4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
97 /* current CPU in the current thread. It is only valid inside
99 __thread CPUState
*current_cpu
;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry
;
109 struct PhysPageEntry
{
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node
[P_L2_SIZE
];
128 typedef struct PhysPageMap
{
131 unsigned sections_nb
;
132 unsigned sections_nb_alloc
;
134 unsigned nodes_nb_alloc
;
136 MemoryRegionSection
*sections
;
139 struct AddressSpaceDispatch
{
142 MemoryRegionSection
*mru_section
;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
146 PhysPageEntry phys_map
;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t
{
156 uint16_t sub_section
[TARGET_PAGE_SIZE
];
159 #define PHYS_SECTION_UNASSIGNED 0
160 #define PHYS_SECTION_NOTDIRTY 1
161 #define PHYS_SECTION_ROM 2
162 #define PHYS_SECTION_WATCH 3
164 static void io_mem_init(void);
165 static void memory_map_init(void);
166 static void tcg_commit(MemoryListener
*listener
);
168 static MemoryRegion io_mem_watch
;
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
177 struct CPUAddressSpace
{
180 struct AddressSpaceDispatch
*memory_dispatch
;
181 MemoryListener tcg_as_listener
;
186 #if !defined(CONFIG_USER_ONLY)
188 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
190 static unsigned alloc_hint
= 16;
191 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
192 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
193 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
194 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
195 alloc_hint
= map
->nodes_nb_alloc
;
199 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
206 ret
= map
->nodes_nb
++;
208 assert(ret
!= PHYS_MAP_NODE_NIL
);
209 assert(ret
!= map
->nodes_nb_alloc
);
211 e
.skip
= leaf
? 0 : 1;
212 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
213 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
214 memcpy(&p
[i
], &e
, sizeof(e
));
219 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
220 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
224 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
226 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
227 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
229 p
= map
->nodes
[lp
->ptr
];
230 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
232 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
233 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
239 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
245 static void phys_page_set(AddressSpaceDispatch
*d
,
246 hwaddr index
, hwaddr nb
,
249 /* Wildly overreserve - it doesn't matter much. */
250 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
252 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
255 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
258 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
260 unsigned valid_ptr
= P_L2_SIZE
;
265 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
270 for (i
= 0; i
< P_L2_SIZE
; i
++) {
271 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
278 phys_page_compact(&p
[i
], nodes
, compacted
);
282 /* We can only compress if there's only one child. */
287 assert(valid_ptr
< P_L2_SIZE
);
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
294 lp
->ptr
= p
[valid_ptr
].ptr
;
295 if (!p
[valid_ptr
].skip
) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
304 lp
->skip
+= p
[valid_ptr
].skip
;
308 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
310 DECLARE_BITMAP(compacted
, nodes_nb
);
312 if (d
->phys_map
.skip
) {
313 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
317 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
323 return section
->size
.hi
||
324 range_covers_byte(section
->offset_within_address_space
,
325 section
->size
.lo
, addr
);
328 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
329 Node
*nodes
, MemoryRegionSection
*sections
)
332 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
335 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
336 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
337 return §ions
[PHYS_SECTION_UNASSIGNED
];
340 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
343 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
344 return §ions
[lp
.ptr
];
346 return §ions
[PHYS_SECTION_UNASSIGNED
];
350 bool memory_region_is_unassigned(MemoryRegion
*mr
)
352 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
353 && mr
!= &io_mem_watch
;
356 /* Called from RCU critical section */
357 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
359 bool resolve_subpage
)
361 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
365 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
366 section_covers_addr(section
, addr
)) {
369 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
373 if (resolve_subpage
&& section
->mr
->subpage
) {
374 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
375 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
378 atomic_set(&d
->mru_section
, section
);
383 /* Called from RCU critical section */
384 static MemoryRegionSection
*
385 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
386 hwaddr
*plen
, bool resolve_subpage
)
388 MemoryRegionSection
*section
;
392 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
393 /* Compute offset within MemoryRegionSection */
394 addr
-= section
->offset_within_address_space
;
396 /* Compute offset within MemoryRegion */
397 *xlat
= addr
+ section
->offset_within_region
;
401 /* MMIO registers can be expected to perform full-width accesses based only
402 * on their address, without considering adjacent registers that could
403 * decode to completely different MemoryRegions. When such registers
404 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
405 * regions overlap wildly. For this reason we cannot clamp the accesses
408 * If the length is small (as is the case for address_space_ldl/stl),
409 * everything works fine. If the incoming length is large, however,
410 * the caller really has to do the clamping through memory_access_size.
412 if (memory_region_is_ram(mr
)) {
413 diff
= int128_sub(section
->size
, int128_make64(addr
));
414 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
419 /* Called from RCU critical section */
420 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
421 hwaddr
*xlat
, hwaddr
*plen
,
425 MemoryRegionSection
*section
;
429 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
430 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
433 if (!mr
->iommu_ops
) {
437 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
438 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
439 | (addr
& iotlb
.addr_mask
));
440 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
441 if (!(iotlb
.perm
& (1 << is_write
))) {
442 mr
= &io_mem_unassigned
;
446 as
= iotlb
.target_as
;
449 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
450 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
451 *plen
= MIN(page
, *plen
);
458 /* Called from RCU critical section */
459 MemoryRegionSection
*
460 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
461 hwaddr
*xlat
, hwaddr
*plen
)
463 MemoryRegionSection
*section
;
464 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
466 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
468 assert(!section
->mr
->iommu_ops
);
473 #if !defined(CONFIG_USER_ONLY)
475 static int cpu_common_post_load(void *opaque
, int version_id
)
477 CPUState
*cpu
= opaque
;
479 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
480 version_id is increased. */
481 cpu
->interrupt_request
&= ~0x01;
487 static int cpu_common_pre_load(void *opaque
)
489 CPUState
*cpu
= opaque
;
491 cpu
->exception_index
= -1;
496 static bool cpu_common_exception_index_needed(void *opaque
)
498 CPUState
*cpu
= opaque
;
500 return tcg_enabled() && cpu
->exception_index
!= -1;
503 static const VMStateDescription vmstate_cpu_common_exception_index
= {
504 .name
= "cpu_common/exception_index",
506 .minimum_version_id
= 1,
507 .needed
= cpu_common_exception_index_needed
,
508 .fields
= (VMStateField
[]) {
509 VMSTATE_INT32(exception_index
, CPUState
),
510 VMSTATE_END_OF_LIST()
514 static bool cpu_common_crash_occurred_needed(void *opaque
)
516 CPUState
*cpu
= opaque
;
518 return cpu
->crash_occurred
;
521 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
522 .name
= "cpu_common/crash_occurred",
524 .minimum_version_id
= 1,
525 .needed
= cpu_common_crash_occurred_needed
,
526 .fields
= (VMStateField
[]) {
527 VMSTATE_BOOL(crash_occurred
, CPUState
),
528 VMSTATE_END_OF_LIST()
532 const VMStateDescription vmstate_cpu_common
= {
533 .name
= "cpu_common",
535 .minimum_version_id
= 1,
536 .pre_load
= cpu_common_pre_load
,
537 .post_load
= cpu_common_post_load
,
538 .fields
= (VMStateField
[]) {
539 VMSTATE_UINT32(halted
, CPUState
),
540 VMSTATE_UINT32(interrupt_request
, CPUState
),
541 VMSTATE_END_OF_LIST()
543 .subsections
= (const VMStateDescription
*[]) {
544 &vmstate_cpu_common_exception_index
,
545 &vmstate_cpu_common_crash_occurred
,
552 CPUState
*qemu_get_cpu(int index
)
557 if (cpu
->cpu_index
== index
) {
565 #if !defined(CONFIG_USER_ONLY)
566 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
568 CPUAddressSpace
*newas
;
570 /* Target code should have set num_ases before calling us */
571 assert(asidx
< cpu
->num_ases
);
574 /* address space 0 gets the convenience alias */
578 /* KVM cannot currently support multiple address spaces. */
579 assert(asidx
== 0 || !kvm_enabled());
581 if (!cpu
->cpu_ases
) {
582 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
585 newas
= &cpu
->cpu_ases
[asidx
];
589 newas
->tcg_as_listener
.commit
= tcg_commit
;
590 memory_listener_register(&newas
->tcg_as_listener
, as
);
594 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
596 /* Return the AddressSpace corresponding to the specified index */
597 return cpu
->cpu_ases
[asidx
].as
;
601 static bool cpu_index_auto_assigned
;
603 static int cpu_get_free_index(void)
608 cpu_index_auto_assigned
= true;
609 CPU_FOREACH(some_cpu
) {
615 void cpu_exec_exit(CPUState
*cpu
)
617 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
620 if (cpu
->node
.tqe_prev
== NULL
) {
621 /* there is nothing to undo since cpu_exec_init() hasn't been called */
626 assert(!(cpu_index_auto_assigned
&& cpu
!= QTAILQ_LAST(&cpus
, CPUTailQ
)));
628 QTAILQ_REMOVE(&cpus
, cpu
, node
);
629 cpu
->node
.tqe_prev
= NULL
;
630 cpu
->cpu_index
= UNASSIGNED_CPU_INDEX
;
633 if (cc
->vmsd
!= NULL
) {
634 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
636 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
637 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
641 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
643 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
644 Error
*local_err ATTRIBUTE_UNUSED
= NULL
;
649 #ifndef CONFIG_USER_ONLY
650 cpu
->thread_id
= qemu_get_thread_id();
652 /* This is a softmmu CPU object, so create a property for it
653 * so users can wire up its memory. (This can't go in qom/cpu.c
654 * because that file is compiled only once for both user-mode
655 * and system builds.) The default if no link is set up is to use
656 * the system address space.
658 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
659 (Object
**)&cpu
->memory
,
660 qdev_prop_allow_set_link_before_realize
,
661 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
663 cpu
->memory
= system_memory
;
664 object_ref(OBJECT(cpu
->memory
));
668 if (cpu
->cpu_index
== UNASSIGNED_CPU_INDEX
) {
669 cpu
->cpu_index
= cpu_get_free_index();
670 assert(cpu
->cpu_index
!= UNASSIGNED_CPU_INDEX
);
672 assert(!cpu_index_auto_assigned
);
674 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
677 #ifndef CONFIG_USER_ONLY
678 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
679 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
681 if (cc
->vmsd
!= NULL
) {
682 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
687 #if defined(CONFIG_USER_ONLY)
688 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
690 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
693 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
696 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
697 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
699 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
700 phys
| (pc
& ~TARGET_PAGE_MASK
));
705 #if defined(CONFIG_USER_ONLY)
706 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
711 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
717 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
721 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
722 int flags
, CPUWatchpoint
**watchpoint
)
727 /* Add a watchpoint. */
728 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
729 int flags
, CPUWatchpoint
**watchpoint
)
733 /* forbid ranges which are empty or run off the end of the address space */
734 if (len
== 0 || (addr
+ len
- 1) < addr
) {
735 error_report("tried to set invalid watchpoint at %"
736 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
739 wp
= g_malloc(sizeof(*wp
));
745 /* keep all GDB-injected watchpoints in front */
746 if (flags
& BP_GDB
) {
747 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
749 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
752 tlb_flush_page(cpu
, addr
);
759 /* Remove a specific watchpoint. */
760 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
765 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
766 if (addr
== wp
->vaddr
&& len
== wp
->len
767 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
768 cpu_watchpoint_remove_by_ref(cpu
, wp
);
775 /* Remove a specific watchpoint by reference. */
776 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
778 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
780 tlb_flush_page(cpu
, watchpoint
->vaddr
);
785 /* Remove all matching watchpoints. */
786 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
788 CPUWatchpoint
*wp
, *next
;
790 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
791 if (wp
->flags
& mask
) {
792 cpu_watchpoint_remove_by_ref(cpu
, wp
);
797 /* Return true if this watchpoint address matches the specified
798 * access (ie the address range covered by the watchpoint overlaps
799 * partially or completely with the address range covered by the
802 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
806 /* We know the lengths are non-zero, but a little caution is
807 * required to avoid errors in the case where the range ends
808 * exactly at the top of the address space and so addr + len
809 * wraps round to zero.
811 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
812 vaddr addrend
= addr
+ len
- 1;
814 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
819 /* Add a breakpoint. */
820 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
821 CPUBreakpoint
**breakpoint
)
825 bp
= g_malloc(sizeof(*bp
));
830 /* keep all GDB-injected breakpoints in front */
831 if (flags
& BP_GDB
) {
832 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
834 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
837 breakpoint_invalidate(cpu
, pc
);
845 /* Remove a specific breakpoint. */
846 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
850 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
851 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
852 cpu_breakpoint_remove_by_ref(cpu
, bp
);
859 /* Remove a specific breakpoint by reference. */
860 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
862 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
864 breakpoint_invalidate(cpu
, breakpoint
->pc
);
869 /* Remove all matching breakpoints. */
870 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
872 CPUBreakpoint
*bp
, *next
;
874 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
875 if (bp
->flags
& mask
) {
876 cpu_breakpoint_remove_by_ref(cpu
, bp
);
881 /* enable or disable single step mode. EXCP_DEBUG is returned by the
882 CPU loop after each instruction */
883 void cpu_single_step(CPUState
*cpu
, int enabled
)
885 if (cpu
->singlestep_enabled
!= enabled
) {
886 cpu
->singlestep_enabled
= enabled
;
888 kvm_update_guest_debug(cpu
, 0);
890 /* must flush all the translated code to avoid inconsistencies */
891 /* XXX: only flush what is necessary */
897 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
904 fprintf(stderr
, "qemu: fatal: ");
905 vfprintf(stderr
, fmt
, ap
);
906 fprintf(stderr
, "\n");
907 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
908 if (qemu_log_separate()) {
909 qemu_log("qemu: fatal: ");
910 qemu_log_vprintf(fmt
, ap2
);
912 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
919 #if defined(CONFIG_USER_ONLY)
921 struct sigaction act
;
922 sigfillset(&act
.sa_mask
);
923 act
.sa_handler
= SIG_DFL
;
924 sigaction(SIGABRT
, &act
, NULL
);
930 #if !defined(CONFIG_USER_ONLY)
931 /* Called from RCU critical section */
932 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
936 block
= atomic_rcu_read(&ram_list
.mru_block
);
937 if (block
&& addr
- block
->offset
< block
->max_length
) {
940 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
941 if (addr
- block
->offset
< block
->max_length
) {
946 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
950 /* It is safe to write mru_block outside the iothread lock. This
955 * xxx removed from list
959 * call_rcu(reclaim_ramblock, xxx);
962 * atomic_rcu_set is not needed here. The block was already published
963 * when it was placed into the list. Here we're just making an extra
964 * copy of the pointer.
966 ram_list
.mru_block
= block
;
970 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
977 end
= TARGET_PAGE_ALIGN(start
+ length
);
978 start
&= TARGET_PAGE_MASK
;
981 block
= qemu_get_ram_block(start
);
982 assert(block
== qemu_get_ram_block(end
- 1));
983 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
985 tlb_reset_dirty(cpu
, start1
, length
);
990 /* Note: start and end must be within the same ram block. */
991 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
995 DirtyMemoryBlocks
*blocks
;
996 unsigned long end
, page
;
1003 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1004 page
= start
>> TARGET_PAGE_BITS
;
1008 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1010 while (page
< end
) {
1011 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1012 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1013 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1015 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1022 if (dirty
&& tcg_enabled()) {
1023 tlb_reset_dirty_range_all(start
, length
);
1029 /* Called from RCU critical section */
1030 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1031 MemoryRegionSection
*section
,
1033 hwaddr paddr
, hwaddr xlat
,
1035 target_ulong
*address
)
1040 if (memory_region_is_ram(section
->mr
)) {
1042 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1043 if (!section
->readonly
) {
1044 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1046 iotlb
|= PHYS_SECTION_ROM
;
1049 AddressSpaceDispatch
*d
;
1051 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1052 iotlb
= section
- d
->map
.sections
;
1056 /* Make accesses to pages with watchpoints go via the
1057 watchpoint trap routines. */
1058 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1059 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1060 /* Avoid trapping reads of pages with a write breakpoint. */
1061 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1062 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1063 *address
|= TLB_MMIO
;
1071 #endif /* defined(CONFIG_USER_ONLY) */
1073 #if !defined(CONFIG_USER_ONLY)
1075 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1077 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1079 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1080 qemu_anon_ram_alloc
;
1083 * Set a custom physical guest memory alloator.
1084 * Accelerators with unusual needs may need this. Hopefully, we can
1085 * get rid of it eventually.
1087 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1089 phys_mem_alloc
= alloc
;
1092 static uint16_t phys_section_add(PhysPageMap
*map
,
1093 MemoryRegionSection
*section
)
1095 /* The physical section number is ORed with a page-aligned
1096 * pointer to produce the iotlb entries. Thus it should
1097 * never overflow into the page-aligned value.
1099 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1101 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1102 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1103 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1104 map
->sections_nb_alloc
);
1106 map
->sections
[map
->sections_nb
] = *section
;
1107 memory_region_ref(section
->mr
);
1108 return map
->sections_nb
++;
1111 static void phys_section_destroy(MemoryRegion
*mr
)
1113 bool have_sub_page
= mr
->subpage
;
1115 memory_region_unref(mr
);
1117 if (have_sub_page
) {
1118 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1119 object_unref(OBJECT(&subpage
->iomem
));
1124 static void phys_sections_free(PhysPageMap
*map
)
1126 while (map
->sections_nb
> 0) {
1127 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1128 phys_section_destroy(section
->mr
);
1130 g_free(map
->sections
);
1134 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1137 hwaddr base
= section
->offset_within_address_space
1139 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1140 d
->map
.nodes
, d
->map
.sections
);
1141 MemoryRegionSection subsection
= {
1142 .offset_within_address_space
= base
,
1143 .size
= int128_make64(TARGET_PAGE_SIZE
),
1147 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1149 if (!(existing
->mr
->subpage
)) {
1150 subpage
= subpage_init(d
->as
, base
);
1151 subsection
.address_space
= d
->as
;
1152 subsection
.mr
= &subpage
->iomem
;
1153 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1154 phys_section_add(&d
->map
, &subsection
));
1156 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1158 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1159 end
= start
+ int128_get64(section
->size
) - 1;
1160 subpage_register(subpage
, start
, end
,
1161 phys_section_add(&d
->map
, section
));
1165 static void register_multipage(AddressSpaceDispatch
*d
,
1166 MemoryRegionSection
*section
)
1168 hwaddr start_addr
= section
->offset_within_address_space
;
1169 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1170 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1174 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1177 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1179 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1180 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1181 MemoryRegionSection now
= *section
, remain
= *section
;
1182 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1184 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1185 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1186 - now
.offset_within_address_space
;
1188 now
.size
= int128_min(int128_make64(left
), now
.size
);
1189 register_subpage(d
, &now
);
1191 now
.size
= int128_zero();
1193 while (int128_ne(remain
.size
, now
.size
)) {
1194 remain
.size
= int128_sub(remain
.size
, now
.size
);
1195 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1196 remain
.offset_within_region
+= int128_get64(now
.size
);
1198 if (int128_lt(remain
.size
, page_size
)) {
1199 register_subpage(d
, &now
);
1200 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1201 now
.size
= page_size
;
1202 register_subpage(d
, &now
);
1204 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1205 register_multipage(d
, &now
);
1210 void qemu_flush_coalesced_mmio_buffer(void)
1213 kvm_flush_coalesced_mmio_buffer();
1216 void qemu_mutex_lock_ramlist(void)
1218 qemu_mutex_lock(&ram_list
.mutex
);
1221 void qemu_mutex_unlock_ramlist(void)
1223 qemu_mutex_unlock(&ram_list
.mutex
);
1227 static void *file_ram_alloc(RAMBlock
*block
,
1232 bool unlink_on_error
= false;
1234 char *sanitized_name
;
1236 void *area
= MAP_FAILED
;
1240 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1242 "host lacks kvm mmu notifiers, -mem-path unsupported");
1247 fd
= open(path
, O_RDWR
);
1249 /* @path names an existing file, use it */
1252 if (errno
== ENOENT
) {
1253 /* @path names a file that doesn't exist, create it */
1254 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1256 unlink_on_error
= true;
1259 } else if (errno
== EISDIR
) {
1260 /* @path names a directory, create a file there */
1261 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1262 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1263 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1269 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1271 g_free(sanitized_name
);
1273 fd
= mkstemp(filename
);
1281 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1282 error_setg_errno(errp
, errno
,
1283 "can't open backing store %s for guest RAM",
1288 * Try again on EINTR and EEXIST. The latter happens when
1289 * something else creates the file between our two open().
1293 page_size
= qemu_fd_getpagesize(fd
);
1294 block
->mr
->align
= MAX(page_size
, QEMU_VMALLOC_ALIGN
);
1296 if (memory
< page_size
) {
1297 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1298 "or larger than page size 0x%" PRIx64
,
1303 memory
= ROUND_UP(memory
, page_size
);
1306 * ftruncate is not supported by hugetlbfs in older
1307 * hosts, so don't bother bailing out on errors.
1308 * If anything goes wrong with it under other filesystems,
1311 if (ftruncate(fd
, memory
)) {
1312 perror("ftruncate");
1315 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1316 block
->flags
& RAM_SHARED
);
1317 if (area
== MAP_FAILED
) {
1318 error_setg_errno(errp
, errno
,
1319 "unable to map backing store for guest RAM");
1324 os_mem_prealloc(fd
, area
, memory
, errp
);
1325 if (errp
&& *errp
) {
1334 if (area
!= MAP_FAILED
) {
1335 qemu_ram_munmap(area
, memory
);
1337 if (unlink_on_error
) {
1347 /* Called with the ramlist lock held. */
1348 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1350 RAMBlock
*block
, *next_block
;
1351 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1353 assert(size
!= 0); /* it would hand out same offset multiple times */
1355 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1359 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1360 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1362 end
= block
->offset
+ block
->max_length
;
1364 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1365 if (next_block
->offset
>= end
) {
1366 next
= MIN(next
, next_block
->offset
);
1369 if (next
- end
>= size
&& next
- end
< mingap
) {
1371 mingap
= next
- end
;
1375 if (offset
== RAM_ADDR_MAX
) {
1376 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1384 ram_addr_t
last_ram_offset(void)
1387 ram_addr_t last
= 0;
1390 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1391 last
= MAX(last
, block
->offset
+ block
->max_length
);
1397 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1401 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1402 if (!machine_dump_guest_core(current_machine
)) {
1403 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1405 perror("qemu_madvise");
1406 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1407 "but dump_guest_core=off specified\n");
1412 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1417 /* Called with iothread lock held. */
1418 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1423 assert(!new_block
->idstr
[0]);
1426 char *id
= qdev_get_dev_path(dev
);
1428 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1432 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1435 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1436 if (block
!= new_block
&&
1437 !strcmp(block
->idstr
, new_block
->idstr
)) {
1438 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1446 /* Called with iothread lock held. */
1447 void qemu_ram_unset_idstr(RAMBlock
*block
)
1449 /* FIXME: arch_init.c assumes that this is not called throughout
1450 * migration. Ignore the problem since hot-unplug during migration
1451 * does not work anyway.
1454 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1458 static int memory_try_enable_merging(void *addr
, size_t len
)
1460 if (!machine_mem_merge(current_machine
)) {
1461 /* disabled by the user */
1465 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1468 /* Only legal before guest might have detected the memory size: e.g. on
1469 * incoming migration, or right after reset.
1471 * As memory core doesn't know how is memory accessed, it is up to
1472 * resize callback to update device state and/or add assertions to detect
1473 * misuse, if necessary.
1475 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1479 newsize
= HOST_PAGE_ALIGN(newsize
);
1481 if (block
->used_length
== newsize
) {
1485 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1486 error_setg_errno(errp
, EINVAL
,
1487 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1488 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1489 newsize
, block
->used_length
);
1493 if (block
->max_length
< newsize
) {
1494 error_setg_errno(errp
, EINVAL
,
1495 "Length too large: %s: 0x" RAM_ADDR_FMT
1496 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1497 newsize
, block
->max_length
);
1501 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1502 block
->used_length
= newsize
;
1503 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1505 memory_region_set_size(block
->mr
, newsize
);
1506 if (block
->resized
) {
1507 block
->resized(block
->idstr
, newsize
, block
->host
);
1512 /* Called with ram_list.mutex held */
1513 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1514 ram_addr_t new_ram_size
)
1516 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1517 DIRTY_MEMORY_BLOCK_SIZE
);
1518 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1519 DIRTY_MEMORY_BLOCK_SIZE
);
1522 /* Only need to extend if block count increased */
1523 if (new_num_blocks
<= old_num_blocks
) {
1527 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1528 DirtyMemoryBlocks
*old_blocks
;
1529 DirtyMemoryBlocks
*new_blocks
;
1532 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1533 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1534 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1536 if (old_num_blocks
) {
1537 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1538 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1541 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1542 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1545 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1548 g_free_rcu(old_blocks
, rcu
);
1553 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1556 RAMBlock
*last_block
= NULL
;
1557 ram_addr_t old_ram_size
, new_ram_size
;
1560 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1562 qemu_mutex_lock_ramlist();
1563 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1565 if (!new_block
->host
) {
1566 if (xen_enabled()) {
1567 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1568 new_block
->mr
, &err
);
1570 error_propagate(errp
, err
);
1571 qemu_mutex_unlock_ramlist();
1575 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1576 &new_block
->mr
->align
);
1577 if (!new_block
->host
) {
1578 error_setg_errno(errp
, errno
,
1579 "cannot set up guest memory '%s'",
1580 memory_region_name(new_block
->mr
));
1581 qemu_mutex_unlock_ramlist();
1584 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1588 new_ram_size
= MAX(old_ram_size
,
1589 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1590 if (new_ram_size
> old_ram_size
) {
1591 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1592 dirty_memory_extend(old_ram_size
, new_ram_size
);
1594 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1595 * QLIST (which has an RCU-friendly variant) does not have insertion at
1596 * tail, so save the last element in last_block.
1598 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1600 if (block
->max_length
< new_block
->max_length
) {
1605 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1606 } else if (last_block
) {
1607 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1608 } else { /* list is empty */
1609 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1611 ram_list
.mru_block
= NULL
;
1613 /* Write list before version */
1616 qemu_mutex_unlock_ramlist();
1618 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1619 new_block
->used_length
,
1622 if (new_block
->host
) {
1623 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1624 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1625 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1626 if (kvm_enabled()) {
1627 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1633 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1634 bool share
, const char *mem_path
,
1637 RAMBlock
*new_block
;
1638 Error
*local_err
= NULL
;
1640 if (xen_enabled()) {
1641 error_setg(errp
, "-mem-path not supported with Xen");
1645 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1647 * file_ram_alloc() needs to allocate just like
1648 * phys_mem_alloc, but we haven't bothered to provide
1652 "-mem-path not supported with this accelerator");
1656 size
= HOST_PAGE_ALIGN(size
);
1657 new_block
= g_malloc0(sizeof(*new_block
));
1659 new_block
->used_length
= size
;
1660 new_block
->max_length
= size
;
1661 new_block
->flags
= share
? RAM_SHARED
: 0;
1662 new_block
->host
= file_ram_alloc(new_block
, size
,
1664 if (!new_block
->host
) {
1669 ram_block_add(new_block
, &local_err
);
1672 error_propagate(errp
, local_err
);
1680 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1681 void (*resized
)(const char*,
1684 void *host
, bool resizeable
,
1685 MemoryRegion
*mr
, Error
**errp
)
1687 RAMBlock
*new_block
;
1688 Error
*local_err
= NULL
;
1690 size
= HOST_PAGE_ALIGN(size
);
1691 max_size
= HOST_PAGE_ALIGN(max_size
);
1692 new_block
= g_malloc0(sizeof(*new_block
));
1694 new_block
->resized
= resized
;
1695 new_block
->used_length
= size
;
1696 new_block
->max_length
= max_size
;
1697 assert(max_size
>= size
);
1699 new_block
->host
= host
;
1701 new_block
->flags
|= RAM_PREALLOC
;
1704 new_block
->flags
|= RAM_RESIZEABLE
;
1706 ram_block_add(new_block
, &local_err
);
1709 error_propagate(errp
, local_err
);
1715 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1716 MemoryRegion
*mr
, Error
**errp
)
1718 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1721 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1723 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1726 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1727 void (*resized
)(const char*,
1730 MemoryRegion
*mr
, Error
**errp
)
1732 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1735 static void reclaim_ramblock(RAMBlock
*block
)
1737 if (block
->flags
& RAM_PREALLOC
) {
1739 } else if (xen_enabled()) {
1740 xen_invalidate_map_cache_entry(block
->host
);
1742 } else if (block
->fd
>= 0) {
1743 qemu_ram_munmap(block
->host
, block
->max_length
);
1747 qemu_anon_ram_free(block
->host
, block
->max_length
);
1752 void qemu_ram_free(RAMBlock
*block
)
1758 qemu_mutex_lock_ramlist();
1759 QLIST_REMOVE_RCU(block
, next
);
1760 ram_list
.mru_block
= NULL
;
1761 /* Write list before version */
1764 call_rcu(block
, reclaim_ramblock
, rcu
);
1765 qemu_mutex_unlock_ramlist();
1769 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1776 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1777 offset
= addr
- block
->offset
;
1778 if (offset
< block
->max_length
) {
1779 vaddr
= ramblock_ptr(block
, offset
);
1780 if (block
->flags
& RAM_PREALLOC
) {
1782 } else if (xen_enabled()) {
1786 if (block
->fd
>= 0) {
1787 flags
|= (block
->flags
& RAM_SHARED
?
1788 MAP_SHARED
: MAP_PRIVATE
);
1789 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1790 flags
, block
->fd
, offset
);
1793 * Remap needs to match alloc. Accelerators that
1794 * set phys_mem_alloc never remap. If they did,
1795 * we'd need a remap hook here.
1797 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1799 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1800 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1803 if (area
!= vaddr
) {
1804 fprintf(stderr
, "Could not remap addr: "
1805 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1809 memory_try_enable_merging(vaddr
, length
);
1810 qemu_ram_setup_dump(vaddr
, length
);
1815 #endif /* !_WIN32 */
1817 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1818 * This should not be used for general purpose DMA. Use address_space_map
1819 * or address_space_rw instead. For local memory (e.g. video ram) that the
1820 * device owns, use memory_region_get_ram_ptr.
1822 * Called within RCU critical section.
1824 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1826 RAMBlock
*block
= ram_block
;
1828 if (block
== NULL
) {
1829 block
= qemu_get_ram_block(addr
);
1830 addr
-= block
->offset
;
1833 if (xen_enabled() && block
->host
== NULL
) {
1834 /* We need to check if the requested address is in the RAM
1835 * because we don't want to map the entire memory in QEMU.
1836 * In that case just map until the end of the page.
1838 if (block
->offset
== 0) {
1839 return xen_map_cache(addr
, 0, 0);
1842 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1844 return ramblock_ptr(block
, addr
);
1847 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1848 * but takes a size argument.
1850 * Called within RCU critical section.
1852 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1855 RAMBlock
*block
= ram_block
;
1860 if (block
== NULL
) {
1861 block
= qemu_get_ram_block(addr
);
1862 addr
-= block
->offset
;
1864 *size
= MIN(*size
, block
->max_length
- addr
);
1866 if (xen_enabled() && block
->host
== NULL
) {
1867 /* We need to check if the requested address is in the RAM
1868 * because we don't want to map the entire memory in QEMU.
1869 * In that case just map the requested area.
1871 if (block
->offset
== 0) {
1872 return xen_map_cache(addr
, *size
, 1);
1875 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1878 return ramblock_ptr(block
, addr
);
1882 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1885 * ptr: Host pointer to look up
1886 * round_offset: If true round the result offset down to a page boundary
1887 * *ram_addr: set to result ram_addr
1888 * *offset: set to result offset within the RAMBlock
1890 * Returns: RAMBlock (or NULL if not found)
1892 * By the time this function returns, the returned pointer is not protected
1893 * by RCU anymore. If the caller is not within an RCU critical section and
1894 * does not hold the iothread lock, it must have other means of protecting the
1895 * pointer, such as a reference to the region that includes the incoming
1898 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1902 uint8_t *host
= ptr
;
1904 if (xen_enabled()) {
1905 ram_addr_t ram_addr
;
1907 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1908 block
= qemu_get_ram_block(ram_addr
);
1910 *offset
= ram_addr
- block
->offset
;
1917 block
= atomic_rcu_read(&ram_list
.mru_block
);
1918 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1922 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1923 /* This case append when the block is not mapped. */
1924 if (block
->host
== NULL
) {
1927 if (host
- block
->host
< block
->max_length
) {
1936 *offset
= (host
- block
->host
);
1938 *offset
&= TARGET_PAGE_MASK
;
1945 * Finds the named RAMBlock
1947 * name: The name of RAMBlock to find
1949 * Returns: RAMBlock (or NULL if not found)
1951 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1955 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1956 if (!strcmp(name
, block
->idstr
)) {
1964 /* Some of the softmmu routines need to translate from a host pointer
1965 (typically a TLB entry) back to a ram offset. */
1966 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
1971 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
1973 return RAM_ADDR_INVALID
;
1976 return block
->offset
+ offset
;
1979 /* Called within RCU critical section. */
1980 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1981 uint64_t val
, unsigned size
)
1983 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1984 tb_invalidate_phys_page_fast(ram_addr
, size
);
1988 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1991 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1994 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
1999 /* Set both VGA and migration bits for simplicity and to remove
2000 * the notdirty callback faster.
2002 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2003 DIRTY_CLIENTS_NOCODE
);
2004 /* we remove the notdirty callback only if the code has been
2006 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2007 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2011 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2012 unsigned size
, bool is_write
)
2017 static const MemoryRegionOps notdirty_mem_ops
= {
2018 .write
= notdirty_mem_write
,
2019 .valid
.accepts
= notdirty_mem_accepts
,
2020 .endianness
= DEVICE_NATIVE_ENDIAN
,
2023 /* Generate a debug exception if a watchpoint has been hit. */
2024 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2026 CPUState
*cpu
= current_cpu
;
2027 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2028 CPUArchState
*env
= cpu
->env_ptr
;
2029 target_ulong pc
, cs_base
;
2034 if (cpu
->watchpoint_hit
) {
2035 /* We re-entered the check after replacing the TB. Now raise
2036 * the debug interrupt so that is will trigger after the
2037 * current instruction. */
2038 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2041 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2042 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2043 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2044 && (wp
->flags
& flags
)) {
2045 if (flags
== BP_MEM_READ
) {
2046 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2048 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2050 wp
->hitaddr
= vaddr
;
2051 wp
->hitattrs
= attrs
;
2052 if (!cpu
->watchpoint_hit
) {
2053 if (wp
->flags
& BP_CPU
&&
2054 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2055 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2058 cpu
->watchpoint_hit
= wp
;
2059 tb_check_watchpoint(cpu
);
2060 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2061 cpu
->exception_index
= EXCP_DEBUG
;
2064 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2065 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2066 cpu_loop_exit_noexc(cpu
);
2070 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2075 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2076 so these check for a hit then pass through to the normal out-of-line
2078 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2079 unsigned size
, MemTxAttrs attrs
)
2083 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2084 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2086 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2089 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2092 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2095 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2103 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2104 uint64_t val
, unsigned size
,
2108 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2109 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2111 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2114 address_space_stb(as
, addr
, val
, attrs
, &res
);
2117 address_space_stw(as
, addr
, val
, attrs
, &res
);
2120 address_space_stl(as
, addr
, val
, attrs
, &res
);
2127 static const MemoryRegionOps watch_mem_ops
= {
2128 .read_with_attrs
= watch_mem_read
,
2129 .write_with_attrs
= watch_mem_write
,
2130 .endianness
= DEVICE_NATIVE_ENDIAN
,
2133 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2134 unsigned len
, MemTxAttrs attrs
)
2136 subpage_t
*subpage
= opaque
;
2140 #if defined(DEBUG_SUBPAGE)
2141 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2142 subpage
, len
, addr
);
2144 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2151 *data
= ldub_p(buf
);
2154 *data
= lduw_p(buf
);
2167 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2168 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2170 subpage_t
*subpage
= opaque
;
2173 #if defined(DEBUG_SUBPAGE)
2174 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2175 " value %"PRIx64
"\n",
2176 __func__
, subpage
, len
, addr
, value
);
2194 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2198 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2199 unsigned len
, bool is_write
)
2201 subpage_t
*subpage
= opaque
;
2202 #if defined(DEBUG_SUBPAGE)
2203 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2204 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2207 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2211 static const MemoryRegionOps subpage_ops
= {
2212 .read_with_attrs
= subpage_read
,
2213 .write_with_attrs
= subpage_write
,
2214 .impl
.min_access_size
= 1,
2215 .impl
.max_access_size
= 8,
2216 .valid
.min_access_size
= 1,
2217 .valid
.max_access_size
= 8,
2218 .valid
.accepts
= subpage_accepts
,
2219 .endianness
= DEVICE_NATIVE_ENDIAN
,
2222 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2227 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2229 idx
= SUBPAGE_IDX(start
);
2230 eidx
= SUBPAGE_IDX(end
);
2231 #if defined(DEBUG_SUBPAGE)
2232 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2233 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2235 for (; idx
<= eidx
; idx
++) {
2236 mmio
->sub_section
[idx
] = section
;
2242 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2246 mmio
= g_malloc0(sizeof(subpage_t
));
2250 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2251 NULL
, TARGET_PAGE_SIZE
);
2252 mmio
->iomem
.subpage
= true;
2253 #if defined(DEBUG_SUBPAGE)
2254 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2255 mmio
, base
, TARGET_PAGE_SIZE
);
2257 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2262 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2266 MemoryRegionSection section
= {
2267 .address_space
= as
,
2269 .offset_within_address_space
= 0,
2270 .offset_within_region
= 0,
2271 .size
= int128_2_64(),
2274 return phys_section_add(map
, §ion
);
2277 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2279 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2280 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2281 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2282 MemoryRegionSection
*sections
= d
->map
.sections
;
2284 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2287 static void io_mem_init(void)
2289 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2290 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2292 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2294 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2298 static void mem_begin(MemoryListener
*listener
)
2300 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2301 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2304 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2305 assert(n
== PHYS_SECTION_UNASSIGNED
);
2306 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2307 assert(n
== PHYS_SECTION_NOTDIRTY
);
2308 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2309 assert(n
== PHYS_SECTION_ROM
);
2310 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2311 assert(n
== PHYS_SECTION_WATCH
);
2313 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2315 as
->next_dispatch
= d
;
2318 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2320 phys_sections_free(&d
->map
);
2324 static void mem_commit(MemoryListener
*listener
)
2326 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2327 AddressSpaceDispatch
*cur
= as
->dispatch
;
2328 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2330 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2332 atomic_rcu_set(&as
->dispatch
, next
);
2334 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2338 static void tcg_commit(MemoryListener
*listener
)
2340 CPUAddressSpace
*cpuas
;
2341 AddressSpaceDispatch
*d
;
2343 /* since each CPU stores ram addresses in its TLB cache, we must
2344 reset the modified entries */
2345 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2346 cpu_reloading_memory_map();
2347 /* The CPU and TLB are protected by the iothread lock.
2348 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2349 * may have split the RCU critical section.
2351 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2352 cpuas
->memory_dispatch
= d
;
2353 tlb_flush(cpuas
->cpu
, 1);
2356 void address_space_init_dispatch(AddressSpace
*as
)
2358 as
->dispatch
= NULL
;
2359 as
->dispatch_listener
= (MemoryListener
) {
2361 .commit
= mem_commit
,
2362 .region_add
= mem_add
,
2363 .region_nop
= mem_add
,
2366 memory_listener_register(&as
->dispatch_listener
, as
);
2369 void address_space_unregister(AddressSpace
*as
)
2371 memory_listener_unregister(&as
->dispatch_listener
);
2374 void address_space_destroy_dispatch(AddressSpace
*as
)
2376 AddressSpaceDispatch
*d
= as
->dispatch
;
2378 atomic_rcu_set(&as
->dispatch
, NULL
);
2380 call_rcu(d
, address_space_dispatch_free
, rcu
);
2384 static void memory_map_init(void)
2386 system_memory
= g_malloc(sizeof(*system_memory
));
2388 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2389 address_space_init(&address_space_memory
, system_memory
, "memory");
2391 system_io
= g_malloc(sizeof(*system_io
));
2392 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2394 address_space_init(&address_space_io
, system_io
, "I/O");
2397 MemoryRegion
*get_system_memory(void)
2399 return system_memory
;
2402 MemoryRegion
*get_system_io(void)
2407 #endif /* !defined(CONFIG_USER_ONLY) */
2409 /* physical memory access (slow version, mainly for debug) */
2410 #if defined(CONFIG_USER_ONLY)
2411 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2412 uint8_t *buf
, int len
, int is_write
)
2419 page
= addr
& TARGET_PAGE_MASK
;
2420 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2423 flags
= page_get_flags(page
);
2424 if (!(flags
& PAGE_VALID
))
2427 if (!(flags
& PAGE_WRITE
))
2429 /* XXX: this code should not depend on lock_user */
2430 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2433 unlock_user(p
, addr
, l
);
2435 if (!(flags
& PAGE_READ
))
2437 /* XXX: this code should not depend on lock_user */
2438 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2441 unlock_user(p
, addr
, 0);
2452 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2455 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2456 addr
+= memory_region_get_ram_addr(mr
);
2458 /* No early return if dirty_log_mask is or becomes 0, because
2459 * cpu_physical_memory_set_dirty_range will still call
2460 * xen_modified_memory.
2462 if (dirty_log_mask
) {
2464 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2466 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2467 tb_invalidate_phys_range(addr
, addr
+ length
);
2468 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2470 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2473 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2475 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2477 /* Regions are assumed to support 1-4 byte accesses unless
2478 otherwise specified. */
2479 if (access_size_max
== 0) {
2480 access_size_max
= 4;
2483 /* Bound the maximum access by the alignment of the address. */
2484 if (!mr
->ops
->impl
.unaligned
) {
2485 unsigned align_size_max
= addr
& -addr
;
2486 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2487 access_size_max
= align_size_max
;
2491 /* Don't attempt accesses larger than the maximum. */
2492 if (l
> access_size_max
) {
2493 l
= access_size_max
;
2500 static bool prepare_mmio_access(MemoryRegion
*mr
)
2502 bool unlocked
= !qemu_mutex_iothread_locked();
2503 bool release_lock
= false;
2505 if (unlocked
&& mr
->global_locking
) {
2506 qemu_mutex_lock_iothread();
2508 release_lock
= true;
2510 if (mr
->flush_coalesced_mmio
) {
2512 qemu_mutex_lock_iothread();
2514 qemu_flush_coalesced_mmio_buffer();
2516 qemu_mutex_unlock_iothread();
2520 return release_lock
;
2523 /* Called within RCU critical section. */
2524 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2527 int len
, hwaddr addr1
,
2528 hwaddr l
, MemoryRegion
*mr
)
2532 MemTxResult result
= MEMTX_OK
;
2533 bool release_lock
= false;
2536 if (!memory_access_is_direct(mr
, true)) {
2537 release_lock
|= prepare_mmio_access(mr
);
2538 l
= memory_access_size(mr
, l
, addr1
);
2539 /* XXX: could force current_cpu to NULL to avoid
2543 /* 64 bit write access */
2545 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2549 /* 32 bit write access */
2551 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2555 /* 16 bit write access */
2557 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2561 /* 8 bit write access */
2563 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2571 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2572 memcpy(ptr
, buf
, l
);
2573 invalidate_and_set_dirty(mr
, addr1
, l
);
2577 qemu_mutex_unlock_iothread();
2578 release_lock
= false;
2590 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2596 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2597 const uint8_t *buf
, int len
)
2602 MemTxResult result
= MEMTX_OK
;
2607 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2608 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2616 /* Called within RCU critical section. */
2617 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2618 MemTxAttrs attrs
, uint8_t *buf
,
2619 int len
, hwaddr addr1
, hwaddr l
,
2624 MemTxResult result
= MEMTX_OK
;
2625 bool release_lock
= false;
2628 if (!memory_access_is_direct(mr
, false)) {
2630 release_lock
|= prepare_mmio_access(mr
);
2631 l
= memory_access_size(mr
, l
, addr1
);
2634 /* 64 bit read access */
2635 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2640 /* 32 bit read access */
2641 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2646 /* 16 bit read access */
2647 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2652 /* 8 bit read access */
2653 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2662 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2663 memcpy(buf
, ptr
, l
);
2667 qemu_mutex_unlock_iothread();
2668 release_lock
= false;
2680 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2686 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2687 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2692 MemTxResult result
= MEMTX_OK
;
2697 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2698 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2706 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2707 uint8_t *buf
, int len
, bool is_write
)
2710 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2712 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2716 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2717 int len
, int is_write
)
2719 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2720 buf
, len
, is_write
);
2723 enum write_rom_type
{
2728 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2729 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2739 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2741 if (!(memory_region_is_ram(mr
) ||
2742 memory_region_is_romd(mr
))) {
2743 l
= memory_access_size(mr
, l
, addr1
);
2746 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2749 memcpy(ptr
, buf
, l
);
2750 invalidate_and_set_dirty(mr
, addr1
, l
);
2753 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2764 /* used for ROM loading : can write in RAM and ROM */
2765 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2766 const uint8_t *buf
, int len
)
2768 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2771 void cpu_flush_icache_range(hwaddr start
, int len
)
2774 * This function should do the same thing as an icache flush that was
2775 * triggered from within the guest. For TCG we are always cache coherent,
2776 * so there is no need to flush anything. For KVM / Xen we need to flush
2777 * the host's instruction cache at least.
2779 if (tcg_enabled()) {
2783 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2784 start
, NULL
, len
, FLUSH_CACHE
);
2795 static BounceBuffer bounce
;
2797 typedef struct MapClient
{
2799 QLIST_ENTRY(MapClient
) link
;
2802 QemuMutex map_client_list_lock
;
2803 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2804 = QLIST_HEAD_INITIALIZER(map_client_list
);
2806 static void cpu_unregister_map_client_do(MapClient
*client
)
2808 QLIST_REMOVE(client
, link
);
2812 static void cpu_notify_map_clients_locked(void)
2816 while (!QLIST_EMPTY(&map_client_list
)) {
2817 client
= QLIST_FIRST(&map_client_list
);
2818 qemu_bh_schedule(client
->bh
);
2819 cpu_unregister_map_client_do(client
);
2823 void cpu_register_map_client(QEMUBH
*bh
)
2825 MapClient
*client
= g_malloc(sizeof(*client
));
2827 qemu_mutex_lock(&map_client_list_lock
);
2829 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2830 if (!atomic_read(&bounce
.in_use
)) {
2831 cpu_notify_map_clients_locked();
2833 qemu_mutex_unlock(&map_client_list_lock
);
2836 void cpu_exec_init_all(void)
2838 qemu_mutex_init(&ram_list
.mutex
);
2841 qemu_mutex_init(&map_client_list_lock
);
2844 void cpu_unregister_map_client(QEMUBH
*bh
)
2848 qemu_mutex_lock(&map_client_list_lock
);
2849 QLIST_FOREACH(client
, &map_client_list
, link
) {
2850 if (client
->bh
== bh
) {
2851 cpu_unregister_map_client_do(client
);
2855 qemu_mutex_unlock(&map_client_list_lock
);
2858 static void cpu_notify_map_clients(void)
2860 qemu_mutex_lock(&map_client_list_lock
);
2861 cpu_notify_map_clients_locked();
2862 qemu_mutex_unlock(&map_client_list_lock
);
2865 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2873 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2874 if (!memory_access_is_direct(mr
, is_write
)) {
2875 l
= memory_access_size(mr
, l
, addr
);
2876 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2888 /* Map a physical memory region into a host virtual address.
2889 * May map a subset of the requested range, given by and returned in *plen.
2890 * May return NULL if resources needed to perform the mapping are exhausted.
2891 * Use only for reads OR writes - not for read-modify-write operations.
2892 * Use cpu_register_map_client() to know when retrying the map operation is
2893 * likely to succeed.
2895 void *address_space_map(AddressSpace
*as
,
2902 hwaddr l
, xlat
, base
;
2903 MemoryRegion
*mr
, *this_mr
;
2912 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2914 if (!memory_access_is_direct(mr
, is_write
)) {
2915 if (atomic_xchg(&bounce
.in_use
, true)) {
2919 /* Avoid unbounded allocations */
2920 l
= MIN(l
, TARGET_PAGE_SIZE
);
2921 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2925 memory_region_ref(mr
);
2928 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2934 return bounce
.buffer
;
2948 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2949 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2954 memory_region_ref(mr
);
2956 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
2962 /* Unmaps a memory region previously mapped by address_space_map().
2963 * Will also mark the memory as dirty if is_write == 1. access_len gives
2964 * the amount of memory that was actually read or written by the caller.
2966 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2967 int is_write
, hwaddr access_len
)
2969 if (buffer
!= bounce
.buffer
) {
2973 mr
= memory_region_from_host(buffer
, &addr1
);
2976 invalidate_and_set_dirty(mr
, addr1
, access_len
);
2978 if (xen_enabled()) {
2979 xen_invalidate_map_cache_entry(buffer
);
2981 memory_region_unref(mr
);
2985 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
2986 bounce
.buffer
, access_len
);
2988 qemu_vfree(bounce
.buffer
);
2989 bounce
.buffer
= NULL
;
2990 memory_region_unref(bounce
.mr
);
2991 atomic_mb_set(&bounce
.in_use
, false);
2992 cpu_notify_map_clients();
2995 void *cpu_physical_memory_map(hwaddr addr
,
2999 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3002 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3003 int is_write
, hwaddr access_len
)
3005 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3008 /* warning: addr must be aligned */
3009 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3011 MemTxResult
*result
,
3012 enum device_endian endian
)
3020 bool release_lock
= false;
3023 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3024 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3025 release_lock
|= prepare_mmio_access(mr
);
3028 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3029 #if defined(TARGET_WORDS_BIGENDIAN)
3030 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3034 if (endian
== DEVICE_BIG_ENDIAN
) {
3040 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3042 case DEVICE_LITTLE_ENDIAN
:
3043 val
= ldl_le_p(ptr
);
3045 case DEVICE_BIG_ENDIAN
:
3046 val
= ldl_be_p(ptr
);
3058 qemu_mutex_unlock_iothread();
3064 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3065 MemTxAttrs attrs
, MemTxResult
*result
)
3067 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3068 DEVICE_NATIVE_ENDIAN
);
3071 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3072 MemTxAttrs attrs
, MemTxResult
*result
)
3074 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3075 DEVICE_LITTLE_ENDIAN
);
3078 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3079 MemTxAttrs attrs
, MemTxResult
*result
)
3081 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3085 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3087 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3090 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3092 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3095 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3097 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3100 /* warning: addr must be aligned */
3101 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3103 MemTxResult
*result
,
3104 enum device_endian endian
)
3112 bool release_lock
= false;
3115 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3117 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3118 release_lock
|= prepare_mmio_access(mr
);
3121 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3122 #if defined(TARGET_WORDS_BIGENDIAN)
3123 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3127 if (endian
== DEVICE_BIG_ENDIAN
) {
3133 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3135 case DEVICE_LITTLE_ENDIAN
:
3136 val
= ldq_le_p(ptr
);
3138 case DEVICE_BIG_ENDIAN
:
3139 val
= ldq_be_p(ptr
);
3151 qemu_mutex_unlock_iothread();
3157 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3158 MemTxAttrs attrs
, MemTxResult
*result
)
3160 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3161 DEVICE_NATIVE_ENDIAN
);
3164 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3165 MemTxAttrs attrs
, MemTxResult
*result
)
3167 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3168 DEVICE_LITTLE_ENDIAN
);
3171 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3172 MemTxAttrs attrs
, MemTxResult
*result
)
3174 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3178 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3180 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3183 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3185 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3188 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3190 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3194 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3195 MemTxAttrs attrs
, MemTxResult
*result
)
3200 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3207 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3209 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3212 /* warning: addr must be aligned */
3213 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3216 MemTxResult
*result
,
3217 enum device_endian endian
)
3225 bool release_lock
= false;
3228 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3230 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3231 release_lock
|= prepare_mmio_access(mr
);
3234 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3235 #if defined(TARGET_WORDS_BIGENDIAN)
3236 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3240 if (endian
== DEVICE_BIG_ENDIAN
) {
3246 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3248 case DEVICE_LITTLE_ENDIAN
:
3249 val
= lduw_le_p(ptr
);
3251 case DEVICE_BIG_ENDIAN
:
3252 val
= lduw_be_p(ptr
);
3264 qemu_mutex_unlock_iothread();
3270 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3271 MemTxAttrs attrs
, MemTxResult
*result
)
3273 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3274 DEVICE_NATIVE_ENDIAN
);
3277 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3278 MemTxAttrs attrs
, MemTxResult
*result
)
3280 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3281 DEVICE_LITTLE_ENDIAN
);
3284 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3285 MemTxAttrs attrs
, MemTxResult
*result
)
3287 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3291 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3293 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3296 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3298 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3301 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3303 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3306 /* warning: addr must be aligned. The ram page is not masked as dirty
3307 and the code inside is not invalidated. It is useful if the dirty
3308 bits are used to track modified PTEs */
3309 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3310 MemTxAttrs attrs
, MemTxResult
*result
)
3317 uint8_t dirty_log_mask
;
3318 bool release_lock
= false;
3321 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3323 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3324 release_lock
|= prepare_mmio_access(mr
);
3326 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3328 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3331 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3332 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3333 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3341 qemu_mutex_unlock_iothread();
3346 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3348 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3351 /* warning: addr must be aligned */
3352 static inline void address_space_stl_internal(AddressSpace
*as
,
3353 hwaddr addr
, uint32_t val
,
3355 MemTxResult
*result
,
3356 enum device_endian endian
)
3363 bool release_lock
= false;
3366 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3368 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3369 release_lock
|= prepare_mmio_access(mr
);
3371 #if defined(TARGET_WORDS_BIGENDIAN)
3372 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3376 if (endian
== DEVICE_BIG_ENDIAN
) {
3380 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3383 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3385 case DEVICE_LITTLE_ENDIAN
:
3388 case DEVICE_BIG_ENDIAN
:
3395 invalidate_and_set_dirty(mr
, addr1
, 4);
3402 qemu_mutex_unlock_iothread();
3407 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3408 MemTxAttrs attrs
, MemTxResult
*result
)
3410 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3411 DEVICE_NATIVE_ENDIAN
);
3414 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3415 MemTxAttrs attrs
, MemTxResult
*result
)
3417 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3418 DEVICE_LITTLE_ENDIAN
);
3421 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3422 MemTxAttrs attrs
, MemTxResult
*result
)
3424 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3428 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3430 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3433 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3435 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3438 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3440 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3444 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3445 MemTxAttrs attrs
, MemTxResult
*result
)
3450 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3456 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3458 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3461 /* warning: addr must be aligned */
3462 static inline void address_space_stw_internal(AddressSpace
*as
,
3463 hwaddr addr
, uint32_t val
,
3465 MemTxResult
*result
,
3466 enum device_endian endian
)
3473 bool release_lock
= false;
3476 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3477 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3478 release_lock
|= prepare_mmio_access(mr
);
3480 #if defined(TARGET_WORDS_BIGENDIAN)
3481 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3485 if (endian
== DEVICE_BIG_ENDIAN
) {
3489 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3492 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3494 case DEVICE_LITTLE_ENDIAN
:
3497 case DEVICE_BIG_ENDIAN
:
3504 invalidate_and_set_dirty(mr
, addr1
, 2);
3511 qemu_mutex_unlock_iothread();
3516 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3517 MemTxAttrs attrs
, MemTxResult
*result
)
3519 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3520 DEVICE_NATIVE_ENDIAN
);
3523 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3524 MemTxAttrs attrs
, MemTxResult
*result
)
3526 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3527 DEVICE_LITTLE_ENDIAN
);
3530 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3531 MemTxAttrs attrs
, MemTxResult
*result
)
3533 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3537 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3539 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3542 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3544 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3547 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3549 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3553 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3554 MemTxAttrs attrs
, MemTxResult
*result
)
3558 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3564 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3565 MemTxAttrs attrs
, MemTxResult
*result
)
3568 val
= cpu_to_le64(val
);
3569 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3574 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3575 MemTxAttrs attrs
, MemTxResult
*result
)
3578 val
= cpu_to_be64(val
);
3579 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3585 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3587 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3590 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3592 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3595 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3597 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3600 /* virtual memory access for debug (includes writing to ROM) */
3601 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3602 uint8_t *buf
, int len
, int is_write
)
3612 page
= addr
& TARGET_PAGE_MASK
;
3613 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3614 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3615 /* if no physical page mapped, return an error */
3616 if (phys_addr
== -1)
3618 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3621 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3623 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3626 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3627 MEMTXATTRS_UNSPECIFIED
,
3638 * Allows code that needs to deal with migration bitmaps etc to still be built
3639 * target independent.
3641 size_t qemu_target_page_bits(void)
3643 return TARGET_PAGE_BITS
;
3649 * A helper function for the _utterly broken_ virtio device model to find out if
3650 * it's running on a big endian machine. Don't do this at home kids!
3652 bool target_words_bigendian(void);
3653 bool target_words_bigendian(void)
3655 #if defined(TARGET_WORDS_BIGENDIAN)
3662 #ifndef CONFIG_USER_ONLY
3663 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3670 mr
= address_space_translate(&address_space_memory
,
3671 phys_addr
, &phys_addr
, &l
, false);
3673 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3678 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3684 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3685 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3686 block
->used_length
, opaque
);