt_get_countervalue(&cpu->env);
1734 /* Note that this must be unsigned 64 bit arithmetic: */
1735 int istatus = count - offset >= gt->cval;
1736 uint64_t nexttick;
1737 int irqstate;
1739 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1741 irqstate = (istatus && !(gt->ctl & 2));
1742 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1744 if (istatus) {
1745 /* Next transition is when count rolls back over to zero */
1746 nexttick = UINT64_MAX;
1747 } else {
1748 /* Next transition is when we hit cval */
1749 nexttick = gt->cval + offset;
1751 /* Note that the desired next expiry time might be beyond the
1752 * signed-64-bit range of a QEMUTimer -- in this case we just
1753 * set the timer for as far in the future as possible. When the
1754 * timer expires we will reset the timer for any remaining period.
1756 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1757 nexttick = INT64_MAX / GTIMER_SCALE;
1759 timer_mod(cpu->gt_timer[timeridx], nexttick);
1760 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1761 } else {
1762 /* Timer disabled: ISTATUS and timer output always clear */
1763 gt->ctl &= ~4;
1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1765 timer_del(cpu->gt_timer[timeridx]);
1766 trace_arm_gt_recalc_disabled(timeridx);
1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1771 int timeridx)
1773 ARMCPU *cpu = arm_env_get_cpu(env);
1775 timer_del(cpu->gt_timer[timeridx]);
1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1780 return gt_get_countervalue(env);
1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1785 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 int timeridx,
1790 uint64_t value)
1792 trace_arm_gt_cval_write(timeridx, value);
1793 env->cp15.c14_timer[timeridx].cval = value;
1794 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1798 int timeridx)
1800 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1802 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1803 (gt_get_countervalue(env) - offset));
1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 int timeridx,
1808 uint64_t value)
1810 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1812 trace_arm_gt_tval_write(timeridx, value);
1813 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1814 sextract64(value, 0, 32);
1815 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 int timeridx,
1820 uint64_t value)
1822 ARMCPU *cpu = arm_env_get_cpu(env);
1823 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1825 trace_arm_gt_ctl_write(timeridx, value);
1826 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1827 if ((oldval ^ value) & 1) {
1828 /* Enable toggled */
1829 gt_recalc_timer(cpu, timeridx);
1830 } else if ((oldval ^ value) & 2) {
1831 /* IMASK toggled: don't need to recalculate,
1832 * just set the interrupt line based on ISTATUS
1834 int irqstate = (oldval & 4) && !(value & 2);
1836 trace_arm_gt_imask_toggle(timeridx, irqstate);
1837 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1843 gt_timer_reset(env, ri, GTIMER_PHYS);
1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 gt_cval_write(env, ri, GTIMER_PHYS, value);
1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1854 return gt_tval_read(env, ri, GTIMER_PHYS);
1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_tval_write(env, ri, GTIMER_PHYS, value);
1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864 uint64_t value)
1866 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1871 gt_timer_reset(env, ri, GTIMER_VIRT);
1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_cval_write(env, ri, GTIMER_VIRT, value);
1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1882 return gt_tval_read(env, ri, GTIMER_VIRT);
1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886 uint64_t value)
1888 gt_tval_write(env, ri, GTIMER_VIRT, value);
1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892 uint64_t value)
1894 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1898 uint64_t value)
1900 ARMCPU *cpu = arm_env_get_cpu(env);
1902 trace_arm_gt_cntvoff_write(value);
1903 raw_write(env, ri, value);
1904 gt_recalc_timer(cpu, GTIMER_VIRT);
1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1909 gt_timer_reset(env, ri, GTIMER_HYP);
1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value)
1915 gt_cval_write(env, ri, GTIMER_HYP, value);
1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1920 return gt_tval_read(env, ri, GTIMER_HYP);
1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1924 uint64_t value)
1926 gt_tval_write(env, ri, GTIMER_HYP, value);
1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1930 uint64_t value)
1932 gt_ctl_write(env, ri, GTIMER_HYP, value);
1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1937 gt_timer_reset(env, ri, GTIMER_SEC);
1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1941 uint64_t value)
1943 gt_cval_write(env, ri, GTIMER_SEC, value);
1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 return gt_tval_read(env, ri, GTIMER_SEC);
1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1952 uint64_t value)
1954 gt_tval_write(env, ri, GTIMER_SEC, value);
1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1958 uint64_t value)
1960 gt_ctl_write(env, ri, GTIMER_SEC, value);
1963 void arm_gt_ptimer_cb(void *opaque)
1965 ARMCPU *cpu = opaque;
1967 gt_recalc_timer(cpu, GTIMER_PHYS);
1970 void arm_gt_vtimer_cb(void *opaque)
1972 ARMCPU *cpu = opaque;
1974 gt_recalc_timer(cpu, GTIMER_VIRT);
1977 void arm_gt_htimer_cb(void *opaque)
1979 ARMCPU *cpu = opaque;
1981 gt_recalc_timer(cpu, GTIMER_HYP);
1984 void arm_gt_stimer_cb(void *opaque)
1986 ARMCPU *cpu = opaque;
1988 gt_recalc_timer(cpu, GTIMER_SEC);
1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1992 /* Note that CNTFRQ is purely reads-as-written for the benefit
1993 * of software; writing it doesn't actually change the timer frequency.
1994 * Our reset value matches the fixed frequency we implement the timer at.
1996 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1997 .type = ARM_CP_ALIAS,
1998 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2001 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2003 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2005 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2007 /* overall control: mostly access permissions */
2008 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2009 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2010 .access = PL1_RW,
2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2012 .resetvalue = 0,
2014 /* per-timer control */
2015 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2016 .secure = ARM_CP_SECSTATE_NS,
2017 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2018 .accessfn = gt_ptimer_access,
2019 .fieldoffset = offsetoflow32(CPUARMState,
2020 cp15.c14_timer[GTIMER_PHYS].ctl),
2021 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2023 { .name = "CNTP_CTL_S",
2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2025 .secure = ARM_CP_SECSTATE_S,
2026 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2027 .accessfn = gt_ptimer_access,
2028 .fieldoffset = offsetoflow32(CPUARMState,
2029 cp15.c14_timer[GTIMER_SEC].ctl),
2030 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2032 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2034 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2035 .accessfn = gt_ptimer_access,
2036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2037 .resetvalue = 0,
2038 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2040 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2041 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2042 .accessfn = gt_vtimer_access,
2043 .fieldoffset = offsetoflow32(CPUARMState,
2044 cp15.c14_timer[GTIMER_VIRT].ctl),
2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2047 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2049 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2050 .accessfn = gt_vtimer_access,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2052 .resetvalue = 0,
2053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2055 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2056 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2057 .secure = ARM_CP_SECSTATE_NS,
2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2059 .accessfn = gt_ptimer_access,
2060 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2062 { .name = "CNTP_TVAL_S",
2063 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2064 .secure = ARM_CP_SECSTATE_S,
2065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2066 .accessfn = gt_ptimer_access,
2067 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2069 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2072 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2075 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2077 .accessfn = gt_vtimer_access,
2078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2080 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2082 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2083 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2084 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2086 /* The counter itself */
2087 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2089 .accessfn = gt_pct_access,
2090 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2092 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2095 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2097 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2098 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2099 .accessfn = gt_vct_access,
2100 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2102 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2104 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2107 /* Comparison value, indicating when the timer goes off */
2108 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2109 .secure = ARM_CP_SECSTATE_NS,
2110 .access = PL1_RW | PL0_R,
2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113 .accessfn = gt_ptimer_access,
2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2116 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2117 .secure = ARM_CP_SECSTATE_S,
2118 .access = PL1_RW | PL0_R,
2119 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2121 .accessfn = gt_ptimer_access,
2122 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2124 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2126 .access = PL1_RW | PL0_R,
2127 .type = ARM_CP_IO,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2129 .resetvalue = 0, .accessfn = gt_ptimer_access,
2130 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2132 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2133 .access = PL1_RW | PL0_R,
2134 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136 .accessfn = gt_vtimer_access,
2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2141 .access = PL1_RW | PL0_R,
2142 .type = ARM_CP_IO,
2143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2144 .resetvalue = 0, .accessfn = gt_vtimer_access,
2145 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2147 /* Secure timer -- this is actually restricted to only EL3
2148 * and configurably Secure-EL1 via the accessfn.
2150 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2153 .accessfn = gt_stimer_access,
2154 .readfn = gt_sec_tval_read,
2155 .writefn = gt_sec_tval_write,
2156 .resetfn = gt_sec_timer_reset,
2158 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2160 .type = ARM_CP_IO, .access = PL1_RW,
2161 .accessfn = gt_stimer_access,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2163 .resetvalue = 0,
2164 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2166 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2168 .type = ARM_CP_IO, .access = PL1_RW,
2169 .accessfn = gt_stimer_access,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2173 REGINFO_SENTINEL
2176 #else
2178 /* In user-mode most of the generic timer registers are inaccessible
2179 * however modern kernels (4.12+) allow access to cntvct_el0
2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2184 /* Currently we have no support for QEMUTimer in linux-user so we
2185 * can't call gt_get_countervalue(env), instead we directly
2186 * call the lower level functions.
2188 return cpu_get_clock() / GTIMER_SCALE;
2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201 .readfn = gt_virt_cnt_read,
2203 REGINFO_SENTINEL
2206 #endif
2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2210 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2211 raw_write(env, ri, value);
2212 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2213 raw_write(env, ri, value & 0xfffff6ff);
2214 } else {
2215 raw_write(env, ri, value & 0xfffff1ff);
2219 #ifndef CONFIG_USER_ONLY
2220 /* get_phys_addr() isn't present for user-mode-only targets */
2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2223 bool isread)
2225 if (ri->opc2 & 4) {
2226 /* The ATS12NSO* operations must trap to EL3 if executed in
2227 * Secure EL1 (which can only happen if EL3 is AArch64).
2228 * They are simply UNDEF if executed from NS EL1.
2229 * They function normally from EL2 or EL3.
2231 if (arm_current_el(env) == 1) {
2232 if (arm_is_secure_below_el3(env)) {
2233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2235 return CP_ACCESS_TRAP_UNCATEGORIZED;
2238 return CP_ACCESS_OK;
2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2242 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2244 hwaddr phys_addr;
2245 target_ulong page_size;
2246 int prot;
2247 bool ret;
2248 uint64_t par64;
2249 bool format64 = false;
2250 MemTxAttrs attrs = {};
2251 ARMMMUFaultInfo fi = {};
2252 ARMCacheAttrs cacheattrs = {};
2254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2255 &prot, &page_size, &fi, &cacheattrs);
2257 if (is_a64(env)) {
2258 format64 = true;
2259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2261 * ATS1Cxx:
2262 * * TTBCR.EAE determines whether the result is returned using the
2263 * 32-bit or the 64-bit PAR format
2264 * * Instructions executed in Hyp mode always use the 64bit format
2266 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2267 * * The Non-secure TTBCR.EAE bit is set to 1
2268 * * The implementation includes EL2, and the value of HCR.VM is 1
2270 * ATS1Hx always uses the 64bit format (not supported yet).
2272 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2274 if (arm_feature(env, ARM_FEATURE_EL2)) {
2275 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2276 format64 |= env->cp15.hcr_el2 & HCR_VM;
2277 } else {
2278 format64 |= arm_current_el(env) == 2;
2283 if (format64) {
2284 /* Create a 64-bit PAR */
2285 par64 = (1 << 11); /* LPAE bit always set */
2286 if (!ret) {
2287 par64 |= phys_addr & ~0xfffULL;
2288 if (!attrs.secure) {
2289 par64 |= (1 << 9); /* NS */
2291 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2292 par64 |= cacheattrs.shareability << 7; /* SH */
2293 } else {
2294 uint32_t fsr = arm_fi_to_lfsc(&fi);
2296 par64 |= 1; /* F */
2297 par64 |= (fsr & 0x3f) << 1; /* FS */
2298 /* Note that S2WLK and FSTAGE are always zero, because we don't
2299 * implement virtualization and therefore there can't be a stage 2
2300 * fault.
2303 } else {
2304 /* fsr is a DFSR/IFSR value for the short descriptor
2305 * translation table format (with WnR always clear).
2306 * Convert it to a 32-bit PAR.
2308 if (!ret) {
2309 /* We do not set any attribute bits in the PAR */
2310 if (page_size == (1 << 24)
2311 && arm_feature(env, ARM_FEATURE_V7)) {
2312 par64 = (phys_addr & 0xff000000) | (1 << 1);
2313 } else {
2314 par64 = phys_addr & 0xfffff000;
2316 if (!attrs.secure) {
2317 par64 |= (1 << 9); /* NS */
2319 } else {
2320 uint32_t fsr = arm_fi_to_sfsc(&fi);
2322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2323 ((fsr & 0xf) << 1) | 1;
2326 return par64;
2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2331 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2332 uint64_t par64;
2333 ARMMMUIdx mmu_idx;
2334 int el = arm_current_el(env);
2335 bool secure = arm_is_secure_below_el3(env);
2337 switch (ri->opc2 & 6) {
2338 case 0:
2339 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2340 switch (el) {
2341 case 3:
2342 mmu_idx = ARMMMUIdx_S1E3;
2343 break;
2344 case 2:
2345 mmu_idx = ARMMMUIdx_S1NSE1;
2346 break;
2347 case 1:
2348 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2349 break;
2350 default:
2351 g_assert_not_reached();
2353 break;
2354 case 2:
2355 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2356 switch (el) {
2357 case 3:
2358 mmu_idx = ARMMMUIdx_S1SE0;
2359 break;
2360 case 2:
2361 mmu_idx = ARMMMUIdx_S1NSE0;
2362 break;
2363 case 1:
2364 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2365 break;
2366 default:
2367 g_assert_not_reached();
2369 break;
2370 case 4:
2371 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2372 mmu_idx = ARMMMUIdx_S12NSE1;
2373 break;
2374 case 6:
2375 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2376 mmu_idx = ARMMMUIdx_S12NSE0;
2377 break;
2378 default:
2379 g_assert_not_reached();
2382 par64 = do_ats_write(env, value, access_type, mmu_idx);
2384 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2388 uint64_t value)
2390 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2391 uint64_t par64;
2393 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2395 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2399 bool isread)
2401 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2402 return CP_ACCESS_TRAP;
2404 return CP_ACCESS_OK;
2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2410 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2411 ARMMMUIdx mmu_idx;
2412 int secure = arm_is_secure_below_el3(env);
2414 switch (ri->opc2 & 6) {
2415 case 0:
2416 switch (ri->opc1) {
2417 case 0: /* AT S1E1R, AT S1E1W */
2418 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2419 break;
2420 case 4: /* AT S1E2R, AT S1E2W */
2421 mmu_idx = ARMMMUIdx_S1E2;
2422 break;
2423 case 6: /* AT S1E3R, AT S1E3W */
2424 mmu_idx = ARMMMUIdx_S1E3;
2425 break;
2426 default:
2427 g_assert_not_reached();
2429 break;
2430 case 2: /* AT S1E0R, AT S1E0W */
2431 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2432 break;
2433 case 4: /* AT S12E1R, AT S12E1W */
2434 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2435 break;
2436 case 6: /* AT S12E0R, AT S12E0W */
2437 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2438 break;
2439 default:
2440 g_assert_not_reached();
2443 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2445 #endif
2447 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2449 .access = PL1_RW, .resetvalue = 0,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2451 offsetoflow32(CPUARMState, cp15.par_ns) },
2452 .writefn = par_write },
2453 #ifndef CONFIG_USER_ONLY
2454 /* This underdecoding is safe because the reginfo is NO_RAW. */
2455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2456 .access = PL1_W, .accessfn = ats_access,
2457 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2458 #endif
2459 REGINFO_SENTINEL
2462 /* Return basic MPU access permission bits. */
2463 static uint32_t simple_mpu_ap_bits(uint32_t val)
2465 uint32_t ret;
2466 uint32_t mask;
2467 int i;
2468 ret = 0;
2469 mask = 3;
2470 for (i = 0; i < 16; i += 2) {
2471 ret |= (val >> i) & mask;
2472 mask <<= 2;
2474 return ret;
2477 /* Pad basic MPU access permission bits to extended format. */
2478 static uint32_t extended_mpu_ap_bits(uint32_t val)
2480 uint32_t ret;
2481 uint32_t mask;
2482 int i;
2483 ret = 0;
2484 mask = 3;
2485 for (i = 0; i < 16; i += 2) {
2486 ret |= (val & mask) << i;
2487 mask <<= 2;
2489 return ret;
2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493 uint64_t value)
2495 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2504 uint64_t value)
2506 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2511 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2516 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2518 if (!u32p) {
2519 return 0;
2522 u32p += env->pmsav7.rnr[M_REG_NS];
2523 return *u32p;
2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2527 uint64_t value)
2529 ARMCPU *cpu = arm_env_get_cpu(env);
2530 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2532 if (!u32p) {
2533 return;
2536 u32p += env->pmsav7.rnr[M_REG_NS];
2537 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2538 *u32p = value;
2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 uint64_t value)
2544 ARMCPU *cpu = arm_env_get_cpu(env);
2545 uint32_t nrgs = cpu->pmsav7_dregion;
2547 if (value >= nrgs) {
2548 qemu_log_mask(LOG_GUEST_ERROR,
2549 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2550 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2551 return;
2554 raw_write(env, ri, value);
2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2558 /* Reset for all these registers is handled in arm_cpu_reset(),
2559 * because the PMSAv7 is also used by M-profile CPUs, which do
2560 * not register cpregs but still need the state to be reset.
2562 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2563 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2564 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2565 .readfn = pmsav7_read, .writefn = pmsav7_write,
2566 .resetfn = arm_cp_reset_ignore },
2567 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2568 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2569 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2570 .readfn = pmsav7_read, .writefn = pmsav7_write,
2571 .resetfn = arm_cp_reset_ignore },
2572 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2573 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2574 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2575 .readfn = pmsav7_read, .writefn = pmsav7_write,
2576 .resetfn = arm_cp_reset_ignore },
2577 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2578 .access = PL1_RW,
2579 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2580 .writefn = pmsav7_rgnr_write,
2581 .resetfn = arm_cp_reset_ignore },
2582 REGINFO_SENTINEL
2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2586 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2587 .access = PL1_RW, .type = ARM_CP_ALIAS,
2588 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2589 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2590 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2591 .access = PL1_RW, .type = ARM_CP_ALIAS,
2592 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2593 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2594 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2595 .access = PL1_RW,
2596 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2597 .resetvalue = 0, },
2598 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2599 .access = PL1_RW,
2600 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2601 .resetvalue = 0, },
2602 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2603 .access = PL1_RW,
2604 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2605 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2606 .access = PL1_RW,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2608 /* Protection region base and size registers */
2609 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2610 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2611 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2612 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2613 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2614 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2615 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2616 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2617 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2618 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2619 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2620 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2621 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2622 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2623 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2624 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2625 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2626 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2627 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2628 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2629 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2630 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2633 REGINFO_SENTINEL
2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637 uint64_t value)
2639 TCR *tcr = raw_ptr(env, ri);
2640 int maskshift = extract32(value, 0, 3);
2642 if (!arm_feature(env, ARM_FEATURE_V8)) {
2643 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2644 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2645 * using Long-desciptor translation table format */
2646 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2647 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2648 /* In an implementation that includes the Security Extensions
2649 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2650 * Short-descriptor translation table format.
2652 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2653 } else {
2654 value &= TTBCR_N;
2658 /* Update the masks corresponding to the TCR bank being written
2659 * Note that we always calculate mask and base_mask, but
2660 * they are only used for short-descriptor tables (ie if EAE is 0);
2661 * for long-descriptor tables the TCR fields are used differently
2662 * and the mask and base_mask values are meaningless.
2664 tcr->raw_tcr = value;
2665 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2666 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
2672 ARMCPU *cpu = arm_env_get_cpu(env);
2674 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2675 /* With LPAE the TTBCR could result in a change of ASID
2676 * via the TTBCR.A1 bit, so do a TLB flush.
2678 tlb_flush(CPU(cpu));
2680 vmsa_ttbcr_raw_write(env, ri, value);
2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2685 TCR *tcr = raw_ptr(env, ri);
2687 /* Reset both the TCR as well as the masks corresponding to the bank of
2688 * the TCR being reset.
2690 tcr->raw_tcr = 0;
2691 tcr->mask = 0;
2692 tcr->base_mask = 0xffffc000u;
2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696 uint64_t value)
2698 ARMCPU *cpu = arm_env_get_cpu(env);
2699 TCR *tcr = raw_ptr(env, ri);
2701 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2702 tlb_flush(CPU(cpu));
2703 tcr->raw_tcr = value;
2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707 uint64_t value)
2709 /* 64 bit accesses to the TTBRs can change the ASID and so we
2710 * must flush the TLB.
2712 if (cpreg_field_is_64bit(ri)) {
2713 ARMCPU *cpu = arm_env_get_cpu(env);
2715 tlb_flush(CPU(cpu));
2717 raw_write(env, ri, value);
2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721 uint64_t value)
2723 ARMCPU *cpu = arm_env_get_cpu(env);
2724 CPUState *cs = CPU(cpu);
2726 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2727 if (raw_read(env, ri) != value) {
2728 tlb_flush_by_mmuidx(cs,
2729 ARMMMUIdxBit_S12NSE1 |
2730 ARMMMUIdxBit_S12NSE0 |
2731 ARMMMUIdxBit_S2NS);
2732 raw_write(env, ri, value);
2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2737 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2738 .access = PL1_RW, .type = ARM_CP_ALIAS,
2739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2740 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2741 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2742 .access = PL1_RW, .resetvalue = 0,
2743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2744 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2745 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2746 .access = PL1_RW, .resetvalue = 0,
2747 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2748 offsetof(CPUARMState, cp15.dfar_ns) } },
2749 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2750 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2752 .resetvalue = 0, },
2753 REGINFO_SENTINEL
2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2757 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2758 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2759 .access = PL1_RW,
2760 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2761 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2763 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2764 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2765 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2766 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2768 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2769 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2770 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2771 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2772 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2773 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2774 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2775 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2776 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2777 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2778 .raw_writefn = vmsa_ttbcr_raw_write,
2779 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2780 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2781 REGINFO_SENTINEL
2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785 uint64_t value)
2787 env->cp15.c15_ticonfig = value & 0xe7;
2788 /* The OS_TYPE bit in this register changes the reported CPUID! */
2789 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2790 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 uint64_t value)
2796 env->cp15.c15_threadid = value & 0xffff;
2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800 uint64_t value)
2802 /* Wait-for-interrupt (deprecated) */
2803 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807 uint64_t value)
2809 /* On OMAP there are registers indicating the max/min index of dcache lines
2810 * containing a dirty line; cache flush operations have to reset these.
2812 env->cp15.c15_i_max = 0x000;
2813 env->cp15.c15_i_min = 0xff0;
2816 static const ARMCPRegInfo omap_cp_reginfo[] = {
2817 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2819 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2820 .resetvalue = 0, },
2821 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2822 .access = PL1_RW, .type = ARM_CP_NOP },
2823 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2824 .access = PL1_RW,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2826 .writefn = omap_ticonfig_write },
2827 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2828 .access = PL1_RW,
2829 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2830 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2831 .access = PL1_RW, .resetvalue = 0xff0,
2832 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2833 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2834 .access = PL1_RW,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2836 .writefn = omap_threadid_write },
2837 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2838 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2839 .type = ARM_CP_NO_RAW,
2840 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2841 /* TODO: Peripheral port remap register:
2842 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2843 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2844 * when MMU is off.
2846 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2847 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2848 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2849 .writefn = omap_cachemaint_write },
2850 { .name = "C9", .cp = 15, .crn = 9,
2851 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2852 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2853 REGINFO_SENTINEL
2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857 uint64_t value)
2859 env->cp15.c15_cpar = value & 0x3fff;
2862 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2863 { .name = "XSCALE_CPAR",
2864 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2865 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2866 .writefn = xscale_cpar_write, },
2867 { .name = "XSCALE_AUXCR",
2868 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2869 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2870 .resetvalue = 0, },
2871 /* XScale specific cache-lockdown: since we have no cache we NOP these
2872 * and hope the guest does not really rely on cache behaviour.
2874 { .name = "XSCALE_LOCK_ICACHE_LINE",
2875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2876 .access = PL1_W, .type = ARM_CP_NOP },
2877 { .name = "XSCALE_UNLOCK_ICACHE",
2878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2879 .access = PL1_W, .type = ARM_CP_NOP },
2880 { .name = "XSCALE_DCACHE_LOCK",
2881 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2882 .access = PL1_RW, .type = ARM_CP_NOP },
2883 { .name = "XSCALE_UNLOCK_DCACHE",
2884 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2885 .access = PL1_W, .type = ARM_CP_NOP },
2886 REGINFO_SENTINEL
2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2890 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2891 * implementation of this implementation-defined space.
2892 * Ideally this should eventually disappear in favour of actually
2893 * implementing the correct behaviour for all cores.
2895 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2897 .access = PL1_RW,
2898 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2899 .resetvalue = 0 },
2900 REGINFO_SENTINEL
2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2904 /* Cache status: RAZ because we have no cache so it's always clean */
2905 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2906 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2907 .resetvalue = 0 },
2908 REGINFO_SENTINEL
2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2912 /* We never have a a block transfer operation in progress */
2913 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2914 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2915 .resetvalue = 0 },
2916 /* The cache ops themselves: these all NOP for QEMU */
2917 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2918 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2919 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2920 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2921 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2922 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2923 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2924 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2925 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2926 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2927 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2928 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2929 REGINFO_SENTINEL
2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2933 /* The cache test-and-clean instructions always return (1 << 30)
2934 * to indicate that there are no dirty cache lines.
2936 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2937 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2938 .resetvalue = (1 << 30) },
2939 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2941 .resetvalue = (1 << 30) },
2942 REGINFO_SENTINEL
2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2946 /* Ignore ReadBuffer accesses */
2947 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949 .access = PL1_RW, .resetvalue = 0,
2950 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2951 REGINFO_SENTINEL
2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956 ARMCPU *cpu = arm_env_get_cpu(env);
2957 unsigned int cur_el = arm_current_el(env);
2958 bool secure = arm_is_secure(env);
2960 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961 return env->cp15.vpidr_el2;
2963 return raw_read(env, ri);
2966 static uint64_t mpidr_read_val(CPUARMState *env)
2968 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2969 uint64_t mpidr = cpu->mp_affinity;
2971 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2972 mpidr |= (1U << 31);
2973 /* Cores which are uniprocessor (non-coherent)
2974 * but still implement the MP extensions set
2975 * bit 30. (For instance, Cortex-R5).
2977 if (cpu->mp_is_up) {
2978 mpidr |= (1u << 30);
2981 return mpidr;
2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2986 unsigned int cur_el = arm_current_el(env);
2987 bool secure = arm_is_secure(env);
2989 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2990 return env->cp15.vmpidr_el2;
2992 return mpidr_read_val(env);
2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2996 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2997 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2998 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2999 REGINFO_SENTINEL
3002 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3003 /* NOP AMAIR0/1 */
3004 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3005 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3006 .access = PL1_RW, .type = ARM_CP_CONST,
3007 .resetvalue = 0 },
3008 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3009 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3010 .access = PL1_RW, .type = ARM_CP_CONST,
3011 .resetvalue = 0 },
3012 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3013 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3014 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3015 offsetof(CPUARMState, cp15.par_ns)} },
3016 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3017 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3019 offsetof(CPUARMState, cp15.ttbr0_ns) },
3020 .writefn = vmsa_ttbr_write, },
3021 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3022 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3023 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3024 offsetof(CPUARMState, cp15.ttbr1_ns) },
3025 .writefn = vmsa_ttbr_write, },
3026 REGINFO_SENTINEL
3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031 return vfp_get_fpcr(env);
3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035 uint64_t value)
3037 vfp_set_fpcr(env, value);
3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 return vfp_get_fpsr(env);
3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3046 uint64_t value)
3048 vfp_set_fpsr(env, value);
3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3052 bool isread)
3054 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3055 return CP_ACCESS_TRAP;
3057 return CP_ACCESS_OK;
3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3063 env->daif = value & PSTATE_DAIF;
3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3067 const ARMCPRegInfo *ri,
3068 bool isread)
3070 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3071 * SCTLR_EL1.UCI is set.
3073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3074 return CP_ACCESS_TRAP;
3076 return CP_ACCESS_OK;
3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3080 * Page D4-1736 (DDI0487A.b)
3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3086 CPUState *cs = ENV_GET_CPU(env);
3088 if (arm_is_secure_below_el3(env)) {
3089 tlb_flush_by_mmuidx(cs,
3090 ARMMMUIdxBit_S1SE1 |
3091 ARMMMUIdxBit_S1SE0);
3092 } else {
3093 tlb_flush_by_mmuidx(cs,
3094 ARMMMUIdxBit_S12NSE1 |
3095 ARMMMUIdxBit_S12NSE0);
3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100 uint64_t value)
3102 CPUState *cs = ENV_GET_CPU(env);
3103 bool sec = arm_is_secure_below_el3(env);
3105 if (sec) {
3106 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3107 ARMMMUIdxBit_S1SE1 |
3108 ARMMMUIdxBit_S1SE0);
3109 } else {
3110 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3111 ARMMMUIdxBit_S12NSE1 |
3112 ARMMMUIdxBit_S12NSE0);
3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117 uint64_t value)
3119 /* Note that the 'ALL' scope must invalidate both stage 1 and
3120 * stage 2 translations, whereas most other scopes only invalidate
3121 * stage 1 translations.
3123 ARMCPU *cpu = arm_env_get_cpu(env);
3124 CPUState *cs = CPU(cpu);
3126 if (arm_is_secure_below_el3(env)) {
3127 tlb_flush_by_mmuidx(cs,
3128 ARMMMUIdxBit_S1SE1 |
3129 ARMMMUIdxBit_S1SE0);
3130 } else {
3131 if (arm_feature(env, ARM_FEATURE_EL2)) {
3132 tlb_flush_by_mmuidx(cs,
3133 ARMMMUIdxBit_S12NSE1 |
3134 ARMMMUIdxBit_S12NSE0 |
3135 ARMMMUIdxBit_S2NS);
3136 } else {
3137 tlb_flush_by_mmuidx(cs,
3138 ARMMMUIdxBit_S12NSE1 |
3139 ARMMMUIdxBit_S12NSE0);
3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 CPUState *cs = CPU(cpu);
3150 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3154 uint64_t value)
3156 ARMCPU *cpu = arm_env_get_cpu(env);
3157 CPUState *cs = CPU(cpu);
3159 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163 uint64_t value)
3165 /* Note that the 'ALL' scope must invalidate both stage 1 and
3166 * stage 2 translations, whereas most other scopes only invalidate
3167 * stage 1 translations.
3169 CPUState *cs = ENV_GET_CPU(env);
3170 bool sec = arm_is_secure_below_el3(env);
3171 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3173 if (sec) {
3174 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3175 ARMMMUIdxBit_S1SE1 |
3176 ARMMMUIdxBit_S1SE0);
3177 } else if (has_el2) {
3178 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3179 ARMMMUIdxBit_S12NSE1 |
3180 ARMMMUIdxBit_S12NSE0 |
3181 ARMMMUIdxBit_S2NS);
3182 } else {
3183 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3184 ARMMMUIdxBit_S12NSE1 |
3185 ARMMMUIdxBit_S12NSE0);
3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190 uint64_t value)
3192 CPUState *cs = ENV_GET_CPU(env);
3194 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3200 CPUState *cs = ENV_GET_CPU(env);
3202 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206 uint64_t value)
3208 /* Invalidate by VA, EL1&0 (AArch64 version).
3209 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3210 * since we don't support flush-for-specific-ASID-only or
3211 * flush-last-level-only.
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 CPUState *cs = CPU(cpu);
3215 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3217 if (arm_is_secure_below_el3(env)) {
3218 tlb_flush_page_by_mmuidx(cs, pageaddr,
3219 ARMMMUIdxBit_S1SE1 |
3220 ARMMMUIdxBit_S1SE0);
3221 } else {
3222 tlb_flush_page_by_mmuidx(cs, pageaddr,
3223 ARMMMUIdxBit_S12NSE1 |
3224 ARMMMUIdxBit_S12NSE0);
3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3229 uint64_t value)
3231 /* Invalidate by VA, EL2
3232 * Currently handles both VAE2 and VALE2, since we don't support
3233 * flush-last-level-only.
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 CPUState *cs = CPU(cpu);
3237 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3243 uint64_t value)
3245 /* Invalidate by VA, EL3
3246 * Currently handles both VAE3 and VALE3, since we don't support
3247 * flush-last-level-only.
3249 ARMCPU *cpu = arm_env_get_cpu(env);
3250 CPUState *cs = CPU(cpu);
3251 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257 uint64_t value)
3259 ARMCPU *cpu = arm_env_get_cpu(env);
3260 CPUState *cs = CPU(cpu);
3261 bool sec = arm_is_secure_below_el3(env);
3262 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3264 if (sec) {
3265 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3266 ARMMMUIdxBit_S1SE1 |
3267 ARMMMUIdxBit_S1SE0);
3268 } else {
3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3270 ARMMMUIdxBit_S12NSE1 |
3271 ARMMMUIdxBit_S12NSE0);
3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3276 uint64_t value)
3278 CPUState *cs = ENV_GET_CPU(env);
3279 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3281 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3282 ARMMMUIdxBit_S1E2);
3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3286 uint64_t value)
3288 CPUState *cs = ENV_GET_CPU(env);
3289 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3291 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3292 ARMMMUIdxBit_S1E3);
3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296 uint64_t value)
3298 /* Invalidate by IPA. This has to invalidate any structures that
3299 * contain only stage 2 translation information, but does not need
3300 * to apply to structures that contain combined stage 1 and stage 2
3301 * translation information.
3302 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3304 ARMCPU *cpu = arm_env_get_cpu(env);
3305 CPUState *cs = CPU(cpu);
3306 uint64_t pageaddr;
3308 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3309 return;
3312 pageaddr = sextract64(value << 12, 0, 48);
3314 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3318 uint64_t value)
3320 CPUState *cs = ENV_GET_CPU(env);
3321 uint64_t pageaddr;
3323 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3324 return;
3327 pageaddr = sextract64(value << 12, 0, 48);
3329 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3330 ARMMMUIdxBit_S2NS);
3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3334 bool isread)
3336 /* We don't implement EL2, so the only control on DC ZVA is the
3337 * bit in the SCTLR which can prohibit access for EL0.
3339 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3340 return CP_ACCESS_TRAP;
3342 return CP_ACCESS_OK;
3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3347 ARMCPU *cpu = arm_env_get_cpu(env);
3348 int dzp_bit = 1 << 4;
3350 /* DZP indicates whether DC ZVA access is allowed */
3351 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3352 dzp_bit = 0;
3354 return cpu->dcz_blocksize | dzp_bit;
3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3358 bool isread)
3360 if (!(env->pstate & PSTATE_SP)) {
3361 /* Access to SP_EL0 is undefined if it's being used as
3362 * the stack pointer.
3364 return CP_ACCESS_TRAP_UNCATEGORIZED;
3366 return CP_ACCESS_OK;
3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3371 return env->pstate & PSTATE_SP;
3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3376 update_spsel(env, val);
3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380 uint64_t value)
3382 ARMCPU *cpu = arm_env_get_cpu(env);
3384 if (raw_read(env, ri) == value) {
3385 /* Skip the TLB flush if nothing actually changed; Linux likes
3386 * to do a lot of pointless SCTLR writes.
3388 return;
3391 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3392 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3393 value &= ~SCTLR_M;
3396 raw_write(env, ri, value);
3397 /* ??? Lots of these bits are not implemented. */
3398 /* This may enable/disable the MMU, so do a TLB flush. */
3399 tlb_flush(CPU(cpu));
3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3403 bool isread)
3405 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3406 return CP_ACCESS_TRAP_FP_EL2;
3408 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3409 return CP_ACCESS_TRAP_FP_EL3;
3411 return CP_ACCESS_OK;
3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3415 uint64_t value)
3417 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3420 static const ARMCPRegInfo v8_cp_reginfo[] = {
3421 /* Minimal set of EL0-visible registers. This will need to be expanded
3422 * significantly for system emulation of AArch64 CPUs.
3424 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3426 .access = PL0_RW, .type = ARM_CP_NZCV },
3427 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3429 .type = ARM_CP_NO_RAW,
3430 .access = PL0_RW, .accessfn = aa64_daif_access,
3431 .fieldoffset = offsetof(CPUARMState, daif),
3432 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3433 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3435 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3436 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3437 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3438 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3439 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3440 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3441 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3443 .access = PL0_R, .type = ARM_CP_NO_RAW,
3444 .readfn = aa64_dczid_read },
3445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3447 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3448 #ifndef CONFIG_USER_ONLY
3449 /* Avoid overhead of an access check that always passes in user-mode */
3450 .accessfn = aa64_zva_access,
3451 #endif
3453 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3455 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3456 /* Cache ops: all NOPs since we don't emulate caches */
3457 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3459 .access = PL1_W, .type = ARM_CP_NOP },
3460 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3462 .access = PL1_W, .type = ARM_CP_NOP },
3463 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3465 .access = PL0_W, .type = ARM_CP_NOP,
3466 .accessfn = aa64_cacheop_access },
3467 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3469 .access = PL1_W, .type = ARM_CP_NOP },
3470 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3472 .access = PL1_W, .type = ARM_CP_NOP },
3473 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3475 .access = PL0_W, .type = ARM_CP_NOP,
3476 .accessfn = aa64_cacheop_access },
3477 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3479 .access = PL1_W, .type = ARM_CP_NOP },
3480 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3482 .access = PL0_W, .type = ARM_CP_NOP,
3483 .accessfn = aa64_cacheop_access },
3484 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3486 .access = PL0_W, .type = ARM_CP_NOP,
3487 .accessfn = aa64_cacheop_access },
3488 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3490 .access = PL1_W, .type = ARM_CP_NOP },
3491 /* TLBI operations */
3492 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3494 .access = PL1_W, .type = ARM_CP_NO_RAW,
3495 .writefn = tlbi_aa64_vmalle1is_write },
3496 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3497 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3498 .access = PL1_W, .type = ARM_CP_NO_RAW,
3499 .writefn = tlbi_aa64_vae1is_write },
3500 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3502 .access = PL1_W, .type = ARM_CP_NO_RAW,
3503 .writefn = tlbi_aa64_vmalle1is_write },
3504 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3506 .access = PL1_W, .type = ARM_CP_NO_RAW,
3507 .writefn = tlbi_aa64_vae1is_write },
3508 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3510 .access = PL1_W, .type = ARM_CP_NO_RAW,
3511 .writefn = tlbi_aa64_vae1is_write },
3512 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3514 .access = PL1_W, .type = ARM_CP_NO_RAW,
3515 .writefn = tlbi_aa64_vae1is_write },
3516 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3518 .access = PL1_W, .type = ARM_CP_NO_RAW,
3519 .writefn = tlbi_aa64_vmalle1_write },
3520 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3522 .access = PL1_W, .type = ARM_CP_NO_RAW,
3523 .writefn = tlbi_aa64_vae1_write },
3524 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3526 .access = PL1_W, .type = ARM_CP_NO_RAW,
3527 .writefn = tlbi_aa64_vmalle1_write },
3528 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3530 .access = PL1_W, .type = ARM_CP_NO_RAW,
3531 .writefn = tlbi_aa64_vae1_write },
3532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3534 .access = PL1_W, .type = ARM_CP_NO_RAW,
3535 .writefn = tlbi_aa64_vae1_write },
3536 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3538 .access = PL1_W, .type = ARM_CP_NO_RAW,
3539 .writefn = tlbi_aa64_vae1_write },
3540 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3542 .access = PL2_W, .type = ARM_CP_NO_RAW,
3543 .writefn = tlbi_aa64_ipas2e1is_write },
3544 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3546 .access = PL2_W, .type = ARM_CP_NO_RAW,
3547 .writefn = tlbi_aa64_ipas2e1is_write },
3548 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3550 .access = PL2_W, .type = ARM_CP_NO_RAW,
3551 .writefn = tlbi_aa64_alle1is_write },
3552 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3554 .access = PL2_W, .type = ARM_CP_NO_RAW,
3555 .writefn = tlbi_aa64_alle1is_write },
3556 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3558 .access = PL2_W, .type = ARM_CP_NO_RAW,
3559 .writefn = tlbi_aa64_ipas2e1_write },
3560 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3562 .access = PL2_W, .type = ARM_CP_NO_RAW,
3563 .writefn = tlbi_aa64_ipas2e1_write },
3564 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3566 .access = PL2_W, .type = ARM_CP_NO_RAW,
3567 .writefn = tlbi_aa64_alle1_write },
3568 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3570 .access = PL2_W, .type = ARM_CP_NO_RAW,
3571 .writefn = tlbi_aa64_alle1is_write },
3572 #ifndef CONFIG_USER_ONLY
3573 /* 64 bit address translation operations */
3574 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3576 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3577 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3579 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3580 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3582 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3583 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3585 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3586 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3588 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3589 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3591 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3592 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3594 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3595 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3597 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3601 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3602 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3604 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3605 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_ALIAS,
3607 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3608 .access = PL1_RW, .resetvalue = 0,
3609 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3610 .writefn = par_write },
3611 #endif
3612 /* TLB invalidate last level of translation table walk */
3613 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3615 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3616 .type = ARM_CP_NO_RAW, .access = PL1_W,
3617 .writefn = tlbimvaa_is_write },
3618 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3619 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3620 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3621 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3622 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3623 .type = ARM_CP_NO_RAW, .access = PL2_W,
3624 .writefn = tlbimva_hyp_write },
3625 { .name = "TLBIMVALHIS",
3626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3627 .type = ARM_CP_NO_RAW, .access = PL2_W,
3628 .writefn = tlbimva_hyp_is_write },
3629 { .name = "TLBIIPAS2",
3630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3631 .type = ARM_CP_NO_RAW, .access = PL2_W,
3632 .writefn = tlbiipas2_write },
3633 { .name = "TLBIIPAS2IS",
3634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3635 .type = ARM_CP_NO_RAW, .access = PL2_W,
3636 .writefn = tlbiipas2_is_write },
3637 { .name = "TLBIIPAS2L",
3638 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3639 .type = ARM_CP_NO_RAW, .access = PL2_W,
3640 .writefn = tlbiipas2_write },
3641 { .name = "TLBIIPAS2LIS",
3642 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3643 .type = ARM_CP_NO_RAW, .access = PL2_W,
3644 .writefn = tlbiipas2_is_write },
3645 /* 32 bit cache operations */
3646 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3647 .type = ARM_CP_NOP, .access = PL1_W },
3648 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3649 .type = ARM_CP_NOP, .access = PL1_W },
3650 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3651 .type = ARM_CP_NOP, .access = PL1_W },
3652 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3653 .type = ARM_CP_NOP, .access = PL1_W },
3654 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3655 .type = ARM_CP_NOP, .access = PL1_W },
3656 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3657 .type = ARM_CP_NOP, .access = PL1_W },
3658 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3659 .type = ARM_CP_NOP, .access = PL1_W },
3660 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3661 .type = ARM_CP_NOP, .access = PL1_W },
3662 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3663 .type = ARM_CP_NOP, .access = PL1_W },
3664 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3665 .type = ARM_CP_NOP, .access = PL1_W },
3666 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3667 .type = ARM_CP_NOP, .access = PL1_W },
3668 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3669 .type = ARM_CP_NOP, .access = PL1_W },
3670 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3671 .type = ARM_CP_NOP, .access = PL1_W },
3672 /* MMU Domain access control / MPU write buffer control */
3673 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3674 .access = PL1_RW, .resetvalue = 0,
3675 .writefn = dacr_write, .raw_writefn = raw_write,
3676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3677 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3678 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3679 .type = ARM_CP_ALIAS,
3680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3681 .access = PL1_RW,
3682 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3683 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3684 .type = ARM_CP_ALIAS,
3685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3686 .access = PL1_RW,
3687 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3688 /* We rely on the access checks not allowing the guest to write to the
3689 * state field when SPSel indicates that it's being used as the stack
3690 * pointer.
3692 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3693 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3694 .access = PL1_RW, .accessfn = sp_el0_access,
3695 .type = ARM_CP_ALIAS,
3696 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3697 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3698 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3699 .access = PL2_RW, .type = ARM_CP_ALIAS,
3700 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3701 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3702 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3703 .type = ARM_CP_NO_RAW,
3704 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3705 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3707 .type = ARM_CP_ALIAS,
3708 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3709 .access = PL2_RW, .accessfn = fpexc32_access },
3710 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3711 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3712 .access = PL2_RW, .resetvalue = 0,
3713 .writefn = dacr_write, .raw_writefn = raw_write,
3714 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3715 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3716 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3717 .access = PL2_RW, .resetvalue = 0,
3718 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3719 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3720 .type = ARM_CP_ALIAS,
3721 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3722 .access = PL2_RW,
3723 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3724 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3725 .type = ARM_CP_ALIAS,
3726 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3727 .access = PL2_RW,
3728 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3729 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3730 .type = ARM_CP_ALIAS,
3731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3732 .access = PL2_RW,
3733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3734 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3735 .type = ARM_CP_ALIAS,
3736 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3737 .access = PL2_RW,
3738 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3739 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3741 .resetvalue = 0,
3742 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3743 { .name = "SDCR", .type = ARM_CP_ALIAS,
3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746 .writefn = sdcr_write,
3747 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3748 REGINFO_SENTINEL
3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3753 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3754 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3755 .access = PL2_RW,
3756 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3757 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3758 .type = ARM_CP_NO_RAW,
3759 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3760 .access = PL2_RW,
3761 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3762 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3765 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3766 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3767 .access = PL2_RW, .type = ARM_CP_CONST,
3768 .resetvalue = 0 },
3769 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3770 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3771 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3772 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3774 .access = PL2_RW, .type = ARM_CP_CONST,
3775 .resetvalue = 0 },
3776 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3777 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3778 .access = PL2_RW, .type = ARM_CP_CONST,
3779 .resetvalue = 0 },
3780 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3781 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3782 .access = PL2_RW, .type = ARM_CP_CONST,
3783 .resetvalue = 0 },
3784 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3785 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3787 .resetvalue = 0 },
3788 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3789 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3790 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3791 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3792 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3793 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3794 .type = ARM_CP_CONST, .resetvalue = 0 },
3795 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3796 .cp = 15, .opc1 = 6, .crm = 2,
3797 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3798 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3801 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3802 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3803 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3804 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3805 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3806 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3807 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3808 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3810 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3811 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3812 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3813 .resetvalue = 0 },
3814 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3815 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3816 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3817 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3818 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3819 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3820 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3821 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3822 .resetvalue = 0 },
3823 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3824 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3825 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3826 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3827 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3828 .resetvalue = 0 },
3829 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3831 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3833 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3834 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3835 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3837 .access = PL2_RW, .accessfn = access_tda,
3838 .type = ARM_CP_CONST, .resetvalue = 0 },
3839 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3840 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3841 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3842 .type = ARM_CP_CONST, .resetvalue = 0 },
3843 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3844 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3845 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3846 REGINFO_SENTINEL
3849 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3851 ARMCPU *cpu = arm_env_get_cpu(env);
3852 uint64_t valid_mask = HCR_MASK;
3854 if (arm_feature(env, ARM_FEATURE_EL3)) {
3855 valid_mask &= ~HCR_HCD;
3856 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3857 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3858 * However, if we're using the SMC PSCI conduit then QEMU is
3859 * effectively acting like EL3 firmware and so the guest at
3860 * EL2 should retain the ability to prevent EL1 from being
3861 * able to make SMC calls into the ersatz firmware, so in
3862 * that case HCR.TSC should be read/write.
3864 valid_mask &= ~HCR_TSC;
3867 /* Clear RES0 bits. */
3868 value &= valid_mask;
3870 /* These bits change the MMU setup:
3871 * HCR_VM enables stage 2 translation
3872 * HCR_PTW forbids certain page-table setups
3873 * HCR_DC Disables stage1 and enables stage2 translation
3875 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3876 tlb_flush(CPU(cpu));
3878 raw_write(env, ri, value);
3881 static const ARMCPRegInfo el2_cp_reginfo[] = {
3882 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3883 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3884 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3885 .writefn = hcr_write },
3886 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3887 .type = ARM_CP_ALIAS,
3888 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3889 .access = PL2_RW,
3890 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3891 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3892 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3893 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3894 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3896 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3897 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3898 .type = ARM_CP_ALIAS,
3899 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3900 .access = PL2_RW,
3901 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3902 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3903 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3904 .access = PL2_RW, .writefn = vbar_write,
3905 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3906 .resetvalue = 0 },
3907 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3908 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3909 .access = PL3_RW, .type = ARM_CP_ALIAS,
3910 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3911 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3913 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3914 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3915 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3916 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3917 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3918 .resetvalue = 0 },
3919 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3920 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3921 .access = PL2_RW, .type = ARM_CP_ALIAS,
3922 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3923 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3924 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3925 .access = PL2_RW, .type = ARM_CP_CONST,
3926 .resetvalue = 0 },
3927 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3928 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3929 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3930 .access = PL2_RW, .type = ARM_CP_CONST,
3931 .resetvalue = 0 },
3932 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3934 .access = PL2_RW, .type = ARM_CP_CONST,
3935 .resetvalue = 0 },
3936 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3937 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3938 .access = PL2_RW, .type = ARM_CP_CONST,
3939 .resetvalue = 0 },
3940 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3941 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3942 .access = PL2_RW,
3943 /* no .writefn needed as this can't cause an ASID change;
3944 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3946 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3947 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3948 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3949 .type = ARM_CP_ALIAS,
3950 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3951 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3952 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3953 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3954 .access = PL2_RW,
3955 /* no .writefn needed as this can't cause an ASID change;
3956 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3958 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3959 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3960 .cp = 15, .opc1 = 6, .crm = 2,
3961 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3962 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3963 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3964 .writefn = vttbr_write },
3965 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3966 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3967 .access = PL2_RW, .writefn = vttbr_write,
3968 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3969 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3970 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3971 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3972 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3973 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3974 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3975 .access = PL2_RW, .resetvalue = 0,
3976 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3977 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3978 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3979 .access = PL2_RW, .resetvalue = 0,
3980 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3981 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3982 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3983 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3984 { .name = "TLBIALLNSNH",
3985 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3986 .type = ARM_CP_NO_RAW, .access = PL2_W,
3987 .writefn = tlbiall_nsnh_write },
3988 { .name = "TLBIALLNSNHIS",
3989 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3990 .type = ARM_CP_NO_RAW, .access = PL2_W,
3991 .writefn = tlbiall_nsnh_is_write },
3992 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3993 .type = ARM_CP_NO_RAW, .access = PL2_W,
3994 .writefn = tlbiall_hyp_write },
3995 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3996 .type = ARM_CP_NO_RAW, .access = PL2_W,
3997 .writefn = tlbiall_hyp_is_write },
3998 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3999 .type = ARM_CP_NO_RAW, .access = PL2_W,
4000 .writefn = tlbimva_hyp_write },
4001 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4002 .type = ARM_CP_NO_RAW, .access = PL2_W,
4003 .writefn = tlbimva_hyp_is_write },
4004 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4005 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4006 .type = ARM_CP_NO_RAW, .access = PL2_W,
4007 .writefn = tlbi_aa64_alle2_write },
4008 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4010 .type = ARM_CP_NO_RAW, .access = PL2_W,
4011 .writefn = tlbi_aa64_vae2_write },
4012 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4014 .access = PL2_W, .type = ARM_CP_NO_RAW,
4015 .writefn = tlbi_aa64_vae2_write },
4016 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4018 .access = PL2_W, .type = ARM_CP_NO_RAW,
4019 .writefn = tlbi_aa64_alle2is_write },
4020 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4022 .type = ARM_CP_NO_RAW, .access = PL2_W,
4023 .writefn = tlbi_aa64_vae2is_write },
4024 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4026 .access = PL2_W, .type = ARM_CP_NO_RAW,
4027 .writefn = tlbi_aa64_vae2is_write },
4028 #ifndef CONFIG_USER_ONLY
4029 /* Unlike the other EL2-related AT operations, these must
4030 * UNDEF from EL3 if EL2 is not implemented, which is why we
4031 * define them here rather than with the rest of the AT ops.
4033 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4034 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4035 .access = PL2_W, .accessfn = at_s1e2_access,
4036 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4037 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4038 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4039 .access = PL2_W, .accessfn = at_s1e2_access,
4040 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4041 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4042 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4043 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4044 * to behave as if SCR.NS was 1.
4046 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4047 .access = PL2_W,
4048 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4049 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4050 .access = PL2_W,
4051 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4052 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4053 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4054 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4055 * reset values as IMPDEF. We choose to reset to 3 to comply with
4056 * both ARMv7 and ARMv8.
4058 .access = PL2_RW, .resetvalue = 3,
4059 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4060 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4061 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4062 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4063 .writefn = gt_cntvoff_write,
4064 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4065 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4066 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4067 .writefn = gt_cntvoff_write,
4068 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4069 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4070 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4071 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4072 .type = ARM_CP_IO, .access = PL2_RW,
4073 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4074 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4075 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4076 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4077 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4078 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4079 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4080 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4081 .resetfn = gt_hyp_timer_reset,
4082 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4083 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4084 .type = ARM_CP_IO,
4085 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4086 .access = PL2_RW,
4087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4088 .resetvalue = 0,
4089 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4090 #endif
4091 /* The only field of MDCR_EL2 that has a defined architectural reset value
4092 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4093 * don't impelment any PMU event counters, so using zero as a reset
4094 * value for MDCR_EL2 is okay
4096 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4097 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4098 .access = PL2_RW, .resetvalue = 0,
4099 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4100 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4101 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4102 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4103 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4104 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4105 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4106 .access = PL2_RW,
4107 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4108 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4109 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4110 .access = PL2_RW,
4111 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4112 REGINFO_SENTINEL
4115 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4116 bool isread)
4118 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4119 * At Secure EL1 it traps to EL3.
4121 if (arm_current_el(env) == 3) {
4122 return CP_ACCESS_OK;
4124 if (arm_is_secure_below_el3(env)) {
4125 return CP_ACCESS_TRAP_EL3;
4127 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4128 if (isread) {
4129 return CP_ACCESS_OK;
4131 return CP_ACCESS_TRAP_UNCATEGORIZED;
4134 static const ARMCPRegInfo el3_cp_reginfo[] = {
4135 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4136 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4138 .resetvalue = 0, .writefn = scr_write },
4139 { .name = "SCR", .type = ARM_CP_ALIAS,
4140 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4141 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4142 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4143 .writefn = scr_write },
4144 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4145 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4146 .access = PL3_RW, .resetvalue = 0,
4147 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4148 { .name = "SDER",
4149 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4150 .access = PL3_RW, .resetvalue = 0,
4151 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4152 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4153 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4154 .writefn = vbar_write, .resetvalue = 0,
4155 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4156 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4157 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4158 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4159 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4160 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4161 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4162 .access = PL3_RW,
4163 /* no .writefn needed as this can't cause an ASID change;
4164 * we must provide a .raw_writefn and .resetfn because we handle
4165 * reset and migration for the AArch32 TTBCR(S), which might be
4166 * using mask and base_mask.
4168 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4169 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4170 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4171 .type = ARM_CP_ALIAS,
4172 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4173 .access = PL3_RW,
4174 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4175 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4176 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4177 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4178 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4179 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4181 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4182 .type = ARM_CP_ALIAS,
4183 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4184 .access = PL3_RW,
4185 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4186 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4187 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4188 .access = PL3_RW, .writefn = vbar_write,
4189 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4190 .resetvalue = 0 },
4191 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4193 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4194 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4195 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4196 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4197 .access = PL3_RW, .resetvalue = 0,
4198 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4199 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4200 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4201 .access = PL3_RW, .type = ARM_CP_CONST,
4202 .resetvalue = 0 },
4203 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4204 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4205 .access = PL3_RW, .type = ARM_CP_CONST,
4206 .resetvalue = 0 },
4207 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4208 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4209 .access = PL3_RW, .type = ARM_CP_CONST,
4210 .resetvalue = 0 },
4211 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4213 .access = PL3_W, .type = ARM_CP_NO_RAW,
4214 .writefn = tlbi_aa64_alle3is_write },
4215 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4216 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4217 .access = PL3_W, .type = ARM_CP_NO_RAW,
4218 .writefn = tlbi_aa64_vae3is_write },
4219 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4220 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4221 .access = PL3_W, .type = ARM_CP_NO_RAW,
4222 .writefn = tlbi_aa64_vae3is_write },
4223 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4224 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4225 .access = PL3_W, .type = ARM_CP_NO_RAW,
4226 .writefn = tlbi_aa64_alle3_write },
4227 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4229 .access = PL3_W, .type = ARM_CP_NO_RAW,
4230 .writefn = tlbi_aa64_vae3_write },
4231 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4233 .access = PL3_W, .type = ARM_CP_NO_RAW,
4234 .writefn = tlbi_aa64_vae3_write },
4235 REGINFO_SENTINEL
4238 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4239 bool isread)
4241 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4242 * but the AArch32 CTR has its own reginfo struct)
4244 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4245 return CP_ACCESS_TRAP;
4247 return CP_ACCESS_OK;
4250 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4251 uint64_t value)
4253 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4254 * read via a bit in OSLSR_EL1.
4256 int oslock;
4258 if (ri->state == ARM_CP_STATE_AA32) {
4259 oslock = (value == 0xC5ACCE55);
4260 } else {
4261 oslock = value & 1;
4264 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4267 static const ARMCPRegInfo debug_cp_reginfo[] = {
4268 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4269 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4270 * unlike DBGDRAR it is never accessible from EL0.
4271 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4272 * accessor.
4274 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4275 .access = PL0_R, .accessfn = access_tdra,
4276 .type = ARM_CP_CONST, .resetvalue = 0 },
4277 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4278 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4279 .access = PL1_R, .accessfn = access_tdra,
4280 .type = ARM_CP_CONST, .resetvalue = 0 },
4281 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4282 .access = PL0_R, .accessfn = access_tdra,
4283 .type = ARM_CP_CONST, .resetvalue = 0 },
4284 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4285 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4286 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4287 .access = PL1_RW, .accessfn = access_tda,
4288 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4289 .resetvalue = 0 },
4290 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4291 * We don't implement the configurable EL0 access.
4293 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4294 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4295 .type = ARM_CP_ALIAS,
4296 .access = PL1_R, .accessfn = access_tda,
4297 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4298 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4299 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4300 .access = PL1_W, .type = ARM_CP_NO_RAW,
4301 .accessfn = access_tdosa,
4302 .writefn = oslar_write },
4303 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4304 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4305 .access = PL1_R, .resetvalue = 10,
4306 .accessfn = access_tdosa,
4307 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4308 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4309 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4310 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4311 .access = PL1_RW, .accessfn = access_tdosa,
4312 .type = ARM_CP_NOP },
4313 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4314 * implement vector catch debug events yet.
4316 { .name = "DBGVCR",
4317 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4318 .access = PL1_RW, .accessfn = access_tda,
4319 .type = ARM_CP_NOP },
4320 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4321 * to save and restore a 32-bit guest's DBGVCR)
4323 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4324 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4325 .access = PL2_RW, .accessfn = access_tda,
4326 .type = ARM_CP_NOP },
4327 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4328 * Channel but Linux may try to access this register. The 32-bit
4329 * alias is DBGDCCINT.
4331 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4332 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4333 .access = PL1_RW, .accessfn = access_tda,
4334 .type = ARM_CP_NOP },
4335 REGINFO_SENTINEL
4338 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4339 /* 64 bit access versions of the (dummy) debug registers */
4340 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4341 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4342 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4343 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4344 REGINFO_SENTINEL
4347 /* Return the exception level to which SVE-disabled exceptions should
4348 * be taken, or 0 if SVE is enabled.
4350 static int sve_exception_el(CPUARMState *env)
4352 #ifndef CONFIG_USER_ONLY
4353 unsigned current_el = arm_current_el(env);
4355 /* The CPACR.ZEN controls traps to EL1:
4356 * 0, 2 : trap EL0 and EL1 accesses
4357 * 1 : trap only EL0 accesses
4358 * 3 : trap no accesses
4360 switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4361 default:
4362 if (current_el <= 1) {
4363 /* Trap to PL1, which might be EL1 or EL3 */
4364 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4365 return 3;
4367 return 1;
4369 break;
4370 case 1:
4371 if (current_el == 0) {
4372 return 1;
4374 break;
4375 case 3:
4376 break;
4379 /* Similarly for CPACR.FPEN, after having checked ZEN. */
4380 switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4381 default:
4382 if (current_el <= 1) {
4383 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4384 return 3;
4386 return 1;
4388 break;
4389 case 1:
4390 if (current_el == 0) {
4391 return 1;
4393 break;
4394 case 3:
4395 break;
4398 /* CPTR_EL2. Check both TZ and TFP. */
4399 if (current_el <= 2
4400 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4401 && !arm_is_secure_below_el3(env)) {
4402 return 2;
4405 /* CPTR_EL3. Check both EZ and TFP. */
4406 if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4407 || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4408 return 3;
4410 #endif
4411 return 0;
4414 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4415 uint64_t value)
4417 /* Bits other than [3:0] are RAZ/WI. */
4418 raw_write(env, ri, value & 0xf);
4421 static const ARMCPRegInfo zcr_el1_reginfo = {
4422 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4423 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4424 .access = PL1_RW, .type = ARM_CP_SVE,
4425 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4426 .writefn = zcr_write, .raw_writefn = raw_write
4429 static const ARMCPRegInfo zcr_el2_reginfo = {
4430 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4432 .access = PL2_RW, .type = ARM_CP_SVE,
4433 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4434 .writefn = zcr_write, .raw_writefn = raw_write
4437 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4438 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4439 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4440 .access = PL2_RW, .type = ARM_CP_SVE,
4441 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4444 static const ARMCPRegInfo zcr_el3_reginfo = {
4445 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4446 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4447 .access = PL3_RW, .type = ARM_CP_SVE,
4448 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4449 .writefn = zcr_write, .raw_writefn = raw_write
4452 void hw_watchpoint_update(ARMCPU *cpu, int n)
4454 CPUARMState *env = &cpu->env;
4455 vaddr len = 0;
4456 vaddr wvr = env->cp15.dbgwvr[n];
4457 uint64_t wcr = env->cp15.dbgwcr[n];
4458 int mask;
4459 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4461 if (env->cpu_watchpoint[n]) {
4462 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4463 env->cpu_watchpoint[n] = NULL;
4466 if (!extract64(wcr, 0, 1)) {
4467 /* E bit clear : watchpoint disabled */
4468 return;
4471 switch (extract64(wcr, 3, 2)) {
4472 case 0:
4473 /* LSC 00 is reserved and must behave as if the wp is disabled */
4474 return;
4475 case 1:
4476 flags |= BP_MEM_READ;
4477 break;
4478 case 2:
4479 flags |= BP_MEM_WRITE;
4480 break;
4481 case 3:
4482 flags |= BP_MEM_ACCESS;
4483 break;
4486 /* Attempts to use both MASK and BAS fields simultaneously are
4487 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4488 * thus generating a watchpoint for every byte in the masked region.
4490 mask = extract64(wcr, 24, 4);
4491 if (mask == 1 || mask == 2) {
4492 /* Reserved values of MASK; we must act as if the mask value was
4493 * some non-reserved value, or as if the watchpoint were disabled.
4494 * We choose the latter.
4496 return;
4497 } else if (mask) {
4498 /* Watchpoint covers an aligned area up to 2GB in size */
4499 len = 1ULL << mask;
4500 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4501 * whether the watchpoint fires when the unmasked bits match; we opt
4502 * to generate the exceptions.
4504 wvr &= ~(len - 1);
4505 } else {
4506 /* Watchpoint covers bytes defined by the byte address select bits */
4507 int bas = extract64(wcr, 5, 8);
4508 int basstart;
4510 if (bas == 0) {
4511 /* This must act as if the watchpoint is disabled */
4512 return;
4515 if (extract64(wvr, 2, 1)) {
4516 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4517 * ignored, and BAS[3:0] define which bytes to watch.
4519 bas &= 0xf;
4521 /* The BAS bits are supposed to be programmed to indicate a contiguous
4522 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4523 * we fire for each byte in the word/doubleword addressed by the WVR.
4524 * We choose to ignore any non-zero bits after the first range of 1s.
4526 basstart = ctz32(bas);
4527 len = cto32(bas >> basstart);
4528 wvr += basstart;
4531 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4532 &env->cpu_watchpoint[n]);
4535 void hw_watchpoint_update_all(ARMCPU *cpu)
4537 int i;
4538 CPUARMState *env = &cpu->env;
4540 /* Completely clear out existing QEMU watchpoints and our array, to
4541 * avoid possible stale entries following migration load.
4543 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4544 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4546 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4547 hw_watchpoint_update(cpu, i);
4551 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4552 uint64_t value)
4554 ARMCPU *cpu = arm_env_get_cpu(env);
4555 int i = ri->crm;
4557 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4558 * register reads and behaves as if values written are sign extended.
4559 * Bits [1:0] are RES0.
4561 value = sextract64(value, 0, 49) & ~3ULL;
4563 raw_write(env, ri, value);
4564 hw_watchpoint_update(cpu, i);
4567 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4568 uint64_t value)
4570 ARMCPU *cpu = arm_env_get_cpu(env);
4571 int i = ri->crm;
4573 raw_write(env, ri, value);
4574 hw_watchpoint_update(cpu, i);
4577 void hw_breakpoint_update(ARMCPU *cpu, int n)
4579 CPUARMState *env = &cpu->env;
4580 uint64_t bvr = env->cp15.dbgbvr[n];
4581 uint64_t bcr = env->cp15.dbgbcr[n];
4582 vaddr addr;
4583 int bt;
4584 int flags = BP_CPU;
4586 if (env->cpu_breakpoint[n]) {
4587 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4588 env->cpu_breakpoint[n] = NULL;
4591 if (!extract64(bcr, 0, 1)) {
4592 /* E bit clear : watchpoint disabled */
4593 return;
4596 bt = extract64(bcr, 20, 4);
4598 switch (bt) {
4599 case 4: /* unlinked address mismatch (reserved if AArch64) */
4600 case 5: /* linked address mismatch (reserved if AArch64) */
4601 qemu_log_mask(LOG_UNIMP,
4602 "arm: address mismatch breakpoint types not implemented\n");
4603 return;
4604 case 0: /* unlinked address match */
4605 case 1: /* linked address match */
4607 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4608 * we behave as if the register was sign extended. Bits [1:0] are
4609 * RES0. The BAS field is used to allow setting breakpoints on 16
4610 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4611 * a bp will fire if the addresses covered by the bp and the addresses
4612 * covered by the insn overlap but the insn doesn't start at the
4613 * start of the bp address range. We choose to require the insn and
4614 * the bp to have the same address. The constraints on writing to
4615 * BAS enforced in dbgbcr_write mean we have only four cases:
4616 * 0b0000 => no breakpoint
4617 * 0b0011 => breakpoint on addr
4618 * 0b1100 => breakpoint on addr + 2
4619 * 0b1111 => breakpoint on addr
4620 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4622 int bas = extract64(bcr, 5, 4);
4623 addr = sextract64(bvr, 0, 49) & ~3ULL;
4624 if (bas == 0) {
4625 return;
4627 if (bas == 0xc) {
4628 addr += 2;
4630 break;
4632 case 2: /* unlinked context ID match */
4633 case 8: /* unlinked VMID match (reserved if no EL2) */
4634 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4635 qemu_log_mask(LOG_UNIMP,
4636 "arm: unlinked context breakpoint types not implemented\n");
4637 return;
4638 case 9: /* linked VMID match (reserved if no EL2) */
4639 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4640 case 3: /* linked context ID match */
4641 default:
4642 /* We must generate no events for Linked context matches (unless
4643 * they are linked to by some other bp/wp, which is handled in
4644 * updates for the linking bp/wp). We choose to also generate no events
4645 * for reserved values.
4647 return;
4650 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4653 void hw_breakpoint_update_all(ARMCPU *cpu)
4655 int i;
4656 CPUARMState *env = &cpu->env;
4658 /* Completely clear out existing QEMU breakpoints and our array, to
4659 * avoid possible stale entries following migration load.
4661 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4662 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4664 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4665 hw_breakpoint_update(cpu, i);
4669 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4670 uint64_t value)
4672 ARMCPU *cpu = arm_env_get_cpu(env);
4673 int i = ri->crm;
4675 raw_write(env, ri, value);
4676 hw_breakpoint_update(cpu, i);
4679 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680 uint64_t value)
4682 ARMCPU *cpu = arm_env_get_cpu(env);
4683 int i = ri->crm;
4685 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4686 * copy of BAS[0].
4688 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4689 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4691 raw_write(env, ri, value);
4692 hw_breakpoint_update(cpu, i);
4695 static void define_debug_regs(ARMCPU *cpu)
4697 /* Define v7 and v8 architectural debug registers.
4698 * These are just dummy implementations for now.
4700 int i;
4701 int wrps, brps, ctx_cmps;
4702 ARMCPRegInfo dbgdidr = {
4703 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4704 .access = PL0_R, .accessfn = access_tda,
4705 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4708 /* Note that all these register fields hold "number of Xs minus 1". */
4709 brps = extract32(cpu->dbgdidr, 24, 4);
4710 wrps = extract32(cpu->dbgdidr, 28, 4);
4711 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4713 assert(ctx_cmps <= brps);
4715 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4716 * of the debug registers such as number of breakpoints;
4717 * check that if they both exist then they agree.
4719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4720 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4721 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4722 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4725 define_one_arm_cp_reg(cpu, &dbgdidr);
4726 define_arm_cp_regs(cpu, debug_cp_reginfo);
4728 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4729 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4732 for (i = 0; i < brps + 1; i++) {
4733 ARMCPRegInfo dbgregs[] = {
4734 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4735 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4736 .access = PL1_RW, .accessfn = access_tda,
4737 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4738 .writefn = dbgbvr_write, .raw_writefn = raw_write
4740 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4741 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4742 .access = PL1_RW, .accessfn = access_tda,
4743 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4744 .writefn = dbgbcr_write, .raw_writefn = raw_write
4746 REGINFO_SENTINEL
4748 define_arm_cp_regs(cpu, dbgregs);
4751 for (i = 0; i < wrps + 1; i++) {
4752 ARMCPRegInfo dbgregs[] = {
4753 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4754 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4755 .access = PL1_RW, .accessfn = access_tda,
4756 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4757 .writefn = dbgwvr_write, .raw_writefn = raw_write
4759 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4760 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4761 .access = PL1_RW, .accessfn = access_tda,
4762 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4763 .writefn = dbgwcr_write, .raw_writefn = raw_write
4765 REGINFO_SENTINEL
4767 define_arm_cp_regs(cpu, dbgregs);
4771 /* We don't know until after realize whether there's a GICv3
4772 * attached, and that is what registers the gicv3 sysregs.
4773 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4774 * at runtime.
4776 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4778 ARMCPU *cpu = arm_env_get_cpu(env);
4779 uint64_t pfr1 = cpu->id_pfr1;
4781 if (env->gicv3state) {
4782 pfr1 |= 1 << 28;
4784 return pfr1;
4787 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4789 ARMCPU *cpu = arm_env_get_cpu(env);
4790 uint64_t pfr0 = cpu->id_aa64pfr0;
4792 if (env->gicv3state) {
4793 pfr0 |= 1 << 24;
4795 return pfr0;
4798 void register_cp_regs_for_features(ARMCPU *cpu)
4800 /* Register all the coprocessor registers based on feature bits */
4801 CPUARMState *env = &cpu->env;
4802 if (arm_feature(env, ARM_FEATURE_M)) {
4803 /* M profile has no coprocessor registers */
4804 return;
4807 define_arm_cp_regs(cpu, cp_reginfo);
4808 if (!arm_feature(env, ARM_FEATURE_V8)) {
4809 /* Must go early as it is full of wildcards that may be
4810 * overridden by later definitions.
4812 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4815 if (arm_feature(env, ARM_FEATURE_V6)) {
4816 /* The ID registers all have impdef reset values */
4817 ARMCPRegInfo v6_idregs[] = {
4818 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4820 .access = PL1_R, .type = ARM_CP_CONST,
4821 .resetvalue = cpu->id_pfr0 },
4822 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4823 * the value of the GIC field until after we define these regs.
4825 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4827 .access = PL1_R, .type = ARM_CP_NO_RAW,
4828 .readfn = id_pfr1_read,
4829 .writefn = arm_cp_write_ignore },
4830 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4832 .access = PL1_R, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->id_dfr0 },
4834 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4836 .access = PL1_R, .type = ARM_CP_CONST,
4837 .resetvalue = cpu->id_afr0 },
4838 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4840 .access = PL1_R, .type = ARM_CP_CONST,
4841 .resetvalue = cpu->id_mmfr0 },
4842 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4844 .access = PL1_R, .type = ARM_CP_CONST,
4845 .resetvalue = cpu->id_mmfr1 },
4846 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4848 .access = PL1_R, .type = ARM_CP_CONST,
4849 .resetvalue = cpu->id_mmfr2 },
4850 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4852 .access = PL1_R, .type = ARM_CP_CONST,
4853 .resetvalue = cpu->id_mmfr3 },
4854 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4856 .access = PL1_R, .type = ARM_CP_CONST,
4857 .resetvalue = cpu->id_isar0 },
4858 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4860 .access = PL1_R, .type = ARM_CP_CONST,
4861 .resetvalue = cpu->id_isar1 },
4862 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4864 .access = PL1_R, .type = ARM_CP_CONST,
4865 .resetvalue = cpu->id_isar2 },
4866 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4868 .access = PL1_R, .type = ARM_CP_CONST,
4869 .resetvalue = cpu->id_isar3 },
4870 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4872 .access = PL1_R, .type = ARM_CP_CONST,
4873 .resetvalue = cpu->id_isar4 },
4874 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4876 .access = PL1_R, .type = ARM_CP_CONST,
4877 .resetvalue = cpu->id_isar5 },
4878 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4880 .access = PL1_R, .type = ARM_CP_CONST,
4881 .resetvalue = cpu->id_mmfr4 },
4882 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
4883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4884 .access = PL1_R, .type = ARM_CP_CONST,
4885 .resetvalue = cpu->id_isar6 },
4886 REGINFO_SENTINEL
4888 define_arm_cp_regs(cpu, v6_idregs);
4889 define_arm_cp_regs(cpu, v6_cp_reginfo);
4890 } else {
4891 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4893 if (arm_feature(env, ARM_FEATURE_V6K)) {
4894 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4896 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4897 !arm_feature(env, ARM_FEATURE_PMSA)) {
4898 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4900 if (arm_feature(env, ARM_FEATURE_V7)) {
4901 /* v7 performance monitor control register: same implementor
4902 * field as main ID register, and we implement only the cycle
4903 * count register.
4905 #ifndef CONFIG_USER_ONLY
4906 ARMCPRegInfo pmcr = {
4907 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4908 .access = PL0_RW,
4909 .type = ARM_CP_IO | ARM_CP_ALIAS,
4910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4911 .accessfn = pmreg_access, .writefn = pmcr_write,
4912 .raw_writefn = raw_write,
4914 ARMCPRegInfo pmcr64 = {
4915 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4917 .access = PL0_RW, .accessfn = pmreg_access,
4918 .type = ARM_CP_IO,
4919 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4920 .resetvalue = cpu->midr & 0xff000000,
4921 .writefn = pmcr_write, .raw_writefn = raw_write,
4923 define_one_arm_cp_reg(cpu, &pmcr);
4924 define_one_arm_cp_reg(cpu, &pmcr64);
4925 #endif
4926 ARMCPRegInfo clidr = {
4927 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4928 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4929 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4931 define_one_arm_cp_reg(cpu, &clidr);
4932 define_arm_cp_regs(cpu, v7_cp_reginfo);
4933 define_debug_regs(cpu);
4934 } else {
4935 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4937 if (arm_feature(env, ARM_FEATURE_V8)) {
4938 /* AArch64 ID registers, which all have impdef reset values.
4939 * Note that within the ID register ranges the unused slots
4940 * must all RAZ, not UNDEF; future architecture versions may
4941 * define new registers here.
4943 ARMCPRegInfo v8_idregs[] = {
4944 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4945 * know the right value for the GIC field until after we
4946 * define these regs.
4948 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4950 .access = PL1_R, .type = ARM_CP_NO_RAW,
4951 .readfn = id_aa64pfr0_read,
4952 .writefn = arm_cp_write_ignore },
4953 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4955 .access = PL1_R, .type = ARM_CP_CONST,
4956 .resetvalue = cpu->id_aa64pfr1},
4957 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4959 .access = PL1_R, .type = ARM_CP_CONST,
4960 .resetvalue = 0 },
4961 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4963 .access = PL1_R, .type = ARM_CP_CONST,
4964 .resetvalue = 0 },
4965 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4967 .access = PL1_R, .type = ARM_CP_CONST,
4968 .resetvalue = 0 },
4969 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4971 .access = PL1_R, .type = ARM_CP_CONST,
4972 .resetvalue = 0 },
4973 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4975 .access = PL1_R, .type = ARM_CP_CONST,
4976 .resetvalue = 0 },
4977 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4979 .access = PL1_R, .type = ARM_CP_CONST,
4980 .resetvalue = 0 },
4981 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4983 .access = PL1_R, .type = ARM_CP_CONST,
4984 .resetvalue = cpu->id_aa64dfr0 },
4985 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4987 .access = PL1_R, .type = ARM_CP_CONST,
4988 .resetvalue = cpu->id_aa64dfr1 },
4989 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4991 .access = PL1_R, .type = ARM_CP_CONST,
4992 .resetvalue = 0 },
4993 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4995 .access = PL1_R, .type = ARM_CP_CONST,
4996 .resetvalue = 0 },
4997 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4999 .access = PL1_R, .type = ARM_CP_CONST,
5000 .resetvalue = cpu->id_aa64afr0 },
5001 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5003 .access = PL1_R, .type = ARM_CP_CONST,
5004 .resetvalue = cpu->id_aa64afr1 },
5005 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5007 .access = PL1_R, .type = ARM_CP_CONST,
5008 .resetvalue = 0 },
5009 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5011 .access = PL1_R, .type = ARM_CP_CONST,
5012 .resetvalue = 0 },
5013 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5015 .access = PL1_R, .type = ARM_CP_CONST,
5016 .resetvalue = cpu->id_aa64isar0 },
5017 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5019 .access = PL1_R, .type = ARM_CP_CONST,
5020 .resetvalue = cpu->id_aa64isar1 },
5021 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5023 .access = PL1_R, .type = ARM_CP_CONST,
5024 .resetvalue = 0 },
5025 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5027 .access = PL1_R, .type = ARM_CP_CONST,
5028 .resetvalue = 0 },
5029 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5031 .access = PL1_R, .type = ARM_CP_CONST,
5032 .resetvalue = 0 },
5033 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5035 .access = PL1_R, .type = ARM_CP_CONST,
5036 .resetvalue = 0 },
5037 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5039 .access = PL1_R, .type = ARM_CP_CONST,
5040 .resetvalue = 0 },
5041 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5043 .access = PL1_R, .type = ARM_CP_CONST,
5044 .resetvalue = 0 },
5045 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5047 .access = PL1_R, .type = ARM_CP_CONST,
5048 .resetvalue = cpu->id_aa64mmfr0 },
5049 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5051 .access = PL1_R, .type = ARM_CP_CONST,
5052 .resetvalue = cpu->id_aa64mmfr1 },
5053 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5055 .access = PL1_R, .type = ARM_CP_CONST,
5056 .resetvalue = 0 },
5057 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5059 .access = PL1_R, .type = ARM_CP_CONST,
5060 .resetvalue = 0 },
5061 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5063 .access = PL1_R, .type = ARM_CP_CONST,
5064 .resetvalue = 0 },
5065 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5067 .access = PL1_R, .type = ARM_CP_CONST,
5068 .resetvalue = 0 },
5069 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5071 .access = PL1_R, .type = ARM_CP_CONST,
5072 .resetvalue = 0 },
5073 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5075 .access = PL1_R, .type = ARM_CP_CONST,
5076 .resetvalue = 0 },
5077 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5079 .access = PL1_R, .type = ARM_CP_CONST,
5080 .resetvalue = cpu->mvfr0 },
5081 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5083 .access = PL1_R, .type = ARM_CP_CONST,
5084 .resetvalue = cpu->mvfr1 },
5085 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5087 .access = PL1_R, .type = ARM_CP_CONST,
5088 .resetvalue = cpu->mvfr2 },
5089 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5091 .access = PL1_R, .type = ARM_CP_CONST,
5092 .resetvalue = 0 },
5093 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5095 .access = PL1_R, .type = ARM_CP_CONST,
5096 .resetvalue = 0 },
5097 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5099 .access = PL1_R, .type = ARM_CP_CONST,
5100 .resetvalue = 0 },
5101 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5103 .access = PL1_R, .type = ARM_CP_CONST,
5104 .resetvalue = 0 },
5105 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5107 .access = PL1_R, .type = ARM_CP_CONST,
5108 .resetvalue = 0 },
5109 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5110 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5111 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5112 .resetvalue = cpu->pmceid0 },
5113 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5114 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5115 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5116 .resetvalue = cpu->pmceid0 },
5117 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5118 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5119 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5120 .resetvalue = cpu->pmceid1 },
5121 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5122 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5123 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5124 .resetvalue = cpu->pmceid1 },
5125 REGINFO_SENTINEL
5127 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5128 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5129 !arm_feature(env, ARM_FEATURE_EL2)) {
5130 ARMCPRegInfo rvbar = {
5131 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5133 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5135 define_one_arm_cp_reg(cpu, &rvbar);
5137 define_arm_cp_regs(cpu, v8_idregs);
5138 define_arm_cp_regs(cpu, v8_cp_reginfo);
5140 if (arm_feature(env, ARM_FEATURE_EL2)) {
5141 uint64_t vmpidr_def = mpidr_read_val(env);
5142 ARMCPRegInfo vpidr_regs[] = {
5143 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5144 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5145 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5146 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5147 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5148 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5150 .access = PL2_RW, .resetvalue = cpu->midr,
5151 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5152 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5153 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5154 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5155 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5156 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5157 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5158 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5159 .access = PL2_RW,
5160 .resetvalue = vmpidr_def,
5161 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5162 REGINFO_SENTINEL
5164 define_arm_cp_regs(cpu, vpidr_regs);
5165 define_arm_cp_regs(cpu, el2_cp_reginfo);
5166 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5167 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5168 ARMCPRegInfo rvbar = {
5169 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5170 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5171 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5173 define_one_arm_cp_reg(cpu, &rvbar);
5175 } else {
5176 /* If EL2 is missing but higher ELs are enabled, we need to
5177 * register the no_el2 reginfos.
5179 if (arm_feature(env, ARM_FEATURE_EL3)) {
5180 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5181 * of MIDR_EL1 and MPIDR_EL1.
5183 ARMCPRegInfo vpidr_regs[] = {
5184 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5185 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5186 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5187 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5188 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5189 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5190 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5191 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5192 .type = ARM_CP_NO_RAW,
5193 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5194 REGINFO_SENTINEL
5196 define_arm_cp_regs(cpu, vpidr_regs);
5197 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5200 if (arm_feature(env, ARM_FEATURE_EL3)) {
5201 define_arm_cp_regs(cpu, el3_cp_reginfo);
5202 ARMCPRegInfo el3_regs[] = {
5203 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5204 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5205 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5206 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5207 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5208 .access = PL3_RW,
5209 .raw_writefn = raw_write, .writefn = sctlr_write,
5210 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5211 .resetvalue = cpu->reset_sctlr },
5212 REGINFO_SENTINEL
5215 define_arm_cp_regs(cpu, el3_regs);
5217 /* The behaviour of NSACR is sufficiently various that we don't
5218 * try to describe it in a single reginfo:
5219 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5220 * reads as constant 0xc00 from NS EL1 and NS EL2
5221 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5222 * if v7 without EL3, register doesn't exist
5223 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5225 if (arm_feature(env, ARM_FEATURE_EL3)) {
5226 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5227 ARMCPRegInfo nsacr = {
5228 .name = "NSACR", .type = ARM_CP_CONST,
5229 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5230 .access = PL1_RW, .accessfn = nsacr_access,
5231 .resetvalue = 0xc00
5233 define_one_arm_cp_reg(cpu, &nsacr);
5234 } else {
5235 ARMCPRegInfo nsacr = {
5236 .name = "NSACR",
5237 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5238 .access = PL3_RW | PL1_R,
5239 .resetvalue = 0,
5240 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5242 define_one_arm_cp_reg(cpu, &nsacr);
5244 } else {
5245 if (arm_feature(env, ARM_FEATURE_V8)) {
5246 ARMCPRegInfo nsacr = {
5247 .name = "NSACR", .type = ARM_CP_CONST,
5248 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5249 .access = PL1_R,
5250 .resetvalue = 0xc00
5252 define_one_arm_cp_reg(cpu, &nsacr);
5256 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5257 if (arm_feature(env, ARM_FEATURE_V6)) {
5258 /* PMSAv6 not implemented */
5259 assert(arm_feature(env, ARM_FEATURE_V7));
5260 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5261 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5262 } else {
5263 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5265 } else {
5266 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5267 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5269 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5270 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5272 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5273 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5275 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5276 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5278 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5279 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5281 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5282 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5284 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5285 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5287 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5288 define_arm_cp_regs(cpu, omap_cp_reginfo);
5290 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5291 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5293 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5294 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5296 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5297 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5299 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5300 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5302 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5303 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5304 * be read-only (ie write causes UNDEF exception).
5307 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5308 /* Pre-v8 MIDR space.
5309 * Note that the MIDR isn't a simple constant register because
5310 * of the TI925 behaviour where writes to another register can
5311 * cause the MIDR value to change.
5313 * Unimplemented registers in the c15 0 0 0 space default to
5314 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5315 * and friends override accordingly.
5317 { .name = "MIDR",
5318 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5319 .access = PL1_R, .resetvalue = cpu->midr,
5320 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5321 .readfn = midr_read,
5322 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5323 .type = ARM_CP_OVERRIDE },
5324 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5325 { .name = "DUMMY",
5326 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5327 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5328 { .name = "DUMMY",
5329 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5330 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5331 { .name = "DUMMY",
5332 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5334 { .name = "DUMMY",
5335 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5337 { .name = "DUMMY",
5338 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5339 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5340 REGINFO_SENTINEL
5342 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5343 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5345 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5346 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5347 .readfn = midr_read },
5348 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5349 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5350 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5351 .access = PL1_R, .resetvalue = cpu->midr },
5352 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5353 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5354 .access = PL1_R, .resetvalue = cpu->midr },
5355 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5357 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5358 REGINFO_SENTINEL
5360 ARMCPRegInfo id_cp_reginfo[] = {
5361 /* These are common to v8 and pre-v8 */
5362 { .name = "CTR",
5363 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5365 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5366 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5367 .access = PL0_R, .accessfn = ctr_el0_access,
5368 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5369 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5370 { .name = "TCMTR",
5371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5372 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5373 REGINFO_SENTINEL
5375 /* TLBTR is specific to VMSA */
5376 ARMCPRegInfo id_tlbtr_reginfo = {
5377 .name = "TLBTR",
5378 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5379 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5381 /* MPUIR is specific to PMSA V6+ */
5382 ARMCPRegInfo id_mpuir_reginfo = {
5383 .name = "MPUIR",
5384 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5385 .access = PL1_R, .type = ARM_CP_CONST,
5386 .resetvalue = cpu->pmsav7_dregion << 8
5388 ARMCPRegInfo crn0_wi_reginfo = {
5389 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5390 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5391 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5393 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5394 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5395 ARMCPRegInfo *r;
5396 /* Register the blanket "writes ignored" value first to cover the
5397 * whole space. Then update the specific ID registers to allow write
5398 * access, so that they ignore writes rather than causing them to
5399 * UNDEF.
5401 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5402 for (r = id_pre_v8_midr_cp_reginfo;
5403 r->type != ARM_CP_SENTINEL; r++) {
5404 r->access = PL1_RW;
5406 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5407 r->access = PL1_RW;
5409 id_mpuir_reginfo.access = PL1_RW;
5410 id_tlbtr_reginfo.access = PL1_RW;
5412 if (arm_feature(env, ARM_FEATURE_V8)) {
5413 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5414 } else {
5415 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5417 define_arm_cp_regs(cpu, id_cp_reginfo);
5418 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5419 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5420 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5421 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5425 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5426 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5429 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5430 ARMCPRegInfo auxcr_reginfo[] = {
5431 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5432 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5433 .access = PL1_RW, .type = ARM_CP_CONST,
5434 .resetvalue = cpu->reset_auxcr },
5435 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5436 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5437 .access = PL2_RW, .type = ARM_CP_CONST,
5438 .resetvalue = 0 },
5439 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5440 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5441 .access = PL3_RW, .type = ARM_CP_CONST,
5442 .resetvalue = 0 },
5443 REGINFO_SENTINEL
5445 define_arm_cp_regs(cpu, auxcr_reginfo);
5448 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5449 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5450 /* 32 bit view is [31:18] 0...0 [43:32]. */
5451 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5452 | extract64(cpu->reset_cbar, 32, 12);
5453 ARMCPRegInfo cbar_reginfo[] = {
5454 { .name = "CBAR",
5455 .type = ARM_CP_CONST,
5456 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5457 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5458 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5459 .type = ARM_CP_CONST,
5460 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5461 .access = PL1_R, .resetvalue = cbar32 },
5462 REGINFO_SENTINEL
5464 /* We don't implement a r/w 64 bit CBAR currently */
5465 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5466 define_arm_cp_regs(cpu, cbar_reginfo);
5467 } else {
5468 ARMCPRegInfo cbar = {
5469 .name = "CBAR",
5470 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5471 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5472 .fieldoffset = offsetof(CPUARMState,
5473 cp15.c15_config_base_address)
5475 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5476 cbar.access = PL1_R;
5477 cbar.fieldoffset = 0;
5478 cbar.type = ARM_CP_CONST;
5480 define_one_arm_cp_reg(cpu, &cbar);
5484 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5485 ARMCPRegInfo vbar_cp_reginfo[] = {
5486 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5487 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5488 .access = PL1_RW, .writefn = vbar_write,
5489 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5490 offsetof(CPUARMState, cp15.vbar_ns) },
5491 .resetvalue = 0 },
5492 REGINFO_SENTINEL
5494 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5497 /* Generic registers whose values depend on the implementation */
5499 ARMCPRegInfo sctlr = {
5500 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5501 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5502 .access = PL1_RW,
5503 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5504 offsetof(CPUARMState, cp15.sctlr_ns) },
5505 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5506 .raw_writefn = raw_write,
5508 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5509 /* Normally we would always end the TB on an SCTLR write, but Linux
5510 * arch/arm/mach-pxa/sleep.S expects two instructions following
5511 * an MMU enable to execute from cache. Imitate this behaviour.
5513 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5515 define_one_arm_cp_reg(cpu, &sctlr);
5518 if (arm_feature(env, ARM_FEATURE_SVE)) {
5519 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5520 if (arm_feature(env, ARM_FEATURE_EL2)) {
5521 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5522 } else {
5523 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5525 if (arm_feature(env, ARM_FEATURE_EL3)) {
5526 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5531 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5533 CPUState *cs = CPU(cpu);
5534 CPUARMState *env = &cpu->env;
5536 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5537 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5538 aarch64_fpu_gdb_set_reg,
5539 34, "aarch64-fpu.xml", 0);
5540 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5541 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5542 51, "arm-neon.xml", 0);
5543 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5544 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5545 35, "arm-vfp3.xml", 0);
5546 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5547 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5548 19, "arm-vfp.xml", 0);
5550 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5551 arm_gen_dynamic_xml(cs),
5552 "system-registers.xml", 0);
5555 /* Sort alphabetically by type name, except for "any". */
5556 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5558 ObjectClass *class_a = (ObjectClass *)a;
5559 ObjectClass *class_b = (ObjectClass *)b;
5560 const char *name_a, *name_b;
5562 name_a = object_class_get_name(class_a);
5563 name_b = object_class_get_name(class_b);
5564 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5565 return 1;
5566 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5567 return -1;
5568 } else {
5569 return strcmp(name_a, name_b);
5573 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5575 ObjectClass *oc = data;
5576 CPUListState *s = user_data;
5577 const char *typename;
5578 char *name;
5580 typename = object_class_get_name(oc);
5581 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5582 (*s->cpu_fprintf)(s->file, " %s\n",
5583 name);
5584 g_free(name);
5587 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5589 CPUListState s = {
5590 .file = f,
5591 .cpu_fprintf = cpu_fprintf,
5593 GSList *list;
5595 list = object_class_get_list(TYPE_ARM_CPU, false);
5596 list = g_slist_sort(list, arm_cpu_list_compare);
5597 (*cpu_fprintf)(f, "Available CPUs:\n");
5598 g_slist_foreach(list, arm_cpu_list_entry, &s);
5599 g_slist_free(list);
5602 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5604 ObjectClass *oc = data;
5605 CpuDefinitionInfoList **cpu_list = user_data;
5606 CpuDefinitionInfoList *entry;
5607 CpuDefinitionInfo *info;
5608 const char *typename;
5610 typename = object_class_get_name(oc);
5611 info = g_malloc0(sizeof(*info));
5612 info->name = g_strndup(typename,
5613 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5614 info->q_typename = g_strdup(typename);
5616 entry = g_malloc0(sizeof(*entry));
5617 entry->value = info;
5618 entry->next = *cpu_list;
5619 *cpu_list = entry;
5622 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5624 CpuDefinitionInfoList *cpu_list = NULL;
5625 GSList *list;
5627 list = object_class_get_list(TYPE_ARM_CPU, false);
5628 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5629 g_slist_free(list);
5631 return cpu_list;
5634 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5635 void *opaque, int state, int secstate,
5636 int crm, int opc1, int opc2,
5637 const char *name)
5639 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5640 * add a single reginfo struct to the hash table.
5642 uint32_t *key = g_new(uint32_t, 1);
5643 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5644 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5645 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5647 r2->name = g_strdup(name);
5648 /* Reset the secure state to the specific incoming state. This is
5649 * necessary as the register may have been defined with both states.
5651 r2->secure = secstate;
5653 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5654 /* Register is banked (using both entries in array).
5655 * Overwriting fieldoffset as the array is only used to define
5656 * banked registers but later only fieldoffset is used.
5658 r2->fieldoffset = r->bank_fieldoffsets[ns];
5661 if (state == ARM_CP_STATE_AA32) {
5662 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5663 /* If the register is banked then we don't need to migrate or
5664 * reset the 32-bit instance in certain cases:
5666 * 1) If the register has both 32-bit and 64-bit instances then we
5667 * can count on the 64-bit instance taking care of the
5668 * non-secure bank.
5669 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5670 * taking care of the secure bank. This requires that separate
5671 * 32 and 64-bit definitions are provided.
5673 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5674 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5675 r2->type |= ARM_CP_ALIAS;
5677 } else if ((secstate != r->secure) && !ns) {
5678 /* The register is not banked so we only want to allow migration of
5679 * the non-secure instance.
5681 r2->type |= ARM_CP_ALIAS;
5684 if (r->state == ARM_CP_STATE_BOTH) {
5685 /* We assume it is a cp15 register if the .cp field is left unset.
5687 if (r2->cp == 0) {
5688 r2->cp = 15;
5691 #ifdef HOST_WORDS_BIGENDIAN
5692 if (r2->fieldoffset) {
5693 r2->fieldoffset += sizeof(uint32_t);
5695 #endif
5698 if (state == ARM_CP_STATE_AA64) {
5699 /* To allow abbreviation of ARMCPRegInfo
5700 * definitions, we treat cp == 0 as equivalent to
5701 * the value for "standard guest-visible sysreg".
5702 * STATE_BOTH definitions are also always "standard
5703 * sysreg" in their AArch64 view (the .cp value may
5704 * be non-zero for the benefit of the AArch32 view).
5706 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5707 r2->cp = CP_REG_ARM64_SYSREG_CP;
5709 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5710 r2->opc0, opc1, opc2);
5711 } else {
5712 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5714 if (opaque) {
5715 r2->opaque = opaque;
5717 /* reginfo passed to helpers is correct for the actual access,
5718 * and is never ARM_CP_STATE_BOTH:
5720 r2->state = state;
5721 /* Make sure reginfo passed to helpers for wildcarded regs
5722 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5724 r2->crm = crm;
5725 r2->opc1 = opc1;
5726 r2->opc2 = opc2;
5727 /* By convention, for wildcarded registers only the first
5728 * entry is used for migration; the others are marked as
5729 * ALIAS so we don't try to transfer the register
5730 * multiple times. Special registers (ie NOP/WFI) are
5731 * never migratable and not even raw-accessible.
5733 if ((r->type & ARM_CP_SPECIAL)) {
5734 r2->type |= ARM_CP_NO_RAW;
5736 if (((r->crm == CP_ANY) && crm != 0) ||
5737 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5738 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5739 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5742 /* Check that raw accesses are either forbidden or handled. Note that
5743 * we can't assert this earlier because the setup of fieldoffset for
5744 * banked registers has to be done first.
5746 if (!(r2->type & ARM_CP_NO_RAW)) {
5747 assert(!raw_accessors_invalid(r2));
5750 /* Overriding of an existing definition must be explicitly
5751 * requested.
5753 if (!(r->type & ARM_CP_OVERRIDE)) {
5754 ARMCPRegInfo *oldreg;
5755 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5756 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5757 fprintf(stderr, "Register redefined: cp=%d %d bit "
5758 "crn=%d crm=%d opc1=%d opc2=%d, "
5759 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5760 r2->crn, r2->crm, r2->opc1, r2->opc2,
5761 oldreg->name, r2->name);
5762 g_assert_not_reached();
5765 g_hash_table_insert(cpu->cp_regs, key, r2);
5769 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5770 const ARMCPRegInfo *r, void *opaque)
5772 /* Define implementations of coprocessor registers.
5773 * We store these in a hashtable because typically
5774 * there are less than 150 registers in a space which
5775 * is 16*16*16*8*8 = 262144 in size.
5776 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5777 * If a register is defined twice then the second definition is
5778 * used, so this can be used to define some generic registers and
5779 * then override them with implementation specific variations.
5780 * At least one of the original and the second definition should
5781 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5782 * against accidental use.
5784 * The state field defines whether the register is to be
5785 * visible in the AArch32 or AArch64 execution state. If the
5786 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5787 * reginfo structure for the AArch32 view, which sees the lower
5788 * 32 bits of the 64 bit register.
5790 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5791 * be wildcarded. AArch64 registers are always considered to be 64
5792 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5793 * the register, if any.
5795 int crm, opc1, opc2, state;
5796 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5797 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5798 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5799 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5800 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5801 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5802 /* 64 bit registers have only CRm and Opc1 fields */
5803 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5804 /* op0 only exists in the AArch64 encodings */
5805 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5806 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5807 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5808 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5809 * encodes a minimum access level for the register. We roll this
5810 * runtime check into our general permission check code, so check
5811 * here that the reginfo's specified permissions are strict enough
5812 * to encompass the generic architectural permission check.
5814 if (r->state != ARM_CP_STATE_AA32) {
5815 int mask = 0;
5816 switch (r->opc1) {
5817 case 0: case 1: case 2:
5818 /* min_EL EL1 */
5819 mask = PL1_RW;
5820 break;
5821 case 3:
5822 /* min_EL EL0 */
5823 mask = PL0_RW;
5824 break;
5825 case 4:
5826 /* min_EL EL2 */
5827 mask = PL2_RW;
5828 break;
5829 case 5:
5830 /* unallocated encoding, so not possible */
5831 assert(false);
5832 break;
5833 case 6:
5834 /* min_EL EL3 */
5835 mask = PL3_RW;
5836 break;
5837 case 7:
5838 /* min_EL EL1, secure mode only (we don't check the latter) */
5839 mask = PL1_RW;
5840 break;
5841 default:
5842 /* broken reginfo with out-of-range opc1 */
5843 assert(false);
5844 break;
5846 /* assert our permissions are not too lax (stricter is fine) */
5847 assert((r->access & ~mask) == 0);
5850 /* Check that the register definition has enough info to handle
5851 * reads and writes if they are permitted.
5853 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5854 if (r->access & PL3_R) {
5855 assert((r->fieldoffset ||
5856 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5857 r->readfn);
5859 if (r->access & PL3_W) {
5860 assert((r->fieldoffset ||
5861 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5862 r->writefn);
5865 /* Bad type field probably means missing sentinel at end of reg list */
5866 assert(cptype_valid(r->type));
5867 for (crm = crmmin; crm <= crmmax; crm++) {
5868 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5869 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5870 for (state = ARM_CP_STATE_AA32;
5871 state <= ARM_CP_STATE_AA64; state++) {
5872 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5873 continue;
5875 if (state == ARM_CP_STATE_AA32) {
5876 /* Under AArch32 CP registers can be common
5877 * (same for secure and non-secure world) or banked.
5879 char *name;
5881 switch (r->secure) {
5882 case ARM_CP_SECSTATE_S:
5883 case ARM_CP_SECSTATE_NS:
5884 add_cpreg_to_hashtable(cpu, r, opaque, state,
5885 r->secure, crm, opc1, opc2,
5886 r->name);
5887 break;
5888 default:
5889 name = g_strdup_printf("%s_S", r->name);
5890 add_cpreg_to_hashtable(cpu, r, opaque, state,
5891 ARM_CP_SECSTATE_S,
5892 crm, opc1, opc2, name);
5893 g_free(name);
5894 add_cpreg_to_hashtable(cpu, r, opaque, state,
5895 ARM_CP_SECSTATE_NS,
5896 crm, opc1, opc2, r->name);
5897 break;
5899 } else {
5900 /* AArch64 registers get mapped to non-secure instance
5901 * of AArch32 */
5902 add_cpreg_to_hashtable(cpu, r, opaque, state,
5903 ARM_CP_SECSTATE_NS,
5904 crm, opc1, opc2, r->name);
5912 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5913 const ARMCPRegInfo *regs, void *opaque)
5915 /* Define a whole list of registers */
5916 const ARMCPRegInfo *r;
5917 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5918 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5922 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5924 return g_hash_table_lookup(cpregs, &encoded_cp);
5927 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5928 uint64_t value)
5930 /* Helper coprocessor write function for write-ignore registers */
5933 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5935 /* Helper coprocessor write function for read-as-zero registers */
5936 return 0;
5939 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5941 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5944 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5946 /* Return true if it is not valid for us to switch to
5947 * this CPU mode (ie all the UNPREDICTABLE cases in
5948 * the ARM ARM CPSRWriteByInstr pseudocode).
5951 /* Changes to or from Hyp via MSR and CPS are illegal. */
5952 if (write_type == CPSRWriteByInstr &&
5953 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5954 mode == ARM_CPU_MODE_HYP)) {
5955 return 1;
5958 switch (mode) {
5959 case ARM_CPU_MODE_USR:
5960 return 0;
5961 case ARM_CPU_MODE_SYS:
5962 case ARM_CPU_MODE_SVC:
5963 case ARM_CPU_MODE_ABT:
5964 case ARM_CPU_MODE_UND:
5965 case ARM_CPU_MODE_IRQ:
5966 case ARM_CPU_MODE_FIQ:
5967 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5968 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5970 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5971 * and CPS are treated as illegal mode changes.
5973 if (write_type == CPSRWriteByInstr &&
5974 (env->cp15.hcr_el2 & HCR_TGE) &&
5975 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5976 !arm_is_secure_below_el3(env)) {
5977 return 1;
5979 return 0;
5980 case ARM_CPU_MODE_HYP:
5981 return !arm_feature(env, ARM_FEATURE_EL2)
5982 || arm_current_el(env) < 2 || arm_is_secure(env);
5983 case ARM_CPU_MODE_MON:
5984 return arm_current_el(env) < 3;
5985 default:
5986 return 1;
5990 uint32_t cpsr_read(CPUARMState *env)
5992 int ZF;
5993 ZF = (env->ZF == 0);
5994 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5995 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5996 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5997 | ((env->condexec_bits & 0xfc) << 8)
5998 | (env->GE << 16) | (env->daif & CPSR_AIF);
6001 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6002 CPSRWriteType write_type)
6004 uint32_t changed_daif;
6006 if (mask & CPSR_NZCV) {
6007 env->ZF = (~val) & CPSR_Z;
6008 env->NF = val;
6009 env->CF = (val >> 29) & 1;
6010 env->VF = (val << 3) & 0x80000000;
6012 if (mask & CPSR_Q)
6013 env->QF = ((val & CPSR_Q) != 0);
6014 if (mask & CPSR_T)
6015 env->thumb = ((val & CPSR_T) != 0);
6016 if (mask & CPSR_IT_0_1) {
6017 env->condexec_bits &= ~3;
6018 env->condexec_bits |= (val >> 25) & 3;
6020 if (mask & CPSR_IT_2_7) {
6021 env->condexec_bits &= 3;
6022 env->condexec_bits |= (val >> 8) & 0xfc;
6024 if (mask & CPSR_GE) {
6025 env->GE = (val >> 16) & 0xf;
6028 /* In a V7 implementation that includes the security extensions but does
6029 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6030 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6031 * bits respectively.
6033 * In a V8 implementation, it is permitted for privileged software to
6034 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6036 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6037 arm_feature(env, ARM_FEATURE_EL3) &&
6038 !arm_feature(env, ARM_FEATURE_EL2) &&
6039 !arm_is_secure(env)) {
6041 changed_daif = (env->daif ^ val) & mask;
6043 if (changed_daif & CPSR_A) {
6044 /* Check to see if we are allowed to change the masking of async
6045 * abort exceptions from a non-secure state.
6047 if (!(env->cp15.scr_el3 & SCR_AW)) {
6048 qemu_log_mask(LOG_GUEST_ERROR,
6049 "Ignoring attempt to switch CPSR_A flag from "
6050 "non-secure world with SCR.AW bit clear\n");
6051 mask &= ~CPSR_A;
6055 if (changed_daif & CPSR_F) {
6056 /* Check to see if we are allowed to change the masking of FIQ
6057 * exceptions from a non-secure state.
6059 if (!(env->cp15.scr_el3 & SCR_FW)) {
6060 qemu_log_mask(LOG_GUEST_ERROR,
6061 "Ignoring attempt to switch CPSR_F flag from "
6062 "non-secure world with SCR.FW bit clear\n");
6063 mask &= ~CPSR_F;
6066 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6067 * If this bit is set software is not allowed to mask
6068 * FIQs, but is allowed to set CPSR_F to 0.
6070 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6071 (val & CPSR_F)) {
6072 qemu_log_mask(LOG_GUEST_ERROR,
6073 "Ignoring attempt to enable CPSR_F flag "
6074 "(non-maskable FIQ [NMFI] support enabled)\n");
6075 mask &= ~CPSR_F;
6080 env->daif &= ~(CPSR_AIF & mask);
6081 env->daif |= val & CPSR_AIF & mask;
6083 if (write_type != CPSRWriteRaw &&
6084 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6085 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6086 /* Note that we can only get here in USR mode if this is a
6087 * gdb stub write; for this case we follow the architectural
6088 * behaviour for guest writes in USR mode of ignoring an attempt
6089 * to switch mode. (Those are caught by translate.c for writes
6090 * triggered by guest instructions.)
6092 mask &= ~CPSR_M;
6093 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6094 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6095 * v7, and has defined behaviour in v8:
6096 * + leave CPSR.M untouched
6097 * + allow changes to the other CPSR fields
6098 * + set PSTATE.IL
6099 * For user changes via the GDB stub, we don't set PSTATE.IL,
6100 * as this would be unnecessarily harsh for a user error.
6102 mask &= ~CPSR_M;
6103 if (write_type != CPSRWriteByGDBStub &&
6104 arm_feature(env, ARM_FEATURE_V8)) {
6105 mask |= CPSR_IL;
6106 val |= CPSR_IL;
6108 } else {
6109 switch_mode(env, val & CPSR_M);
6112 mask &= ~CACHED_CPSR_BITS;
6113 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6116 /* Sign/zero extend */
6117 uint32_t HELPER(sxtb16)(uint32_t x)
6119 uint32_t res;
6120 res = (uint16_t)(int8_t)x;
6121 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6122 return res;
6125 uint32_t HELPER(uxtb16)(uint32_t x)
6127 uint32_t res;
6128 res = (uint16_t)(uint8_t)x;
6129 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6130 return res;
6133 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6135 if (den == 0)
6136 return 0;
6137 if (num == INT_MIN && den == -1)
6138 return INT_MIN;
6139 return num / den;
6142 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6144 if (den == 0)
6145 return 0;
6146 return num / den;
6149 uint32_t HELPER(rbit)(uint32_t x)
6151 return revbit32(x);
6154 #if defined(CONFIG_USER_ONLY)
6156 /* These should probably raise undefined insn exceptions. */
6157 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6159 ARMCPU *cpu = arm_env_get_cpu(env);
6161 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6164 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6166 ARMCPU *cpu = arm_env_get_cpu(env);
6168 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6169 return 0;
6172 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6174 /* translate.c should never generate calls here in user-only mode */
6175 g_assert_not_reached();
6178 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6180 /* translate.c should never generate calls here in user-only mode */
6181 g_assert_not_reached();
6184 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6186 /* The TT instructions can be used by unprivileged code, but in
6187 * user-only emulation we don't have the MPU.
6188 * Luckily since we know we are NonSecure unprivileged (and that in
6189 * turn means that the A flag wasn't specified), all the bits in the
6190 * register must be zero:
6191 * IREGION: 0 because IRVALID is 0
6192 * IRVALID: 0 because NS
6193 * S: 0 because NS
6194 * NSRW: 0 because NS
6195 * NSR: 0 because NS
6196 * RW: 0 because unpriv and A flag not set
6197 * R: 0 because unpriv and A flag not set
6198 * SRVALID: 0 because NS
6199 * MRVALID: 0 because unpriv and A flag not set
6200 * SREGION: 0 becaus SRVALID is 0
6201 * MREGION: 0 because MRVALID is 0
6203 return 0;
6206 void switch_mode(CPUARMState *env, int mode)
6208 ARMCPU *cpu = arm_env_get_cpu(env);
6210 if (mode != ARM_CPU_MODE_USR) {
6211 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6215 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6216 uint32_t cur_el, bool secure)
6218 return 1;
6221 void aarch64_sync_64_to_32(CPUARMState *env)
6223 g_assert_not_reached();
6226 #else
6228 void switch_mode(CPUARMState *env, int mode)
6230 int old_mode;
6231 int i;
6233 old_mode = env->uncached_cpsr & CPSR_M;
6234 if (mode == old_mode)
6235 return;
6237 if (old_mode == ARM_CPU_MODE_FIQ) {
6238 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6239 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6240 } else if (mode == ARM_CPU_MODE_FIQ) {
6241 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6242 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6245 i = bank_number(old_mode);
6246 env->banked_r13[i] = env->regs[13];
6247 env->banked_r14[i] = env->regs[14];
6248 env->banked_spsr[i] = env->spsr;
6250 i = bank_number(mode);
6251 env->regs[13] = env->banked_r13[i];
6252 env->regs[14] = env->banked_r14[i];
6253 env->spsr = env->banked_spsr[i];
6256 /* Physical Interrupt Target EL Lookup Table
6258 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6260 * The below multi-dimensional table is used for looking up the target
6261 * exception level given numerous condition criteria. Specifically, the
6262 * target EL is based on SCR and HCR routing controls as well as the
6263 * currently executing EL and secure state.
6265 * Dimensions:
6266 * target_el_table[2][2][2][2][2][4]
6267 * | | | | | +--- Current EL
6268 * | | | | +------ Non-secure(0)/Secure(1)
6269 * | | | +--------- HCR mask override
6270 * | | +------------ SCR exec state control
6271 * | +--------------- SCR mask override
6272 * +------------------ 32-bit(0)/64-bit(1) EL3
6274 * The table values are as such:
6275 * 0-3 = EL0-EL3
6276 * -1 = Cannot occur
6278 * The ARM ARM target EL table includes entries indicating that an "exception
6279 * is not taken". The two cases where this is applicable are:
6280 * 1) An exception is taken from EL3 but the SCR does not have the exception
6281 * routed to EL3.
6282 * 2) An exception is taken from EL2 but the HCR does not have the exception
6283 * routed to EL2.
6284 * In these two cases, the below table contain a target of EL1. This value is
6285 * returned as it is expected that the consumer of the table data will check
6286 * for "target EL >= current EL" to ensure the exception is not taken.
6288 * SCR HCR
6289 * 64 EA AMO From
6290 * BIT IRQ IMO Non-secure Secure
6291 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6293 static const int8_t target_el_table[2][2][2][2][2][4] = {
6294 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6295 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6296 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6297 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6298 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6299 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6300 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6301 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6302 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6303 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6304 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6305 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6306 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6307 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6308 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6309 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6313 * Determine the target EL for physical exceptions
6315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6316 uint32_t cur_el, bool secure)
6318 CPUARMState *env = cs->env_ptr;
6319 int rw;
6320 int scr;
6321 int hcr;
6322 int target_el;
6323 /* Is the highest EL AArch64? */
6324 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6326 if (arm_feature(env, ARM_FEATURE_EL3)) {
6327 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6328 } else {
6329 /* Either EL2 is the highest EL (and so the EL2 register width
6330 * is given by is64); or there is no EL2 or EL3, in which case
6331 * the value of 'rw' does not affect the table lookup anyway.
6333 rw = is64;
6336 switch (excp_idx) {
6337 case EXCP_IRQ:
6338 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6339 hcr = arm_hcr_el2_imo(env);
6340 break;
6341 case EXCP_FIQ:
6342 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6343 hcr = arm_hcr_el2_fmo(env);
6344 break;
6345 default:
6346 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6347 hcr = arm_hcr_el2_amo(env);
6348 break;
6351 /* If HCR.TGE is set then HCR is treated as being 1 */
6352 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6354 /* Perform a table-lookup for the target EL given the current state */
6355 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6357 assert(target_el > 0);
6359 return target_el;
6362 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6363 ARMMMUIdx mmu_idx, bool ignfault)
6365 CPUState *cs = CPU(cpu);
6366 CPUARMState *env = &cpu->env;
6367 MemTxAttrs attrs = {};
6368 MemTxResult txres;
6369 target_ulong page_size;
6370 hwaddr physaddr;
6371 int prot;
6372 ARMMMUFaultInfo fi;
6373 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6374 int exc;
6375 bool exc_secure;
6377 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6378 &attrs, &prot, &page_size, &fi, NULL)) {
6379 /* MPU/SAU lookup failed */
6380 if (fi.type == ARMFault_QEMU_SFault) {
6381 qemu_log_mask(CPU_LOG_INT,
6382 "...SecureFault with SFSR.AUVIOL during stacking\n");
6383 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6384 env->v7m.sfar = addr;
6385 exc = ARMV7M_EXCP_SECURE;
6386 exc_secure = false;
6387 } else {
6388 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6389 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6390 exc = ARMV7M_EXCP_MEM;
6391 exc_secure = secure;
6393 goto pend_fault;
6395 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6396 attrs, &txres);
6397 if (txres != MEMTX_OK) {
6398 /* BusFault trying to write the data */
6399 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6400 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6401 exc = ARMV7M_EXCP_BUS;
6402 exc_secure = false;
6403 goto pend_fault;
6405 return true;
6407 pend_fault:
6408 /* By pending the exception at this point we are making
6409 * the IMPDEF choice "overridden exceptions pended" (see the
6410 * MergeExcInfo() pseudocode). The other choice would be to not
6411 * pend them now and then make a choice about which to throw away
6412 * later if we have two derived exceptions.
6413 * The only case when we must not pend the exception but instead
6414 * throw it away is if we are doing the push of the callee registers
6415 * and we've already generated a derived exception. Even in this
6416 * case we will still update the fault status registers.
6418 if (!ignfault) {
6419 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6421 return false;
6424 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6425 ARMMMUIdx mmu_idx)
6427 CPUState *cs = CPU(cpu);
6428 CPUARMState *env = &cpu->env;
6429 MemTxAttrs attrs = {};
6430 MemTxResult txres;
6431 target_ulong page_size;
6432 hwaddr physaddr;
6433 int prot;
6434 ARMMMUFaultInfo fi;
6435 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6436 int exc;
6437 bool exc_secure;
6438 uint32_t value;
6440 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6441 &attrs, &prot, &page_size, &fi, NULL)) {
6442 /* MPU/SAU lookup failed */
6443 if (fi.type == ARMFault_QEMU_SFault) {
6444 qemu_log_mask(CPU_LOG_INT,
6445 "...SecureFault with SFSR.AUVIOL during unstack\n");
6446 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6447 env->v7m.sfar = addr;
6448 exc = ARMV7M_EXCP_SECURE;
6449 exc_secure = false;
6450 } else {
6451 qemu_log_mask(CPU_LOG_INT,
6452 "...MemManageFault with CFSR.MUNSTKERR\n");
6453 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6454 exc = ARMV7M_EXCP_MEM;
6455 exc_secure = secure;
6457 goto pend_fault;
6460 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6461 attrs, &txres);
6462 if (txres != MEMTX_OK) {
6463 /* BusFault trying to read the data */
6464 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6465 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6466 exc = ARMV7M_EXCP_BUS;
6467 exc_secure = false;
6468 goto pend_fault;
6471 *dest = value;
6472 return true;
6474 pend_fault:
6475 /* By pending the exception at this point we are making
6476 * the IMPDEF choice "overridden exceptions pended" (see the
6477 * MergeExcInfo() pseudocode). The other choice would be to not
6478 * pend them now and then make a choice about which to throw away
6479 * later if we have two derived exceptions.
6481 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6482 return false;
6485 /* Return true if we're using the process stack pointer (not the MSP) */
6486 static bool v7m_using_psp(CPUARMState *env)
6488 /* Handler mode always uses the main stack; for thread mode
6489 * the CONTROL.SPSEL bit determines the answer.
6490 * Note that in v7M it is not possible to be in Handler mode with
6491 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6493 return !arm_v7m_is_handler_mode(env) &&
6494 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6497 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6498 * This may change the current stack pointer between Main and Process
6499 * stack pointers if it is done for the CONTROL register for the current
6500 * security state.
6502 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6503 bool new_spsel,
6504 bool secstate)
6506 bool old_is_psp = v7m_using_psp(env);
6508 env->v7m.control[secstate] =
6509 deposit32(env->v7m.control[secstate],
6510 R_V7M_CONTROL_SPSEL_SHIFT,
6511 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6513 if (secstate == env->v7m.secure) {
6514 bool new_is_psp = v7m_using_psp(env);
6515 uint32_t tmp;
6517 if (old_is_psp != new_is_psp) {
6518 tmp = env->v7m.other_sp;
6519 env->v7m.other_sp = env->regs[13];
6520 env->regs[13] = tmp;
6525 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6526 * stack pointer between Main and Process stack pointers.
6528 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6530 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6533 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6535 /* Write a new value to v7m.exception, thus transitioning into or out
6536 * of Handler mode; this may result in a change of active stack pointer.
6538 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6539 uint32_t tmp;
6541 env->v7m.exception = new_exc;
6543 new_is_psp = v7m_using_psp(env);
6545 if (old_is_psp != new_is_psp) {
6546 tmp = env->v7m.other_sp;
6547 env->v7m.other_sp = env->regs[13];
6548 env->regs[13] = tmp;
6552 /* Switch M profile security state between NS and S */
6553 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6555 uint32_t new_ss_msp, new_ss_psp;
6557 if (env->v7m.secure == new_secstate) {
6558 return;
6561 /* All the banked state is accessed by looking at env->v7m.secure
6562 * except for the stack pointer; rearrange the SP appropriately.
6564 new_ss_msp = env->v7m.other_ss_msp;
6565 new_ss_psp = env->v7m.other_ss_psp;
6567 if (v7m_using_psp(env)) {
6568 env->v7m.other_ss_psp = env->regs[13];
6569 env->v7m.other_ss_msp = env->v7m.other_sp;
6570 } else {
6571 env->v7m.other_ss_msp = env->regs[13];
6572 env->v7m.other_ss_psp = env->v7m.other_sp;
6575 env->v7m.secure = new_secstate;
6577 if (v7m_using_psp(env)) {
6578 env->regs[13] = new_ss_psp;
6579 env->v7m.other_sp = new_ss_msp;
6580 } else {
6581 env->regs[13] = new_ss_msp;
6582 env->v7m.other_sp = new_ss_psp;
6586 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6588 /* Handle v7M BXNS:
6589 * - if the return value is a magic value, do exception return (like BX)
6590 * - otherwise bit 0 of the return value is the target security state
6592 uint32_t min_magic;
6594 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6595 /* Covers FNC_RETURN and EXC_RETURN magic */
6596 min_magic = FNC_RETURN_MIN_MAGIC;
6597 } else {
6598 /* EXC_RETURN magic only */
6599 min_magic = EXC_RETURN_MIN_MAGIC;
6602 if (dest >= min_magic) {
6603 /* This is an exception return magic value; put it where
6604 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6605 * Note that if we ever add gen_ss_advance() singlestep support to
6606 * M profile this should count as an "instruction execution complete"
6607 * event (compare gen_bx_excret_final_code()).
6609 env->regs[15] = dest & ~1;
6610 env->thumb = dest & 1;
6611 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6612 /* notreached */
6615 /* translate.c should have made BXNS UNDEF unless we're secure */
6616 assert(env->v7m.secure);
6618 switch_v7m_security_state(env, dest & 1);
6619 env->thumb = 1;
6620 env->regs[15] = dest & ~1;
6623 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6625 /* Handle v7M BLXNS:
6626 * - bit 0 of the destination address is the target security state
6629 /* At this point regs[15] is the address just after the BLXNS */
6630 uint32_t nextinst = env->regs[15] | 1;
6631 uint32_t sp = env->regs[13] - 8;
6632 uint32_t saved_psr;
6634 /* translate.c will have made BLXNS UNDEF unless we're secure */
6635 assert(env->v7m.secure);
6637 if (dest & 1) {
6638 /* target is Secure, so this is just a normal BLX,
6639 * except that the low bit doesn't indicate Thumb/not.
6641 env->regs[14] = nextinst;
6642 env->thumb = 1;
6643 env->regs[15] = dest & ~1;
6644 return;
6647 /* Target is non-secure: first push a stack frame */
6648 if (!QEMU_IS_ALIGNED(sp, 8)) {
6649 qemu_log_mask(LOG_GUEST_ERROR,
6650 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6653 saved_psr = env->v7m.exception;
6654 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6655 saved_psr |= XPSR_SFPA;
6658 /* Note that these stores can throw exceptions on MPU faults */
6659 cpu_stl_data(env, sp, nextinst);
6660 cpu_stl_data(env, sp + 4, saved_psr);
6662 env->regs[13] = sp;
6663 env->regs[14] = 0xfeffffff;
6664 if (arm_v7m_is_handler_mode(env)) {
6665 /* Write a dummy value to IPSR, to avoid leaking the current secure
6666 * exception number to non-secure code. This is guaranteed not
6667 * to cause write_v7m_exception() to actually change stacks.
6669 write_v7m_exception(env, 1);
6671 switch_v7m_security_state(env, 0);
6672 env->thumb = 1;
6673 env->regs[15] = dest;
6676 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6677 bool spsel)
6679 /* Return a pointer to the location where we currently store the
6680 * stack pointer for the requested security state and thread mode.
6681 * This pointer will become invalid if the CPU state is updated
6682 * such that the stack pointers are switched around (eg changing
6683 * the SPSEL control bit).
6684 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6685 * Unlike that pseudocode, we require the caller to pass us in the
6686 * SPSEL control bit value; this is because we also use this
6687 * function in handling of pushing of the callee-saves registers
6688 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6689 * and in the tailchain codepath the SPSEL bit comes from the exception
6690 * return magic LR value from the previous exception. The pseudocode
6691 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6692 * to make this utility function generic enough to do the job.
6694 bool want_psp = threadmode && spsel;
6696 if (secure == env->v7m.secure) {
6697 if (want_psp == v7m_using_psp(env)) {
6698 return &env->regs[13];
6699 } else {
6700 return &env->v7m.other_sp;
6702 } else {
6703 if (want_psp) {
6704 return &env->v7m.other_ss_psp;
6705 } else {
6706 return &env->v7m.other_ss_msp;
6711 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6712 uint32_t *pvec)
6714 CPUState *cs = CPU(cpu);
6715 CPUARMState *env = &cpu->env;
6716 MemTxResult result;
6717 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6718 uint32_t vector_entry;
6719 MemTxAttrs attrs = {};
6720 ARMMMUIdx mmu_idx;
6721 bool exc_secure;
6723 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6725 /* We don't do a get_phys_addr() here because the rules for vector
6726 * loads are special: they always use the default memory map, and
6727 * the default memory map permits reads from all addresses.
6728 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6729 * that we want this special case which would always say "yes",
6730 * we just do the SAU lookup here followed by a direct physical load.
6732 attrs.secure = targets_secure;
6733 attrs.user = false;
6735 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6736 V8M_SAttributes sattrs = {};
6738 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6739 if (sattrs.ns) {
6740 attrs.secure = false;
6741 } else if (!targets_secure) {
6742 /* NS access to S memory */
6743 goto load_fail;
6747 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6748 attrs, &result);
6749 if (result != MEMTX_OK) {
6750 goto load_fail;
6752 *pvec = vector_entry;
6753 return true;
6755 load_fail:
6756 /* All vector table fetch fails are reported as HardFault, with
6757 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6758 * technically the underlying exception is a MemManage or BusFault
6759 * that is escalated to HardFault.) This is a terminal exception,
6760 * so we will either take the HardFault immediately or else enter
6761 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6763 exc_secure = targets_secure ||
6764 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6765 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6766 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6767 return false;
6770 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6771 bool ignore_faults)
6773 /* For v8M, push the callee-saves register part of the stack frame.
6774 * Compare the v8M pseudocode PushCalleeStack().
6775 * In the tailchaining case this may not be the current stack.
6777 CPUARMState *env = &cpu->env;
6778 uint32_t *frame_sp_p;
6779 uint32_t frameptr;
6780 ARMMMUIdx mmu_idx;
6781 bool stacked_ok;
6783 if (dotailchain) {
6784 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6785 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6786 !mode;
6788 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6789 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6790 lr & R_V7M_EXCRET_SPSEL_MASK);
6791 } else {
6792 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6793 frame_sp_p = &env->regs[13];
6796 frameptr = *frame_sp_p - 0x28;
6798 /* Write as much of the stack frame as we can. A write failure may
6799 * cause us to pend a derived exception.
6801 stacked_ok =
6802 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6803 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6804 ignore_faults) &&
6805 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6806 ignore_faults) &&
6807 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6808 ignore_faults) &&
6809 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6810 ignore_faults) &&
6811 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6812 ignore_faults) &&
6813 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6814 ignore_faults) &&
6815 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6816 ignore_faults) &&
6817 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6818 ignore_faults);
6820 /* Update SP regardless of whether any of the stack accesses failed.
6821 * When we implement v8M stack limit checking then this attempt to
6822 * update SP might also fail and result in a derived exception.
6824 *frame_sp_p = frameptr;
6826 return !stacked_ok;
6829 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6830 bool ignore_stackfaults)
6832 /* Do the "take the exception" parts of exception entry,
6833 * but not the pushing of state to the stack. This is
6834 * similar to the pseudocode ExceptionTaken() function.
6836 CPUARMState *env = &cpu->env;
6837 uint32_t addr;
6838 bool targets_secure;
6839 int exc;
6840 bool push_failed = false;
6842 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6843 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
6844 targets_secure ? "secure" : "nonsecure", exc);
6846 if (arm_feature(env, ARM_FEATURE_V8)) {
6847 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6848 (lr & R_V7M_EXCRET_S_MASK)) {
6849 /* The background code (the owner of the registers in the
6850 * exception frame) is Secure. This means it may either already
6851 * have or now needs to push callee-saves registers.
6853 if (targets_secure) {
6854 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6855 /* We took an exception from Secure to NonSecure
6856 * (which means the callee-saved registers got stacked)
6857 * and are now tailchaining to a Secure exception.
6858 * Clear DCRS so eventual return from this Secure
6859 * exception unstacks the callee-saved registers.
6861 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6863 } else {
6864 /* We're going to a non-secure exception; push the
6865 * callee-saves registers to the stack now, if they're
6866 * not already saved.
6868 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6869 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6870 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6871 ignore_stackfaults);
6873 lr |= R_V7M_EXCRET_DCRS_MASK;
6877 lr &= ~R_V7M_EXCRET_ES_MASK;
6878 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6879 lr |= R_V7M_EXCRET_ES_MASK;
6881 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6882 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6883 lr |= R_V7M_EXCRET_SPSEL_MASK;
6886 /* Clear registers if necessary to prevent non-secure exception
6887 * code being able to see register values from secure code.
6888 * Where register values become architecturally UNKNOWN we leave
6889 * them with their previous values.
6891 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6892 if (!targets_secure) {
6893 /* Always clear the caller-saved registers (they have been
6894 * pushed to the stack earlier in v7m_push_stack()).
6895 * Clear callee-saved registers if the background code is
6896 * Secure (in which case these regs were saved in
6897 * v7m_push_callee_stack()).
6899 int i;
6901 for (i = 0; i < 13; i++) {
6902 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6903 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6904 env->regs[i] = 0;
6907 /* Clear EAPSR */
6908 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6913 if (push_failed && !ignore_stackfaults) {
6914 /* Derived exception on callee-saves register stacking:
6915 * we might now want to take a different exception which
6916 * targets a different security state, so try again from the top.
6918 qemu_log_mask(CPU_LOG_INT,
6919 "...derived exception on callee-saves register stacking");
6920 v7m_exception_taken(cpu, lr, true, true);
6921 return;
6924 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6925 /* Vector load failed: derived exception */
6926 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
6927 v7m_exception_taken(cpu, lr, true, true);
6928 return;
6931 /* Now we've done everything that might cause a derived exception
6932 * we can go ahead and activate whichever exception we're going to
6933 * take (which might now be the derived exception).
6935 armv7m_nvic_acknowledge_irq(env->nvic);
6937 /* Switch to target security state -- must do this before writing SPSEL */
6938 switch_v7m_security_state(env, targets_secure);
6939 write_v7m_control_spsel(env, 0);
6940 arm_clear_exclusive(env);
6941 /* Clear IT bits */
6942 env->condexec_bits = 0;
6943 env->regs[14] = lr;
6944 env->regs[15] = addr & 0xfffffffe;
6945 env->thumb = addr & 1;
6948 static bool v7m_push_stack(ARMCPU *cpu)
6950 /* Do the "set up stack frame" part of exception entry,
6951 * similar to pseudocode PushStack().
6952 * Return true if we generate a derived exception (and so
6953 * should ignore further stack faults trying to process
6954 * that derived exception.)
6956 bool stacked_ok;
6957 CPUARMState *env = &cpu->env;
6958 uint32_t xpsr = xpsr_read(env);
6959 uint32_t frameptr = env->regs[13];
6960 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6962 /* Align stack pointer if the guest wants that */
6963 if ((frameptr & 4) &&
6964 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6965 frameptr -= 4;
6966 xpsr |= XPSR_SPREALIGN;
6969 frameptr -= 0x20;
6971 /* Write as much of the stack frame as we can. If we fail a stack
6972 * write this will result in a derived exception being pended
6973 * (which may be taken in preference to the one we started with
6974 * if it has higher priority).
6976 stacked_ok =
6977 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6978 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6979 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6980 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6981 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6982 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6983 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6984 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6986 /* Update SP regardless of whether any of the stack accesses failed.
6987 * When we implement v8M stack limit checking then this attempt to
6988 * update SP might also fail and result in a derived exception.
6990 env->regs[13] = frameptr;
6992 return !stacked_ok;
6995 static void do_v7m_exception_exit(ARMCPU *cpu)
6997 CPUARMState *env = &cpu->env;
6998 uint32_t excret;
6999 uint32_t xpsr;
7000 bool ufault = false;
7001 bool sfault = false;
7002 bool return_to_sp_process;
7003 bool return_to_handler;
7004 bool rettobase = false;
7005 bool exc_secure = false;
7006 bool return_to_secure;
7008 /* If we're not in Handler mode then jumps to magic exception-exit
7009 * addresses don't have magic behaviour. However for the v8M
7010 * security extensions the magic secure-function-return has to
7011 * work in thread mode too, so to avoid doing an extra check in
7012 * the generated code we allow exception-exit magic to also cause the
7013 * internal exception and bring us here in thread mode. Correct code
7014 * will never try to do this (the following insn fetch will always
7015 * fault) so we the overhead of having taken an unnecessary exception
7016 * doesn't matter.
7018 if (!arm_v7m_is_handler_mode(env)) {
7019 return;
7022 /* In the spec pseudocode ExceptionReturn() is called directly
7023 * from BXWritePC() and gets the full target PC value including
7024 * bit zero. In QEMU's implementation we treat it as a normal
7025 * jump-to-register (which is then caught later on), and so split
7026 * the target value up between env->regs[15] and env->thumb in
7027 * gen_bx(). Reconstitute it.
7029 excret = env->regs[15];
7030 if (env->thumb) {
7031 excret |= 1;
7034 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7035 " previous exception %d\n",
7036 excret, env->v7m.exception);
7038 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7039 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7040 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7041 excret);
7044 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7045 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7046 * we pick which FAULTMASK to clear.
7048 if (!env->v7m.secure &&
7049 ((excret & R_V7M_EXCRET_ES_MASK) ||
7050 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7051 sfault = 1;
7052 /* For all other purposes, treat ES as 0 (R_HXSR) */
7053 excret &= ~R_V7M_EXCRET_ES_MASK;
7055 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7058 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7059 /* Auto-clear FAULTMASK on return from other than NMI.
7060 * If the security extension is implemented then this only
7061 * happens if the raw execution priority is >= 0; the
7062 * value of the ES bit in the exception return value indicates
7063 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7065 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7066 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7067 env->v7m.faultmask[exc_secure] = 0;
7069 } else {
7070 env->v7m.faultmask[M_REG_NS] = 0;
7074 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7075 exc_secure)) {
7076 case -1:
7077 /* attempt to exit an exception that isn't active */
7078 ufault = true;
7079 break;
7080 case 0:
7081 /* still an irq active now */
7082 break;
7083 case 1:
7084 /* we returned to base exception level, no nesting.
7085 * (In the pseudocode this is written using "NestedActivation != 1"
7086 * where we have 'rettobase == false'.)
7088 rettobase = true;
7089 break;
7090 default:
7091 g_assert_not_reached();
7094 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7095 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7096 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7097 (excret & R_V7M_EXCRET_S_MASK);
7099 if (arm_feature(env, ARM_FEATURE_V8)) {
7100 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7101 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7102 * we choose to take the UsageFault.
7104 if ((excret & R_V7M_EXCRET_S_MASK) ||
7105 (excret & R_V7M_EXCRET_ES_MASK) ||
7106 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7107 ufault = true;
7110 if (excret & R_V7M_EXCRET_RES0_MASK) {
7111 ufault = true;
7113 } else {
7114 /* For v7M we only recognize certain combinations of the low bits */
7115 switch (excret & 0xf) {
7116 case 1: /* Return to Handler */
7117 break;
7118 case 13: /* Return to Thread using Process stack */
7119 case 9: /* Return to Thread using Main stack */
7120 /* We only need to check NONBASETHRDENA for v7M, because in
7121 * v8M this bit does not exist (it is RES1).
7123 if (!rettobase &&
7124 !(env->v7m.ccr[env->v7m.secure] &
7125 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7126 ufault = true;
7128 break;
7129 default:
7130 ufault = true;
7135 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7136 * Handler mode (and will be until we write the new XPSR.Interrupt
7137 * field) this does not switch around the current stack pointer.
7138 * We must do this before we do any kind of tailchaining, including
7139 * for the derived exceptions on integrity check failures, or we will
7140 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7142 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7144 if (sfault) {
7145 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7146 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7147 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7148 "stackframe: failed EXC_RETURN.ES validity check\n");
7149 v7m_exception_taken(cpu, excret, true, false);
7150 return;
7153 if (ufault) {
7154 /* Bad exception return: instead of popping the exception
7155 * stack, directly take a usage fault on the current stack.
7157 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7159 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7160 "stackframe: failed exception return integrity check\n");
7161 v7m_exception_taken(cpu, excret, true, false);
7162 return;
7166 * Tailchaining: if there is currently a pending exception that
7167 * is high enough priority to preempt execution at the level we're
7168 * about to return to, then just directly take that exception now,
7169 * avoiding an unstack-and-then-stack. Note that now we have
7170 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7171 * our current execution priority is already the execution priority we are
7172 * returning to -- none of the state we would unstack or set based on
7173 * the EXCRET value affects it.
7175 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7176 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7177 v7m_exception_taken(cpu, excret, true, false);
7178 return;
7181 switch_v7m_security_state(env, return_to_secure);
7184 /* The stack pointer we should be reading the exception frame from
7185 * depends on bits in the magic exception return type value (and
7186 * for v8M isn't necessarily the stack pointer we will eventually
7187 * end up resuming execution with). Get a pointer to the location
7188 * in the CPU state struct where the SP we need is currently being
7189 * stored; we will use and modify it in place.
7190 * We use this limited C variable scope so we don't accidentally
7191 * use 'frame_sp_p' after we do something that makes it invalid.
7193 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7194 return_to_secure,
7195 !return_to_handler,
7196 return_to_sp_process);
7197 uint32_t frameptr = *frame_sp_p;
7198 bool pop_ok = true;
7199 ARMMMUIdx mmu_idx;
7200 bool return_to_priv = return_to_handler ||
7201 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7203 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7204 return_to_priv);
7206 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7207 arm_feature(env, ARM_FEATURE_V8)) {
7208 qemu_log_mask(LOG_GUEST_ERROR,
7209 "M profile exception return with non-8-aligned SP "
7210 "for destination state is UNPREDICTABLE\n");
7213 /* Do we need to pop callee-saved registers? */
7214 if (return_to_secure &&
7215 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7216 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7217 uint32_t expected_sig = 0xfefa125b;
7218 uint32_t actual_sig;
7220 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7222 if (pop_ok && expected_sig != actual_sig) {
7223 /* Take a SecureFault on the current stack */
7224 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7225 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7226 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7227 "stackframe: failed exception return integrity "
7228 "signature check\n");
7229 v7m_exception_taken(cpu, excret, true, false);
7230 return;
7233 pop_ok = pop_ok &&
7234 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7235 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7236 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7237 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7238 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7239 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7240 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7241 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7242 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7244 frameptr += 0x28;
7247 /* Pop registers */
7248 pop_ok = pop_ok &&
7249 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7250 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7251 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7252 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7253 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7254 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7255 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7256 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7258 if (!pop_ok) {
7259 /* v7m_stack_read() pended a fault, so take it (as a tail
7260 * chained exception on the same stack frame)
7262 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7263 v7m_exception_taken(cpu, excret, true, false);
7264 return;
7267 /* Returning from an exception with a PC with bit 0 set is defined
7268 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7269 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7270 * the lsbit, and there are several RTOSes out there which incorrectly
7271 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7272 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7273 * complain about the badly behaved guest.
7275 if (env->regs[15] & 1) {
7276 env->regs[15] &= ~1U;
7277 if (!arm_feature(env, ARM_FEATURE_V8)) {
7278 qemu_log_mask(LOG_GUEST_ERROR,
7279 "M profile return from interrupt with misaligned "
7280 "PC is UNPREDICTABLE on v7M\n");
7284 if (arm_feature(env, ARM_FEATURE_V8)) {
7285 /* For v8M we have to check whether the xPSR exception field
7286 * matches the EXCRET value for return to handler/thread
7287 * before we commit to changing the SP and xPSR.
7289 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7290 if (return_to_handler != will_be_handler) {
7291 /* Take an INVPC UsageFault on the current stack.
7292 * By this point we will have switched to the security state
7293 * for the background state, so this UsageFault will target
7294 * that state.
7296 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7297 env->v7m.secure);
7298 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7299 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7300 "stackframe: failed exception return integrity "
7301 "check\n");
7302 v7m_exception_taken(cpu, excret, true, false);
7303 return;
7307 /* Commit to consuming the stack frame */
7308 frameptr += 0x20;
7309 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7310 * pre-exception SP was not 8-aligned and we added a padding word to
7311 * align it, so we undo this by ORing in the bit that increases it
7312 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7313 * would work too but a logical OR is how the pseudocode specifies it.)
7315 if (xpsr & XPSR_SPREALIGN) {
7316 frameptr |= 4;
7318 *frame_sp_p = frameptr;
7320 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7321 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7323 /* The restored xPSR exception field will be zero if we're
7324 * resuming in Thread mode. If that doesn't match what the
7325 * exception return excret specified then this is a UsageFault.
7326 * v7M requires we make this check here; v8M did it earlier.
7328 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7329 /* Take an INVPC UsageFault by pushing the stack again;
7330 * we know we're v7M so this is never a Secure UsageFault.
7332 bool ignore_stackfaults;
7334 assert(!arm_feature(env, ARM_FEATURE_V8));
7335 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7336 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7337 ignore_stackfaults = v7m_push_stack(cpu);
7338 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7339 "failed exception return integrity check\n");
7340 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7341 return;
7344 /* Otherwise, we have a successful exception exit. */
7345 arm_clear_exclusive(env);
7346 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7349 static bool do_v7m_function_return(ARMCPU *cpu)
7351 /* v8M security extensions magic function return.
7352 * We may either:
7353 * (1) throw an exception (longjump)
7354 * (2) return true if we successfully handled the function return
7355 * (3) return false if we failed a consistency check and have
7356 * pended a UsageFault that needs to be taken now
7358 * At this point the magic return value is split between env->regs[15]
7359 * and env->thumb. We don't bother to reconstitute it because we don't
7360 * need it (all values are handled the same way).
7362 CPUARMState *env = &cpu->env;
7363 uint32_t newpc, newpsr, newpsr_exc;
7365 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7368 bool threadmode, spsel;
7369 TCGMemOpIdx oi;
7370 ARMMMUIdx mmu_idx;
7371 uint32_t *frame_sp_p;
7372 uint32_t frameptr;
7374 /* Pull the return address and IPSR from the Secure stack */
7375 threadmode = !arm_v7m_is_handler_mode(env);
7376 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7378 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7379 frameptr = *frame_sp_p;
7381 /* These loads may throw an exception (for MPU faults). We want to
7382 * do them as secure, so work out what MMU index that is.
7384 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7385 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7386 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7387 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7389 /* Consistency checks on new IPSR */
7390 newpsr_exc = newpsr & XPSR_EXCP;
7391 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7392 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7393 /* Pend the fault and tell our caller to take it */
7394 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7395 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7396 env->v7m.secure);
7397 qemu_log_mask(CPU_LOG_INT,
7398 "...taking INVPC UsageFault: "
7399 "IPSR consistency check failed\n");
7400 return false;
7403 *frame_sp_p = frameptr + 8;
7406 /* This invalidates frame_sp_p */
7407 switch_v7m_security_state(env, true);
7408 env->v7m.exception = newpsr_exc;
7409 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7410 if (newpsr & XPSR_SFPA) {
7411 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7413 xpsr_write(env, 0, XPSR_IT);
7414 env->thumb = newpc & 1;
7415 env->regs[15] = newpc & ~1;
7417 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7418 return true;
7421 static void arm_log_exception(int idx)
7423 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7424 const char *exc = NULL;
7425 static const char * const excnames[] = {
7426 [EXCP_UDEF] = "Undefined Instruction",
7427 [EXCP_SWI] = "SVC",
7428 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7429 [EXCP_DATA_ABORT] = "Data Abort",
7430 [EXCP_IRQ] = "IRQ",
7431 [EXCP_FIQ] = "FIQ",
7432 [EXCP_BKPT] = "Breakpoint",
7433 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7434 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7435 [EXCP_HVC] = "Hypervisor Call",
7436 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7437 [EXCP_SMC] = "Secure Monitor Call",
7438 [EXCP_VIRQ] = "Virtual IRQ",
7439 [EXCP_VFIQ] = "Virtual FIQ",
7440 [EXCP_SEMIHOST] = "Semihosting call",
7441 [EXCP_NOCP] = "v7M NOCP UsageFault",
7442 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7445 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7446 exc = excnames[idx];
7448 if (!exc) {
7449 exc = "unknown";
7451 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7455 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7456 uint32_t addr, uint16_t *insn)
7458 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7459 * or false on failure (in which case we will have pended the appropriate
7460 * exception).
7461 * We need to do the instruction fetch's MPU and SAU checks
7462 * like this because there is no MMU index that would allow
7463 * doing the load with a single function call. Instead we must
7464 * first check that the security attributes permit the load
7465 * and that they don't mismatch on the two halves of the instruction,
7466 * and then we do the load as a secure load (ie using the security
7467 * attributes of the address, not the CPU, as architecturally required).
7469 CPUState *cs = CPU(cpu);
7470 CPUARMState *env = &cpu->env;
7471 V8M_SAttributes sattrs = {};
7472 MemTxAttrs attrs = {};
7473 ARMMMUFaultInfo fi = {};
7474 MemTxResult txres;
7475 target_ulong page_size;
7476 hwaddr physaddr;
7477 int prot;
7479 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7480 if (!sattrs.nsc || sattrs.ns) {
7481 /* This must be the second half of the insn, and it straddles a
7482 * region boundary with the second half not being S&NSC.
7484 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7485 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7486 qemu_log_mask(CPU_LOG_INT,
7487 "...really SecureFault with SFSR.INVEP\n");
7488 return false;
7490 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7491 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7492 /* the MPU lookup failed */
7493 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7494 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7495 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7496 return false;
7498 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7499 attrs, &txres);
7500 if (txres != MEMTX_OK) {
7501 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7502 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7503 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7504 return false;
7506 return true;
7509 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7511 /* Check whether this attempt to execute code in a Secure & NS-Callable
7512 * memory region is for an SG instruction; if so, then emulate the
7513 * effect of the SG instruction and return true. Otherwise pend
7514 * the correct kind of exception and return false.
7516 CPUARMState *env = &cpu->env;
7517 ARMMMUIdx mmu_idx;
7518 uint16_t insn;
7520 /* We should never get here unless get_phys_addr_pmsav8() caused
7521 * an exception for NS executing in S&NSC memory.
7523 assert(!env->v7m.secure);
7524 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7526 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7527 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7529 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7530 return false;
7533 if (!env->thumb) {
7534 goto gen_invep;
7537 if (insn != 0xe97f) {
7538 /* Not an SG instruction first half (we choose the IMPDEF
7539 * early-SG-check option).
7541 goto gen_invep;
7544 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7545 return false;
7548 if (insn != 0xe97f) {
7549 /* Not an SG instruction second half (yes, both halves of the SG
7550 * insn have the same hex value)
7552 goto gen_invep;
7555 /* OK, we have confirmed that we really have an SG instruction.
7556 * We know we're NS in S memory so don't need to repeat those checks.
7558 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7559 ", executing it\n", env->regs[15]);
7560 env->regs[14] &= ~1;
7561 switch_v7m_security_state(env, true);
7562 xpsr_write(env, 0, XPSR_IT);
7563 env->regs[15] += 4;
7564 return true;
7566 gen_invep:
7567 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7568 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7569 qemu_log_mask(CPU_LOG_INT,
7570 "...really SecureFault with SFSR.INVEP\n");
7571 return false;
7574 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7576 ARMCPU *cpu = ARM_CPU(cs);
7577 CPUARMState *env = &cpu->env;
7578 uint32_t lr;
7579 bool ignore_stackfaults;
7581 arm_log_exception(cs->exception_index);
7583 /* For exceptions we just mark as pending on the NVIC, and let that
7584 handle it. */
7585 switch (cs->exception_index) {
7586 case EXCP_UDEF:
7587 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7588 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7589 break;
7590 case EXCP_NOCP:
7591 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7592 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7593 break;
7594 case EXCP_INVSTATE:
7595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7596 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7597 break;
7598 case EXCP_SWI:
7599 /* The PC already points to the next instruction. */
7600 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7601 break;
7602 case EXCP_PREFETCH_ABORT:
7603 case EXCP_DATA_ABORT:
7604 /* Note that for M profile we don't have a guest facing FSR, but
7605 * the env->exception.fsr will be populated by the code that
7606 * raises the fault, in the A profile short-descriptor format.
7608 switch (env->exception.fsr & 0xf) {
7609 case M_FAKE_FSR_NSC_EXEC:
7610 /* Exception generated when we try to execute code at an address
7611 * which is marked as Secure & Non-Secure Callable and the CPU
7612 * is in the Non-Secure state. The only instruction which can
7613 * be executed like this is SG (and that only if both halves of
7614 * the SG instruction have the same security attributes.)
7615 * Everything else must generate an INVEP SecureFault, so we
7616 * emulate the SG instruction here.
7618 if (v7m_handle_execute_nsc(cpu)) {
7619 return;
7621 break;
7622 case M_FAKE_FSR_SFAULT:
7623 /* Various flavours of SecureFault for attempts to execute or
7624 * access data in the wrong security state.
7626 switch (cs->exception_index) {
7627 case EXCP_PREFETCH_ABORT:
7628 if (env->v7m.secure) {
7629 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7630 qemu_log_mask(CPU_LOG_INT,
7631 "...really SecureFault with SFSR.INVTRAN\n");
7632 } else {
7633 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7634 qemu_log_mask(CPU_LOG_INT,
7635 "...really SecureFault with SFSR.INVEP\n");
7637 break;
7638 case EXCP_DATA_ABORT:
7639 /* This must be an NS access to S memory */
7640 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7641 qemu_log_mask(CPU_LOG_INT,
7642 "...really SecureFault with SFSR.AUVIOL\n");
7643 break;
7645 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7646 break;
7647 case 0x8: /* External Abort */
7648 switch (cs->exception_index) {
7649 case EXCP_PREFETCH_ABORT:
7650 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7651 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7652 break;
7653 case EXCP_DATA_ABORT:
7654 env->v7m.cfsr[M_REG_NS] |=
7655 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7656 env->v7m.bfar = env->exception.vaddress;
7657 qemu_log_mask(CPU_LOG_INT,
7658 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7659 env->v7m.bfar);
7660 break;
7662 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7663 break;
7664 default:
7665 /* All other FSR values are either MPU faults or "can't happen
7666 * for M profile" cases.
7668 switch (cs->exception_index) {
7669 case EXCP_PREFETCH_ABORT:
7670 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7671 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7672 break;
7673 case EXCP_DATA_ABORT:
7674 env->v7m.cfsr[env->v7m.secure] |=
7675 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7676 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7677 qemu_log_mask(CPU_LOG_INT,
7678 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7679 env->v7m.mmfar[env->v7m.secure]);
7680 break;
7682 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7683 env->v7m.secure);
7684 break;
7686 break;
7687 case EXCP_BKPT:
7688 if (semihosting_enabled()) {
7689 int nr;
7690 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7691 if (nr == 0xab) {
7692 env->regs[15] += 2;
7693 qemu_log_mask(CPU_LOG_INT,
7694 "...handling as semihosting call 0x%x\n",
7695 env->regs[0]);
7696 env->regs[0] = do_arm_semihosting(env);
7697 return;
7700 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7701 break;
7702 case EXCP_IRQ:
7703 break;
7704 case EXCP_EXCEPTION_EXIT:
7705 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7706 /* Must be v8M security extension function return */
7707 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7708 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7709 if (do_v7m_function_return(cpu)) {
7710 return;
7712 } else {
7713 do_v7m_exception_exit(cpu);
7714 return;
7716 break;
7717 default:
7718 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7719 return; /* Never happens. Keep compiler happy. */
7722 if (arm_feature(env, ARM_FEATURE_V8)) {
7723 lr = R_V7M_EXCRET_RES1_MASK |
7724 R_V7M_EXCRET_DCRS_MASK |
7725 R_V7M_EXCRET_FTYPE_MASK;
7726 /* The S bit indicates whether we should return to Secure
7727 * or NonSecure (ie our current state).
7728 * The ES bit indicates whether we're taking this exception
7729 * to Secure or NonSecure (ie our target state). We set it
7730 * later, in v7m_exception_taken().
7731 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7732 * This corresponds to the ARM ARM pseudocode for v8M setting
7733 * some LR bits in PushStack() and some in ExceptionTaken();
7734 * the distinction matters for the tailchain cases where we
7735 * can take an exception without pushing the stack.
7737 if (env->v7m.secure) {
7738 lr |= R_V7M_EXCRET_S_MASK;
7740 } else {
7741 lr = R_V7M_EXCRET_RES1_MASK |
7742 R_V7M_EXCRET_S_MASK |
7743 R_V7M_EXCRET_DCRS_MASK |
7744 R_V7M_EXCRET_FTYPE_MASK |
7745 R_V7M_EXCRET_ES_MASK;
7746 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7747 lr |= R_V7M_EXCRET_SPSEL_MASK;
7750 if (!arm_v7m_is_handler_mode(env)) {
7751 lr |= R_V7M_EXCRET_MODE_MASK;
7754 ignore_stackfaults = v7m_push_stack(cpu);
7755 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7758 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7759 * register set. This is necessary when switching between AArch32 and AArch64
7760 * execution state.
7762 void aarch64_sync_32_to_64(CPUARMState *env)
7764 int i;
7765 uint32_t mode = env->uncached_cpsr & CPSR_M;
7767 /* We can blanket copy R[0:7] to X[0:7] */
7768 for (i = 0; i < 8; i++) {
7769 env->xregs[i] = env->regs[i];
7772 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7773 * Otherwise, they come from the banked user regs.
7775 if (mode == ARM_CPU_MODE_FIQ) {
7776 for (i = 8; i < 13; i++) {
7777 env->xregs[i] = env->usr_regs[i - 8];
7779 } else {
7780 for (i = 8; i < 13; i++) {
7781 env->xregs[i] = env->regs[i];
7785 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7786 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7787 * from the mode banked register.
7789 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7790 env->xregs[13] = env->regs[13];
7791 env->xregs[14] = env->regs[14];
7792 } else {
7793 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7794 /* HYP is an exception in that it is copied from r14 */
7795 if (mode == ARM_CPU_MODE_HYP) {
7796 env->xregs[14] = env->regs[14];
7797 } else {
7798 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7802 if (mode == ARM_CPU_MODE_HYP) {
7803 env->xregs[15] = env->regs[13];
7804 } else {
7805 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7808 if (mode == ARM_CPU_MODE_IRQ) {
7809 env->xregs[16] = env->regs[14];
7810 env->xregs[17] = env->regs[13];
7811 } else {
7812 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7813 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7816 if (mode == ARM_CPU_MODE_SVC) {
7817 env->xregs[18] = env->regs[14];
7818 env->xregs[19] = env->regs[13];
7819 } else {
7820 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7821 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7824 if (mode == ARM_CPU_MODE_ABT) {
7825 env->xregs[20] = env->regs[14];
7826 env->xregs[21] = env->regs[13];
7827 } else {
7828 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7829 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7832 if (mode == ARM_CPU_MODE_UND) {
7833 env->xregs[22] = env->regs[14];
7834 env->xregs[23] = env->regs[13];
7835 } else {
7836 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7837 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7840 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7841 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7842 * FIQ bank for r8-r14.
7844 if (mode == ARM_CPU_MODE_FIQ) {
7845 for (i = 24; i < 31; i++) {
7846 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7848 } else {
7849 for (i = 24; i < 29; i++) {
7850 env->xregs[i] = env->fiq_regs[i - 24];
7852 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7853 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7856 env->pc = env->regs[15];
7859 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7860 * register set. This is necessary when switching between AArch32 and AArch64
7861 * execution state.
7863 void aarch64_sync_64_to_32(CPUARMState *env)
7865 int i;
7866 uint32_t mode = env->uncached_cpsr & CPSR_M;
7868 /* We can blanket copy X[0:7] to R[0:7] */
7869 for (i = 0; i < 8; i++) {
7870 env->regs[i] = env->xregs[i];
7873 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7874 * Otherwise, we copy x8-x12 into the banked user regs.
7876 if (mode == ARM_CPU_MODE_FIQ) {
7877 for (i = 8; i < 13; i++) {
7878 env->usr_regs[i - 8] = env->xregs[i];
7880 } else {
7881 for (i = 8; i < 13; i++) {
7882 env->regs[i] = env->xregs[i];
7886 /* Registers r13 & r14 depend on the current mode.
7887 * If we are in a given mode, we copy the corresponding x registers to r13
7888 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7889 * for the mode.
7891 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7892 env->regs[13] = env->xregs[13];
7893 env->regs[14] = env->xregs[14];
7894 } else {
7895 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7897 /* HYP is an exception in that it does not have its own banked r14 but
7898 * shares the USR r14
7900 if (mode == ARM_CPU_MODE_HYP) {
7901 env->regs[14] = env->xregs[14];
7902 } else {
7903 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7907 if (mode == ARM_CPU_MODE_HYP) {
7908 env->regs[13] = env->xregs[15];
7909 } else {
7910 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7913 if (mode == ARM_CPU_MODE_IRQ) {
7914 env->regs[14] = env->xregs[16];
7915 env->regs[13] = env->xregs[17];
7916 } else {
7917 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7918 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7921 if (mode == ARM_CPU_MODE_SVC) {
7922 env->regs[14] = env->xregs[18];
7923 env->regs[13] = env->xregs[19];
7924 } else {
7925 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7926 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7929 if (mode == ARM_CPU_MODE_ABT) {
7930 env->regs[14] = env->xregs[20];
7931 env->regs[13] = env->xregs[21];
7932 } else {
7933 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7934 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7937 if (mode == ARM_CPU_MODE_UND) {
7938 env->regs[14] = env->xregs[22];
7939 env->regs[13] = env->xregs[23];
7940 } else {
7941 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7942 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7945 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7946 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7947 * FIQ bank for r8-r14.
7949 if (mode == ARM_CPU_MODE_FIQ) {
7950 for (i = 24; i < 31; i++) {
7951 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7953 } else {
7954 for (i = 24; i < 29; i++) {
7955 env->fiq_regs[i - 24] = env->xregs[i];
7957 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7958 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7961 env->regs[15] = env->pc;
7964 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7966 ARMCPU *cpu = ARM_CPU(cs);
7967 CPUARMState *env = &cpu->env;
7968 uint32_t addr;
7969 uint32_t mask;
7970 int new_mode;
7971 uint32_t offset;
7972 uint32_t moe;
7974 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7975 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7976 case EC_BREAKPOINT:
7977 case EC_BREAKPOINT_SAME_EL:
7978 moe = 1;
7979 break;
7980 case EC_WATCHPOINT:
7981 case EC_WATCHPOINT_SAME_EL:
7982 moe = 10;
7983 break;
7984 case EC_AA32_BKPT:
7985 moe = 3;
7986 break;
7987 case EC_VECTORCATCH:
7988 moe = 5;
7989 break;
7990 default:
7991 moe = 0;
7992 break;
7995 if (moe) {
7996 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7999 /* TODO: Vectored interrupt controller. */
8000 switch (cs->exception_index) {
8001 case EXCP_UDEF:
8002 new_mode = ARM_CPU_MODE_UND;
8003 addr = 0x04;
8004 mask = CPSR_I;
8005 if (env->thumb)
8006 offset = 2;
8007 else
8008 offset = 4;
8009 break;
8010 case EXCP_SWI:
8011 new_mode = ARM_CPU_MODE_SVC;
8012 addr = 0x08;
8013 mask = CPSR_I;
8014 /* The PC already points to the next instruction. */
8015 offset = 0;
8016 break;
8017 case EXCP_BKPT:
8018 /* Fall through to prefetch abort. */
8019 case EXCP_PREFETCH_ABORT:
8020 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8021 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8022 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8023 env->exception.fsr, (uint32_t)env->exception.vaddress);
8024 new_mode = ARM_CPU_MODE_ABT;
8025 addr = 0x0c;
8026 mask = CPSR_A | CPSR_I;
8027 offset = 4;
8028 break;
8029 case EXCP_DATA_ABORT:
8030 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8031 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8032 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8033 env->exception.fsr,
8034 (uint32_t)env->exception.vaddress);
8035 new_mode = ARM_CPU_MODE_ABT;
8036 addr = 0x10;
8037 mask = CPSR_A | CPSR_I;
8038 offset = 8;
8039 break;
8040 case EXCP_IRQ:
8041 new_mode = ARM_CPU_MODE_IRQ;
8042 addr = 0x18;
8043 /* Disable IRQ and imprecise data aborts. */
8044 mask = CPSR_A | CPSR_I;
8045 offset = 4;
8046 if (env->cp15.scr_el3 & SCR_IRQ) {
8047 /* IRQ routed to monitor mode */
8048 new_mode = ARM_CPU_MODE_MON;
8049 mask |= CPSR_F;
8051 break;
8052 case EXCP_FIQ:
8053 new_mode = ARM_CPU_MODE_FIQ;
8054 addr = 0x1c;
8055 /* Disable FIQ, IRQ and imprecise data aborts. */
8056 mask = CPSR_A | CPSR_I | CPSR_F;
8057 if (env->cp15.scr_el3 & SCR_FIQ) {
8058 /* FIQ routed to monitor mode */
8059 new_mode = ARM_CPU_MODE_MON;
8061 offset = 4;
8062 break;
8063 case EXCP_VIRQ:
8064 new_mode = ARM_CPU_MODE_IRQ;
8065 addr = 0x18;
8066 /* Disable IRQ and imprecise data aborts. */
8067 mask = CPSR_A | CPSR_I;
8068 offset = 4;
8069 break;
8070 case EXCP_VFIQ:
8071 new_mode = ARM_CPU_MODE_FIQ;
8072 addr = 0x1c;
8073 /* Disable FIQ, IRQ and imprecise data aborts. */
8074 mask = CPSR_A | CPSR_I | CPSR_F;
8075 offset = 4;
8076 break;
8077 case EXCP_SMC:
8078 new_mode = ARM_CPU_MODE_MON;
8079 addr = 0x08;
8080 mask = CPSR_A | CPSR_I | CPSR_F;
8081 offset = 0;
8082 break;
8083 default:
8084 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8085 return; /* Never happens. Keep compiler happy. */
8088 if (new_mode == ARM_CPU_MODE_MON) {
8089 addr += env->cp15.mvbar;
8090 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8091 /* High vectors. When enabled, base address cannot be remapped. */
8092 addr += 0xffff0000;
8093 } else {
8094 /* ARM v7 architectures provide a vector base address register to remap
8095 * the interrupt vector table.
8096 * This register is only followed in non-monitor mode, and is banked.
8097 * Note: only bits 31:5 are valid.
8099 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8102 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8103 env->cp15.scr_el3 &= ~SCR_NS;
8106 switch_mode (env, new_mode);
8107 /* For exceptions taken to AArch32 we must clear the SS bit in both
8108 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8110 env->uncached_cpsr &= ~PSTATE_SS;
8111 env->spsr = cpsr_read(env);
8112 /* Clear IT bits. */
8113 env->condexec_bits = 0;
8114 /* Switch to the new mode, and to the correct instruction set. */
8115 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8116 /* Set new mode endianness */
8117 env->uncached_cpsr &= ~CPSR_E;
8118 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8119 env->uncached_cpsr |= CPSR_E;
8121 env->daif |= mask;
8122 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8123 * and we should just guard the thumb mode on V4 */
8124 if (arm_feature(env, ARM_FEATURE_V4T)) {
8125 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8127 env->regs[14] = env->regs[15] + offset;
8128 env->regs[15] = addr;
8131 /* Handle exception entry to a target EL which is using AArch64 */
8132 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8134 ARMCPU *cpu = ARM_CPU(cs);
8135 CPUARMState *env = &cpu->env;
8136 unsigned int new_el = env->exception.target_el;
8137 target_ulong addr = env->cp15.vbar_el[new_el];
8138 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8140 if (arm_current_el(env) < new_el) {
8141 /* Entry vector offset depends on whether the implemented EL
8142 * immediately lower than the target level is using AArch32 or AArch64
8144 bool is_aa64;
8146 switch (new_el) {
8147 case 3:
8148 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8149 break;
8150 case 2:
8151 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8152 break;
8153 case 1:
8154 is_aa64 = is_a64(env);
8155 break;
8156 default:
8157 g_assert_not_reached();
8160 if (is_aa64) {
8161 addr += 0x400;
8162 } else {
8163 addr += 0x600;
8165 } else if (pstate_read(env) & PSTATE_SP) {
8166 addr += 0x200;
8169 switch (cs->exception_index) {
8170 case EXCP_PREFETCH_ABORT:
8171 case EXCP_DATA_ABORT:
8172 env->cp15.far_el[new_el] = env->exception.vaddress;
8173 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8174 env->cp15.far_el[new_el]);
8175 /* fall through */
8176 case EXCP_BKPT:
8177 case EXCP_UDEF:
8178 case EXCP_SWI:
8179 case EXCP_HVC:
8180 case EXCP_HYP_TRAP:
8181 case EXCP_SMC:
8182 env->cp15.esr_el[new_el] = env->exception.syndrome;
8183 break;
8184 case EXCP_IRQ:
8185 case EXCP_VIRQ:
8186 addr += 0x80;
8187 break;
8188 case EXCP_FIQ:
8189 case EXCP_VFIQ:
8190 addr += 0x100;
8191 break;
8192 case EXCP_SEMIHOST:
8193 qemu_log_mask(CPU_LOG_INT,
8194 "...handling as semihosting call 0x%" PRIx64 "\n",
8195 env->xregs[0]);
8196 env->xregs[0] = do_arm_semihosting(env);
8197 return;
8198 default:
8199 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8202 if (is_a64(env)) {
8203 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8204 aarch64_save_sp(env, arm_current_el(env));
8205 env->elr_el[new_el] = env->pc;
8206 } else {
8207 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8208 env->elr_el[new_el] = env->regs[15];
8210 aarch64_sync_32_to_64(env);
8212 env->condexec_bits = 0;
8214 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8215 env->elr_el[new_el]);
8217 pstate_write(env, PSTATE_DAIF | new_mode);
8218 env->aarch64 = 1;
8219 aarch64_restore_sp(env, new_el);
8221 env->pc = addr;
8223 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8224 new_el, env->pc, pstate_read(env));
8227 static inline bool check_for_semihosting(CPUState *cs)
8229 /* Check whether this exception is a semihosting call; if so
8230 * then handle it and return true; otherwise return false.
8232 ARMCPU *cpu = ARM_CPU(cs);
8233 CPUARMState *env = &cpu->env;
8235 if (is_a64(env)) {
8236 if (cs->exception_index == EXCP_SEMIHOST) {
8237 /* This is always the 64-bit semihosting exception.
8238 * The "is this usermode" and "is semihosting enabled"
8239 * checks have been done at translate time.
8241 qemu_log_mask(CPU_LOG_INT,
8242 "...handling as semihosting call 0x%" PRIx64 "\n",
8243 env->xregs[0]);
8244 env->xregs[0] = do_arm_semihosting(env);
8245 return true;
8247 return false;
8248 } else {
8249 uint32_t imm;
8251 /* Only intercept calls from privileged modes, to provide some
8252 * semblance of security.
8254 if (cs->exception_index != EXCP_SEMIHOST &&
8255 (!semihosting_enabled() ||
8256 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8257 return false;
8260 switch (cs->exception_index) {
8261 case EXCP_SEMIHOST:
8262 /* This is always a semihosting call; the "is this usermode"
8263 * and "is semihosting enabled" checks have been done at
8264 * translate time.
8266 break;
8267 case EXCP_SWI:
8268 /* Check for semihosting interrupt. */
8269 if (env->thumb) {
8270 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8271 & 0xff;
8272 if (imm == 0xab) {
8273 break;
8275 } else {
8276 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8277 & 0xffffff;
8278 if (imm == 0x123456) {
8279 break;
8282 return false;
8283 case EXCP_BKPT:
8284 /* See if this is a semihosting syscall. */
8285 if (env->thumb) {
8286 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8287 & 0xff;
8288 if (imm == 0xab) {
8289 env->regs[15] += 2;
8290 break;
8293 return false;
8294 default:
8295 return false;
8298 qemu_log_mask(CPU_LOG_INT,
8299 "...handling as semihosting call 0x%x\n",
8300 env->regs[0]);
8301 env->regs[0] = do_arm_semihosting(env);
8302 return true;
8306 /* Handle a CPU exception for A and R profile CPUs.
8307 * Do any appropriate logging, handle PSCI calls, and then hand off
8308 * to the AArch64-entry or AArch32-entry function depending on the
8309 * target exception level's register width.
8311 void arm_cpu_do_interrupt(CPUState *cs)
8313 ARMCPU *cpu = ARM_CPU(cs);
8314 CPUARMState *env = &cpu->env;
8315 unsigned int new_el = env->exception.target_el;
8317 assert(!arm_feature(env, ARM_FEATURE_M));
8319 arm_log_exception(cs->exception_index);
8320 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8321 new_el);
8322 if (qemu_loglevel_mask(CPU_LOG_INT)
8323 && !excp_is_internal(cs->exception_index)) {
8324 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8325 env->exception.syndrome >> ARM_EL_EC_SHIFT,
8326 env->exception.syndrome);
8329 if (arm_is_psci_call(cpu, cs->exception_index)) {
8330 arm_handle_psci_call(cpu);
8331 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8332 return;
8335 /* Semihosting semantics depend on the register width of the
8336 * code that caused the exception, not the target exception level,
8337 * so must be handled here.
8339 if (check_for_semihosting(cs)) {
8340 return;
8343 /* Hooks may change global state so BQL should be held, also the
8344 * BQL needs to be held for any modification of
8345 * cs->interrupt_request.
8347 g_assert(qemu_mutex_iothread_locked());
8349 arm_call_pre_el_change_hook(cpu);
8351 assert(!excp_is_internal(cs->exception_index));
8352 if (arm_el_is_aa64(env, new_el)) {
8353 arm_cpu_do_interrupt_aarch64(cs);
8354 } else {
8355 arm_cpu_do_interrupt_aarch32(cs);
8358 arm_call_el_change_hook(cpu);
8360 if (!kvm_enabled()) {
8361 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8365 /* Return the exception level which controls this address translation regime */
8366 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8368 switch (mmu_idx) {
8369 case ARMMMUIdx_S2NS:
8370 case ARMMMUIdx_S1E2:
8371 return 2;
8372 case ARMMMUIdx_S1E3:
8373 return 3;
8374 case ARMMMUIdx_S1SE0:
8375 return arm_el_is_aa64(env, 3) ? 1 : 3;
8376 case ARMMMUIdx_S1SE1:
8377 case ARMMMUIdx_S1NSE0:
8378 case ARMMMUIdx_S1NSE1:
8379 case ARMMMUIdx_MPrivNegPri:
8380 case ARMMMUIdx_MUserNegPri:
8381 case ARMMMUIdx_MPriv:
8382 case ARMMMUIdx_MUser:
8383 case ARMMMUIdx_MSPrivNegPri:
8384 case ARMMMUIdx_MSUserNegPri:
8385 case ARMMMUIdx_MSPriv:
8386 case ARMMMUIdx_MSUser:
8387 return 1;
8388 default:
8389 g_assert_not_reached();
8393 /* Return the SCTLR value which controls this address translation regime */
8394 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8396 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8399 /* Return true if the specified stage of address translation is disabled */
8400 static inline bool regime_translation_disabled(CPUARMState *env,
8401 ARMMMUIdx mmu_idx)
8403 if (arm_feature(env, ARM_FEATURE_M)) {
8404 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8405 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8406 case R_V7M_MPU_CTRL_ENABLE_MASK:
8407 /* Enabled, but not for HardFault and NMI */
8408 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8409 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8410 /* Enabled for all cases */
8411 return false;
8412 case 0:
8413 default:
8414 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8415 * we warned about that in armv7m_nvic.c when the guest set it.
8417 return true;
8421 if (mmu_idx == ARMMMUIdx_S2NS) {
8422 return (env->cp15.hcr_el2 & HCR_VM) == 0;
8425 if (env->cp15.hcr_el2 & HCR_TGE) {
8426 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8427 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8428 return true;
8432 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8435 static inline bool regime_translation_big_endian(CPUARMState *env,
8436 ARMMMUIdx mmu_idx)
8438 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8441 /* Return the TCR controlling this translation regime */
8442 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8444 if (mmu_idx == ARMMMUIdx_S2NS) {
8445 return &env->cp15.vtcr_el2;
8447 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8450 /* Convert a possible stage1+2 MMU index into the appropriate
8451 * stage 1 MMU index
8453 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8455 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8456 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8458 return mmu_idx;
8461 /* Returns TBI0 value for current regime el */
8462 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8464 TCR *tcr;
8465 uint32_t el;
8467 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8468 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8470 mmu_idx = stage_1_mmu_idx(mmu_idx);
8472 tcr = regime_tcr(env, mmu_idx);
8473 el = regime_el(env, mmu_idx);
8475 if (el > 1) {
8476 return extract64(tcr->raw_tcr, 20, 1);
8477 } else {
8478 return extract64(tcr->raw_tcr, 37, 1);
8482 /* Returns TBI1 value for current regime el */
8483 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8485 TCR *tcr;
8486 uint32_t el;
8488 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8489 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8491 mmu_idx = stage_1_mmu_idx(mmu_idx);
8493 tcr = regime_tcr(env, mmu_idx);
8494 el = regime_el(env, mmu_idx);
8496 if (el > 1) {
8497 return 0;
8498 } else {
8499 return extract64(tcr->raw_tcr, 38, 1);
8503 /* Return the TTBR associated with this translation regime */
8504 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8505 int ttbrn)
8507 if (mmu_idx == ARMMMUIdx_S2NS) {
8508 return env->cp15.vttbr_el2;
8510 if (ttbrn == 0) {
8511 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8512 } else {
8513 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8517 /* Return true if the translation regime is using LPAE format page tables */
8518 static inline bool regime_using_lpae_format(CPUARMState *env,
8519 ARMMMUIdx mmu_idx)
8521 int el = regime_el(env, mmu_idx);
8522 if (el == 2 || arm_el_is_aa64(env, el)) {
8523 return true;
8525 if (arm_feature(env, ARM_FEATURE_LPAE)
8526 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8527 return true;
8529 return false;
8532 /* Returns true if the stage 1 translation regime is using LPAE format page
8533 * tables. Used when raising alignment exceptions, whose FSR changes depending
8534 * on whether the long or short descriptor format is in use. */
8535 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8537 mmu_idx = stage_1_mmu_idx(mmu_idx);
8539 return regime_using_lpae_format(env, mmu_idx);
8542 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8544 switch (mmu_idx) {
8545 case ARMMMUIdx_S1SE0:
8546 case ARMMMUIdx_S1NSE0:
8547 case ARMMMUIdx_MUser:
8548 case ARMMMUIdx_MSUser:
8549 case ARMMMUIdx_MUserNegPri:
8550 case ARMMMUIdx_MSUserNegPri:
8551 return true;
8552 default:
8553 return false;
8554 case ARMMMUIdx_S12NSE0:
8555 case ARMMMUIdx_S12NSE1:
8556 g_assert_not_reached();
8560 /* Translate section/page access permissions to page
8561 * R/W protection flags
8563 * @env: CPUARMState
8564 * @mmu_idx: MMU index indicating required translation regime
8565 * @ap: The 3-bit access permissions (AP[2:0])
8566 * @domain_prot: The 2-bit domain access permissions
8568 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8569 int ap, int domain_prot)
8571 bool is_user = regime_is_user(env, mmu_idx);
8573 if (domain_prot == 3) {
8574 return PAGE_READ | PAGE_WRITE;
8577 switch (ap) {
8578 case 0:
8579 if (arm_feature(env, ARM_FEATURE_V7)) {
8580 return 0;
8582 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8583 case SCTLR_S:
8584 return is_user ? 0 : PAGE_READ;
8585 case SCTLR_R:
8586 return PAGE_READ;
8587 default:
8588 return 0;
8590 case 1:
8591 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8592 case 2:
8593 if (is_user) {
8594 return PAGE_READ;
8595 } else {
8596 return PAGE_READ | PAGE_WRITE;
8598 case 3:
8599 return PAGE_READ | PAGE_WRITE;
8600 case 4: /* Reserved. */
8601 return 0;
8602 case 5:
8603 return is_user ? 0 : PAGE_READ;
8604 case 6:
8605 return PAGE_READ;
8606 case 7:
8607 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8608 return 0;
8610 return PAGE_READ;
8611 default:
8612 g_assert_not_reached();
8616 /* Translate section/page access permissions to page
8617 * R/W protection flags.
8619 * @ap: The 2-bit simple AP (AP[2:1])
8620 * @is_user: TRUE if accessing from PL0
8622 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8624 switch (ap) {
8625 case 0:
8626 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8627 case 1:
8628 return PAGE_READ | PAGE_WRITE;
8629 case 2:
8630 return is_user ? 0 : PAGE_READ;
8631 case 3:
8632 return PAGE_READ;
8633 default:
8634 g_assert_not_reached();
8638 static inline int
8639 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8641 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8644 /* Translate S2 section/page access permissions to protection flags
8646 * @env: CPUARMState
8647 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8648 * @xn: XN (execute-never) bit
8650 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8652 int prot = 0;
8654 if (s2ap & 1) {
8655 prot |= PAGE_READ;
8657 if (s2ap & 2) {
8658 prot |= PAGE_WRITE;
8660 if (!xn) {
8661 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8662 prot |= PAGE_EXEC;
8665 return prot;
8668 /* Translate section/page access permissions to protection flags
8670 * @env: CPUARMState
8671 * @mmu_idx: MMU index indicating required translation regime
8672 * @is_aa64: TRUE if AArch64
8673 * @ap: The 2-bit simple AP (AP[2:1])
8674 * @ns: NS (non-secure) bit
8675 * @xn: XN (execute-never) bit
8676 * @pxn: PXN (privileged execute-never) bit
8678 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8679 int ap, int ns, int xn, int pxn)
8681 bool is_user = regime_is_user(env, mmu_idx);
8682 int prot_rw, user_rw;
8683 bool have_wxn;
8684 int wxn = 0;
8686 assert(mmu_idx != ARMMMUIdx_S2NS);
8688 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8689 if (is_user) {
8690 prot_rw = user_rw;
8691 } else {
8692 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8695 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8696 return prot_rw;
8699 /* TODO have_wxn should be replaced with
8700 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8701 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8702 * compatible processors have EL2, which is required for [U]WXN.
8704 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8706 if (have_wxn) {
8707 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8710 if (is_aa64) {
8711 switch (regime_el(env, mmu_idx)) {
8712 case 1:
8713 if (!is_user) {
8714 xn = pxn || (user_rw & PAGE_WRITE);
8716 break;
8717 case 2:
8718 case 3:
8719 break;
8721 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8722 switch (regime_el(env, mmu_idx)) {
8723 case 1:
8724 case 3:
8725 if (is_user) {
8726 xn = xn || !(user_rw & PAGE_READ);
8727 } else {
8728 int uwxn = 0;
8729 if (have_wxn) {
8730 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8732 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8733 (uwxn && (user_rw & PAGE_WRITE));
8735 break;
8736 case 2:
8737 break;
8739 } else {
8740 xn = wxn = 0;
8743 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8744 return prot_rw;
8746 return prot_rw | PAGE_EXEC;
8749 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8750 uint32_t *table, uint32_t address)
8752 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8753 TCR *tcr = regime_tcr(env, mmu_idx);
8755 if (address & tcr->mask) {
8756 if (tcr->raw_tcr & TTBCR_PD1) {
8757 /* Translation table walk disabled for TTBR1 */
8758 return false;
8760 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8761 } else {
8762 if (tcr->raw_tcr & TTBCR_PD0) {
8763 /* Translation table walk disabled for TTBR0 */
8764 return false;
8766 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8768 *table |= (address >> 18) & 0x3ffc;
8769 return true;
8772 /* Translate a S1 pagetable walk through S2 if needed. */
8773 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8774 hwaddr addr, MemTxAttrs txattrs,
8775 ARMMMUFaultInfo *fi)
8777 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8778 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8779 target_ulong s2size;
8780 hwaddr s2pa;
8781 int s2prot;
8782 int ret;
8784 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8785 &txattrs, &s2prot, &s2size, fi, NULL);
8786 if (ret) {
8787 assert(fi->type != ARMFault_None);
8788 fi->s2addr = addr;
8789 fi->stage2 = true;
8790 fi->s1ptw = true;
8791 return ~0;
8793 addr = s2pa;
8795 return addr;
8798 /* All loads done in the course of a page table walk go through here. */
8799 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8800 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8802 ARMCPU *cpu = ARM_CPU(cs);
8803 CPUARMState *env = &cpu->env;
8804 MemTxAttrs attrs = {};
8805 MemTxResult result = MEMTX_OK;
8806 AddressSpace *as;
8807 uint32_t data;
8809 attrs.secure = is_secure;
8810 as = arm_addressspace(cs, attrs);
8811 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8812 if (fi->s1ptw) {
8813 return 0;
8815 if (regime_translation_big_endian(env, mmu_idx)) {
8816 data = address_space_ldl_be(as, addr, attrs, &result);
8817 } else {
8818 data = address_space_ldl_le(as, addr, attrs, &result);
8820 if (result == MEMTX_OK) {
8821 return data;
8823 fi->type = ARMFault_SyncExternalOnWalk;
8824 fi->ea = arm_extabort_type(result);
8825 return 0;
8828 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8829 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8831 ARMCPU *cpu = ARM_CPU(cs);
8832 CPUARMState *env = &cpu->env;
8833 MemTxAttrs attrs = {};
8834 MemTxResult result = MEMTX_OK;
8835 AddressSpace *as;
8836 uint64_t data;
8838 attrs.secure = is_secure;
8839 as = arm_addressspace(cs, attrs);
8840 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8841 if (fi->s1ptw) {
8842 return 0;
8844 if (regime_translation_big_endian(env, mmu_idx)) {
8845 data = address_space_ldq_be(as, addr, attrs, &result);
8846 } else {
8847 data = address_space_ldq_le(as, addr, attrs, &result);
8849 if (result == MEMTX_OK) {
8850 return data;
8852 fi->type = ARMFault_SyncExternalOnWalk;
8853 fi->ea = arm_extabort_type(result);
8854 return 0;
8857 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8858 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8859 hwaddr *phys_ptr, int *prot,
8860 target_ulong *page_size,
8861 ARMMMUFaultInfo *fi)
8863 CPUState *cs = CPU(arm_env_get_cpu(env));
8864 int level = 1;
8865 uint32_t table;
8866 uint32_t desc;
8867 int type;
8868 int ap;
8869 int domain = 0;
8870 int domain_prot;
8871 hwaddr phys_addr;
8872 uint32_t dacr;
8874 /* Pagetable walk. */
8875 /* Lookup l1 descriptor. */
8876 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8877 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8878 fi->type = ARMFault_Translation;
8879 goto do_fault;
8881 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8882 mmu_idx, fi);
8883 if (fi->type != ARMFault_None) {
8884 goto do_fault;
8886 type = (desc & 3);
8887 domain = (desc >> 5) & 0x0f;
8888 if (regime_el(env, mmu_idx) == 1) {
8889 dacr = env->cp15.dacr_ns;
8890 } else {
8891 dacr = env->cp15.dacr_s;
8893 domain_prot = (dacr >> (domain * 2)) & 3;
8894 if (type == 0) {
8895 /* Section translation fault. */
8896 fi->type = ARMFault_Translation;
8897 goto do_fault;
8899 if (type != 2) {
8900 level = 2;
8902 if (domain_prot == 0 || domain_prot == 2) {
8903 fi->type = ARMFault_Domain;
8904 goto do_fault;
8906 if (type == 2) {
8907 /* 1Mb section. */
8908 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8909 ap = (desc >> 10) & 3;
8910 *page_size = 1024 * 1024;
8911 } else {
8912 /* Lookup l2 entry. */
8913 if (type == 1) {
8914 /* Coarse pagetable. */
8915 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8916 } else {
8917 /* Fine pagetable. */
8918 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8920 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8921 mmu_idx, fi);
8922 if (fi->type != ARMFault_None) {
8923 goto do_fault;
8925 switch (desc & 3) {
8926 case 0: /* Page translation fault. */
8927 fi->type = ARMFault_Translation;
8928 goto do_fault;
8929 case 1: /* 64k page. */
8930 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8931 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8932 *page_size = 0x10000;
8933 break;
8934 case 2: /* 4k page. */
8935 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8936 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8937 *page_size = 0x1000;
8938 break;
8939 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8940 if (type == 1) {
8941 /* ARMv6/XScale extended small page format */
8942 if (arm_feature(env, ARM_FEATURE_XSCALE)
8943 || arm_feature(env, ARM_FEATURE_V6)) {
8944 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8945 *page_size = 0x1000;
8946 } else {
8947 /* UNPREDICTABLE in ARMv5; we choose to take a
8948 * page translation fault.
8950 fi->type = ARMFault_Translation;
8951 goto do_fault;
8953 } else {
8954 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8955 *page_size = 0x400;
8957 ap = (desc >> 4) & 3;
8958 break;
8959 default:
8960 /* Never happens, but compiler isn't smart enough to tell. */
8961 abort();
8964 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8965 *prot |= *prot ? PAGE_EXEC : 0;
8966 if (!(*prot & (1 << access_type))) {
8967 /* Access permission fault. */
8968 fi->type = ARMFault_Permission;
8969 goto do_fault;
8971 *phys_ptr = phys_addr;
8972 return false;
8973 do_fault:
8974 fi->domain = domain;
8975 fi->level = level;
8976 return true;
8979 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8980 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8981 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8982 target_ulong *page_size, ARMMMUFaultInfo *fi)
8984 CPUState *cs = CPU(arm_env_get_cpu(env));
8985 int level = 1;
8986 uint32_t table;
8987 uint32_t desc;
8988 uint32_t xn;
8989 uint32_t pxn = 0;
8990 int type;
8991 int ap;
8992 int domain = 0;
8993 int domain_prot;
8994 hwaddr phys_addr;
8995 uint32_t dacr;
8996 bool ns;
8998 /* Pagetable walk. */
8999 /* Lookup l1 descriptor. */
9000 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9001 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9002 fi->type = ARMFault_Translation;
9003 goto do_fault;
9005 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9006 mmu_idx, fi);
9007 if (fi->type != ARMFault_None) {
9008 goto do_fault;
9010 type = (desc & 3);
9011 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9012 /* Section translation fault, or attempt to use the encoding
9013 * which is Reserved on implementations without PXN.
9015 fi->type = ARMFault_Translation;
9016 goto do_fault;
9018 if ((type == 1) || !(desc & (1 << 18))) {
9019 /* Page or Section. */
9020 domain = (desc >> 5) & 0x0f;
9022 if (regime_el(env, mmu_idx) == 1) {
9023 dacr = env->cp15.dacr_ns;
9024 } else {
9025 dacr = env->cp15.dacr_s;
9027 if (type == 1) {
9028 level = 2;
9030 domain_prot = (dacr >> (domain * 2)) & 3;
9031 if (domain_prot == 0 || domain_prot == 2) {
9032 /* Section or Page domain fault */
9033 fi->type = ARMFault_Domain;
9034 goto do_fault;
9036 if (type != 1) {
9037 if (desc & (1 << 18)) {
9038 /* Supersection. */
9039 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9040 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9041 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9042 *page_size = 0x1000000;
9043 } else {
9044 /* Section. */
9045 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9046 *page_size = 0x100000;
9048 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9049 xn = desc & (1 << 4);
9050 pxn = desc & 1;
9051 ns = extract32(desc, 19, 1);
9052 } else {
9053 if (arm_feature(env, ARM_FEATURE_PXN)) {
9054 pxn = (desc >> 2) & 1;
9056 ns = extract32(desc, 3, 1);
9057 /* Lookup l2 entry. */
9058 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9059 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9060 mmu_idx, fi);
9061 if (fi->type != ARMFault_None) {
9062 goto do_fault;
9064 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9065 switch (desc & 3) {
9066 case 0: /* Page translation fault. */
9067 fi->type = ARMFault_Translation;
9068 goto do_fault;
9069 case 1: /* 64k page. */
9070 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9071 xn = desc & (1 << 15);
9072 *page_size = 0x10000;
9073 break;
9074 case 2: case 3: /* 4k page. */
9075 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9076 xn = desc & 1;
9077 *page_size = 0x1000;
9078 break;
9079 default:
9080 /* Never happens, but compiler isn't smart enough to tell. */
9081 abort();
9084 if (domain_prot == 3) {
9085 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9086 } else {
9087 if (pxn && !regime_is_user(env, mmu_idx)) {
9088 xn = 1;
9090 if (xn && access_type == MMU_INST_FETCH) {
9091 fi->type = ARMFault_Permission;
9092 goto do_fault;
9095 if (arm_feature(env, ARM_FEATURE_V6K) &&
9096 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9097 /* The simplified model uses AP[0] as an access control bit. */
9098 if ((ap & 1) == 0) {
9099 /* Access flag fault. */
9100 fi->type = ARMFault_AccessFlag;
9101 goto do_fault;
9103 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9104 } else {
9105 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9107 if (*prot && !xn) {
9108 *prot |= PAGE_EXEC;
9110 if (!(*prot & (1 << access_type))) {
9111 /* Access permission fault. */
9112 fi->type = ARMFault_Permission;
9113 goto do_fault;
9116 if (ns) {
9117 /* The NS bit will (as required by the architecture) have no effect if
9118 * the CPU doesn't support TZ or this is a non-secure translation
9119 * regime, because the attribute will already be non-secure.
9121 attrs->secure = false;
9123 *phys_ptr = phys_addr;
9124 return false;
9125 do_fault:
9126 fi->domain = domain;
9127 fi->level = level;
9128 return true;
9132 * check_s2_mmu_setup
9133 * @cpu: ARMCPU
9134 * @is_aa64: True if the translation regime is in AArch64 state
9135 * @startlevel: Suggested starting level
9136 * @inputsize: Bitsize of IPAs
9137 * @stride: Page-table stride (See the ARM ARM)
9139 * Returns true if the suggested S2 translation parameters are OK and
9140 * false otherwise.
9142 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9143 int inputsize, int stride)
9145 const int grainsize = stride + 3;
9146 int startsizecheck;
9148 /* Negative levels are never allowed. */
9149 if (level < 0) {
9150 return false;
9153 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9154 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9155 return false;
9158 if (is_aa64) {
9159 CPUARMState *env = &cpu->env;
9160 unsigned int pamax = arm_pamax(cpu);
9162 switch (stride) {
9163 case 13: /* 64KB Pages. */
9164 if (level == 0 || (level == 1 && pamax <= 42)) {
9165 return false;
9167 break;
9168 case 11: /* 16KB Pages. */
9169 if (level == 0 || (level == 1 && pamax <= 40)) {
9170 return false;
9172 break;
9173 case 9: /* 4KB Pages. */
9174 if (level == 0 && pamax <= 42) {
9175 return false;
9177 break;
9178 default:
9179 g_assert_not_reached();
9182 /* Inputsize checks. */
9183 if (inputsize > pamax &&
9184 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9185 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9186 return false;
9188 } else {
9189 /* AArch32 only supports 4KB pages. Assert on that. */
9190 assert(stride == 9);
9192 if (level == 0) {
9193 return false;
9196 return true;
9199 /* Translate from the 4-bit stage 2 representation of
9200 * memory attributes (without cache-allocation hints) to
9201 * the 8-bit representation of the stage 1 MAIR registers
9202 * (which includes allocation hints).
9204 * ref: shared/translation/attrs/S2AttrDecode()
9205 * .../S2ConvertAttrsHints()
9207 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9209 uint8_t hiattr = extract32(s2attrs, 2, 2);
9210 uint8_t loattr = extract32(s2attrs, 0, 2);
9211 uint8_t hihint = 0, lohint = 0;
9213 if (hiattr != 0) { /* normal memory */
9214 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9215 hiattr = loattr = 1; /* non-cacheable */
9216 } else {
9217 if (hiattr != 1) { /* Write-through or write-back */
9218 hihint = 3; /* RW allocate */
9220 if (loattr != 1) { /* Write-through or write-back */
9221 lohint = 3; /* RW allocate */
9226 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9229 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9230 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9231 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9232 target_ulong *page_size_ptr,
9233 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9235 ARMCPU *cpu = arm_env_get_cpu(env);
9236 CPUState *cs = CPU(cpu);
9237 /* Read an LPAE long-descriptor translation table. */
9238 ARMFaultType fault_type = ARMFault_Translation;
9239 uint32_t level;
9240 uint32_t epd = 0;
9241 int32_t t0sz, t1sz;
9242 uint32_t tg;
9243 uint64_t ttbr;
9244 int ttbr_select;
9245 hwaddr descaddr, indexmask, indexmask_grainsize;
9246 uint32_t tableattrs;
9247 target_ulong page_size;
9248 uint32_t attrs;
9249 int32_t stride = 9;
9250 int32_t addrsize;
9251 int inputsize;
9252 int32_t tbi = 0;
9253 TCR *tcr = regime_tcr(env, mmu_idx);
9254 int ap, ns, xn, pxn;
9255 uint32_t el = regime_el(env, mmu_idx);
9256 bool ttbr1_valid = true;
9257 uint64_t descaddrmask;
9258 bool aarch64 = arm_el_is_aa64(env, el);
9260 /* TODO:
9261 * This code does not handle the different format TCR for VTCR_EL2.
9262 * This code also does not support shareability levels.
9263 * Attribute and permission bit handling should also be checked when adding
9264 * support for those page table walks.
9266 if (aarch64) {
9267 level = 0;
9268 addrsize = 64;
9269 if (el > 1) {
9270 if (mmu_idx != ARMMMUIdx_S2NS) {
9271 tbi = extract64(tcr->raw_tcr, 20, 1);
9273 } else {
9274 if (extract64(address, 55, 1)) {
9275 tbi = extract64(tcr->raw_tcr, 38, 1);
9276 } else {
9277 tbi = extract64(tcr->raw_tcr, 37, 1);
9280 tbi *= 8;
9282 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9283 * invalid.
9285 if (el > 1) {
9286 ttbr1_valid = false;
9288 } else {
9289 level = 1;
9290 addrsize = 32;
9291 /* There is no TTBR1 for EL2 */
9292 if (el == 2) {
9293 ttbr1_valid = false;
9297 /* Determine whether this address is in the region controlled by
9298 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9299 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9300 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9302 if (aarch64) {
9303 /* AArch64 translation. */
9304 t0sz = extract32(tcr->raw_tcr, 0, 6);
9305 t0sz = MIN(t0sz, 39);
9306 t0sz = MAX(t0sz, 16);
9307 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9308 /* AArch32 stage 1 translation. */
9309 t0sz = extract32(tcr->raw_tcr, 0, 3);
9310 } else {
9311 /* AArch32 stage 2 translation. */
9312 bool sext = extract32(tcr->raw_tcr, 4, 1);
9313 bool sign = extract32(tcr->raw_tcr, 3, 1);
9314 /* Address size is 40-bit for a stage 2 translation,
9315 * and t0sz can be negative (from -8 to 7),
9316 * so we need to adjust it to use the TTBR selecting logic below.
9318 addrsize = 40;
9319 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9321 /* If the sign-extend bit is not the same as t0sz[3], the result
9322 * is unpredictable. Flag this as a guest error. */
9323 if (sign != sext) {
9324 qemu_log_mask(LOG_GUEST_ERROR,
9325 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9328 t1sz = extract32(tcr->raw_tcr, 16, 6);
9329 if (aarch64) {
9330 t1sz = MIN(t1sz, 39);
9331 t1sz = MAX(t1sz, 16);
9333 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9334 /* there is a ttbr0 region and we are in it (high bits all zero) */
9335 ttbr_select = 0;
9336 } else if (ttbr1_valid && t1sz &&
9337 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9338 /* there is a ttbr1 region and we are in it (high bits all one) */
9339 ttbr_select = 1;
9340 } else if (!t0sz) {
9341 /* ttbr0 region is "everything not in the ttbr1 region" */
9342 ttbr_select = 0;
9343 } else if (!t1sz && ttbr1_valid) {
9344 /* ttbr1 region is "everything not in the ttbr0 region" */
9345 ttbr_select = 1;
9346 } else {
9347 /* in the gap between the two regions, this is a Translation fault */
9348 fault_type = ARMFault_Translation;
9349 goto do_fault;
9352 /* Note that QEMU ignores shareability and cacheability attributes,
9353 * so we don't need to do anything with the SH, ORGN, IRGN fields
9354 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9355 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9356 * implement any ASID-like capability so we can ignore it (instead
9357 * we will always flush the TLB any time the ASID is changed).
9359 if (ttbr_select == 0) {
9360 ttbr = regime_ttbr(env, mmu_idx, 0);
9361 if (el < 2) {
9362 epd = extract32(tcr->raw_tcr, 7, 1);
9364 inputsize = addrsize - t0sz;
9366 tg = extract32(tcr->raw_tcr, 14, 2);
9367 if (tg == 1) { /* 64KB pages */
9368 stride = 13;
9370 if (tg == 2) { /* 16KB pages */
9371 stride = 11;
9373 } else {
9374 /* We should only be here if TTBR1 is valid */
9375 assert(ttbr1_valid);
9377 ttbr = regime_ttbr(env, mmu_idx, 1);
9378 epd = extract32(tcr->raw_tcr, 23, 1);
9379 inputsize = addrsize - t1sz;
9381 tg = extract32(tcr->raw_tcr, 30, 2);
9382 if (tg == 3) { /* 64KB pages */
9383 stride = 13;
9385 if (tg == 1) { /* 16KB pages */
9386 stride = 11;
9390 /* Here we should have set up all the parameters for the translation:
9391 * inputsize, ttbr, epd, stride, tbi
9394 if (epd) {
9395 /* Translation table walk disabled => Translation fault on TLB miss
9396 * Note: This is always 0 on 64-bit EL2 and EL3.
9398 goto do_fault;
9401 if (mmu_idx != ARMMMUIdx_S2NS) {
9402 /* The starting level depends on the virtual address size (which can
9403 * be up to 48 bits) and the translation granule size. It indicates
9404 * the number of strides (stride bits at a time) needed to
9405 * consume the bits of the input address. In the pseudocode this is:
9406 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9407 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9408 * our 'stride + 3' and 'stride' is our 'stride'.
9409 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9410 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9411 * = 4 - (inputsize - 4) / stride;
9413 level = 4 - (inputsize - 4) / stride;
9414 } else {
9415 /* For stage 2 translations the starting level is specified by the
9416 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9418 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9419 uint32_t startlevel;
9420 bool ok;
9422 if (!aarch64 || stride == 9) {
9423 /* AArch32 or 4KB pages */
9424 startlevel = 2 - sl0;
9425 } else {
9426 /* 16KB or 64KB pages */
9427 startlevel = 3 - sl0;
9430 /* Check that the starting level is valid. */
9431 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9432 inputsize, stride);
9433 if (!ok) {
9434 fault_type = ARMFault_Translation;
9435 goto do_fault;
9437 level = startlevel;
9440 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9441 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9443 /* Now we can extract the actual base address from the TTBR */
9444 descaddr = extract64(ttbr, 0, 48);
9445 descaddr &= ~indexmask;
9447 /* The address field in the descriptor goes up to bit 39 for ARMv7
9448 * but up to bit 47 for ARMv8, but we use the descaddrmask
9449 * up to bit 39 for AArch32, because we don't need other bits in that case
9450 * to construct next descriptor address (anyway they should be all zeroes).
9452 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9453 ~indexmask_grainsize;
9455 /* Secure accesses start with the page table in secure memory and
9456 * can be downgraded to non-secure at any step. Non-secure accesses
9457 * remain non-secure. We implement this by just ORing in the NSTable/NS
9458 * bits at each step.
9460 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9461 for (;;) {
9462 uint64_t descriptor;
9463 bool nstable;
9465 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9466 descaddr &= ~7ULL;
9467 nstable = extract32(tableattrs, 4, 1);
9468 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9469 if (fi->type != ARMFault_None) {
9470 goto do_fault;
9473 if (!(descriptor & 1) ||
9474 (!(descriptor & 2) && (level == 3))) {
9475 /* Invalid, or the Reserved level 3 encoding */
9476 goto do_fault;
9478 descaddr = descriptor & descaddrmask;
9480 if ((descriptor & 2) && (level < 3)) {
9481 /* Table entry. The top five bits are attributes which may
9482 * propagate down through lower levels of the table (and
9483 * which are all arranged so that 0 means "no effect", so
9484 * we can gather them up by ORing in the bits at each level).
9486 tableattrs |= extract64(descriptor, 59, 5);
9487 level++;
9488 indexmask = indexmask_grainsize;
9489 continue;
9491 /* Block entry at level 1 or 2, or page entry at level 3.
9492 * These are basically the same thing, although the number
9493 * of bits we pull in from the vaddr varies.
9495 page_size = (1ULL << ((stride * (4 - level)) + 3));
9496 descaddr |= (address & (page_size - 1));
9497 /* Extract attributes from the descriptor */
9498 attrs = extract64(descriptor, 2, 10)
9499 | (extract64(descriptor, 52, 12) << 10);
9501 if (mmu_idx == ARMMMUIdx_S2NS) {
9502 /* Stage 2 table descriptors do not include any attribute fields */
9503 break;
9505 /* Merge in attributes from table descriptors */
9506 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9507 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9508 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9509 * means "force PL1 access only", which means forcing AP[1] to 0.
9511 if (extract32(tableattrs, 2, 1)) {
9512 attrs &= ~(1 << 4);
9514 attrs |= nstable << 3; /* NS */
9515 break;
9517 /* Here descaddr is the final physical address, and attributes
9518 * are all in attrs.
9520 fault_type = ARMFault_AccessFlag;
9521 if ((attrs & (1 << 8)) == 0) {
9522 /* Access flag */
9523 goto do_fault;
9526 ap = extract32(attrs, 4, 2);
9527 xn = extract32(attrs, 12, 1);
9529 if (mmu_idx == ARMMMUIdx_S2NS) {
9530 ns = true;
9531 *prot = get_S2prot(env, ap, xn);
9532 } else {
9533 ns = extract32(attrs, 3, 1);
9534 pxn = extract32(attrs, 11, 1);
9535 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9538 fault_type = ARMFault_Permission;
9539 if (!(*prot & (1 << access_type))) {
9540 goto do_fault;
9543 if (ns) {
9544 /* The NS bit will (as required by the architecture) have no effect if
9545 * the CPU doesn't support TZ or this is a non-secure translation
9546 * regime, because the attribute will already be non-secure.
9548 txattrs->secure = false;
9551 if (cacheattrs != NULL) {
9552 if (mmu_idx == ARMMMUIdx_S2NS) {
9553 cacheattrs->attrs = convert_stage2_attrs(env,
9554 extract32(attrs, 0, 4));
9555 } else {
9556 /* Index into MAIR registers for cache attributes */
9557 uint8_t attrindx = extract32(attrs, 0, 3);
9558 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9559 assert(attrindx <= 7);
9560 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9562 cacheattrs->shareability = extract32(attrs, 6, 2);
9565 *phys_ptr = descaddr;
9566 *page_size_ptr = page_size;
9567 return false;
9569 do_fault:
9570 fi->type = fault_type;
9571 fi->level = level;
9572 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9573 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9574 return true;
9577 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9578 ARMMMUIdx mmu_idx,
9579 int32_t address, int *prot)
9581 if (!arm_feature(env, ARM_FEATURE_M)) {
9582 *prot = PAGE_READ | PAGE_WRITE;
9583 switch (address) {
9584 case 0xF0000000 ... 0xFFFFFFFF:
9585 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9586 /* hivecs execing is ok */
9587 *prot |= PAGE_EXEC;
9589 break;
9590 case 0x00000000 ... 0x7FFFFFFF:
9591 *prot |= PAGE_EXEC;
9592 break;
9594 } else {
9595 /* Default system address map for M profile cores.
9596 * The architecture specifies which regions are execute-never;
9597 * at the MPU level no other checks are defined.
9599 switch (address) {
9600 case 0x00000000 ... 0x1fffffff: /* ROM */
9601 case 0x20000000 ... 0x3fffffff: /* SRAM */
9602 case 0x60000000 ... 0x7fffffff: /* RAM */
9603 case 0x80000000 ... 0x9fffffff: /* RAM */
9604 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9605 break;
9606 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9607 case 0xa0000000 ... 0xbfffffff: /* Device */
9608 case 0xc0000000 ... 0xdfffffff: /* Device */
9609 case 0xe0000000 ... 0xffffffff: /* System */
9610 *prot = PAGE_READ | PAGE_WRITE;
9611 break;
9612 default:
9613 g_assert_not_reached();
9618 static bool pmsav7_use_background_region(ARMCPU *cpu,
9619 ARMMMUIdx mmu_idx, bool is_user)
9621 /* Return true if we should use the default memory map as a
9622 * "background" region if there are no hits against any MPU regions.
9624 CPUARMState *env = &cpu->env;
9626 if (is_user) {
9627 return false;
9630 if (arm_feature(env, ARM_FEATURE_M)) {
9631 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9632 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9633 } else {
9634 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9638 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9640 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9641 return arm_feature(env, ARM_FEATURE_M) &&
9642 extract32(address, 20, 12) == 0xe00;
9645 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9647 /* True if address is in the M profile system region
9648 * 0xe0000000 - 0xffffffff
9650 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9653 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9654 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9655 hwaddr *phys_ptr, int *prot,
9656 target_ulong *page_size,
9657 ARMMMUFaultInfo *fi)
9659 ARMCPU *cpu = arm_env_get_cpu(env);
9660 int n;
9661 bool is_user = regime_is_user(env, mmu_idx);
9663 *phys_ptr = address;
9664 *page_size = TARGET_PAGE_SIZE;
9665 *prot = 0;
9667 if (regime_translation_disabled(env, mmu_idx) ||
9668 m_is_ppb_region(env, address)) {
9669 /* MPU disabled or M profile PPB access: use default memory map.
9670 * The other case which uses the default memory map in the
9671 * v7M ARM ARM pseudocode is exception vector reads from the vector
9672 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9673 * which always does a direct read using address_space_ldl(), rather
9674 * than going via this function, so we don't need to check that here.
9676 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9677 } else { /* MPU enabled */
9678 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9679 /* region search */
9680 uint32_t base = env->pmsav7.drbar[n];
9681 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9682 uint32_t rmask;
9683 bool srdis = false;
9685 if (!(env->pmsav7.drsr[n] & 0x1)) {
9686 continue;
9689 if (!rsize) {
9690 qemu_log_mask(LOG_GUEST_ERROR,
9691 "DRSR[%d]: Rsize field cannot be 0\n", n);
9692 continue;
9694 rsize++;
9695 rmask = (1ull << rsize) - 1;
9697 if (base & rmask) {
9698 qemu_log_mask(LOG_GUEST_ERROR,
9699 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9700 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9701 n, base, rmask);
9702 continue;
9705 if (address < base || address > base + rmask) {
9707 * Address not in this region. We must check whether the
9708 * region covers addresses in the same page as our address.
9709 * In that case we must not report a size that covers the
9710 * whole page for a subsequent hit against a different MPU
9711 * region or the background region, because it would result in
9712 * incorrect TLB hits for subsequent accesses to addresses that
9713 * are in this MPU region.
9715 if (ranges_overlap(base, rmask,
9716 address & TARGET_PAGE_MASK,
9717 TARGET_PAGE_SIZE)) {
9718 *page_size = 1;
9720 continue;
9723 /* Region matched */
9725 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9726 int i, snd;
9727 uint32_t srdis_mask;
9729 rsize -= 3; /* sub region size (power of 2) */
9730 snd = ((address - base) >> rsize) & 0x7;
9731 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9733 srdis_mask = srdis ? 0x3 : 0x0;
9734 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9735 /* This will check in groups of 2, 4 and then 8, whether
9736 * the subregion bits are consistent. rsize is incremented
9737 * back up to give the region size, considering consistent
9738 * adjacent subregions as one region. Stop testing if rsize
9739 * is already big enough for an entire QEMU page.
9741 int snd_rounded = snd & ~(i - 1);
9742 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9743 snd_rounded + 8, i);
9744 if (srdis_mask ^ srdis_multi) {
9745 break;
9747 srdis_mask = (srdis_mask << i) | srdis_mask;
9748 rsize++;
9751 if (srdis) {
9752 continue;
9754 if (rsize < TARGET_PAGE_BITS) {
9755 *page_size = 1 << rsize;
9757 break;
9760 if (n == -1) { /* no hits */
9761 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9762 /* background fault */
9763 fi->type = ARMFault_Background;
9764 return true;
9766 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9767 } else { /* a MPU hit! */
9768 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9769 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9771 if (m_is_system_region(env, address)) {
9772 /* System space is always execute never */
9773 xn = 1;
9776 if (is_user) { /* User mode AP bit decoding */
9777 switch (ap) {
9778 case 0:
9779 case 1:
9780 case 5:
9781 break; /* no access */
9782 case 3:
9783 *prot |= PAGE_WRITE;
9784 /* fall through */
9785 case 2:
9786 case 6:
9787 *prot |= PAGE_READ | PAGE_EXEC;
9788 break;
9789 case 7:
9790 /* for v7M, same as 6; for R profile a reserved value */
9791 if (arm_feature(env, ARM_FEATURE_M)) {
9792 *prot |= PAGE_READ | PAGE_EXEC;
9793 break;
9795 /* fall through */
9796 default:
9797 qemu_log_mask(LOG_GUEST_ERROR,
9798 "DRACR[%d]: Bad value for AP bits: 0x%"
9799 PRIx32 "\n", n, ap);
9801 } else { /* Priv. mode AP bits decoding */
9802 switch (ap) {
9803 case 0:
9804 break; /* no access */
9805 case 1:
9806 case 2:
9807 case 3:
9808 *prot |= PAGE_WRITE;
9809 /* fall through */
9810 case 5:
9811 case 6:
9812 *prot |= PAGE_READ | PAGE_EXEC;
9813 break;
9814 case 7:
9815 /* for v7M, same as 6; for R profile a reserved value */
9816 if (arm_feature(env, ARM_FEATURE_M)) {
9817 *prot |= PAGE_READ | PAGE_EXEC;
9818 break;
9820 /* fall through */
9821 default:
9822 qemu_log_mask(LOG_GUEST_ERROR,
9823 "DRACR[%d]: Bad value for AP bits: 0x%"
9824 PRIx32 "\n", n, ap);
9828 /* execute never */
9829 if (xn) {
9830 *prot &= ~PAGE_EXEC;
9835 fi->type = ARMFault_Permission;
9836 fi->level = 1;
9837 return !(*prot & (1 << access_type));
9840 static bool v8m_is_sau_exempt(CPUARMState *env,
9841 uint32_t address, MMUAccessType access_type)
9843 /* The architecture specifies that certain address ranges are
9844 * exempt from v8M SAU/IDAU checks.
9846 return
9847 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9848 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9849 (address >= 0xe000e000 && address <= 0xe000efff) ||
9850 (address >= 0xe002e000 && address <= 0xe002efff) ||
9851 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9852 (address >= 0xe00ff000 && address <= 0xe00fffff);
9855 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9856 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9857 V8M_SAttributes *sattrs)
9859 /* Look up the security attributes for this address. Compare the
9860 * pseudocode SecurityCheck() function.
9861 * We assume the caller has zero-initialized *sattrs.
9863 ARMCPU *cpu = arm_env_get_cpu(env);
9864 int r;
9865 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9866 int idau_region = IREGION_NOTVALID;
9867 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9868 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9870 if (cpu->idau) {
9871 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9872 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9874 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9875 &idau_nsc);
9878 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9879 /* 0xf0000000..0xffffffff is always S for insn fetches */
9880 return;
9883 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9884 sattrs->ns = !regime_is_secure(env, mmu_idx);
9885 return;
9888 if (idau_region != IREGION_NOTVALID) {
9889 sattrs->irvalid = true;
9890 sattrs->iregion = idau_region;
9893 switch (env->sau.ctrl & 3) {
9894 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9895 break;
9896 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9897 sattrs->ns = true;
9898 break;
9899 default: /* SAU.ENABLE == 1 */
9900 for (r = 0; r < cpu->sau_sregion; r++) {
9901 if (env->sau.rlar[r] & 1) {
9902 uint32_t base = env->sau.rbar[r] & ~0x1f;
9903 uint32_t limit = env->sau.rlar[r] | 0x1f;
9905 if (base <= address && limit >= address) {
9906 if (base > addr_page_base || limit < addr_page_limit) {
9907 sattrs->subpage = true;
9909 if (sattrs->srvalid) {
9910 /* If we hit in more than one region then we must report
9911 * as Secure, not NS-Callable, with no valid region
9912 * number info.
9914 sattrs->ns = false;
9915 sattrs->nsc = false;
9916 sattrs->sregion = 0;
9917 sattrs->srvalid = false;
9918 break;
9919 } else {
9920 if (env->sau.rlar[r] & 2) {
9921 sattrs->nsc = true;
9922 } else {
9923 sattrs->ns = true;
9925 sattrs->srvalid = true;
9926 sattrs->sregion = r;
9928 } else {
9930 * Address not in this region. We must check whether the
9931 * region covers addresses in the same page as our address.
9932 * In that case we must not report a size that covers the
9933 * whole page for a subsequent hit against a different MPU
9934 * region or the background region, because it would result
9935 * in incorrect TLB hits for subsequent accesses to
9936 * addresses that are in this MPU region.
9938 if (limit >= base &&
9939 ranges_overlap(base, limit - base + 1,
9940 addr_page_base,
9941 TARGET_PAGE_SIZE)) {
9942 sattrs->subpage = true;
9948 /* The IDAU will override the SAU lookup results if it specifies
9949 * higher security than the SAU does.
9951 if (!idau_ns) {
9952 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9953 sattrs->ns = false;
9954 sattrs->nsc = idau_nsc;
9957 break;
9961 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9962 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9963 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9964 int *prot, bool *is_subpage,
9965 ARMMMUFaultInfo *fi, uint32_t *mregion)
9967 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9968 * that a full phys-to-virt translation does).
9969 * mregion is (if not NULL) set to the region number which matched,
9970 * or -1 if no region number is returned (MPU off, address did not
9971 * hit a region, address hit in multiple regions).
9972 * We set is_subpage to true if the region hit doesn't cover the
9973 * entire TARGET_PAGE the address is within.
9975 ARMCPU *cpu = arm_env_get_cpu(env);
9976 bool is_user = regime_is_user(env, mmu_idx);
9977 uint32_t secure = regime_is_secure(env, mmu_idx);
9978 int n;
9979 int matchregion = -1;
9980 bool hit = false;
9981 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9982 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9984 *is_subpage = false;
9985 *phys_ptr = address;
9986 *prot = 0;
9987 if (mregion) {
9988 *mregion = -1;
9991 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9992 * was an exception vector read from the vector table (which is always
9993 * done using the default system address map), because those accesses
9994 * are done in arm_v7m_load_vector(), which always does a direct
9995 * read using address_space_ldl(), rather than going via this function.
9997 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9998 hit = true;
9999 } else if (m_is_ppb_region(env, address)) {
10000 hit = true;
10001 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10002 hit = true;
10003 } else {
10004 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10005 /* region search */
10006 /* Note that the base address is bits [31:5] from the register
10007 * with bits [4:0] all zeroes, but the limit address is bits
10008 * [31:5] from the register with bits [4:0] all ones.
10010 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10011 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10013 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10014 /* Region disabled */
10015 continue;
10018 if (address < base || address > limit) {
10020 * Address not in this region. We must check whether the
10021 * region covers addresses in the same page as our address.
10022 * In that case we must not report a size that covers the
10023 * whole page for a subsequent hit against a different MPU
10024 * region or the background region, because it would result in
10025 * incorrect TLB hits for subsequent accesses to addresses that
10026 * are in this MPU region.
10028 if (limit >= base &&
10029 ranges_overlap(base, limit - base + 1,
10030 addr_page_base,
10031 TARGET_PAGE_SIZE)) {
10032 *is_subpage = true;
10034 continue;
10037 if (base > addr_page_base || limit < addr_page_limit) {
10038 *is_subpage = true;
10041 if (hit) {
10042 /* Multiple regions match -- always a failure (unlike
10043 * PMSAv7 where highest-numbered-region wins)
10045 fi->type = ARMFault_Permission;
10046 fi->level = 1;
10047 return true;
10050 matchregion = n;
10051 hit = true;
10055 if (!hit) {
10056 /* background fault */
10057 fi->type = ARMFault_Background;
10058 return true;
10061 if (matchregion == -1) {
10062 /* hit using the background region */
10063 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10064 } else {
10065 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10066 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10068 if (m_is_system_region(env, address)) {
10069 /* System space is always execute never */
10070 xn = 1;
10073 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10074 if (*prot && !xn) {
10075 *prot |= PAGE_EXEC;
10077 /* We don't need to look the attribute up in the MAIR0/MAIR1
10078 * registers because that only tells us about cacheability.
10080 if (mregion) {
10081 *mregion = matchregion;
10085 fi->type = ARMFault_Permission;
10086 fi->level = 1;
10087 return !(*prot & (1 << access_type));
10091 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10092 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10093 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10094 int *prot, target_ulong *page_size,
10095 ARMMMUFaultInfo *fi)
10097 uint32_t secure = regime_is_secure(env, mmu_idx);
10098 V8M_SAttributes sattrs = {};
10099 bool ret;
10100 bool mpu_is_subpage;
10102 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10103 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10104 if (access_type == MMU_INST_FETCH) {
10105 /* Instruction fetches always use the MMU bank and the
10106 * transaction attribute determined by the fetch address,
10107 * regardless of CPU state. This is painful for QEMU
10108 * to handle, because it would mean we need to encode
10109 * into the mmu_idx not just the (user, negpri) information
10110 * for the current security state but also that for the
10111 * other security state, which would balloon the number
10112 * of mmu_idx values needed alarmingly.
10113 * Fortunately we can avoid this because it's not actually
10114 * possible to arbitrarily execute code from memory with
10115 * the wrong security attribute: it will always generate
10116 * an exception of some kind or another, apart from the
10117 * special case of an NS CPU executing an SG instruction
10118 * in S&NSC memory. So we always just fail the translation
10119 * here and sort things out in the exception handler
10120 * (including possibly emulating an SG instruction).
10122 if (sattrs.ns != !secure) {
10123 if (sattrs.nsc) {
10124 fi->type = ARMFault_QEMU_NSCExec;
10125 } else {
10126 fi->type = ARMFault_QEMU_SFault;
10128 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10129 *phys_ptr = address;
10130 *prot = 0;
10131 return true;
10133 } else {
10134 /* For data accesses we always use the MMU bank indicated
10135 * by the current CPU state, but the security attributes
10136 * might downgrade a secure access to nonsecure.
10138 if (sattrs.ns) {
10139 txattrs->secure = false;
10140 } else if (!secure) {
10141 /* NS access to S memory must fault.
10142 * Architecturally we should first check whether the
10143 * MPU information for this address indicates that we
10144 * are doing an unaligned access to Device memory, which
10145 * should generate a UsageFault instead. QEMU does not
10146 * currently check for that kind of unaligned access though.
10147 * If we added it we would need to do so as a special case
10148 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10150 fi->type = ARMFault_QEMU_SFault;
10151 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10152 *phys_ptr = address;
10153 *prot = 0;
10154 return true;
10159 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10160 txattrs, prot, &mpu_is_subpage, fi, NULL);
10162 * TODO: this is a temporary hack to ignore the fact that the SAU region
10163 * is smaller than a page if this is an executable region. We never
10164 * supported small MPU regions, but we did (accidentally) allow small
10165 * SAU regions, and if we now made small SAU regions not be executable
10166 * then this would break previously working guest code. We can't
10167 * remove this until/unless we implement support for execution from
10168 * small regions.
10170 if (*prot & PAGE_EXEC) {
10171 sattrs.subpage = false;
10173 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10174 return ret;
10177 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10178 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10179 hwaddr *phys_ptr, int *prot,
10180 ARMMMUFaultInfo *fi)
10182 int n;
10183 uint32_t mask;
10184 uint32_t base;
10185 bool is_user = regime_is_user(env, mmu_idx);
10187 if (regime_translation_disabled(env, mmu_idx)) {
10188 /* MPU disabled. */
10189 *phys_ptr = address;
10190 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10191 return false;
10194 *phys_ptr = address;
10195 for (n = 7; n >= 0; n--) {
10196 base = env->cp15.c6_region[n];
10197 if ((base & 1) == 0) {
10198 continue;
10200 mask = 1 << ((base >> 1) & 0x1f);
10201 /* Keep this shift separate from the above to avoid an
10202 (undefined) << 32. */
10203 mask = (mask << 1) - 1;
10204 if (((base ^ address) & ~mask) == 0) {
10205 break;
10208 if (n < 0) {
10209 fi->type = ARMFault_Background;
10210 return true;
10213 if (access_type == MMU_INST_FETCH) {
10214 mask = env->cp15.pmsav5_insn_ap;
10215 } else {
10216 mask = env->cp15.pmsav5_data_ap;
10218 mask = (mask >> (n * 4)) & 0xf;
10219 switch (mask) {
10220 case 0:
10221 fi->type = ARMFault_Permission;
10222 fi->level = 1;
10223 return true;
10224 case 1:
10225 if (is_user) {
10226 fi->type = ARMFault_Permission;
10227 fi->level = 1;
10228 return true;
10230 *prot = PAGE_READ | PAGE_WRITE;
10231 break;
10232 case 2:
10233 *prot = PAGE_READ;
10234 if (!is_user) {
10235 *prot |= PAGE_WRITE;
10237 break;
10238 case 3:
10239 *prot = PAGE_READ | PAGE_WRITE;
10240 break;
10241 case 5:
10242 if (is_user) {
10243 fi->type = ARMFault_Permission;
10244 fi->level = 1;
10245 return true;
10247 *prot = PAGE_READ;
10248 break;
10249 case 6:
10250 *prot = PAGE_READ;
10251 break;
10252 default:
10253 /* Bad permission. */
10254 fi->type = ARMFault_Permission;
10255 fi->level = 1;
10256 return true;
10258 *prot |= PAGE_EXEC;
10259 return false;
10262 /* Combine either inner or outer cacheability attributes for normal
10263 * memory, according to table D4-42 and pseudocode procedure
10264 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10266 * NB: only stage 1 includes allocation hints (RW bits), leading to
10267 * some asymmetry.
10269 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10271 if (s1 == 4 || s2 == 4) {
10272 /* non-cacheable has precedence */
10273 return 4;
10274 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10275 /* stage 1 write-through takes precedence */
10276 return s1;
10277 } else if (extract32(s2, 2, 2) == 2) {
10278 /* stage 2 write-through takes precedence, but the allocation hint
10279 * is still taken from stage 1
10281 return (2 << 2) | extract32(s1, 0, 2);
10282 } else { /* write-back */
10283 return s1;
10287 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10288 * and CombineS1S2Desc()
10290 * @s1: Attributes from stage 1 walk
10291 * @s2: Attributes from stage 2 walk
10293 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10295 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10296 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10297 ARMCacheAttrs ret;
10299 /* Combine shareability attributes (table D4-43) */
10300 if (s1.shareability == 2 || s2.shareability == 2) {
10301 /* if either are outer-shareable, the result is outer-shareable */
10302 ret.shareability = 2;
10303 } else if (s1.shareability == 3 || s2.shareability == 3) {
10304 /* if either are inner-shareable, the result is inner-shareable */
10305 ret.shareability = 3;
10306 } else {
10307 /* both non-shareable */
10308 ret.shareability = 0;
10311 /* Combine memory type and cacheability attributes */
10312 if (s1hi == 0 || s2hi == 0) {
10313 /* Device has precedence over normal */
10314 if (s1lo == 0 || s2lo == 0) {
10315 /* nGnRnE has precedence over anything */
10316 ret.attrs = 0;
10317 } else if (s1lo == 4 || s2lo == 4) {
10318 /* non-Reordering has precedence over Reordering */
10319 ret.attrs = 4; /* nGnRE */
10320 } else if (s1lo == 8 || s2lo == 8) {
10321 /* non-Gathering has precedence over Gathering */
10322 ret.attrs = 8; /* nGRE */
10323 } else {
10324 ret.attrs = 0xc; /* GRE */
10327 /* Any location for which the resultant memory type is any
10328 * type of Device memory is always treated as Outer Shareable.
10330 ret.shareability = 2;
10331 } else { /* Normal memory */
10332 /* Outer/inner cacheability combine independently */
10333 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10334 | combine_cacheattr_nibble(s1lo, s2lo);
10336 if (ret.attrs == 0x44) {
10337 /* Any location for which the resultant memory type is Normal
10338 * Inner Non-cacheable, Outer Non-cacheable is always treated
10339 * as Outer Shareable.
10341 ret.shareability = 2;
10345 return ret;
10349 /* get_phys_addr - get the physical address for this virtual address
10351 * Find the physical address corresponding to the given virtual address,
10352 * by doing a translation table walk on MMU based systems or using the
10353 * MPU state on MPU based systems.
10355 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10356 * prot and page_size may not be filled in, and the populated fsr value provides
10357 * information on why the translation aborted, in the format of a
10358 * DFSR/IFSR fault register, with the following caveats:
10359 * * we honour the short vs long DFSR format differences.
10360 * * the WnR bit is never set (the caller must do this).
10361 * * for PSMAv5 based systems we don't bother to return a full FSR format
10362 * value.
10364 * @env: CPUARMState
10365 * @address: virtual address to get physical address for
10366 * @access_type: 0 for read, 1 for write, 2 for execute
10367 * @mmu_idx: MMU index indicating required translation regime
10368 * @phys_ptr: set to the physical address corresponding to the virtual address
10369 * @attrs: set to the memory transaction attributes to use
10370 * @prot: set to the permissions for the page containing phys_ptr
10371 * @page_size: set to the size of the page containing phys_ptr
10372 * @fi: set to fault info if the translation fails
10373 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10375 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10376 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10377 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10378 target_ulong *page_size,
10379 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10381 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10382 /* Call ourselves recursively to do the stage 1 and then stage 2
10383 * translations.
10385 if (arm_feature(env, ARM_FEATURE_EL2)) {
10386 hwaddr ipa;
10387 int s2_prot;
10388 int ret;
10389 ARMCacheAttrs cacheattrs2 = {};
10391 ret = get_phys_addr(env, address, access_type,
10392 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10393 prot, page_size, fi, cacheattrs);
10395 /* If S1 fails or S2 is disabled, return early. */
10396 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10397 *phys_ptr = ipa;
10398 return ret;
10401 /* S1 is done. Now do S2 translation. */
10402 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10403 phys_ptr, attrs, &s2_prot,
10404 page_size, fi,
10405 cacheattrs != NULL ? &cacheattrs2 : NULL);
10406 fi->s2addr = ipa;
10407 /* Combine the S1 and S2 perms. */
10408 *prot &= s2_prot;
10410 /* Combine the S1 and S2 cache attributes, if needed */
10411 if (!ret && cacheattrs != NULL) {
10412 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10415 return ret;
10416 } else {
10418 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10420 mmu_idx = stage_1_mmu_idx(mmu_idx);
10424 /* The page table entries may downgrade secure to non-secure, but
10425 * cannot upgrade an non-secure translation regime's attributes
10426 * to secure.
10428 attrs->secure = regime_is_secure(env, mmu_idx);
10429 attrs->user = regime_is_user(env, mmu_idx);
10431 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10432 * In v7 and earlier it affects all stage 1 translations.
10434 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10435 && !arm_feature(env, ARM_FEATURE_V8)) {
10436 if (regime_el(env, mmu_idx) == 3) {
10437 address += env->cp15.fcseidr_s;
10438 } else {
10439 address += env->cp15.fcseidr_ns;
10443 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10444 bool ret;
10445 *page_size = TARGET_PAGE_SIZE;
10447 if (arm_feature(env, ARM_FEATURE_V8)) {
10448 /* PMSAv8 */
10449 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10450 phys_ptr, attrs, prot, page_size, fi);
10451 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10452 /* PMSAv7 */
10453 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10454 phys_ptr, prot, page_size, fi);
10455 } else {
10456 /* Pre-v7 MPU */
10457 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10458 phys_ptr, prot, fi);
10460 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10461 " mmu_idx %u -> %s (prot %c%c%c)\n",
10462 access_type == MMU_DATA_LOAD ? "reading" :
10463 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10464 (uint32_t)address, mmu_idx,
10465 ret ? "Miss" : "Hit",
10466 *prot & PAGE_READ ? 'r' : '-',
10467 *prot & PAGE_WRITE ? 'w' : '-',
10468 *prot & PAGE_EXEC ? 'x' : '-');
10470 return ret;
10473 /* Definitely a real MMU, not an MPU */
10475 if (regime_translation_disabled(env, mmu_idx)) {
10476 /* MMU disabled. */
10477 *phys_ptr = address;
10478 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10479 *page_size = TARGET_PAGE_SIZE;
10480 return 0;
10483 if (regime_using_lpae_format(env, mmu_idx)) {
10484 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10485 phys_ptr, attrs, prot, page_size,
10486 fi, cacheattrs);
10487 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10488 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10489 phys_ptr, attrs, prot, page_size, fi);
10490 } else {
10491 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10492 phys_ptr, prot, page_size, fi);
10496 /* Walk the page table and (if the mapping exists) add the page
10497 * to the TLB. Return false on success, or true on failure. Populate
10498 * fsr with ARM DFSR/IFSR fault register format value on failure.
10500 bool arm_tlb_fill(CPUState *cs, vaddr address,
10501 MMUAccessType access_type, int mmu_idx,
10502 ARMMMUFaultInfo *fi)
10504 ARMCPU *cpu = ARM_CPU(cs);
10505 CPUARMState *env = &cpu->env;
10506 hwaddr phys_addr;
10507 target_ulong page_size;
10508 int prot;
10509 int ret;
10510 MemTxAttrs attrs = {};
10512 ret = get_phys_addr(env, address, access_type,
10513 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10514 &attrs, &prot, &page_size, fi, NULL);
10515 if (!ret) {
10517 * Map a single [sub]page. Regions smaller than our declared
10518 * target page size are handled specially, so for those we
10519 * pass in the exact addresses.
10521 if (page_size >= TARGET_PAGE_SIZE) {
10522 phys_addr &= TARGET_PAGE_MASK;
10523 address &= TARGET_PAGE_MASK;
10525 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10526 prot, mmu_idx, page_size);
10527 return 0;
10530 return ret;
10533 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10534 MemTxAttrs *attrs)
10536 ARMCPU *cpu = ARM_CPU(cs);
10537 CPUARMState *env = &cpu->env;
10538 hwaddr phys_addr;
10539 target_ulong page_size;
10540 int prot;
10541 bool ret;
10542 ARMMMUFaultInfo fi = {};
10543 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10545 *attrs = (MemTxAttrs) {};
10547 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10548 attrs, &prot, &page_size, &fi, NULL);
10550 if (ret) {
10551 return -1;
10553 return phys_addr;
10556 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10558 uint32_t mask;
10559 unsigned el = arm_current_el(env);
10561 /* First handle registers which unprivileged can read */
10563 switch (reg) {
10564 case 0 ... 7: /* xPSR sub-fields */
10565 mask = 0;
10566 if ((reg & 1) && el) {
10567 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10569 if (!(reg & 4)) {
10570 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10572 /* EPSR reads as zero */
10573 return xpsr_read(env) & mask;
10574 break;
10575 case 20: /* CONTROL */
10576 return env->v7m.control[env->v7m.secure];
10577 case 0x94: /* CONTROL_NS */
10578 /* We have to handle this here because unprivileged Secure code
10579 * can read the NS CONTROL register.
10581 if (!env->v7m.secure) {
10582 return 0;
10584 return env->v7m.control[M_REG_NS];
10587 if (el == 0) {
10588 return 0; /* unprivileged reads others as zero */
10591 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10592 switch (reg) {
10593 case 0x88: /* MSP_NS */
10594 if (!env->v7m.secure) {
10595 return 0;
10597 return env->v7m.other_ss_msp;
10598 case 0x89: /* PSP_NS */
10599 if (!env->v7m.secure) {
10600 return 0;
10602 return env->v7m.other_ss_psp;
10603 case 0x8a: /* MSPLIM_NS */
10604 if (!env->v7m.secure) {
10605 return 0;
10607 return env->v7m.msplim[M_REG_NS];
10608 case 0x8b: /* PSPLIM_NS */
10609 if (!env->v7m.secure) {
10610 return 0;
10612 return env->v7m.psplim[M_REG_NS];
10613 case 0x90: /* PRIMASK_NS */
10614 if (!env->v7m.secure) {
10615 return 0;
10617 return env->v7m.primask[M_REG_NS];
10618 case 0x91: /* BASEPRI_NS */
10619 if (!env->v7m.secure) {
10620 return 0;
10622 return env->v7m.basepri[M_REG_NS];
10623 case 0x93: /* FAULTMASK_NS */
10624 if (!env->v7m.secure) {
10625 return 0;
10627 return env->v7m.faultmask[M_REG_NS];
10628 case 0x98: /* SP_NS */
10630 /* This gives the non-secure SP selected based on whether we're
10631 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10633 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10635 if (!env->v7m.secure) {
10636 return 0;
10638 if (!arm_v7m_is_handler_mode(env) && spsel) {
10639 return env->v7m.other_ss_psp;
10640 } else {
10641 return env->v7m.other_ss_msp;
10644 default:
10645 break;
10649 switch (reg) {
10650 case 8: /* MSP */
10651 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10652 case 9: /* PSP */
10653 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10654 case 10: /* MSPLIM */
10655 if (!arm_feature(env, ARM_FEATURE_V8)) {
10656 goto bad_reg;
10658 return env->v7m.msplim[env->v7m.secure];
10659 case 11: /* PSPLIM */
10660 if (!arm_feature(env, ARM_FEATURE_V8)) {
10661 goto bad_reg;
10663 return env->v7m.psplim[env->v7m.secure];
10664 case 16: /* PRIMASK */
10665 return env->v7m.primask[env->v7m.secure];
10666 case 17: /* BASEPRI */
10667 case 18: /* BASEPRI_MAX */
10668 return env->v7m.basepri[env->v7m.secure];
10669 case 19: /* FAULTMASK */
10670 return env->v7m.faultmask[env->v7m.secure];
10671 default:
10672 bad_reg:
10673 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10674 " register %d\n", reg);
10675 return 0;
10679 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10681 /* We're passed bits [11..0] of the instruction; extract
10682 * SYSm and the mask bits.
10683 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10684 * we choose to treat them as if the mask bits were valid.
10685 * NB that the pseudocode 'mask' variable is bits [11..10],
10686 * whereas ours is [11..8].
10688 uint32_t mask = extract32(maskreg, 8, 4);
10689 uint32_t reg = extract32(maskreg, 0, 8);
10691 if (arm_current_el(env) == 0 && reg > 7) {
10692 /* only xPSR sub-fields may be written by unprivileged */
10693 return;
10696 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10697 switch (reg) {
10698 case 0x88: /* MSP_NS */
10699 if (!env->v7m.secure) {
10700 return;
10702 env->v7m.other_ss_msp = val;
10703 return;
10704 case 0x89: /* PSP_NS */
10705 if (!env->v7m.secure) {
10706 return;
10708 env->v7m.other_ss_psp = val;
10709 return;
10710 case 0x8a: /* MSPLIM_NS */
10711 if (!env->v7m.secure) {
10712 return;
10714 env->v7m.msplim[M_REG_NS] = val & ~7;
10715 return;
10716 case 0x8b: /* PSPLIM_NS */
10717 if (!env->v7m.secure) {
10718 return;
10720 env->v7m.psplim[M_REG_NS] = val & ~7;
10721 return;
10722 case 0x90: /* PRIMASK_NS */
10723 if (!env->v7m.secure) {
10724 return;
10726 env->v7m.primask[M_REG_NS] = val & 1;
10727 return;
10728 case 0x91: /* BASEPRI_NS */
10729 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10730 return;
10732 env->v7m.basepri[M_REG_NS] = val & 0xff;
10733 return;
10734 case 0x93: /* FAULTMASK_NS */
10735 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10736 return;
10738 env->v7m.faultmask[M_REG_NS] = val & 1;
10739 return;
10740 case 0x94: /* CONTROL_NS */
10741 if (!env->v7m.secure) {
10742 return;
10744 write_v7m_control_spsel_for_secstate(env,
10745 val & R_V7M_CONTROL_SPSEL_MASK,
10746 M_REG_NS);
10747 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10748 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10749 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10751 return;
10752 case 0x98: /* SP_NS */
10754 /* This gives the non-secure SP selected based on whether we're
10755 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10757 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10759 if (!env->v7m.secure) {
10760 return;
10762 if (!arm_v7m_is_handler_mode(env) && spsel) {
10763 env->v7m.other_ss_psp = val;
10764 } else {
10765 env->v7m.other_ss_msp = val;
10767 return;
10769 default:
10770 break;
10774 switch (reg) {
10775 case 0 ... 7: /* xPSR sub-fields */
10776 /* only APSR is actually writable */
10777 if (!(reg & 4)) {
10778 uint32_t apsrmask = 0;
10780 if (mask & 8) {
10781 apsrmask |= XPSR_NZCV | XPSR_Q;
10783 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10784 apsrmask |= XPSR_GE;
10786 xpsr_write(env, val, apsrmask);
10788 break;
10789 case 8: /* MSP */
10790 if (v7m_using_psp(env)) {
10791 env->v7m.other_sp = val;
10792 } else {
10793 env->regs[13] = val;
10795 break;
10796 case 9: /* PSP */
10797 if (v7m_using_psp(env)) {
10798 env->regs[13] = val;
10799 } else {
10800 env->v7m.other_sp = val;
10802 break;
10803 case 10: /* MSPLIM */
10804 if (!arm_feature(env, ARM_FEATURE_V8)) {
10805 goto bad_reg;
10807 env->v7m.msplim[env->v7m.secure] = val & ~7;
10808 break;
10809 case 11: /* PSPLIM */
10810 if (!arm_feature(env, ARM_FEATURE_V8)) {
10811 goto bad_reg;
10813 env->v7m.psplim[env->v7m.secure] = val & ~7;
10814 break;
10815 case 16: /* PRIMASK */
10816 env->v7m.primask[env->v7m.secure] = val & 1;
10817 break;
10818 case 17: /* BASEPRI */
10819 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10820 goto bad_reg;
10822 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10823 break;
10824 case 18: /* BASEPRI_MAX */
10825 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10826 goto bad_reg;
10828 val &= 0xff;
10829 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10830 || env->v7m.basepri[env->v7m.secure] == 0)) {
10831 env->v7m.basepri[env->v7m.secure] = val;
10833 break;
10834 case 19: /* FAULTMASK */
10835 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10836 goto bad_reg;
10838 env->v7m.faultmask[env->v7m.secure] = val & 1;
10839 break;
10840 case 20: /* CONTROL */
10841 /* Writing to the SPSEL bit only has an effect if we are in
10842 * thread mode; other bits can be updated by any privileged code.
10843 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10844 * env->v7m.control, so we only need update the others.
10845 * For v7M, we must just ignore explicit writes to SPSEL in handler
10846 * mode; for v8M the write is permitted but will have no effect.
10848 if (arm_feature(env, ARM_FEATURE_V8) ||
10849 !arm_v7m_is_handler_mode(env)) {
10850 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10852 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10853 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10854 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10856 break;
10857 default:
10858 bad_reg:
10859 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10860 " register %d\n", reg);
10861 return;
10865 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10867 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10868 bool forceunpriv = op & 1;
10869 bool alt = op & 2;
10870 V8M_SAttributes sattrs = {};
10871 uint32_t tt_resp;
10872 bool r, rw, nsr, nsrw, mrvalid;
10873 int prot;
10874 ARMMMUFaultInfo fi = {};
10875 MemTxAttrs attrs = {};
10876 hwaddr phys_addr;
10877 ARMMMUIdx mmu_idx;
10878 uint32_t mregion;
10879 bool targetpriv;
10880 bool targetsec = env->v7m.secure;
10881 bool is_subpage;
10883 /* Work out what the security state and privilege level we're
10884 * interested in is...
10886 if (alt) {
10887 targetsec = !targetsec;
10890 if (forceunpriv) {
10891 targetpriv = false;
10892 } else {
10893 targetpriv = arm_v7m_is_handler_mode(env) ||
10894 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10897 /* ...and then figure out which MMU index this is */
10898 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10900 /* We know that the MPU and SAU don't care about the access type
10901 * for our purposes beyond that we don't want to claim to be
10902 * an insn fetch, so we arbitrarily call this a read.
10905 /* MPU region info only available for privileged or if
10906 * inspecting the other MPU state.
10908 if (arm_current_el(env) != 0 || alt) {
10909 /* We can ignore the return value as prot is always set */
10910 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10911 &phys_addr, &attrs, &prot, &is_subpage,
10912 &fi, &mregion);
10913 if (mregion == -1) {
10914 mrvalid = false;
10915 mregion = 0;
10916 } else {
10917 mrvalid = true;
10919 r = prot & PAGE_READ;
10920 rw = prot & PAGE_WRITE;
10921 } else {
10922 r = false;
10923 rw = false;
10924 mrvalid = false;
10925 mregion = 0;
10928 if (env->v7m.secure) {
10929 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10930 nsr = sattrs.ns && r;
10931 nsrw = sattrs.ns && rw;
10932 } else {
10933 sattrs.ns = true;
10934 nsr = false;
10935 nsrw = false;
10938 tt_resp = (sattrs.iregion << 24) |
10939 (sattrs.irvalid << 23) |
10940 ((!sattrs.ns) << 22) |
10941 (nsrw << 21) |
10942 (nsr << 20) |
10943 (rw << 19) |
10944 (r << 18) |
10945 (sattrs.srvalid << 17) |
10946 (mrvalid << 16) |
10947 (sattrs.sregion << 8) |
10948 mregion;
10950 return tt_resp;
10953 #endif
10955 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10957 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10958 * Note that we do not implement the (architecturally mandated)
10959 * alignment fault for attempts to use this on Device memory
10960 * (which matches the usual QEMU behaviour of not implementing either
10961 * alignment faults or any memory attribute handling).
10964 ARMCPU *cpu = arm_env_get_cpu(env);
10965 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10966 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10968 #ifndef CONFIG_USER_ONLY
10970 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10971 * the block size so we might have to do more than one TLB lookup.
10972 * We know that in fact for any v8 CPU the page size is at least 4K
10973 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10974 * 1K as an artefact of legacy v5 subpage support being present in the
10975 * same QEMU executable.
10977 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10978 void *hostaddr[maxidx];
10979 int try, i;
10980 unsigned mmu_idx = cpu_mmu_index(env, false);
10981 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10983 for (try = 0; try < 2; try++) {
10985 for (i = 0; i < maxidx; i++) {
10986 hostaddr[i] = tlb_vaddr_to_host(env,
10987 vaddr + TARGET_PAGE_SIZE * i,
10988 1, mmu_idx);
10989 if (!hostaddr[i]) {
10990 break;
10993 if (i == maxidx) {
10994 /* If it's all in the TLB it's fair game for just writing to;
10995 * we know we don't need to update dirty status, etc.
10997 for (i = 0; i < maxidx - 1; i++) {
10998 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11000 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11001 return;
11003 /* OK, try a store and see if we can populate the tlb. This
11004 * might cause an exception if the memory isn't writable,
11005 * in which case we will longjmp out of here. We must for
11006 * this purpose use the actual register value passed to us
11007 * so that we get the fault address right.
11009 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11010 /* Now we can populate the other TLB entries, if any */
11011 for (i = 0; i < maxidx; i++) {
11012 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11013 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11014 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11019 /* Slow path (probably attempt to do this to an I/O device or
11020 * similar, or clearing of a block of code we have translations
11021 * cached for). Just do a series of byte writes as the architecture
11022 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11023 * memset(), unmap() sequence here because:
11024 * + we'd need to account for the blocksize being larger than a page
11025 * + the direct-RAM access case is almost always going to be dealt
11026 * with in the fastpath code above, so there's no speed benefit
11027 * + we would have to deal with the map returning NULL because the
11028 * bounce buffer was in use
11030 for (i = 0; i < blocklen; i++) {
11031 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11034 #else
11035 memset(g2h(vaddr), 0, blocklen);
11036 #endif
11039 /* Note that signed overflow is undefined in C. The following routines are
11040 careful to use unsigned types where modulo arithmetic is required.
11041 Failure to do so _will_ break on newer gcc. */
11043 /* Signed saturating arithmetic. */
11045 /* Perform 16-bit signed saturating addition. */
11046 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11048 uint16_t res;
11050 res = a + b;
11051 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11052 if (a & 0x8000)
11053 res = 0x8000;
11054 else
11055 res = 0x7fff;
11057 return res;
11060 /* Perform 8-bit signed saturating addition. */
11061 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11063 uint8_t res;
11065 res = a + b;
11066 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11067 if (a & 0x80)
11068 res = 0x80;
11069 else
11070 res = 0x7f;
11072 return res;
11075 /* Perform 16-bit signed saturating subtraction. */
11076 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11078 uint16_t res;
11080 res = a - b;
11081 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11082 if (a & 0x8000)
11083 res = 0x8000;
11084 else
11085 res = 0x7fff;
11087 return res;
11090 /* Perform 8-bit signed saturating subtraction. */
11091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11093 uint8_t res;
11095 res = a - b;
11096 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11097 if (a & 0x80)
11098 res = 0x80;
11099 else
11100 res = 0x7f;
11102 return res;
11105 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11106 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11107 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11108 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11109 #define PFX q
11111 #include "op_addsub.h"
11113 /* Unsigned saturating arithmetic. */
11114 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11116 uint16_t res;
11117 res = a + b;
11118 if (res < a)
11119 res = 0xffff;
11120 return res;
11123 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11125 if (a > b)
11126 return a - b;
11127 else
11128 return 0;
11131 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11133 uint8_t res;
11134 res = a + b;
11135 if (res < a)
11136 res = 0xff;
11137 return res;
11140 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11142 if (a > b)
11143 return a - b;
11144 else
11145 return 0;
11148 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11149 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11150 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11151 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11152 #define PFX uq
11154 #include "op_addsub.h"
11156 /* Signed modulo arithmetic. */
11157 #define SARITH16(a, b, n, op) do { \
11158 int32_t sum; \
11159 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11160 RESULT(sum, n, 16); \
11161 if (sum >= 0) \
11162 ge |= 3 << (n * 2); \
11163 } while(0)
11165 #define SARITH8(a, b, n, op) do { \
11166 int32_t sum; \
11167 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11168 RESULT(sum, n, 8); \
11169 if (sum >= 0) \
11170 ge |= 1 << n; \
11171 } while(0)
11174 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11175 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11176 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11177 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11178 #define PFX s
11179 #define ARITH_GE
11181 #include "op_addsub.h"
11183 /* Unsigned modulo arithmetic. */
11184 #define ADD16(a, b, n) do { \
11185 uint32_t sum; \
11186 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11187 RESULT(sum, n, 16); \
11188 if ((sum >> 16) == 1) \
11189 ge |= 3 << (n * 2); \
11190 } while(0)
11192 #define ADD8(a, b, n) do { \
11193 uint32_t sum; \
11194 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11195 RESULT(sum, n, 8); \
11196 if ((sum >> 8) == 1) \
11197 ge |= 1 << n; \
11198 } while(0)
11200 #define SUB16(a, b, n) do { \
11201 uint32_t sum; \
11202 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11203 RESULT(sum, n, 16); \
11204 if ((sum >> 16) == 0) \
11205 ge |= 3 << (n * 2); \
11206 } while(0)
11208 #define SUB8(a, b, n) do { \
11209 uint32_t sum; \
11210 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11211 RESULT(sum, n, 8); \
11212 if ((sum >> 8) == 0) \
11213 ge |= 1 << n; \
11214 } while(0)
11216 #define PFX u
11217 #define ARITH_GE
11219 #include "op_addsub.h"
11221 /* Halved signed arithmetic. */
11222 #define ADD16(a, b, n) \
11223 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11224 #define SUB16(a, b, n) \
11225 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11226 #define ADD8(a, b, n) \
11227 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11228 #define SUB8(a, b, n) \
11229 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11230 #define PFX sh
11232 #include "op_addsub.h"
11234 /* Halved unsigned arithmetic. */
11235 #define ADD16(a, b, n) \
11236 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11237 #define SUB16(a, b, n) \
11238 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11239 #define ADD8(a, b, n) \
11240 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11241 #define SUB8(a, b, n) \
11242 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11243 #define PFX uh
11245 #include "op_addsub.h"
11247 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11249 if (a > b)
11250 return a - b;
11251 else
11252 return b - a;
11255 /* Unsigned sum of absolute byte differences. */
11256 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11258 uint32_t sum;
11259 sum = do_usad(a, b);
11260 sum += do_usad(a >> 8, b >> 8);
11261 sum += do_usad(a >> 16, b >>16);
11262 sum += do_usad(a >> 24, b >> 24);
11263 return sum;
11266 /* For ARMv6 SEL instruction. */
11267 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11269 uint32_t mask;
11271 mask = 0;
11272 if (flags & 1)
11273 mask |= 0xff;
11274 if (flags & 2)
11275 mask |= 0xff00;
11276 if (flags & 4)
11277 mask |= 0xff0000;
11278 if (flags & 8)
11279 mask |= 0xff000000;
11280 return (a & mask) | (b & ~mask);
11283 /* VFP support. We follow the convention used for VFP instructions:
11284 Single precision routines have a "s" suffix, double precision a
11285 "d" suffix. */
11287 /* Convert host exception flags to vfp form. */
11288 static inline int vfp_exceptbits_from_host(int host_bits)
11290 int target_bits = 0;
11292 if (host_bits & float_flag_invalid)
11293 target_bits |= 1;
11294 if (host_bits & float_flag_divbyzero)
11295 target_bits |= 2;
11296 if (host_bits & float_flag_overflow)
11297 target_bits |= 4;
11298 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11299 target_bits |= 8;
11300 if (host_bits & float_flag_inexact)
11301 target_bits |= 0x10;
11302 if (host_bits & float_flag_input_denormal)
11303 target_bits |= 0x80;
11304 return target_bits;
11307 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11309 int i;
11310 uint32_t fpscr;
11312 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11313 | (env->vfp.vec_len << 16)
11314 | (env->vfp.vec_stride << 20);
11315 i = get_float_exception_flags(&env->vfp.fp_status);
11316 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11317 i |= get_float_exception_flags(&env->vfp.fp_status_f16);
11318 fpscr |= vfp_exceptbits_from_host(i);
11319 return fpscr;
11322 uint32_t vfp_get_fpscr(CPUARMState *env)
11324 return HELPER(vfp_get_fpscr)(env);
11327 /* Convert vfp exception flags to target form. */
11328 static inline int vfp_exceptbits_to_host(int target_bits)
11330 int host_bits = 0;
11332 if (target_bits & 1)
11333 host_bits |= float_flag_invalid;
11334 if (target_bits & 2)
11335 host_bits |= float_flag_divbyzero;
11336 if (target_bits & 4)
11337 host_bits |= float_flag_overflow;
11338 if (target_bits & 8)
11339 host_bits |= float_flag_underflow;
11340 if (target_bits & 0x10)
11341 host_bits |= float_flag_inexact;
11342 if (target_bits & 0x80)
11343 host_bits |= float_flag_input_denormal;
11344 return host_bits;
11347 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11349 int i;
11350 uint32_t changed;
11352 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11353 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11354 env->vfp.vec_len = (val >> 16) & 7;
11355 env->vfp.vec_stride = (val >> 20) & 3;
11357 changed ^= val;
11358 if (changed & (3 << 22)) {
11359 i = (val >> 22) & 3;
11360 switch (i) {
11361 case FPROUNDING_TIEEVEN:
11362 i = float_round_nearest_even;
11363 break;
11364 case FPROUNDING_POSINF:
11365 i = float_round_up;
11366 break;
11367 case FPROUNDING_NEGINF:
11368 i = float_round_down;
11369 break;
11370 case FPROUNDING_ZERO:
11371 i = float_round_to_zero;
11372 break;
11374 set_float_rounding_mode(i, &env->vfp.fp_status);
11375 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11377 if (changed & FPCR_FZ16) {
11378 bool ftz_enabled = val & FPCR_FZ16;
11379 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11380 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11382 if (changed & FPCR_FZ) {
11383 bool ftz_enabled = val & FPCR_FZ;
11384 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11385 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11387 if (changed & FPCR_DN) {
11388 bool dnan_enabled = val & FPCR_DN;
11389 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11390 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11393 /* The exception flags are ORed together when we read fpscr so we
11394 * only need to preserve the current state in one of our
11395 * float_status values.
11397 i = vfp_exceptbits_to_host(val);
11398 set_float_exception_flags(i, &env->vfp.fp_status);
11399 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11400 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11403 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11405 HELPER(vfp_set_fpscr)(env, val);
11408 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11410 #define VFP_BINOP(name) \
11411 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11413 float_status *fpst = fpstp; \
11414 return float32_ ## name(a, b, fpst); \
11416 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11418 float_status *fpst = fpstp; \
11419 return float64_ ## name(a, b, fpst); \
11421 VFP_BINOP(add)
11422 VFP_BINOP(sub)
11423 VFP_BINOP(mul)
11424 VFP_BINOP(div)
11425 VFP_BINOP(min)
11426 VFP_BINOP(max)
11427 VFP_BINOP(minnum)
11428 VFP_BINOP(maxnum)
11429 #undef VFP_BINOP
11431 float32 VFP_HELPER(neg, s)(float32 a)
11433 return float32_chs(a);
11436 float64 VFP_HELPER(neg, d)(float64 a)
11438 return float64_chs(a);
11441 float32 VFP_HELPER(abs, s)(float32 a)
11443 return float32_abs(a);
11446 float64 VFP_HELPER(abs, d)(float64 a)
11448 return float64_abs(a);
11451 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11453 return float32_sqrt(a, &env->vfp.fp_status);
11456 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11458 return float64_sqrt(a, &env->vfp.fp_status);
11461 /* XXX: check quiet/signaling case */
11462 #define DO_VFP_cmp(p, type) \
11463 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11465 uint32_t flags; \
11466 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11467 case 0: flags = 0x6; break; \
11468 case -1: flags = 0x8; break; \
11469 case 1: flags = 0x2; break; \
11470 default: case 2: flags = 0x3; break; \
11472 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11473 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11475 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11477 uint32_t flags; \
11478 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11479 case 0: flags = 0x6; break; \
11480 case -1: flags = 0x8; break; \
11481 case 1: flags = 0x2; break; \
11482 default: case 2: flags = 0x3; break; \
11484 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11485 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11487 DO_VFP_cmp(s, float32)
11488 DO_VFP_cmp(d, float64)
11489 #undef DO_VFP_cmp
11491 /* Integer to float and float to integer conversions */
11493 #define CONV_ITOF(name, ftype, fsz, sign) \
11494 ftype HELPER(name)(uint32_t x, void *fpstp) \
11496 float_status *fpst = fpstp; \
11497 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11500 #define CONV_FTOI(name, ftype, fsz, sign, round) \
11501 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
11503 float_status *fpst = fpstp; \
11504 if (float##fsz##_is_any_nan(x)) { \
11505 float_raise(float_flag_invalid, fpst); \
11506 return 0; \
11508 return float##fsz##_to_##sign##int32##round(x, fpst); \
11511 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
11512 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
11513 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
11514 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11516 FLOAT_CONVS(si, h, uint32_t, 16, )
11517 FLOAT_CONVS(si, s, float32, 32, )
11518 FLOAT_CONVS(si, d, float64, 64, )
11519 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11520 FLOAT_CONVS(ui, s, float32, 32, u)
11521 FLOAT_CONVS(ui, d, float64, 64, u)
11523 #undef CONV_ITOF
11524 #undef CONV_FTOI
11525 #undef FLOAT_CONVS
11527 /* floating point conversion */
11528 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11530 return float32_to_float64(x, &env->vfp.fp_status);
11533 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11535 return float64_to_float32(x, &env->vfp.fp_status);
11538 /* VFP3 fixed point conversion. */
11539 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11540 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11541 void *fpstp) \
11543 float_status *fpst = fpstp; \
11544 float##fsz tmp; \
11545 tmp = itype##_to_##float##fsz(x, fpst); \
11546 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11549 /* Notice that we want only input-denormal exception flags from the
11550 * scalbn operation: the other possible flags (overflow+inexact if
11551 * we overflow to infinity, output-denormal) aren't correct for the
11552 * complete scale-and-convert operation.
11554 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11555 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11556 uint32_t shift, \
11557 void *fpstp) \
11559 float_status *fpst = fpstp; \
11560 int old_exc_flags = get_float_exception_flags(fpst); \
11561 float##fsz tmp; \
11562 if (float##fsz##_is_any_nan(x)) { \
11563 float_raise(float_flag_invalid, fpst); \
11564 return 0; \
11566 tmp = float##fsz##_scalbn(x, shift, fpst); \
11567 old_exc_flags |= get_float_exception_flags(fpst) \
11568 & float_flag_input_denormal; \
11569 set_float_exception_flags(old_exc_flags, fpst); \
11570 return float##fsz##_to_##itype##round(tmp, fpst); \
11573 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11574 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11575 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11576 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11578 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11579 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11580 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11582 VFP_CONV_FIX(sh, d, 64, 64, int16)
11583 VFP_CONV_FIX(sl, d, 64, 64, int32)
11584 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11585 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11586 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11587 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11588 VFP_CONV_FIX(sh, s, 32, 32, int16)
11589 VFP_CONV_FIX(sl, s, 32, 32, int32)
11590 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11591 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11592 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11593 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11595 #undef VFP_CONV_FIX
11596 #undef VFP_CONV_FIX_FLOAT
11597 #undef VFP_CONV_FLOAT_FIX_ROUND
11598 #undef VFP_CONV_FIX_A64
11600 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11601 * Therefore we convert to f64, scale, and then convert f64 to f16; or
11602 * vice versa for conversion to integer.
11604 * For 16- and 32-bit integers, the conversion to f64 never rounds.
11605 * For 64-bit integers, any integer that would cause rounding will also
11606 * overflow to f16 infinity, so there is no double rounding problem.
11609 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11611 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11614 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11616 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11619 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11621 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11624 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11626 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11629 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11631 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11634 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11636 if (unlikely(float16_is_any_nan(f))) {
11637 float_raise(float_flag_invalid, fpst);
11638 return 0;
11639 } else {
11640 int old_exc_flags = get_float_exception_flags(fpst);
11641 float64 ret;
11643 ret = float16_to_float64(f, true, fpst);
11644 ret = float64_scalbn(ret, shift, fpst);
11645 old_exc_flags |= get_float_exception_flags(fpst)
11646 & float_flag_input_denormal;
11647 set_float_exception_flags(old_exc_flags, fpst);
11649 return ret;
11653 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11655 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11658 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11660 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11663 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11665 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11668 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11670 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11673 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11675 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11678 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11680 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11683 /* Set the current fp rounding mode and return the old one.
11684 * The argument is a softfloat float_round_ value.
11686 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11688 float_status *fp_status = fpstp;
11690 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11691 set_float_rounding_mode(rmode, fp_status);
11693 return prev_rmode;
11696 /* Set the current fp rounding mode in the standard fp status and return
11697 * the old one. This is for NEON instructions that need to change the
11698 * rounding mode but wish to use the standard FPSCR values for everything
11699 * else. Always set the rounding mode back to the correct value after
11700 * modifying it.
11701 * The argument is a softfloat float_round_ value.
11703 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11705 float_status *fp_status = &env->vfp.standard_fp_status;
11707 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11708 set_float_rounding_mode(rmode, fp_status);
11710 return prev_rmode;
11713 /* Half precision conversions. */
11714 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11716 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11717 * it would affect flushing input denormals.
11719 float_status *fpst = fpstp;
11720 flag save = get_flush_inputs_to_zero(fpst);
11721 set_flush_inputs_to_zero(false, fpst);
11722 float32 r = float16_to_float32(a, !ahp_mode, fpst);
11723 set_flush_inputs_to_zero(save, fpst);
11724 return r;
11727 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11729 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11730 * it would affect flushing output denormals.
11732 float_status *fpst = fpstp;
11733 flag save = get_flush_to_zero(fpst);
11734 set_flush_to_zero(false, fpst);
11735 float16 r = float32_to_float16(a, !ahp_mode, fpst);
11736 set_flush_to_zero(save, fpst);
11737 return r;
11740 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11742 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11743 * it would affect flushing input denormals.
11745 float_status *fpst = fpstp;
11746 flag save = get_flush_inputs_to_zero(fpst);
11747 set_flush_inputs_to_zero(false, fpst);
11748 float64 r = float16_to_float64(a, !ahp_mode, fpst);
11749 set_flush_inputs_to_zero(save, fpst);
11750 return r;
11753 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11755 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11756 * it would affect flushing output denormals.
11758 float_status *fpst = fpstp;
11759 flag save = get_flush_to_zero(fpst);
11760 set_flush_to_zero(false, fpst);
11761 float16 r = float64_to_float16(a, !ahp_mode, fpst);
11762 set_flush_to_zero(save, fpst);
11763 return r;
11766 #define float32_two make_float32(0x40000000)
11767 #define float32_three make_float32(0x40400000)
11768 #define float32_one_point_five make_float32(0x3fc00000)
11770 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11772 float_status *s = &env->vfp.standard_fp_status;
11773 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11774 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11775 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11776 float_raise(float_flag_input_denormal, s);
11778 return float32_two;
11780 return float32_sub(float32_two, float32_mul(a, b, s), s);
11783 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11785 float_status *s = &env->vfp.standard_fp_status;
11786 float32 product;
11787 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11788 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11789 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11790 float_raise(float_flag_input_denormal, s);
11792 return float32_one_point_five;
11794 product = float32_mul(a, b, s);
11795 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11798 /* NEON helpers. */
11800 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11801 * int->float conversions at run-time. */
11802 #define float64_256 make_float64(0x4070000000000000LL)
11803 #define float64_512 make_float64(0x4080000000000000LL)
11804 #define float16_maxnorm make_float16(0x7bff)
11805 #define float32_maxnorm make_float32(0x7f7fffff)
11806 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11808 /* Reciprocal functions
11810 * The algorithm that must be used to calculate the estimate
11811 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11814 /* See RecipEstimate()
11816 * input is a 9 bit fixed point number
11817 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11818 * result range 256 .. 511 for a number from 1.0 to 511/256.
11821 static int recip_estimate(int input)
11823 int a, b, r;
11824 assert(256 <= input && input < 512);
11825 a = (input * 2) + 1;
11826 b = (1 << 19) / a;
11827 r = (b + 1) >> 1;
11828 assert(256 <= r && r < 512);
11829 return r;
11833 * Common wrapper to call recip_estimate
11835 * The parameters are exponent and 64 bit fraction (without implicit
11836 * bit) where the binary point is nominally at bit 52. Returns a
11837 * float64 which can then be rounded to the appropriate size by the
11838 * callee.
11841 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11843 uint32_t scaled, estimate;
11844 uint64_t result_frac;
11845 int result_exp;
11847 /* Handle sub-normals */
11848 if (*exp == 0) {
11849 if (extract64(frac, 51, 1) == 0) {
11850 *exp = -1;
11851 frac <<= 2;
11852 } else {
11853 frac <<= 1;
11857 /* scaled = UInt('1':fraction<51:44>) */
11858 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11859 estimate = recip_estimate(scaled);
11861 result_exp = exp_off - *exp;
11862 result_frac = deposit64(0, 44, 8, estimate);
11863 if (result_exp == 0) {
11864 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11865 } else if (result_exp == -1) {
11866 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11867 result_exp = 0;
11870 *exp = result_exp;
11872 return result_frac;
11875 static bool round_to_inf(float_status *fpst, bool sign_bit)
11877 switch (fpst->float_rounding_mode) {
11878 case float_round_nearest_even: /* Round to Nearest */
11879 return true;
11880 case float_round_up: /* Round to +Inf */
11881 return !sign_bit;
11882 case float_round_down: /* Round to -Inf */
11883 return sign_bit;
11884 case float_round_to_zero: /* Round to Zero */
11885 return false;
11888 g_assert_not_reached();
11891 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11893 float_status *fpst = fpstp;
11894 float16 f16 = float16_squash_input_denormal(input, fpst);
11895 uint32_t f16_val = float16_val(f16);
11896 uint32_t f16_sign = float16_is_neg(f16);
11897 int f16_exp = extract32(f16_val, 10, 5);
11898 uint32_t f16_frac = extract32(f16_val, 0, 10);
11899 uint64_t f64_frac;
11901 if (float16_is_any_nan(f16)) {
11902 float16 nan = f16;
11903 if (float16_is_signaling_nan(f16, fpst)) {
11904 float_raise(float_flag_invalid, fpst);
11905 nan = float16_silence_nan(f16, fpst);
11907 if (fpst->default_nan_mode) {
11908 nan = float16_default_nan(fpst);
11910 return nan;
11911 } else if (float16_is_infinity(f16)) {
11912 return float16_set_sign(float16_zero, float16_is_neg(f16));
11913 } else if (float16_is_zero(f16)) {
11914 float_raise(float_flag_divbyzero, fpst);
11915 return float16_set_sign(float16_infinity, float16_is_neg(f16));
11916 } else if (float16_abs(f16) < (1 << 8)) {
11917 /* Abs(value) < 2.0^-16 */
11918 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11919 if (round_to_inf(fpst, f16_sign)) {
11920 return float16_set_sign(float16_infinity, f16_sign);
11921 } else {
11922 return float16_set_sign(float16_maxnorm, f16_sign);
11924 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11925 float_raise(float_flag_underflow, fpst);
11926 return float16_set_sign(float16_zero, float16_is_neg(f16));
11929 f64_frac = call_recip_estimate(&f16_exp, 29,
11930 ((uint64_t) f16_frac) << (52 - 10));
11932 /* result = sign : result_exp<4:0> : fraction<51:42> */
11933 f16_val = deposit32(0, 15, 1, f16_sign);
11934 f16_val = deposit32(f16_val, 10, 5, f16_exp);
11935 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11936 return make_float16(f16_val);
11939 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11941 float_status *fpst = fpstp;
11942 float32 f32 = float32_squash_input_denormal(input, fpst);
11943 uint32_t f32_val = float32_val(f32);
11944 bool f32_sign = float32_is_neg(f32);
11945 int f32_exp = extract32(f32_val, 23, 8);
11946 uint32_t f32_frac = extract32(f32_val, 0, 23);
11947 uint64_t f64_frac;
11949 if (float32_is_any_nan(f32)) {
11950 float32 nan = f32;
11951 if (float32_is_signaling_nan(f32, fpst)) {
11952 float_raise(float_flag_invalid, fpst);
11953 nan = float32_silence_nan(f32, fpst);
11955 if (fpst->default_nan_mode) {
11956 nan = float32_default_nan(fpst);
11958 return nan;
11959 } else if (float32_is_infinity(f32)) {
11960 return float32_set_sign(float32_zero, float32_is_neg(f32));
11961 } else if (float32_is_zero(f32)) {
11962 float_raise(float_flag_divbyzero, fpst);
11963 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11964 } else if (float32_abs(f32) < (1ULL << 21)) {
11965 /* Abs(value) < 2.0^-128 */
11966 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11967 if (round_to_inf(fpst, f32_sign)) {
11968 return float32_set_sign(float32_infinity, f32_sign);
11969 } else {
11970 return float32_set_sign(float32_maxnorm, f32_sign);
11972 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11973 float_raise(float_flag_underflow, fpst);
11974 return float32_set_sign(float32_zero, float32_is_neg(f32));
11977 f64_frac = call_recip_estimate(&f32_exp, 253,
11978 ((uint64_t) f32_frac) << (52 - 23));
11980 /* result = sign : result_exp<7:0> : fraction<51:29> */
11981 f32_val = deposit32(0, 31, 1, f32_sign);
11982 f32_val = deposit32(f32_val, 23, 8, f32_exp);
11983 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
11984 return make_float32(f32_val);
11987 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11989 float_status *fpst = fpstp;
11990 float64 f64 = float64_squash_input_denormal(input, fpst);
11991 uint64_t f64_val = float64_val(f64);
11992 bool f64_sign = float64_is_neg(f64);
11993 int f64_exp = extract64(f64_val, 52, 11);
11994 uint64_t f64_frac = extract64(f64_val, 0, 52);
11996 /* Deal with any special cases */
11997 if (float64_is_any_nan(f64)) {
11998 float64 nan = f64;
11999 if (float64_is_signaling_nan(f64, fpst)) {
12000 float_raise(float_flag_invalid, fpst);
12001 nan = float64_silence_nan(f64, fpst);
12003 if (fpst->default_nan_mode) {
12004 nan = float64_default_nan(fpst);
12006 return nan;
12007 } else if (float64_is_infinity(f64)) {
12008 return float64_set_sign(float64_zero, float64_is_neg(f64));
12009 } else if (float64_is_zero(f64)) {
12010 float_raise(float_flag_divbyzero, fpst);
12011 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12012 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12013 /* Abs(value) < 2.0^-1024 */
12014 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12015 if (round_to_inf(fpst, f64_sign)) {
12016 return float64_set_sign(float64_infinity, f64_sign);
12017 } else {
12018 return float64_set_sign(float64_maxnorm, f64_sign);
12020 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12021 float_raise(float_flag_underflow, fpst);
12022 return float64_set_sign(float64_zero, float64_is_neg(f64));
12025 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12027 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12028 f64_val = deposit64(0, 63, 1, f64_sign);
12029 f64_val = deposit64(f64_val, 52, 11, f64_exp);
12030 f64_val = deposit64(f64_val, 0, 52, f64_frac);
12031 return make_float64(f64_val);
12034 /* The algorithm that must be used to calculate the estimate
12035 * is specified by the ARM ARM.
12038 static int do_recip_sqrt_estimate(int a)
12040 int b, estimate;
12042 assert(128 <= a && a < 512);
12043 if (a < 256) {
12044 a = a * 2 + 1;
12045 } else {
12046 a = (a >> 1) << 1;
12047 a = (a + 1) * 2;
12049 b = 512;
12050 while (a * (b + 1) * (b + 1) < (1 << 28)) {
12051 b += 1;
12053 estimate = (b + 1) / 2;
12054 assert(256 <= estimate && estimate < 512);
12056 return estimate;
12060 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12062 int estimate;
12063 uint32_t scaled;
12065 if (*exp == 0) {
12066 while (extract64(frac, 51, 1) == 0) {
12067 frac = frac << 1;
12068 *exp -= 1;
12070 frac = extract64(frac, 0, 51) << 1;
12073 if (*exp & 1) {
12074 /* scaled = UInt('01':fraction<51:45>) */
12075 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12076 } else {
12077 /* scaled = UInt('1':fraction<51:44>) */
12078 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12080 estimate = do_recip_sqrt_estimate(scaled);
12082 *exp = (exp_off - *exp) / 2;
12083 return extract64(estimate, 0, 8) << 44;
12086 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12088 float_status *s = fpstp;
12089 float16 f16 = float16_squash_input_denormal(input, s);
12090 uint16_t val = float16_val(f16);
12091 bool f16_sign = float16_is_neg(f16);
12092 int f16_exp = extract32(val, 10, 5);
12093 uint16_t f16_frac = extract32(val, 0, 10);
12094 uint64_t f64_frac;
12096 if (float16_is_any_nan(f16)) {
12097 float16 nan = f16;
12098 if (float16_is_signaling_nan(f16, s)) {
12099 float_raise(float_flag_invalid, s);
12100 nan = float16_silence_nan(f16, s);
12102 if (s->default_nan_mode) {
12103 nan = float16_default_nan(s);
12105 return nan;
12106 } else if (float16_is_zero(f16)) {
12107 float_raise(float_flag_divbyzero, s);
12108 return float16_set_sign(float16_infinity, f16_sign);
12109 } else if (f16_sign) {
12110 float_raise(float_flag_invalid, s);
12111 return float16_default_nan(s);
12112 } else if (float16_is_infinity(f16)) {
12113 return float16_zero;
12116 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12117 * preserving the parity of the exponent. */
12119 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12121 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12123 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12124 val = deposit32(0, 15, 1, f16_sign);
12125 val = deposit32(val, 10, 5, f16_exp);
12126 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12127 return make_float16(val);
12130 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12132 float_status *s = fpstp;
12133 float32 f32 = float32_squash_input_denormal(input, s);
12134 uint32_t val = float32_val(f32);
12135 uint32_t f32_sign = float32_is_neg(f32);
12136 int f32_exp = extract32(val, 23, 8);
12137 uint32_t f32_frac = extract32(val, 0, 23);
12138 uint64_t f64_frac;
12140 if (float32_is_any_nan(f32)) {
12141 float32 nan = f32;
12142 if (float32_is_signaling_nan(f32, s)) {
12143 float_raise(float_flag_invalid, s);
12144 nan = float32_silence_nan(f32, s);
12146 if (s->default_nan_mode) {
12147 nan = float32_default_nan(s);
12149 return nan;
12150 } else if (float32_is_zero(f32)) {
12151 float_raise(float_flag_divbyzero, s);
12152 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12153 } else if (float32_is_neg(f32)) {
12154 float_raise(float_flag_invalid, s);
12155 return float32_default_nan(s);
12156 } else if (float32_is_infinity(f32)) {
12157 return float32_zero;
12160 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12161 * preserving the parity of the exponent. */
12163 f64_frac = ((uint64_t) f32_frac) << 29;
12165 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12167 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12168 val = deposit32(0, 31, 1, f32_sign);
12169 val = deposit32(val, 23, 8, f32_exp);
12170 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12171 return make_float32(val);
12174 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12176 float_status *s = fpstp;
12177 float64 f64 = float64_squash_input_denormal(input, s);
12178 uint64_t val = float64_val(f64);
12179 bool f64_sign = float64_is_neg(f64);
12180 int f64_exp = extract64(val, 52, 11);
12181 uint64_t f64_frac = extract64(val, 0, 52);
12183 if (float64_is_any_nan(f64)) {
12184 float64 nan = f64;
12185 if (float64_is_signaling_nan(f64, s)) {
12186 float_raise(float_flag_invalid, s);
12187 nan = float64_silence_nan(f64, s);
12189 if (s->default_nan_mode) {
12190 nan = float64_default_nan(s);
12192 return nan;
12193 } else if (float64_is_zero(f64)) {
12194 float_raise(float_flag_divbyzero, s);
12195 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12196 } else if (float64_is_neg(f64)) {
12197 float_raise(float_flag_invalid, s);
12198 return float64_default_nan(s);
12199 } else if (float64_is_infinity(f64)) {
12200 return float64_zero;
12203 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12205 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12206 val = deposit64(0, 61, 1, f64_sign);
12207 val = deposit64(val, 52, 11, f64_exp);
12208 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12209 return make_float64(val);
12212 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12214 /* float_status *s = fpstp; */
12215 int input, estimate;
12217 if ((a & 0x80000000) == 0) {
12218 return 0xffffffff;
12221 input = extract32(a, 23, 9);
12222 estimate = recip_estimate(input);
12224 return deposit32(0, (32 - 9), 9, estimate);
12227 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12229 int estimate;
12231 if ((a & 0xc0000000) == 0) {
12232 return 0xffffffff;
12235 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12237 return deposit32(0, 23, 9, estimate);
12240 /* VFPv4 fused multiply-accumulate */
12241 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12243 float_status *fpst = fpstp;
12244 return float32_muladd(a, b, c, 0, fpst);
12247 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12249 float_status *fpst = fpstp;
12250 return float64_muladd(a, b, c, 0, fpst);
12253 /* ARMv8 round to integral */
12254 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12256 return float32_round_to_int(x, fp_status);
12259 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12261 return float64_round_to_int(x, fp_status);
12264 float32 HELPER(rints)(float32 x, void *fp_status)
12266 int old_flags = get_float_exception_flags(fp_status), new_flags;
12267 float32 ret;
12269 ret = float32_round_to_int(x, fp_status);
12271 /* Suppress any inexact exceptions the conversion produced */
12272 if (!(old_flags & float_flag_inexact)) {
12273 new_flags = get_float_exception_flags(fp_status);
12274 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12277 return ret;
12280 float64 HELPER(rintd)(float64 x, void *fp_status)
12282 int old_flags = get_float_exception_flags(fp_status), new_flags;
12283 float64 ret;
12285 ret = float64_round_to_int(x, fp_status);
12287 new_flags = get_float_exception_flags(fp_status);
12289 /* Suppress any inexact exceptions the conversion produced */
12290 if (!(old_flags & float_flag_inexact)) {
12291 new_flags = get_float_exception_flags(fp_status);
12292 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12295 return ret;
12298 /* Convert ARM rounding mode to softfloat */
12299 int arm_rmode_to_sf(int rmode)
12301 switch (rmode) {
12302 case FPROUNDING_TIEAWAY:
12303 rmode = float_round_ties_away;
12304 break;
12305 case FPROUNDING_ODD:
12306 /* FIXME: add support for TIEAWAY and ODD */
12307 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12308 rmode);
12309 case FPROUNDING_TIEEVEN:
12310 default:
12311 rmode = float_round_nearest_even;
12312 break;
12313 case FPROUNDING_POSINF:
12314 rmode = float_round_up;
12315 break;
12316 case FPROUNDING_NEGINF:
12317 rmode = float_round_down;
12318 break;
12319 case FPROUNDING_ZERO:
12320 rmode = float_round_to_zero;
12321 break;
12323 return rmode;
12326 /* CRC helpers.
12327 * The upper bytes of val (above the number specified by 'bytes') must have
12328 * been zeroed out by the caller.
12330 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12332 uint8_t buf[4];
12334 stl_le_p(buf, val);
12336 /* zlib crc32 converts the accumulator and output to one's complement. */
12337 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12340 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12342 uint8_t buf[4];
12344 stl_le_p(buf, val);
12346 /* Linux crc32c converts the output to one's complement. */
12347 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12350 /* Return the exception level to which FP-disabled exceptions should
12351 * be taken, or 0 if FP is enabled.
12353 static inline int fp_exception_el(CPUARMState *env)
12355 #ifndef CONFIG_USER_ONLY
12356 int fpen;
12357 int cur_el = arm_current_el(env);
12359 /* CPACR and the CPTR registers don't exist before v6, so FP is
12360 * always accessible
12362 if (!arm_feature(env, ARM_FEATURE_V6)) {
12363 return 0;
12366 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12367 * 0, 2 : trap EL0 and EL1/PL1 accesses
12368 * 1 : trap only EL0 accesses
12369 * 3 : trap no accesses
12371 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12372 switch (fpen) {
12373 case 0:
12374 case 2:
12375 if (cur_el == 0 || cur_el == 1) {
12376 /* Trap to PL1, which might be EL1 or EL3 */
12377 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12378 return 3;
12380 return 1;
12382 if (cur_el == 3 && !is_a64(env)) {
12383 /* Secure PL1 running at EL3 */
12384 return 3;
12386 break;
12387 case 1:
12388 if (cur_el == 0) {
12389 return 1;
12391 break;
12392 case 3:
12393 break;
12396 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12397 * check because zero bits in the registers mean "don't trap".
12400 /* CPTR_EL2 : present in v7VE or v8 */
12401 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12402 && !arm_is_secure_below_el3(env)) {
12403 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12404 return 2;
12407 /* CPTR_EL3 : present in v8 */
12408 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12409 /* Trap all FP ops to EL3 */
12410 return 3;
12412 #endif
12413 return 0;
12416 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12417 target_ulong *cs_base, uint32_t *pflags)
12419 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12420 int fp_el = fp_exception_el(env);
12421 uint32_t flags;
12423 if (is_a64(env)) {
12424 int sve_el = sve_exception_el(env);
12425 uint32_t zcr_len;
12427 *pc = env->pc;
12428 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12429 /* Get control bits for tagged addresses */
12430 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12431 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12432 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12434 /* If SVE is disabled, but FP is enabled,
12435 then the effective len is 0. */
12436 if (sve_el != 0 && fp_el == 0) {
12437 zcr_len = 0;
12438 } else {
12439 int current_el = arm_current_el(env);
12441 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12442 zcr_len &= 0xf;
12443 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12444 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12446 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12447 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12450 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12451 } else {
12452 *pc = env->regs[15];
12453 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12454 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12455 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12456 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12457 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12458 if (!(access_secure_reg(env))) {
12459 flags |= ARM_TBFLAG_NS_MASK;
12461 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12462 || arm_el_is_aa64(env, 1)) {
12463 flags |= ARM_TBFLAG_VFPEN_MASK;
12465 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12466 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12469 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12471 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12472 * states defined in the ARM ARM for software singlestep:
12473 * SS_ACTIVE PSTATE.SS State
12474 * 0 x Inactive (the TB flag for SS is always 0)
12475 * 1 0 Active-pending
12476 * 1 1 Active-not-pending
12478 if (arm_singlestep_active(env)) {
12479 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12480 if (is_a64(env)) {
12481 if (env->pstate & PSTATE_SS) {
12482 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12484 } else {
12485 if (env->uncached_cpsr & PSTATE_SS) {
12486 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12490 if (arm_cpu_data_is_big_endian(env)) {
12491 flags |= ARM_TBFLAG_BE_DATA_MASK;
12493 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12495 if (arm_v7m_is_handler_mode(env)) {
12496 flags |= ARM_TBFLAG_HANDLER_MASK;
12499 *pflags = flags;
12500 *cs_base = 0;