4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
33 static inline void set_feature(CPUARMState
*env
, int feature
)
35 env
->features
|= 1ULL << feature
;
38 static inline void unset_feature(CPUARMState
*env
, int feature
)
40 env
->features
&= ~(1ULL << feature
);
43 #ifndef CONFIG_USER_ONLY
44 static uint64_t a57_a53_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
46 ARMCPU
*cpu
= arm_env_get_cpu(env
);
48 /* Number of cores is in [25:24]; otherwise we RAZ */
49 return (cpu
->core_count
- 1) << 24;
53 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo
[] = {
54 #ifndef CONFIG_USER_ONLY
55 { .name
= "L2CTLR_EL1", .state
= ARM_CP_STATE_AA64
,
56 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 2,
57 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
58 .writefn
= arm_cp_write_ignore
},
60 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 2,
61 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
62 .writefn
= arm_cp_write_ignore
},
64 { .name
= "L2ECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
65 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 3,
66 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
68 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 3,
69 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
70 { .name
= "L2ACTLR", .state
= ARM_CP_STATE_BOTH
,
71 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 0, .opc2
= 0,
72 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
73 { .name
= "CPUACTLR_EL1", .state
= ARM_CP_STATE_AA64
,
74 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 0,
75 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
77 .cp
= 15, .opc1
= 0, .crm
= 15,
78 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
79 { .name
= "CPUECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
80 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 1,
81 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
83 .cp
= 15, .opc1
= 1, .crm
= 15,
84 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
85 { .name
= "CPUMERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
86 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 2,
87 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
88 { .name
= "CPUMERRSR",
89 .cp
= 15, .opc1
= 2, .crm
= 15,
90 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
91 { .name
= "L2MERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
92 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 3,
93 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
95 .cp
= 15, .opc1
= 3, .crm
= 15,
96 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
100 static void aarch64_a57_initfn(Object
*obj
)
102 ARMCPU
*cpu
= ARM_CPU(obj
);
104 cpu
->dtb_compatible
= "arm,cortex-a57";
105 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
106 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
107 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
108 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
109 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
110 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
111 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
112 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
113 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
114 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
115 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
116 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
117 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
118 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
119 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A57
;
120 cpu
->midr
= 0x411fd070;
121 cpu
->revidr
= 0x00000000;
122 cpu
->reset_fpsid
= 0x41034070;
123 cpu
->mvfr0
= 0x10110222;
124 cpu
->mvfr1
= 0x12111111;
125 cpu
->mvfr2
= 0x00000043;
126 cpu
->ctr
= 0x8444c004;
127 cpu
->reset_sctlr
= 0x00c50838;
128 cpu
->id_pfr0
= 0x00000131;
129 cpu
->id_pfr1
= 0x00011011;
130 cpu
->id_dfr0
= 0x03010066;
131 cpu
->id_afr0
= 0x00000000;
132 cpu
->id_mmfr0
= 0x10101105;
133 cpu
->id_mmfr1
= 0x40000000;
134 cpu
->id_mmfr2
= 0x01260000;
135 cpu
->id_mmfr3
= 0x02102211;
136 cpu
->id_isar0
= 0x02101110;
137 cpu
->id_isar1
= 0x13112111;
138 cpu
->id_isar2
= 0x21232042;
139 cpu
->id_isar3
= 0x01112131;
140 cpu
->id_isar4
= 0x00011142;
141 cpu
->id_isar5
= 0x00011121;
143 cpu
->id_aa64pfr0
= 0x00002222;
144 cpu
->id_aa64dfr0
= 0x10305106;
145 cpu
->pmceid0
= 0x00000000;
146 cpu
->pmceid1
= 0x00000000;
147 cpu
->id_aa64isar0
= 0x00011120;
148 cpu
->id_aa64mmfr0
= 0x00001124;
149 cpu
->dbgdidr
= 0x3516d000;
150 cpu
->clidr
= 0x0a200023;
151 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
152 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
153 cpu
->ccsidr
[2] = 0x70ffe07a; /* 2048KB L2 cache */
154 cpu
->dcz_blocksize
= 4; /* 64 bytes */
155 cpu
->gic_num_lrs
= 4;
156 cpu
->gic_vpribits
= 5;
157 cpu
->gic_vprebits
= 5;
158 define_arm_cp_regs(cpu
, cortex_a57_a53_cp_reginfo
);
161 static void aarch64_a53_initfn(Object
*obj
)
163 ARMCPU
*cpu
= ARM_CPU(obj
);
165 cpu
->dtb_compatible
= "arm,cortex-a53";
166 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
167 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
168 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
169 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
170 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
171 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
172 set_feature(&cpu
->env
, ARM_FEATURE_V8_AES
);
173 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA1
);
174 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA256
);
175 set_feature(&cpu
->env
, ARM_FEATURE_V8_PMULL
);
176 set_feature(&cpu
->env
, ARM_FEATURE_CRC
);
177 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
178 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
179 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
180 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A53
;
181 cpu
->midr
= 0x410fd034;
182 cpu
->revidr
= 0x00000000;
183 cpu
->reset_fpsid
= 0x41034070;
184 cpu
->mvfr0
= 0x10110222;
185 cpu
->mvfr1
= 0x12111111;
186 cpu
->mvfr2
= 0x00000043;
187 cpu
->ctr
= 0x84448004; /* L1Ip = VIPT */
188 cpu
->reset_sctlr
= 0x00c50838;
189 cpu
->id_pfr0
= 0x00000131;
190 cpu
->id_pfr1
= 0x00011011;
191 cpu
->id_dfr0
= 0x03010066;
192 cpu
->id_afr0
= 0x00000000;
193 cpu
->id_mmfr0
= 0x10101105;
194 cpu
->id_mmfr1
= 0x40000000;
195 cpu
->id_mmfr2
= 0x01260000;
196 cpu
->id_mmfr3
= 0x02102211;
197 cpu
->id_isar0
= 0x02101110;
198 cpu
->id_isar1
= 0x13112111;
199 cpu
->id_isar2
= 0x21232042;
200 cpu
->id_isar3
= 0x01112131;
201 cpu
->id_isar4
= 0x00011142;
202 cpu
->id_isar5
= 0x00011121;
204 cpu
->id_aa64pfr0
= 0x00002222;
205 cpu
->id_aa64dfr0
= 0x10305106;
206 cpu
->id_aa64isar0
= 0x00011120;
207 cpu
->id_aa64mmfr0
= 0x00001122; /* 40 bit physical addr */
208 cpu
->dbgdidr
= 0x3516d000;
209 cpu
->clidr
= 0x0a200023;
210 cpu
->ccsidr
[0] = 0x700fe01a; /* 32KB L1 dcache */
211 cpu
->ccsidr
[1] = 0x201fe00a; /* 32KB L1 icache */
212 cpu
->ccsidr
[2] = 0x707fe07a; /* 1024KB L2 cache */
213 cpu
->dcz_blocksize
= 4; /* 64 bytes */
214 cpu
->gic_num_lrs
= 4;
215 cpu
->gic_vpribits
= 5;
216 cpu
->gic_vprebits
= 5;
217 define_arm_cp_regs(cpu
, cortex_a57_a53_cp_reginfo
);
220 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
221 * otherwise, a CPU with as many features enabled as our emulation supports.
222 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
223 * this only needs to handle 64 bits.
225 static void aarch64_max_initfn(Object
*obj
)
227 ARMCPU
*cpu
= ARM_CPU(obj
);
230 kvm_arm_set_cpu_features_from_host(cpu
);
232 aarch64_a57_initfn(obj
);
233 #ifdef CONFIG_USER_ONLY
234 /* We don't set these in system emulation mode for the moment,
235 * since we don't correctly set the ID registers to advertise them,
236 * and in some cases they're only available in AArch64 and not AArch32,
237 * whereas the architecture requires them to be present in both if
240 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA512
);
241 set_feature(&cpu
->env
, ARM_FEATURE_V8_SHA3
);
242 set_feature(&cpu
->env
, ARM_FEATURE_V8_SM3
);
243 set_feature(&cpu
->env
, ARM_FEATURE_V8_SM4
);
244 set_feature(&cpu
->env
, ARM_FEATURE_V8_ATOMICS
);
245 set_feature(&cpu
->env
, ARM_FEATURE_V8_RDM
);
246 set_feature(&cpu
->env
, ARM_FEATURE_V8_DOTPROD
);
247 set_feature(&cpu
->env
, ARM_FEATURE_V8_FP16
);
248 set_feature(&cpu
->env
, ARM_FEATURE_V8_FCMA
);
249 set_feature(&cpu
->env
, ARM_FEATURE_SVE
);
250 /* For usermode -cpu max we can use a larger and more efficient DCZ
251 * blocksize since we don't have to follow what the hardware does.
253 cpu
->ctr
= 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
254 cpu
->dcz_blocksize
= 7; /* 512 bytes */
259 typedef struct ARMCPUInfo
{
261 void (*initfn
)(Object
*obj
);
262 void (*class_init
)(ObjectClass
*oc
, void *data
);
265 static const ARMCPUInfo aarch64_cpus
[] = {
266 { .name
= "cortex-a57", .initfn
= aarch64_a57_initfn
},
267 { .name
= "cortex-a53", .initfn
= aarch64_a53_initfn
},
268 { .name
= "max", .initfn
= aarch64_max_initfn
},
272 static bool aarch64_cpu_get_aarch64(Object
*obj
, Error
**errp
)
274 ARMCPU
*cpu
= ARM_CPU(obj
);
276 return arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
279 static void aarch64_cpu_set_aarch64(Object
*obj
, bool value
, Error
**errp
)
281 ARMCPU
*cpu
= ARM_CPU(obj
);
283 /* At this time, this property is only allowed if KVM is enabled. This
284 * restriction allows us to avoid fixing up functionality that assumes a
285 * uniform execution state like do_interrupt.
287 if (!kvm_enabled()) {
288 error_setg(errp
, "'aarch64' feature cannot be disabled "
289 "unless KVM is enabled");
293 if (value
== false) {
294 unset_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
296 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
300 static void aarch64_cpu_initfn(Object
*obj
)
302 object_property_add_bool(obj
, "aarch64", aarch64_cpu_get_aarch64
,
303 aarch64_cpu_set_aarch64
, NULL
);
304 object_property_set_description(obj
, "aarch64",
305 "Set on/off to enable/disable aarch64 "
310 static void aarch64_cpu_finalizefn(Object
*obj
)
314 static void aarch64_cpu_set_pc(CPUState
*cs
, vaddr value
)
316 ARMCPU
*cpu
= ARM_CPU(cs
);
317 /* It's OK to look at env for the current mode here, because it's
318 * never possible for an AArch64 TB to chain to an AArch32 TB.
319 * (Otherwise we would need to use synchronize_from_tb instead.)
321 if (is_a64(&cpu
->env
)) {
324 cpu
->env
.regs
[15] = value
;
328 static gchar
*aarch64_gdb_arch_name(CPUState
*cs
)
330 return g_strdup("aarch64");
333 static void aarch64_cpu_class_init(ObjectClass
*oc
, void *data
)
335 CPUClass
*cc
= CPU_CLASS(oc
);
337 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
338 cc
->set_pc
= aarch64_cpu_set_pc
;
339 cc
->gdb_read_register
= aarch64_cpu_gdb_read_register
;
340 cc
->gdb_write_register
= aarch64_cpu_gdb_write_register
;
341 cc
->gdb_num_core_regs
= 34;
342 cc
->gdb_core_xml_file
= "aarch64-core.xml";
343 cc
->gdb_arch_name
= aarch64_gdb_arch_name
;
346 static void aarch64_cpu_register(const ARMCPUInfo
*info
)
348 TypeInfo type_info
= {
349 .parent
= TYPE_AARCH64_CPU
,
350 .instance_size
= sizeof(ARMCPU
),
351 .instance_init
= info
->initfn
,
352 .class_size
= sizeof(ARMCPUClass
),
353 .class_init
= info
->class_init
,
356 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
357 type_register(&type_info
);
358 g_free((void *)type_info
.name
);
361 static const TypeInfo aarch64_cpu_type_info
= {
362 .name
= TYPE_AARCH64_CPU
,
363 .parent
= TYPE_ARM_CPU
,
364 .instance_size
= sizeof(ARMCPU
),
365 .instance_init
= aarch64_cpu_initfn
,
366 .instance_finalize
= aarch64_cpu_finalizefn
,
368 .class_size
= sizeof(AArch64CPUClass
),
369 .class_init
= aarch64_cpu_class_init
,
372 static void aarch64_cpu_register_types(void)
374 const ARMCPUInfo
*info
= aarch64_cpus
;
376 type_register_static(&aarch64_cpu_type_info
);
379 aarch64_cpu_register(info
);
384 type_init(aarch64_cpu_register_types
)
386 /* The manual says that when SVE is enabled and VQ is widened the
387 * implementation is allowed to zero the previously inaccessible
388 * portion of the registers. The corollary to that is that when
389 * SVE is enabled and VQ is narrowed we are also allowed to zero
390 * the now inaccessible portion of the registers.
392 * The intent of this is that no predicate bit beyond VQ is ever set.
393 * Which means that some operations on predicate registers themselves
394 * may operate on full uint64_t or even unrolled across the maximum
395 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
396 * may well be cheaper than conditionals to restrict the operation
397 * to the relevant portion of a uint16_t[16].
399 * TODO: Need to call this for changes to the real system registers
400 * and EL state changes.
402 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
407 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
409 /* Zap the high bits of the zregs. */
410 for (i
= 0; i
< 32; i
++) {
411 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
414 /* Zap the high bits of the pregs and ffr. */
417 pmask
= ~(-1ULL << (16 * (vq
& 3)));
419 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
420 for (i
= 0; i
< 17; ++i
) {
421 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;