Fix typo in CFI build documentation
[qemu/ar7.git] / target / arm / op_helper.c
blob65cb37d088f86b507b1070632f6a8fbf4be9d068
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = env_cpu(env);
36 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
38 * Redirect NS EL1 exceptions to NS EL2. These are reported with
39 * their original syndrome register value, with the exception of
40 * SIMD/FP access traps, which are reported as uncategorized
41 * (see DDI0478C.a D1.10.4)
43 target_el = 2;
44 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
45 syndrome = syn_uncategorized();
49 assert(!excp_is_internal(excp));
50 cs->exception_index = excp;
51 env->exception.syndrome = syndrome;
52 env->exception.target_el = target_el;
54 return cs;
57 void raise_exception(CPUARMState *env, uint32_t excp,
58 uint32_t syndrome, uint32_t target_el)
60 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
61 cpu_loop_exit(cs);
64 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
65 uint32_t target_el, uintptr_t ra)
67 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
68 cpu_loop_exit_restore(cs, ra);
71 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
72 uint64_t ireg, uint64_t def)
74 uint64_t tmp, val = 0;
75 uint32_t maxindex = ((desc & 3) + 1) * 8;
76 uint32_t base_reg = desc >> 2;
77 uint32_t shift, index, reg;
79 for (shift = 0; shift < 64; shift += 8) {
80 index = (ireg >> shift) & 0xff;
81 if (index < maxindex) {
82 reg = base_reg + (index >> 3);
83 tmp = *aa32_vfp_dreg(env, reg);
84 tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
85 } else {
86 tmp = def & (0xffull << shift);
88 val |= tmp;
90 return val;
93 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
96 * Perform the v8M stack limit check for SP updates from translated code,
97 * raising an exception if the limit is breached.
99 if (newvalue < v7m_sp_limit(env)) {
100 CPUState *cs = env_cpu(env);
103 * Stack limit exceptions are a rare case, so rather than syncing
104 * PC/condbits before the call, we use cpu_restore_state() to
105 * get them right before raising the exception.
107 cpu_restore_state(cs, GETPC(), true);
108 raise_exception(env, EXCP_STKOF, 0, 1);
112 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
114 uint32_t res = a + b;
115 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
116 env->QF = 1;
117 return res;
120 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
122 uint32_t res = a + b;
123 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
124 env->QF = 1;
125 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
127 return res;
130 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
132 uint32_t res = a - b;
133 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
134 env->QF = 1;
135 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
137 return res;
140 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
142 uint32_t res = a + b;
143 if (res < a) {
144 env->QF = 1;
145 res = ~0;
147 return res;
150 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
152 uint32_t res = a - b;
153 if (res > a) {
154 env->QF = 1;
155 res = 0;
157 return res;
160 /* Signed saturation. */
161 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
163 int32_t top;
164 uint32_t mask;
166 top = val >> shift;
167 mask = (1u << shift) - 1;
168 if (top > 0) {
169 env->QF = 1;
170 return mask;
171 } else if (top < -1) {
172 env->QF = 1;
173 return ~mask;
175 return val;
178 /* Unsigned saturation. */
179 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
181 uint32_t max;
183 max = (1u << shift) - 1;
184 if (val < 0) {
185 env->QF = 1;
186 return 0;
187 } else if (val > max) {
188 env->QF = 1;
189 return max;
191 return val;
194 /* Signed saturate. */
195 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
197 return do_ssat(env, x, shift);
200 /* Dual halfword signed saturate. */
201 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
203 uint32_t res;
205 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
206 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
207 return res;
210 /* Unsigned saturate. */
211 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
213 return do_usat(env, x, shift);
216 /* Dual halfword unsigned saturate. */
217 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
219 uint32_t res;
221 res = (uint16_t)do_usat(env, (int16_t)x, shift);
222 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
223 return res;
226 void HELPER(setend)(CPUARMState *env)
228 env->uncached_cpsr ^= CPSR_E;
229 arm_rebuild_hflags(env);
232 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
233 * The function returns the target EL (1-3) if the instruction is to be trapped;
234 * otherwise it returns 0 indicating it is not trapped.
236 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
238 int cur_el = arm_current_el(env);
239 uint64_t mask;
241 if (arm_feature(env, ARM_FEATURE_M)) {
242 /* M profile cores can never trap WFI/WFE. */
243 return 0;
246 /* If we are currently in EL0 then we need to check if SCTLR is set up for
247 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
249 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
250 int target_el;
252 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
253 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
254 /* Secure EL0 and Secure PL1 is at EL3 */
255 target_el = 3;
256 } else {
257 target_el = 1;
260 if (!(env->cp15.sctlr_el[target_el] & mask)) {
261 return target_el;
265 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
266 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
267 * bits will be zero indicating no trap.
269 if (cur_el < 2) {
270 mask = is_wfe ? HCR_TWE : HCR_TWI;
271 if (arm_hcr_el2_eff(env) & mask) {
272 return 2;
276 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
277 if (cur_el < 3) {
278 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
279 if (env->cp15.scr_el3 & mask) {
280 return 3;
284 return 0;
287 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
289 CPUState *cs = env_cpu(env);
290 int target_el = check_wfx_trap(env, false);
292 if (cpu_has_work(cs)) {
293 /* Don't bother to go into our "low power state" if
294 * we would just wake up immediately.
296 return;
299 if (target_el) {
300 if (env->aarch64) {
301 env->pc -= insn_len;
302 } else {
303 env->regs[15] -= insn_len;
306 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
307 target_el);
310 cs->exception_index = EXCP_HLT;
311 cs->halted = 1;
312 cpu_loop_exit(cs);
315 void HELPER(wfe)(CPUARMState *env)
317 /* This is a hint instruction that is semantically different
318 * from YIELD even though we currently implement it identically.
319 * Don't actually halt the CPU, just yield back to top
320 * level loop. This is not going into a "low power state"
321 * (ie halting until some event occurs), so we never take
322 * a configurable trap to a different exception level.
324 HELPER(yield)(env);
327 void HELPER(yield)(CPUARMState *env)
329 CPUState *cs = env_cpu(env);
331 /* This is a non-trappable hint instruction that generally indicates
332 * that the guest is currently busy-looping. Yield control back to the
333 * top level loop so that a more deserving VCPU has a chance to run.
335 cs->exception_index = EXCP_YIELD;
336 cpu_loop_exit(cs);
339 /* Raise an internal-to-QEMU exception. This is limited to only
340 * those EXCP values which are special cases for QEMU to interrupt
341 * execution and not to be used for exceptions which are passed to
342 * the guest (those must all have syndrome information and thus should
343 * use exception_with_syndrome).
345 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
347 CPUState *cs = env_cpu(env);
349 assert(excp_is_internal(excp));
350 cs->exception_index = excp;
351 cpu_loop_exit(cs);
354 /* Raise an exception with the specified syndrome register value */
355 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
356 uint32_t syndrome, uint32_t target_el)
358 raise_exception(env, excp, syndrome, target_el);
361 /* Raise an EXCP_BKPT with the specified syndrome register value,
362 * targeting the correct exception level for debug exceptions.
364 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
366 int debug_el = arm_debug_target_el(env);
367 int cur_el = arm_current_el(env);
369 /* FSR will only be used if the debug target EL is AArch32. */
370 env->exception.fsr = arm_debug_exception_fsr(env);
371 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
372 * values to the guest that it shouldn't be able to see at its
373 * exception/security level.
375 env->exception.vaddress = 0;
377 * Other kinds of architectural debug exception are ignored if
378 * they target an exception level below the current one (in QEMU
379 * this is checked by arm_generate_debug_exceptions()). Breakpoint
380 * instructions are special because they always generate an exception
381 * to somewhere: if they can't go to the configured debug exception
382 * level they are taken to the current exception level.
384 if (debug_el < cur_el) {
385 debug_el = cur_el;
387 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
390 uint32_t HELPER(cpsr_read)(CPUARMState *env)
392 return cpsr_read(env) & ~CPSR_EXEC;
395 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
397 cpsr_write(env, val, mask, CPSRWriteByInstr);
398 /* TODO: Not all cpsr bits are relevant to hflags. */
399 arm_rebuild_hflags(env);
402 /* Write the CPSR for a 32-bit exception return */
403 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
405 uint32_t mask;
407 qemu_mutex_lock_iothread();
408 arm_call_pre_el_change_hook(env_archcpu(env));
409 qemu_mutex_unlock_iothread();
411 mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
412 cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
414 /* Generated code has already stored the new PC value, but
415 * without masking out its low bits, because which bits need
416 * masking depends on whether we're returning to Thumb or ARM
417 * state. Do the masking now.
419 env->regs[15] &= (env->thumb ? ~1 : ~3);
420 arm_rebuild_hflags(env);
422 qemu_mutex_lock_iothread();
423 arm_call_el_change_hook(env_archcpu(env));
424 qemu_mutex_unlock_iothread();
427 /* Access to user mode registers from privileged modes. */
428 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
430 uint32_t val;
432 if (regno == 13) {
433 val = env->banked_r13[BANK_USRSYS];
434 } else if (regno == 14) {
435 val = env->banked_r14[BANK_USRSYS];
436 } else if (regno >= 8
437 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
438 val = env->usr_regs[regno - 8];
439 } else {
440 val = env->regs[regno];
442 return val;
445 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
447 if (regno == 13) {
448 env->banked_r13[BANK_USRSYS] = val;
449 } else if (regno == 14) {
450 env->banked_r14[BANK_USRSYS] = val;
451 } else if (regno >= 8
452 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
453 env->usr_regs[regno - 8] = val;
454 } else {
455 env->regs[regno] = val;
459 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
461 if ((env->uncached_cpsr & CPSR_M) == mode) {
462 env->regs[13] = val;
463 } else {
464 env->banked_r13[bank_number(mode)] = val;
468 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
470 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
471 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
472 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
474 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
475 exception_target_el(env));
478 if ((env->uncached_cpsr & CPSR_M) == mode) {
479 return env->regs[13];
480 } else {
481 return env->banked_r13[bank_number(mode)];
485 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
486 uint32_t regno)
488 /* Raise an exception if the requested access is one of the UNPREDICTABLE
489 * cases; otherwise return. This broadly corresponds to the pseudocode
490 * BankedRegisterAccessValid() and SPSRAccessValid(),
491 * except that we have already handled some cases at translate time.
493 int curmode = env->uncached_cpsr & CPSR_M;
495 if (regno == 17) {
496 /* ELR_Hyp: a special case because access from tgtmode is OK */
497 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
498 goto undef;
500 return;
503 if (curmode == tgtmode) {
504 goto undef;
507 if (tgtmode == ARM_CPU_MODE_USR) {
508 switch (regno) {
509 case 8 ... 12:
510 if (curmode != ARM_CPU_MODE_FIQ) {
511 goto undef;
513 break;
514 case 13:
515 if (curmode == ARM_CPU_MODE_SYS) {
516 goto undef;
518 break;
519 case 14:
520 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
521 goto undef;
523 break;
524 default:
525 break;
529 if (tgtmode == ARM_CPU_MODE_HYP) {
530 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
531 if (curmode != ARM_CPU_MODE_MON) {
532 goto undef;
536 return;
538 undef:
539 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
540 exception_target_el(env));
543 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
544 uint32_t regno)
546 msr_mrs_banked_exc_checks(env, tgtmode, regno);
548 switch (regno) {
549 case 16: /* SPSRs */
550 env->banked_spsr[bank_number(tgtmode)] = value;
551 break;
552 case 17: /* ELR_Hyp */
553 env->elr_el[2] = value;
554 break;
555 case 13:
556 env->banked_r13[bank_number(tgtmode)] = value;
557 break;
558 case 14:
559 env->banked_r14[r14_bank_number(tgtmode)] = value;
560 break;
561 case 8 ... 12:
562 switch (tgtmode) {
563 case ARM_CPU_MODE_USR:
564 env->usr_regs[regno - 8] = value;
565 break;
566 case ARM_CPU_MODE_FIQ:
567 env->fiq_regs[regno - 8] = value;
568 break;
569 default:
570 g_assert_not_reached();
572 break;
573 default:
574 g_assert_not_reached();
578 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
580 msr_mrs_banked_exc_checks(env, tgtmode, regno);
582 switch (regno) {
583 case 16: /* SPSRs */
584 return env->banked_spsr[bank_number(tgtmode)];
585 case 17: /* ELR_Hyp */
586 return env->elr_el[2];
587 case 13:
588 return env->banked_r13[bank_number(tgtmode)];
589 case 14:
590 return env->banked_r14[r14_bank_number(tgtmode)];
591 case 8 ... 12:
592 switch (tgtmode) {
593 case ARM_CPU_MODE_USR:
594 return env->usr_regs[regno - 8];
595 case ARM_CPU_MODE_FIQ:
596 return env->fiq_regs[regno - 8];
597 default:
598 g_assert_not_reached();
600 default:
601 g_assert_not_reached();
605 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
606 uint32_t isread)
608 const ARMCPRegInfo *ri = rip;
609 int target_el;
611 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
612 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
613 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
617 * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
618 * to sysregs non accessible at EL0 to have UNDEF-ed already.
620 if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
621 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
622 uint32_t mask = 1 << ri->crn;
624 if (ri->type & ARM_CP_64BIT) {
625 mask = 1 << ri->crm;
628 /* T4 and T14 are RES0 */
629 mask &= ~((1 << 4) | (1 << 14));
631 if (env->cp15.hstr_el2 & mask) {
632 target_el = 2;
633 goto exept;
637 if (!ri->accessfn) {
638 return;
641 switch (ri->accessfn(env, ri, isread)) {
642 case CP_ACCESS_OK:
643 return;
644 case CP_ACCESS_TRAP:
645 target_el = exception_target_el(env);
646 break;
647 case CP_ACCESS_TRAP_EL2:
648 /* Requesting a trap to EL2 when we're in EL3 is
649 * a bug in the access function.
651 assert(arm_current_el(env) != 3);
652 target_el = 2;
653 break;
654 case CP_ACCESS_TRAP_EL3:
655 target_el = 3;
656 break;
657 case CP_ACCESS_TRAP_UNCATEGORIZED:
658 target_el = exception_target_el(env);
659 syndrome = syn_uncategorized();
660 break;
661 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
662 target_el = 2;
663 syndrome = syn_uncategorized();
664 break;
665 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
666 target_el = 3;
667 syndrome = syn_uncategorized();
668 break;
669 case CP_ACCESS_TRAP_FP_EL2:
670 target_el = 2;
671 /* Since we are an implementation that takes exceptions on a trapped
672 * conditional insn only if the insn has passed its condition code
673 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
674 * (which is also the required value for AArch64 traps).
676 syndrome = syn_fp_access_trap(1, 0xe, false);
677 break;
678 case CP_ACCESS_TRAP_FP_EL3:
679 target_el = 3;
680 syndrome = syn_fp_access_trap(1, 0xe, false);
681 break;
682 default:
683 g_assert_not_reached();
686 exept:
687 raise_exception(env, EXCP_UDEF, syndrome, target_el);
690 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
692 const ARMCPRegInfo *ri = rip;
694 if (ri->type & ARM_CP_IO) {
695 qemu_mutex_lock_iothread();
696 ri->writefn(env, ri, value);
697 qemu_mutex_unlock_iothread();
698 } else {
699 ri->writefn(env, ri, value);
703 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
705 const ARMCPRegInfo *ri = rip;
706 uint32_t res;
708 if (ri->type & ARM_CP_IO) {
709 qemu_mutex_lock_iothread();
710 res = ri->readfn(env, ri);
711 qemu_mutex_unlock_iothread();
712 } else {
713 res = ri->readfn(env, ri);
716 return res;
719 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
721 const ARMCPRegInfo *ri = rip;
723 if (ri->type & ARM_CP_IO) {
724 qemu_mutex_lock_iothread();
725 ri->writefn(env, ri, value);
726 qemu_mutex_unlock_iothread();
727 } else {
728 ri->writefn(env, ri, value);
732 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
734 const ARMCPRegInfo *ri = rip;
735 uint64_t res;
737 if (ri->type & ARM_CP_IO) {
738 qemu_mutex_lock_iothread();
739 res = ri->readfn(env, ri);
740 qemu_mutex_unlock_iothread();
741 } else {
742 res = ri->readfn(env, ri);
745 return res;
748 void HELPER(pre_hvc)(CPUARMState *env)
750 ARMCPU *cpu = env_archcpu(env);
751 int cur_el = arm_current_el(env);
752 /* FIXME: Use actual secure state. */
753 bool secure = false;
754 bool undef;
756 if (arm_is_psci_call(cpu, EXCP_HVC)) {
757 /* If PSCI is enabled and this looks like a valid PSCI call then
758 * that overrides the architecturally mandated HVC behaviour.
760 return;
763 if (!arm_feature(env, ARM_FEATURE_EL2)) {
764 /* If EL2 doesn't exist, HVC always UNDEFs */
765 undef = true;
766 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
767 /* EL3.HCE has priority over EL2.HCD. */
768 undef = !(env->cp15.scr_el3 & SCR_HCE);
769 } else {
770 undef = env->cp15.hcr_el2 & HCR_HCD;
773 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
774 * For ARMv8/AArch64, HVC is allowed in EL3.
775 * Note that we've already trapped HVC from EL0 at translation
776 * time.
778 if (secure && (!is_a64(env) || cur_el == 1)) {
779 undef = true;
782 if (undef) {
783 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
784 exception_target_el(env));
788 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
790 ARMCPU *cpu = env_archcpu(env);
791 int cur_el = arm_current_el(env);
792 bool secure = arm_is_secure(env);
793 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
796 * SMC behaviour is summarized in the following table.
797 * This helper handles the "Trap to EL2" and "Undef insn" cases.
798 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
799 * helper.
801 * -> ARM_FEATURE_EL3 and !SMD
802 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
804 * Conduit SMC, valid call Trap to EL2 PSCI Call
805 * Conduit SMC, inval call Trap to EL2 Trap to EL3
806 * Conduit not SMC Trap to EL2 Trap to EL3
809 * -> ARM_FEATURE_EL3 and SMD
810 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
812 * Conduit SMC, valid call Trap to EL2 PSCI Call
813 * Conduit SMC, inval call Trap to EL2 Undef insn
814 * Conduit not SMC Trap to EL2 Undef insn
817 * -> !ARM_FEATURE_EL3
818 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
820 * Conduit SMC, valid call Trap to EL2 PSCI Call
821 * Conduit SMC, inval call Trap to EL2 Undef insn
822 * Conduit not SMC Undef insn Undef insn
825 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
826 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
827 * extensions, SMD only applies to NS state.
828 * On ARMv7 without the Virtualization extensions, the SMD bit
829 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
830 * so we need not special case this here.
832 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
833 : smd_flag && !secure;
835 if (!arm_feature(env, ARM_FEATURE_EL3) &&
836 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
837 /* If we have no EL3 then SMC always UNDEFs and can't be
838 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
839 * firmware within QEMU, and we want an EL2 guest to be able
840 * to forbid its EL1 from making PSCI calls into QEMU's
841 * "firmware" via HCR.TSC, so for these purposes treat
842 * PSCI-via-SMC as implying an EL3.
843 * This handles the very last line of the previous table.
845 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
846 exception_target_el(env));
849 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
850 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
851 * We also want an EL2 guest to be able to forbid its EL1 from
852 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
853 * This handles all the "Trap to EL2" cases of the previous table.
855 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
858 /* Catch the two remaining "Undef insn" cases of the previous table:
859 * - PSCI conduit is SMC but we don't have a valid PCSI call,
860 * - We don't have EL3 or SMD is set.
862 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
863 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
864 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
865 exception_target_el(env));
869 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
870 The only way to do that in TCG is a conditional branch, which clobbers
871 all our temporaries. For now implement these as helper functions. */
873 /* Similarly for variable shift instructions. */
875 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
877 int shift = i & 0xff;
878 if (shift >= 32) {
879 if (shift == 32)
880 env->CF = x & 1;
881 else
882 env->CF = 0;
883 return 0;
884 } else if (shift != 0) {
885 env->CF = (x >> (32 - shift)) & 1;
886 return x << shift;
888 return x;
891 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
893 int shift = i & 0xff;
894 if (shift >= 32) {
895 if (shift == 32)
896 env->CF = (x >> 31) & 1;
897 else
898 env->CF = 0;
899 return 0;
900 } else if (shift != 0) {
901 env->CF = (x >> (shift - 1)) & 1;
902 return x >> shift;
904 return x;
907 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
909 int shift = i & 0xff;
910 if (shift >= 32) {
911 env->CF = (x >> 31) & 1;
912 return (int32_t)x >> 31;
913 } else if (shift != 0) {
914 env->CF = (x >> (shift - 1)) & 1;
915 return (int32_t)x >> shift;
917 return x;
920 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
922 int shift1, shift;
923 shift1 = i & 0xff;
924 shift = shift1 & 0x1f;
925 if (shift == 0) {
926 if (shift1 != 0)
927 env->CF = (x >> 31) & 1;
928 return x;
929 } else {
930 env->CF = (x >> (shift - 1)) & 1;
931 return ((uint32_t)x >> shift) | (x << (32 - shift));
935 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
936 uint32_t access_type, uint32_t mmu_idx,
937 uint32_t size)
939 uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
940 uintptr_t ra = GETPC();
942 if (likely(size <= in_page)) {
943 probe_access(env, ptr, size, access_type, mmu_idx, ra);
944 } else {
945 probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
946 probe_access(env, ptr + in_page, size - in_page,
947 access_type, mmu_idx, ra);