hw: Clean up includes
[qemu/ar7.git] / hw / xen / xen_pt_config_init.c
blob1b48f1918319c0fef2f113ef1d382cc369de444e
1 /*
2 * Copyright (c) 2007, Neocleus Corporation.
3 * Copyright (c) 2007, Intel Corporation.
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
8 * Alex Novik <alex@neocleus.com>
9 * Allen Kay <allen.m.kay@intel.com>
10 * Guy Zana <guy@neocleus.com>
12 * This file implements direct PCI assignment to a HVM guest
15 #include "qemu/osdep.h"
16 #include "qemu/timer.h"
17 #include "hw/xen/xen_backend.h"
18 #include "xen_pt.h"
20 #define XEN_PT_MERGE_VALUE(value, data, val_mask) \
21 (((value) & (val_mask)) | ((data) & ~(val_mask)))
23 #define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
25 /* prototype */
27 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
28 uint32_t real_offset, uint32_t *data);
31 /* helper */
33 /* A return value of 1 means the capability should NOT be exposed to guest. */
34 static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
36 switch (grp_id) {
37 case PCI_CAP_ID_EXP:
38 /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
39 * Controller looks trivial, e.g., the PCI Express Capabilities
40 * Register is 0. We should not try to expose it to guest.
42 * The datasheet is available at
43 * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
45 * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
46 * PCI Express Capability Structure of the VF of Intel 82599 10GbE
47 * Controller looks trivial, e.g., the PCI Express Capabilities
48 * Register is 0, so the Capability Version is 0 and
49 * xen_pt_pcie_size_init() would fail.
51 if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
52 d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
53 return 1;
55 break;
57 return 0;
60 /* find emulate register group entry */
61 XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
63 XenPTRegGroup *entry = NULL;
65 /* find register group entry */
66 QLIST_FOREACH(entry, &s->reg_grps, entries) {
67 /* check address */
68 if ((entry->base_offset <= address)
69 && ((entry->base_offset + entry->size) > address)) {
70 return entry;
74 /* group entry not found */
75 return NULL;
78 /* find emulate register entry */
79 XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
81 XenPTReg *reg_entry = NULL;
82 XenPTRegInfo *reg = NULL;
83 uint32_t real_offset = 0;
85 /* find register entry */
86 QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
87 reg = reg_entry->reg;
88 real_offset = reg_grp->base_offset + reg->offset;
89 /* check address */
90 if ((real_offset <= address)
91 && ((real_offset + reg->size) > address)) {
92 return reg_entry;
96 return NULL;
99 static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
100 XenPTRegInfo *reg, uint32_t valid_mask)
102 uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
104 if (!s->permissive) {
105 throughable_mask &= ~reg->res_mask;
108 return throughable_mask & valid_mask;
111 /****************
112 * general register functions
115 /* register initialization function */
117 static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
118 XenPTRegInfo *reg, uint32_t real_offset,
119 uint32_t *data)
121 *data = reg->init_val;
122 return 0;
125 /* Read register functions */
127 static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
128 uint8_t *value, uint8_t valid_mask)
130 XenPTRegInfo *reg = cfg_entry->reg;
131 uint8_t valid_emu_mask = 0;
132 uint8_t *data = cfg_entry->ptr.byte;
134 /* emulate byte register */
135 valid_emu_mask = reg->emu_mask & valid_mask;
136 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
138 return 0;
140 static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
141 uint16_t *value, uint16_t valid_mask)
143 XenPTRegInfo *reg = cfg_entry->reg;
144 uint16_t valid_emu_mask = 0;
145 uint16_t *data = cfg_entry->ptr.half_word;
147 /* emulate word register */
148 valid_emu_mask = reg->emu_mask & valid_mask;
149 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
151 return 0;
153 static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
154 uint32_t *value, uint32_t valid_mask)
156 XenPTRegInfo *reg = cfg_entry->reg;
157 uint32_t valid_emu_mask = 0;
158 uint32_t *data = cfg_entry->ptr.word;
160 /* emulate long register */
161 valid_emu_mask = reg->emu_mask & valid_mask;
162 *value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
164 return 0;
167 /* Write register functions */
169 static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
170 uint8_t *val, uint8_t dev_value,
171 uint8_t valid_mask)
173 XenPTRegInfo *reg = cfg_entry->reg;
174 uint8_t writable_mask = 0;
175 uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
176 uint8_t *data = cfg_entry->ptr.byte;
178 /* modify emulate register */
179 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
180 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
182 /* create value for writing to I/O device register */
183 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
184 throughable_mask);
186 return 0;
188 static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
189 uint16_t *val, uint16_t dev_value,
190 uint16_t valid_mask)
192 XenPTRegInfo *reg = cfg_entry->reg;
193 uint16_t writable_mask = 0;
194 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
195 uint16_t *data = cfg_entry->ptr.half_word;
197 /* modify emulate register */
198 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
199 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
201 /* create value for writing to I/O device register */
202 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
203 throughable_mask);
205 return 0;
207 static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
208 uint32_t *val, uint32_t dev_value,
209 uint32_t valid_mask)
211 XenPTRegInfo *reg = cfg_entry->reg;
212 uint32_t writable_mask = 0;
213 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
214 uint32_t *data = cfg_entry->ptr.word;
216 /* modify emulate register */
217 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
218 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
220 /* create value for writing to I/O device register */
221 *val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
222 throughable_mask);
224 return 0;
228 /* XenPTRegInfo declaration
229 * - only for emulated register (either a part or whole bit).
230 * - for passthrough register that need special behavior (like interacting with
231 * other component), set emu_mask to all 0 and specify r/w func properly.
232 * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
235 /********************
236 * Header Type0
239 static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
240 XenPTRegInfo *reg, uint32_t real_offset,
241 uint32_t *data)
243 *data = s->real_device.vendor_id;
244 return 0;
246 static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
247 XenPTRegInfo *reg, uint32_t real_offset,
248 uint32_t *data)
250 *data = s->real_device.device_id;
251 return 0;
253 static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
254 XenPTRegInfo *reg, uint32_t real_offset,
255 uint32_t *data)
257 XenPTRegGroup *reg_grp_entry = NULL;
258 XenPTReg *reg_entry = NULL;
259 uint32_t reg_field = 0;
261 /* find Header register group */
262 reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
263 if (reg_grp_entry) {
264 /* find Capabilities Pointer register */
265 reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
266 if (reg_entry) {
267 /* check Capabilities Pointer register */
268 if (*reg_entry->ptr.half_word) {
269 reg_field |= PCI_STATUS_CAP_LIST;
270 } else {
271 reg_field &= ~PCI_STATUS_CAP_LIST;
273 } else {
274 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
275 " for Capabilities Pointer register."
276 " (%s)\n", __func__);
277 return -1;
279 } else {
280 xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
281 " for Header. (%s)\n", __func__);
282 return -1;
285 *data = reg_field;
286 return 0;
288 static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
289 XenPTRegInfo *reg, uint32_t real_offset,
290 uint32_t *data)
292 /* read PCI_HEADER_TYPE */
293 *data = reg->init_val | 0x80;
294 return 0;
297 /* initialize Interrupt Pin register */
298 static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
299 XenPTRegInfo *reg, uint32_t real_offset,
300 uint32_t *data)
302 *data = xen_pt_pci_read_intx(s);
303 return 0;
306 /* Command register */
307 static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
308 uint16_t *val, uint16_t dev_value,
309 uint16_t valid_mask)
311 XenPTRegInfo *reg = cfg_entry->reg;
312 uint16_t writable_mask = 0;
313 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
314 uint16_t *data = cfg_entry->ptr.half_word;
316 /* modify emulate register */
317 writable_mask = ~reg->ro_mask & valid_mask;
318 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
320 /* create value for writing to I/O device register */
321 if (*val & PCI_COMMAND_INTX_DISABLE) {
322 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
323 } else {
324 if (s->machine_irq) {
325 throughable_mask |= PCI_COMMAND_INTX_DISABLE;
329 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
331 return 0;
334 /* BAR */
335 #define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
336 #define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
337 #define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
338 #define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
340 static bool is_64bit_bar(PCIIORegion *r)
342 return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
345 static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
347 if (is_64bit_bar(r)) {
348 uint64_t size64;
349 size64 = (r + 1)->size;
350 size64 <<= 32;
351 size64 += r->size;
352 return size64;
354 return r->size;
357 static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
358 int index)
360 PCIDevice *d = &s->dev;
361 XenPTRegion *region = NULL;
362 PCIIORegion *r;
364 /* check 64bit BAR */
365 if ((0 < index) && (index < PCI_ROM_SLOT)) {
366 int type = s->real_device.io_regions[index - 1].type;
368 if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
369 && (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
370 region = &s->bases[index - 1];
371 if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
372 return XEN_PT_BAR_FLAG_UPPER;
377 /* check unused BAR */
378 r = &d->io_regions[index];
379 if (!xen_pt_get_bar_size(r)) {
380 return XEN_PT_BAR_FLAG_UNUSED;
383 /* for ExpROM BAR */
384 if (index == PCI_ROM_SLOT) {
385 return XEN_PT_BAR_FLAG_MEM;
388 /* check BAR I/O indicator */
389 if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
390 return XEN_PT_BAR_FLAG_IO;
391 } else {
392 return XEN_PT_BAR_FLAG_MEM;
396 static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
398 if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
399 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
400 } else {
401 return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
405 static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
406 uint32_t real_offset, uint32_t *data)
408 uint32_t reg_field = 0;
409 int index;
411 index = xen_pt_bar_offset_to_index(reg->offset);
412 if (index < 0 || index >= PCI_NUM_REGIONS) {
413 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
414 return -1;
417 /* set BAR flag */
418 s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
419 if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
420 reg_field = XEN_PT_INVALID_REG;
423 *data = reg_field;
424 return 0;
426 static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
427 uint32_t *value, uint32_t valid_mask)
429 XenPTRegInfo *reg = cfg_entry->reg;
430 uint32_t valid_emu_mask = 0;
431 uint32_t bar_emu_mask = 0;
432 int index;
434 /* get BAR index */
435 index = xen_pt_bar_offset_to_index(reg->offset);
436 if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
437 XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
438 return -1;
441 /* use fixed-up value from kernel sysfs */
442 *value = base_address_with_flags(&s->real_device.io_regions[index]);
444 /* set emulate mask depend on BAR flag */
445 switch (s->bases[index].bar_flag) {
446 case XEN_PT_BAR_FLAG_MEM:
447 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
448 break;
449 case XEN_PT_BAR_FLAG_IO:
450 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
451 break;
452 case XEN_PT_BAR_FLAG_UPPER:
453 bar_emu_mask = XEN_PT_BAR_ALLF;
454 break;
455 default:
456 break;
459 /* emulate BAR */
460 valid_emu_mask = bar_emu_mask & valid_mask;
461 *value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
463 return 0;
465 static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
466 uint32_t *val, uint32_t dev_value,
467 uint32_t valid_mask)
469 XenPTRegInfo *reg = cfg_entry->reg;
470 XenPTRegion *base = NULL;
471 PCIDevice *d = &s->dev;
472 const PCIIORegion *r;
473 uint32_t writable_mask = 0;
474 uint32_t bar_emu_mask = 0;
475 uint32_t bar_ro_mask = 0;
476 uint32_t r_size = 0;
477 int index = 0;
478 uint32_t *data = cfg_entry->ptr.word;
480 index = xen_pt_bar_offset_to_index(reg->offset);
481 if (index < 0 || index >= PCI_NUM_REGIONS) {
482 XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
483 return -1;
486 r = &d->io_regions[index];
487 base = &s->bases[index];
488 r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
490 /* set emulate mask and read-only mask values depend on the BAR flag */
491 switch (s->bases[index].bar_flag) {
492 case XEN_PT_BAR_FLAG_MEM:
493 bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
494 if (!r_size) {
495 /* low 32 bits mask for 64 bit bars */
496 bar_ro_mask = XEN_PT_BAR_ALLF;
497 } else {
498 bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
500 break;
501 case XEN_PT_BAR_FLAG_IO:
502 bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
503 bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
504 break;
505 case XEN_PT_BAR_FLAG_UPPER:
506 bar_emu_mask = XEN_PT_BAR_ALLF;
507 bar_ro_mask = r_size ? r_size - 1 : 0;
508 break;
509 default:
510 break;
513 /* modify emulate register */
514 writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
515 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
517 /* check whether we need to update the virtual region address or not */
518 switch (s->bases[index].bar_flag) {
519 case XEN_PT_BAR_FLAG_UPPER:
520 case XEN_PT_BAR_FLAG_MEM:
521 /* nothing to do */
522 break;
523 case XEN_PT_BAR_FLAG_IO:
524 /* nothing to do */
525 break;
526 default:
527 break;
530 /* create value for writing to I/O device register */
531 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
533 return 0;
536 /* write Exp ROM BAR */
537 static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
538 XenPTReg *cfg_entry, uint32_t *val,
539 uint32_t dev_value, uint32_t valid_mask)
541 XenPTRegInfo *reg = cfg_entry->reg;
542 XenPTRegion *base = NULL;
543 PCIDevice *d = (PCIDevice *)&s->dev;
544 uint32_t writable_mask = 0;
545 uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
546 pcibus_t r_size = 0;
547 uint32_t bar_ro_mask = 0;
548 uint32_t *data = cfg_entry->ptr.word;
550 r_size = d->io_regions[PCI_ROM_SLOT].size;
551 base = &s->bases[PCI_ROM_SLOT];
552 /* align memory type resource size */
553 r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
555 /* set emulate mask and read-only mask */
556 bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
558 /* modify emulate register */
559 writable_mask = ~bar_ro_mask & valid_mask;
560 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
562 /* create value for writing to I/O device register */
563 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
565 return 0;
568 static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
569 XenPTReg *cfg_entry,
570 uint32_t *value, uint32_t valid_mask)
572 *value = igd_read_opregion(s);
573 return 0;
576 static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
577 XenPTReg *cfg_entry, uint32_t *value,
578 uint32_t dev_value, uint32_t valid_mask)
580 igd_write_opregion(s, *value);
581 return 0;
584 /* Header Type0 reg static information table */
585 static XenPTRegInfo xen_pt_emu_reg_header0[] = {
586 /* Vendor ID reg */
588 .offset = PCI_VENDOR_ID,
589 .size = 2,
590 .init_val = 0x0000,
591 .ro_mask = 0xFFFF,
592 .emu_mask = 0xFFFF,
593 .init = xen_pt_vendor_reg_init,
594 .u.w.read = xen_pt_word_reg_read,
595 .u.w.write = xen_pt_word_reg_write,
597 /* Device ID reg */
599 .offset = PCI_DEVICE_ID,
600 .size = 2,
601 .init_val = 0x0000,
602 .ro_mask = 0xFFFF,
603 .emu_mask = 0xFFFF,
604 .init = xen_pt_device_reg_init,
605 .u.w.read = xen_pt_word_reg_read,
606 .u.w.write = xen_pt_word_reg_write,
608 /* Command reg */
610 .offset = PCI_COMMAND,
611 .size = 2,
612 .init_val = 0x0000,
613 .res_mask = 0xF880,
614 .emu_mask = 0x0743,
615 .init = xen_pt_common_reg_init,
616 .u.w.read = xen_pt_word_reg_read,
617 .u.w.write = xen_pt_cmd_reg_write,
619 /* Capabilities Pointer reg */
621 .offset = PCI_CAPABILITY_LIST,
622 .size = 1,
623 .init_val = 0x00,
624 .ro_mask = 0xFF,
625 .emu_mask = 0xFF,
626 .init = xen_pt_ptr_reg_init,
627 .u.b.read = xen_pt_byte_reg_read,
628 .u.b.write = xen_pt_byte_reg_write,
630 /* Status reg */
631 /* use emulated Cap Ptr value to initialize,
632 * so need to be declared after Cap Ptr reg
635 .offset = PCI_STATUS,
636 .size = 2,
637 .init_val = 0x0000,
638 .res_mask = 0x0007,
639 .ro_mask = 0x06F8,
640 .rw1c_mask = 0xF900,
641 .emu_mask = 0x0010,
642 .init = xen_pt_status_reg_init,
643 .u.w.read = xen_pt_word_reg_read,
644 .u.w.write = xen_pt_word_reg_write,
646 /* Cache Line Size reg */
648 .offset = PCI_CACHE_LINE_SIZE,
649 .size = 1,
650 .init_val = 0x00,
651 .ro_mask = 0x00,
652 .emu_mask = 0xFF,
653 .init = xen_pt_common_reg_init,
654 .u.b.read = xen_pt_byte_reg_read,
655 .u.b.write = xen_pt_byte_reg_write,
657 /* Latency Timer reg */
659 .offset = PCI_LATENCY_TIMER,
660 .size = 1,
661 .init_val = 0x00,
662 .ro_mask = 0x00,
663 .emu_mask = 0xFF,
664 .init = xen_pt_common_reg_init,
665 .u.b.read = xen_pt_byte_reg_read,
666 .u.b.write = xen_pt_byte_reg_write,
668 /* Header Type reg */
670 .offset = PCI_HEADER_TYPE,
671 .size = 1,
672 .init_val = 0x00,
673 .ro_mask = 0xFF,
674 .emu_mask = 0x00,
675 .init = xen_pt_header_type_reg_init,
676 .u.b.read = xen_pt_byte_reg_read,
677 .u.b.write = xen_pt_byte_reg_write,
679 /* Interrupt Line reg */
681 .offset = PCI_INTERRUPT_LINE,
682 .size = 1,
683 .init_val = 0x00,
684 .ro_mask = 0x00,
685 .emu_mask = 0xFF,
686 .init = xen_pt_common_reg_init,
687 .u.b.read = xen_pt_byte_reg_read,
688 .u.b.write = xen_pt_byte_reg_write,
690 /* Interrupt Pin reg */
692 .offset = PCI_INTERRUPT_PIN,
693 .size = 1,
694 .init_val = 0x00,
695 .ro_mask = 0xFF,
696 .emu_mask = 0xFF,
697 .init = xen_pt_irqpin_reg_init,
698 .u.b.read = xen_pt_byte_reg_read,
699 .u.b.write = xen_pt_byte_reg_write,
701 /* BAR 0 reg */
702 /* mask of BAR need to be decided later, depends on IO/MEM type */
704 .offset = PCI_BASE_ADDRESS_0,
705 .size = 4,
706 .init_val = 0x00000000,
707 .init = xen_pt_bar_reg_init,
708 .u.dw.read = xen_pt_bar_reg_read,
709 .u.dw.write = xen_pt_bar_reg_write,
711 /* BAR 1 reg */
713 .offset = PCI_BASE_ADDRESS_1,
714 .size = 4,
715 .init_val = 0x00000000,
716 .init = xen_pt_bar_reg_init,
717 .u.dw.read = xen_pt_bar_reg_read,
718 .u.dw.write = xen_pt_bar_reg_write,
720 /* BAR 2 reg */
722 .offset = PCI_BASE_ADDRESS_2,
723 .size = 4,
724 .init_val = 0x00000000,
725 .init = xen_pt_bar_reg_init,
726 .u.dw.read = xen_pt_bar_reg_read,
727 .u.dw.write = xen_pt_bar_reg_write,
729 /* BAR 3 reg */
731 .offset = PCI_BASE_ADDRESS_3,
732 .size = 4,
733 .init_val = 0x00000000,
734 .init = xen_pt_bar_reg_init,
735 .u.dw.read = xen_pt_bar_reg_read,
736 .u.dw.write = xen_pt_bar_reg_write,
738 /* BAR 4 reg */
740 .offset = PCI_BASE_ADDRESS_4,
741 .size = 4,
742 .init_val = 0x00000000,
743 .init = xen_pt_bar_reg_init,
744 .u.dw.read = xen_pt_bar_reg_read,
745 .u.dw.write = xen_pt_bar_reg_write,
747 /* BAR 5 reg */
749 .offset = PCI_BASE_ADDRESS_5,
750 .size = 4,
751 .init_val = 0x00000000,
752 .init = xen_pt_bar_reg_init,
753 .u.dw.read = xen_pt_bar_reg_read,
754 .u.dw.write = xen_pt_bar_reg_write,
756 /* Expansion ROM BAR reg */
758 .offset = PCI_ROM_ADDRESS,
759 .size = 4,
760 .init_val = 0x00000000,
761 .ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
762 .emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
763 .init = xen_pt_bar_reg_init,
764 .u.dw.read = xen_pt_long_reg_read,
765 .u.dw.write = xen_pt_exp_rom_bar_reg_write,
768 .size = 0,
773 /*********************************
774 * Vital Product Data Capability
777 /* Vital Product Data Capability Structure reg static information table */
778 static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
780 .offset = PCI_CAP_LIST_NEXT,
781 .size = 1,
782 .init_val = 0x00,
783 .ro_mask = 0xFF,
784 .emu_mask = 0xFF,
785 .init = xen_pt_ptr_reg_init,
786 .u.b.read = xen_pt_byte_reg_read,
787 .u.b.write = xen_pt_byte_reg_write,
790 .offset = PCI_VPD_ADDR,
791 .size = 2,
792 .ro_mask = 0x0003,
793 .emu_mask = 0x0003,
794 .init = xen_pt_common_reg_init,
795 .u.w.read = xen_pt_word_reg_read,
796 .u.w.write = xen_pt_word_reg_write,
799 .size = 0,
804 /**************************************
805 * Vendor Specific Capability
808 /* Vendor Specific Capability Structure reg static information table */
809 static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
811 .offset = PCI_CAP_LIST_NEXT,
812 .size = 1,
813 .init_val = 0x00,
814 .ro_mask = 0xFF,
815 .emu_mask = 0xFF,
816 .init = xen_pt_ptr_reg_init,
817 .u.b.read = xen_pt_byte_reg_read,
818 .u.b.write = xen_pt_byte_reg_write,
821 .size = 0,
826 /*****************************
827 * PCI Express Capability
830 static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
831 uint32_t offset)
833 uint8_t flag;
834 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
835 return 0;
837 return flag & PCI_EXP_FLAGS_VERS;
840 static inline uint8_t get_device_type(XenPCIPassthroughState *s,
841 uint32_t offset)
843 uint8_t flag;
844 if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
845 return 0;
847 return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
850 /* initialize Link Control register */
851 static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
852 XenPTRegInfo *reg, uint32_t real_offset,
853 uint32_t *data)
855 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
856 uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
858 /* no need to initialize in case of Root Complex Integrated Endpoint
859 * with cap_ver 1.x
861 if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
862 *data = XEN_PT_INVALID_REG;
865 *data = reg->init_val;
866 return 0;
868 /* initialize Device Control 2 register */
869 static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
870 XenPTRegInfo *reg, uint32_t real_offset,
871 uint32_t *data)
873 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
875 /* no need to initialize in case of cap_ver 1.x */
876 if (cap_ver == 1) {
877 *data = XEN_PT_INVALID_REG;
880 *data = reg->init_val;
881 return 0;
883 /* initialize Link Control 2 register */
884 static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
885 XenPTRegInfo *reg, uint32_t real_offset,
886 uint32_t *data)
888 uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
889 uint32_t reg_field = 0;
891 /* no need to initialize in case of cap_ver 1.x */
892 if (cap_ver == 1) {
893 reg_field = XEN_PT_INVALID_REG;
894 } else {
895 /* set Supported Link Speed */
896 uint8_t lnkcap;
897 int rc;
898 rc = xen_host_pci_get_byte(&s->real_device,
899 real_offset - reg->offset + PCI_EXP_LNKCAP,
900 &lnkcap);
901 if (rc) {
902 return rc;
904 reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
907 *data = reg_field;
908 return 0;
911 /* PCI Express Capability Structure reg static information table */
912 static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
913 /* Next Pointer reg */
915 .offset = PCI_CAP_LIST_NEXT,
916 .size = 1,
917 .init_val = 0x00,
918 .ro_mask = 0xFF,
919 .emu_mask = 0xFF,
920 .init = xen_pt_ptr_reg_init,
921 .u.b.read = xen_pt_byte_reg_read,
922 .u.b.write = xen_pt_byte_reg_write,
924 /* Device Capabilities reg */
926 .offset = PCI_EXP_DEVCAP,
927 .size = 4,
928 .init_val = 0x00000000,
929 .ro_mask = 0xFFFFFFFF,
930 .emu_mask = 0x10000000,
931 .init = xen_pt_common_reg_init,
932 .u.dw.read = xen_pt_long_reg_read,
933 .u.dw.write = xen_pt_long_reg_write,
935 /* Device Control reg */
937 .offset = PCI_EXP_DEVCTL,
938 .size = 2,
939 .init_val = 0x2810,
940 .ro_mask = 0x8400,
941 .emu_mask = 0xFFFF,
942 .init = xen_pt_common_reg_init,
943 .u.w.read = xen_pt_word_reg_read,
944 .u.w.write = xen_pt_word_reg_write,
946 /* Device Status reg */
948 .offset = PCI_EXP_DEVSTA,
949 .size = 2,
950 .res_mask = 0xFFC0,
951 .ro_mask = 0x0030,
952 .rw1c_mask = 0x000F,
953 .init = xen_pt_common_reg_init,
954 .u.w.read = xen_pt_word_reg_read,
955 .u.w.write = xen_pt_word_reg_write,
957 /* Link Control reg */
959 .offset = PCI_EXP_LNKCTL,
960 .size = 2,
961 .init_val = 0x0000,
962 .ro_mask = 0xFC34,
963 .emu_mask = 0xFFFF,
964 .init = xen_pt_linkctrl_reg_init,
965 .u.w.read = xen_pt_word_reg_read,
966 .u.w.write = xen_pt_word_reg_write,
968 /* Link Status reg */
970 .offset = PCI_EXP_LNKSTA,
971 .size = 2,
972 .ro_mask = 0x3FFF,
973 .rw1c_mask = 0xC000,
974 .init = xen_pt_common_reg_init,
975 .u.w.read = xen_pt_word_reg_read,
976 .u.w.write = xen_pt_word_reg_write,
978 /* Device Control 2 reg */
980 .offset = 0x28,
981 .size = 2,
982 .init_val = 0x0000,
983 .ro_mask = 0xFFE0,
984 .emu_mask = 0xFFFF,
985 .init = xen_pt_devctrl2_reg_init,
986 .u.w.read = xen_pt_word_reg_read,
987 .u.w.write = xen_pt_word_reg_write,
989 /* Link Control 2 reg */
991 .offset = 0x30,
992 .size = 2,
993 .init_val = 0x0000,
994 .ro_mask = 0xE040,
995 .emu_mask = 0xFFFF,
996 .init = xen_pt_linkctrl2_reg_init,
997 .u.w.read = xen_pt_word_reg_read,
998 .u.w.write = xen_pt_word_reg_write,
1001 .size = 0,
1006 /*********************************
1007 * Power Management Capability
1010 /* Power Management Capability reg static information table */
1011 static XenPTRegInfo xen_pt_emu_reg_pm[] = {
1012 /* Next Pointer reg */
1014 .offset = PCI_CAP_LIST_NEXT,
1015 .size = 1,
1016 .init_val = 0x00,
1017 .ro_mask = 0xFF,
1018 .emu_mask = 0xFF,
1019 .init = xen_pt_ptr_reg_init,
1020 .u.b.read = xen_pt_byte_reg_read,
1021 .u.b.write = xen_pt_byte_reg_write,
1023 /* Power Management Capabilities reg */
1025 .offset = PCI_CAP_FLAGS,
1026 .size = 2,
1027 .init_val = 0x0000,
1028 .ro_mask = 0xFFFF,
1029 .emu_mask = 0xF9C8,
1030 .init = xen_pt_common_reg_init,
1031 .u.w.read = xen_pt_word_reg_read,
1032 .u.w.write = xen_pt_word_reg_write,
1034 /* PCI Power Management Control/Status reg */
1036 .offset = PCI_PM_CTRL,
1037 .size = 2,
1038 .init_val = 0x0008,
1039 .res_mask = 0x00F0,
1040 .ro_mask = 0x610C,
1041 .rw1c_mask = 0x8000,
1042 .emu_mask = 0x810B,
1043 .init = xen_pt_common_reg_init,
1044 .u.w.read = xen_pt_word_reg_read,
1045 .u.w.write = xen_pt_word_reg_write,
1048 .size = 0,
1053 /********************************
1054 * MSI Capability
1057 /* Helper */
1058 #define xen_pt_msi_check_type(offset, flags, what) \
1059 ((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
1060 PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
1062 /* Message Control register */
1063 static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
1064 XenPTRegInfo *reg, uint32_t real_offset,
1065 uint32_t *data)
1067 XenPTMSI *msi = s->msi;
1068 uint16_t reg_field;
1069 int rc;
1071 /* use I/O device register's value as initial value */
1072 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1073 if (rc) {
1074 return rc;
1076 if (reg_field & PCI_MSI_FLAGS_ENABLE) {
1077 XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
1078 xen_host_pci_set_word(&s->real_device, real_offset,
1079 reg_field & ~PCI_MSI_FLAGS_ENABLE);
1081 msi->flags |= reg_field;
1082 msi->ctrl_offset = real_offset;
1083 msi->initialized = false;
1084 msi->mapped = false;
1086 *data = reg->init_val;
1087 return 0;
1089 static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
1090 XenPTReg *cfg_entry, uint16_t *val,
1091 uint16_t dev_value, uint16_t valid_mask)
1093 XenPTRegInfo *reg = cfg_entry->reg;
1094 XenPTMSI *msi = s->msi;
1095 uint16_t writable_mask = 0;
1096 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1097 uint16_t *data = cfg_entry->ptr.half_word;
1099 /* Currently no support for multi-vector */
1100 if (*val & PCI_MSI_FLAGS_QSIZE) {
1101 XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
1104 /* modify emulate register */
1105 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1106 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1107 msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
1109 /* create value for writing to I/O device register */
1110 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1112 /* update MSI */
1113 if (*val & PCI_MSI_FLAGS_ENABLE) {
1114 /* setup MSI pirq for the first time */
1115 if (!msi->initialized) {
1116 /* Init physical one */
1117 XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
1118 if (xen_pt_msi_setup(s)) {
1119 /* We do not broadcast the error to the framework code, so
1120 * that MSI errors are contained in MSI emulation code and
1121 * QEMU can go on running.
1122 * Guest MSI would be actually not working.
1124 *val &= ~PCI_MSI_FLAGS_ENABLE;
1125 XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
1126 return 0;
1128 if (xen_pt_msi_update(s)) {
1129 *val &= ~PCI_MSI_FLAGS_ENABLE;
1130 XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
1131 return 0;
1133 msi->initialized = true;
1134 msi->mapped = true;
1136 msi->flags |= PCI_MSI_FLAGS_ENABLE;
1137 } else if (msi->mapped) {
1138 xen_pt_msi_disable(s);
1141 return 0;
1144 /* initialize Message Upper Address register */
1145 static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
1146 XenPTRegInfo *reg, uint32_t real_offset,
1147 uint32_t *data)
1149 /* no need to initialize in case of 32 bit type */
1150 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1151 *data = XEN_PT_INVALID_REG;
1152 } else {
1153 *data = reg->init_val;
1156 return 0;
1158 /* this function will be called twice (for 32 bit and 64 bit type) */
1159 /* initialize Message Data register */
1160 static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
1161 XenPTRegInfo *reg, uint32_t real_offset,
1162 uint32_t *data)
1164 uint32_t flags = s->msi->flags;
1165 uint32_t offset = reg->offset;
1167 /* check the offset whether matches the type or not */
1168 if (xen_pt_msi_check_type(offset, flags, DATA)) {
1169 *data = reg->init_val;
1170 } else {
1171 *data = XEN_PT_INVALID_REG;
1173 return 0;
1176 /* this function will be called twice (for 32 bit and 64 bit type) */
1177 /* initialize Mask register */
1178 static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
1179 XenPTRegInfo *reg, uint32_t real_offset,
1180 uint32_t *data)
1182 uint32_t flags = s->msi->flags;
1184 /* check the offset whether matches the type or not */
1185 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1186 *data = XEN_PT_INVALID_REG;
1187 } else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
1188 *data = reg->init_val;
1189 } else {
1190 *data = XEN_PT_INVALID_REG;
1192 return 0;
1195 /* this function will be called twice (for 32 bit and 64 bit type) */
1196 /* initialize Pending register */
1197 static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
1198 XenPTRegInfo *reg, uint32_t real_offset,
1199 uint32_t *data)
1201 uint32_t flags = s->msi->flags;
1203 /* check the offset whether matches the type or not */
1204 if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
1205 *data = XEN_PT_INVALID_REG;
1206 } else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
1207 *data = reg->init_val;
1208 } else {
1209 *data = XEN_PT_INVALID_REG;
1211 return 0;
1214 /* write Message Address register */
1215 static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
1216 XenPTReg *cfg_entry, uint32_t *val,
1217 uint32_t dev_value, uint32_t valid_mask)
1219 XenPTRegInfo *reg = cfg_entry->reg;
1220 uint32_t writable_mask = 0;
1221 uint32_t old_addr = *cfg_entry->ptr.word;
1222 uint32_t *data = cfg_entry->ptr.word;
1224 /* modify emulate register */
1225 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1226 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1227 s->msi->addr_lo = *data;
1229 /* create value for writing to I/O device register */
1230 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1232 /* update MSI */
1233 if (*data != old_addr) {
1234 if (s->msi->mapped) {
1235 xen_pt_msi_update(s);
1239 return 0;
1241 /* write Message Upper Address register */
1242 static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
1243 XenPTReg *cfg_entry, uint32_t *val,
1244 uint32_t dev_value, uint32_t valid_mask)
1246 XenPTRegInfo *reg = cfg_entry->reg;
1247 uint32_t writable_mask = 0;
1248 uint32_t old_addr = *cfg_entry->ptr.word;
1249 uint32_t *data = cfg_entry->ptr.word;
1251 /* check whether the type is 64 bit or not */
1252 if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
1253 XEN_PT_ERR(&s->dev,
1254 "Can't write to the upper address without 64 bit support\n");
1255 return -1;
1258 /* modify emulate register */
1259 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1260 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1261 /* update the msi_info too */
1262 s->msi->addr_hi = *data;
1264 /* create value for writing to I/O device register */
1265 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1267 /* update MSI */
1268 if (*data != old_addr) {
1269 if (s->msi->mapped) {
1270 xen_pt_msi_update(s);
1274 return 0;
1278 /* this function will be called twice (for 32 bit and 64 bit type) */
1279 /* write Message Data register */
1280 static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
1281 XenPTReg *cfg_entry, uint16_t *val,
1282 uint16_t dev_value, uint16_t valid_mask)
1284 XenPTRegInfo *reg = cfg_entry->reg;
1285 XenPTMSI *msi = s->msi;
1286 uint16_t writable_mask = 0;
1287 uint16_t old_data = *cfg_entry->ptr.half_word;
1288 uint32_t offset = reg->offset;
1289 uint16_t *data = cfg_entry->ptr.half_word;
1291 /* check the offset whether matches the type or not */
1292 if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
1293 /* exit I/O emulator */
1294 XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
1295 return -1;
1298 /* modify emulate register */
1299 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1300 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1301 /* update the msi_info too */
1302 msi->data = *data;
1304 /* create value for writing to I/O device register */
1305 *val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
1307 /* update MSI */
1308 if (*data != old_data) {
1309 if (msi->mapped) {
1310 xen_pt_msi_update(s);
1314 return 0;
1317 /* MSI Capability Structure reg static information table */
1318 static XenPTRegInfo xen_pt_emu_reg_msi[] = {
1319 /* Next Pointer reg */
1321 .offset = PCI_CAP_LIST_NEXT,
1322 .size = 1,
1323 .init_val = 0x00,
1324 .ro_mask = 0xFF,
1325 .emu_mask = 0xFF,
1326 .init = xen_pt_ptr_reg_init,
1327 .u.b.read = xen_pt_byte_reg_read,
1328 .u.b.write = xen_pt_byte_reg_write,
1330 /* Message Control reg */
1332 .offset = PCI_MSI_FLAGS,
1333 .size = 2,
1334 .init_val = 0x0000,
1335 .res_mask = 0xFE00,
1336 .ro_mask = 0x018E,
1337 .emu_mask = 0x017E,
1338 .init = xen_pt_msgctrl_reg_init,
1339 .u.w.read = xen_pt_word_reg_read,
1340 .u.w.write = xen_pt_msgctrl_reg_write,
1342 /* Message Address reg */
1344 .offset = PCI_MSI_ADDRESS_LO,
1345 .size = 4,
1346 .init_val = 0x00000000,
1347 .ro_mask = 0x00000003,
1348 .emu_mask = 0xFFFFFFFF,
1349 .init = xen_pt_common_reg_init,
1350 .u.dw.read = xen_pt_long_reg_read,
1351 .u.dw.write = xen_pt_msgaddr32_reg_write,
1353 /* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
1355 .offset = PCI_MSI_ADDRESS_HI,
1356 .size = 4,
1357 .init_val = 0x00000000,
1358 .ro_mask = 0x00000000,
1359 .emu_mask = 0xFFFFFFFF,
1360 .init = xen_pt_msgaddr64_reg_init,
1361 .u.dw.read = xen_pt_long_reg_read,
1362 .u.dw.write = xen_pt_msgaddr64_reg_write,
1364 /* Message Data reg (16 bits of data for 32-bit devices) */
1366 .offset = PCI_MSI_DATA_32,
1367 .size = 2,
1368 .init_val = 0x0000,
1369 .ro_mask = 0x0000,
1370 .emu_mask = 0xFFFF,
1371 .init = xen_pt_msgdata_reg_init,
1372 .u.w.read = xen_pt_word_reg_read,
1373 .u.w.write = xen_pt_msgdata_reg_write,
1375 /* Message Data reg (16 bits of data for 64-bit devices) */
1377 .offset = PCI_MSI_DATA_64,
1378 .size = 2,
1379 .init_val = 0x0000,
1380 .ro_mask = 0x0000,
1381 .emu_mask = 0xFFFF,
1382 .init = xen_pt_msgdata_reg_init,
1383 .u.w.read = xen_pt_word_reg_read,
1384 .u.w.write = xen_pt_msgdata_reg_write,
1386 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1388 .offset = PCI_MSI_MASK_32,
1389 .size = 4,
1390 .init_val = 0x00000000,
1391 .ro_mask = 0xFFFFFFFF,
1392 .emu_mask = 0xFFFFFFFF,
1393 .init = xen_pt_mask_reg_init,
1394 .u.dw.read = xen_pt_long_reg_read,
1395 .u.dw.write = xen_pt_long_reg_write,
1397 /* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1399 .offset = PCI_MSI_MASK_64,
1400 .size = 4,
1401 .init_val = 0x00000000,
1402 .ro_mask = 0xFFFFFFFF,
1403 .emu_mask = 0xFFFFFFFF,
1404 .init = xen_pt_mask_reg_init,
1405 .u.dw.read = xen_pt_long_reg_read,
1406 .u.dw.write = xen_pt_long_reg_write,
1408 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
1410 .offset = PCI_MSI_MASK_32 + 4,
1411 .size = 4,
1412 .init_val = 0x00000000,
1413 .ro_mask = 0xFFFFFFFF,
1414 .emu_mask = 0x00000000,
1415 .init = xen_pt_pending_reg_init,
1416 .u.dw.read = xen_pt_long_reg_read,
1417 .u.dw.write = xen_pt_long_reg_write,
1419 /* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
1421 .offset = PCI_MSI_MASK_64 + 4,
1422 .size = 4,
1423 .init_val = 0x00000000,
1424 .ro_mask = 0xFFFFFFFF,
1425 .emu_mask = 0x00000000,
1426 .init = xen_pt_pending_reg_init,
1427 .u.dw.read = xen_pt_long_reg_read,
1428 .u.dw.write = xen_pt_long_reg_write,
1431 .size = 0,
1436 /**************************************
1437 * MSI-X Capability
1440 /* Message Control register for MSI-X */
1441 static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
1442 XenPTRegInfo *reg, uint32_t real_offset,
1443 uint32_t *data)
1445 uint16_t reg_field;
1446 int rc;
1448 /* use I/O device register's value as initial value */
1449 rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
1450 if (rc) {
1451 return rc;
1453 if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
1454 XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
1455 xen_host_pci_set_word(&s->real_device, real_offset,
1456 reg_field & ~PCI_MSIX_FLAGS_ENABLE);
1459 s->msix->ctrl_offset = real_offset;
1461 *data = reg->init_val;
1462 return 0;
1464 static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
1465 XenPTReg *cfg_entry, uint16_t *val,
1466 uint16_t dev_value, uint16_t valid_mask)
1468 XenPTRegInfo *reg = cfg_entry->reg;
1469 uint16_t writable_mask = 0;
1470 uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
1471 int debug_msix_enabled_old;
1472 uint16_t *data = cfg_entry->ptr.half_word;
1474 /* modify emulate register */
1475 writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
1476 *data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
1478 /* create value for writing to I/O device register */
1479 *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
1481 /* update MSI-X */
1482 if ((*val & PCI_MSIX_FLAGS_ENABLE)
1483 && !(*val & PCI_MSIX_FLAGS_MASKALL)) {
1484 xen_pt_msix_update(s);
1485 } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
1486 xen_pt_msix_disable(s);
1489 s->msix->maskall = *val & PCI_MSIX_FLAGS_MASKALL;
1491 debug_msix_enabled_old = s->msix->enabled;
1492 s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
1493 if (s->msix->enabled != debug_msix_enabled_old) {
1494 XEN_PT_LOG(&s->dev, "%s MSI-X\n",
1495 s->msix->enabled ? "enable" : "disable");
1498 return 0;
1501 /* MSI-X Capability Structure reg static information table */
1502 static XenPTRegInfo xen_pt_emu_reg_msix[] = {
1503 /* Next Pointer reg */
1505 .offset = PCI_CAP_LIST_NEXT,
1506 .size = 1,
1507 .init_val = 0x00,
1508 .ro_mask = 0xFF,
1509 .emu_mask = 0xFF,
1510 .init = xen_pt_ptr_reg_init,
1511 .u.b.read = xen_pt_byte_reg_read,
1512 .u.b.write = xen_pt_byte_reg_write,
1514 /* Message Control reg */
1516 .offset = PCI_MSI_FLAGS,
1517 .size = 2,
1518 .init_val = 0x0000,
1519 .res_mask = 0x3800,
1520 .ro_mask = 0x07FF,
1521 .emu_mask = 0x0000,
1522 .init = xen_pt_msixctrl_reg_init,
1523 .u.w.read = xen_pt_word_reg_read,
1524 .u.w.write = xen_pt_msixctrl_reg_write,
1527 .size = 0,
1531 static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
1532 /* Intel IGFX OpRegion reg */
1534 .offset = 0x0,
1535 .size = 4,
1536 .init_val = 0,
1537 .u.dw.read = xen_pt_intel_opregion_read,
1538 .u.dw.write = xen_pt_intel_opregion_write,
1541 .size = 0,
1545 /****************************
1546 * Capabilities
1549 /* capability structure register group size functions */
1551 static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
1552 const XenPTRegGroupInfo *grp_reg,
1553 uint32_t base_offset, uint8_t *size)
1555 *size = grp_reg->grp_size;
1556 return 0;
1558 /* get Vendor Specific Capability Structure register group size */
1559 static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
1560 const XenPTRegGroupInfo *grp_reg,
1561 uint32_t base_offset, uint8_t *size)
1563 return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
1565 /* get PCI Express Capability Structure register group size */
1566 static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
1567 const XenPTRegGroupInfo *grp_reg,
1568 uint32_t base_offset, uint8_t *size)
1570 PCIDevice *d = &s->dev;
1571 uint8_t version = get_capability_version(s, base_offset);
1572 uint8_t type = get_device_type(s, base_offset);
1573 uint8_t pcie_size = 0;
1576 /* calculate size depend on capability version and device/port type */
1577 /* in case of PCI Express Base Specification Rev 1.x */
1578 if (version == 1) {
1579 /* The PCI Express Capabilities, Device Capabilities, and Device
1580 * Status/Control registers are required for all PCI Express devices.
1581 * The Link Capabilities and Link Status/Control are required for all
1582 * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
1583 * are not required to implement registers other than those listed
1584 * above and terminate the capability structure.
1586 switch (type) {
1587 case PCI_EXP_TYPE_ENDPOINT:
1588 case PCI_EXP_TYPE_LEG_END:
1589 pcie_size = 0x14;
1590 break;
1591 case PCI_EXP_TYPE_RC_END:
1592 /* has no link */
1593 pcie_size = 0x0C;
1594 break;
1595 /* only EndPoint passthrough is supported */
1596 case PCI_EXP_TYPE_ROOT_PORT:
1597 case PCI_EXP_TYPE_UPSTREAM:
1598 case PCI_EXP_TYPE_DOWNSTREAM:
1599 case PCI_EXP_TYPE_PCI_BRIDGE:
1600 case PCI_EXP_TYPE_PCIE_BRIDGE:
1601 case PCI_EXP_TYPE_RC_EC:
1602 default:
1603 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1604 return -1;
1607 /* in case of PCI Express Base Specification Rev 2.0 */
1608 else if (version == 2) {
1609 switch (type) {
1610 case PCI_EXP_TYPE_ENDPOINT:
1611 case PCI_EXP_TYPE_LEG_END:
1612 case PCI_EXP_TYPE_RC_END:
1613 /* For Functions that do not implement the registers,
1614 * these spaces must be hardwired to 0b.
1616 pcie_size = 0x3C;
1617 break;
1618 /* only EndPoint passthrough is supported */
1619 case PCI_EXP_TYPE_ROOT_PORT:
1620 case PCI_EXP_TYPE_UPSTREAM:
1621 case PCI_EXP_TYPE_DOWNSTREAM:
1622 case PCI_EXP_TYPE_PCI_BRIDGE:
1623 case PCI_EXP_TYPE_PCIE_BRIDGE:
1624 case PCI_EXP_TYPE_RC_EC:
1625 default:
1626 XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
1627 return -1;
1629 } else {
1630 XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
1631 return -1;
1634 *size = pcie_size;
1635 return 0;
1637 /* get MSI Capability Structure register group size */
1638 static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
1639 const XenPTRegGroupInfo *grp_reg,
1640 uint32_t base_offset, uint8_t *size)
1642 uint16_t msg_ctrl = 0;
1643 uint8_t msi_size = 0xa;
1644 int rc;
1646 rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
1647 &msg_ctrl);
1648 if (rc) {
1649 return rc;
1651 /* check if 64-bit address is capable of per-vector masking */
1652 if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
1653 msi_size += 4;
1655 if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
1656 msi_size += 10;
1659 s->msi = g_new0(XenPTMSI, 1);
1660 s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
1662 *size = msi_size;
1663 return 0;
1665 /* get MSI-X Capability Structure register group size */
1666 static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
1667 const XenPTRegGroupInfo *grp_reg,
1668 uint32_t base_offset, uint8_t *size)
1670 int rc = 0;
1672 rc = xen_pt_msix_init(s, base_offset);
1674 if (rc < 0) {
1675 XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
1676 return rc;
1679 *size = grp_reg->grp_size;
1680 return 0;
1684 static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
1685 /* Header Type0 reg group */
1687 .grp_id = 0xFF,
1688 .grp_type = XEN_PT_GRP_TYPE_EMU,
1689 .grp_size = 0x40,
1690 .size_init = xen_pt_reg_grp_size_init,
1691 .emu_regs = xen_pt_emu_reg_header0,
1693 /* PCI PowerManagement Capability reg group */
1695 .grp_id = PCI_CAP_ID_PM,
1696 .grp_type = XEN_PT_GRP_TYPE_EMU,
1697 .grp_size = PCI_PM_SIZEOF,
1698 .size_init = xen_pt_reg_grp_size_init,
1699 .emu_regs = xen_pt_emu_reg_pm,
1701 /* AGP Capability Structure reg group */
1703 .grp_id = PCI_CAP_ID_AGP,
1704 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1705 .grp_size = 0x30,
1706 .size_init = xen_pt_reg_grp_size_init,
1708 /* Vital Product Data Capability Structure reg group */
1710 .grp_id = PCI_CAP_ID_VPD,
1711 .grp_type = XEN_PT_GRP_TYPE_EMU,
1712 .grp_size = 0x08,
1713 .size_init = xen_pt_reg_grp_size_init,
1714 .emu_regs = xen_pt_emu_reg_vpd,
1716 /* Slot Identification reg group */
1718 .grp_id = PCI_CAP_ID_SLOTID,
1719 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1720 .grp_size = 0x04,
1721 .size_init = xen_pt_reg_grp_size_init,
1723 /* MSI Capability Structure reg group */
1725 .grp_id = PCI_CAP_ID_MSI,
1726 .grp_type = XEN_PT_GRP_TYPE_EMU,
1727 .grp_size = 0xFF,
1728 .size_init = xen_pt_msi_size_init,
1729 .emu_regs = xen_pt_emu_reg_msi,
1731 /* PCI-X Capabilities List Item reg group */
1733 .grp_id = PCI_CAP_ID_PCIX,
1734 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1735 .grp_size = 0x18,
1736 .size_init = xen_pt_reg_grp_size_init,
1738 /* Vendor Specific Capability Structure reg group */
1740 .grp_id = PCI_CAP_ID_VNDR,
1741 .grp_type = XEN_PT_GRP_TYPE_EMU,
1742 .grp_size = 0xFF,
1743 .size_init = xen_pt_vendor_size_init,
1744 .emu_regs = xen_pt_emu_reg_vendor,
1746 /* SHPC Capability List Item reg group */
1748 .grp_id = PCI_CAP_ID_SHPC,
1749 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1750 .grp_size = 0x08,
1751 .size_init = xen_pt_reg_grp_size_init,
1753 /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
1755 .grp_id = PCI_CAP_ID_SSVID,
1756 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1757 .grp_size = 0x08,
1758 .size_init = xen_pt_reg_grp_size_init,
1760 /* AGP 8x Capability Structure reg group */
1762 .grp_id = PCI_CAP_ID_AGP3,
1763 .grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
1764 .grp_size = 0x30,
1765 .size_init = xen_pt_reg_grp_size_init,
1767 /* PCI Express Capability Structure reg group */
1769 .grp_id = PCI_CAP_ID_EXP,
1770 .grp_type = XEN_PT_GRP_TYPE_EMU,
1771 .grp_size = 0xFF,
1772 .size_init = xen_pt_pcie_size_init,
1773 .emu_regs = xen_pt_emu_reg_pcie,
1775 /* MSI-X Capability Structure reg group */
1777 .grp_id = PCI_CAP_ID_MSIX,
1778 .grp_type = XEN_PT_GRP_TYPE_EMU,
1779 .grp_size = 0x0C,
1780 .size_init = xen_pt_msix_size_init,
1781 .emu_regs = xen_pt_emu_reg_msix,
1783 /* Intel IGD Opregion group */
1785 .grp_id = XEN_PCI_INTEL_OPREGION,
1786 .grp_type = XEN_PT_GRP_TYPE_EMU,
1787 .grp_size = 0x4,
1788 .size_init = xen_pt_reg_grp_size_init,
1789 .emu_regs = xen_pt_emu_reg_igd_opregion,
1792 .grp_size = 0,
1796 /* initialize Capabilities Pointer or Next Pointer register */
1797 static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
1798 XenPTRegInfo *reg, uint32_t real_offset,
1799 uint32_t *data)
1801 int i, rc;
1802 uint8_t reg_field;
1803 uint8_t cap_id = 0;
1805 rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
1806 if (rc) {
1807 return rc;
1809 /* find capability offset */
1810 while (reg_field) {
1811 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1812 if (xen_pt_hide_dev_cap(&s->real_device,
1813 xen_pt_emu_reg_grps[i].grp_id)) {
1814 continue;
1817 rc = xen_host_pci_get_byte(&s->real_device,
1818 reg_field + PCI_CAP_LIST_ID, &cap_id);
1819 if (rc) {
1820 XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
1821 reg_field + PCI_CAP_LIST_ID, rc);
1822 return rc;
1824 if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
1825 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
1826 goto out;
1828 /* ignore the 0 hardwired capability, find next one */
1829 break;
1833 /* next capability */
1834 rc = xen_host_pci_get_byte(&s->real_device,
1835 reg_field + PCI_CAP_LIST_NEXT, &reg_field);
1836 if (rc) {
1837 return rc;
1841 out:
1842 *data = reg_field;
1843 return 0;
1847 /*************
1848 * Main
1851 static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
1853 uint8_t id;
1854 unsigned max_cap = XEN_PCI_CAP_MAX;
1855 uint8_t pos = PCI_CAPABILITY_LIST;
1856 uint8_t status = 0;
1858 if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
1859 return 0;
1861 if ((status & PCI_STATUS_CAP_LIST) == 0) {
1862 return 0;
1865 while (max_cap--) {
1866 if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
1867 break;
1869 if (pos < PCI_CONFIG_HEADER_SIZE) {
1870 break;
1873 pos &= ~3;
1874 if (xen_host_pci_get_byte(&s->real_device,
1875 pos + PCI_CAP_LIST_ID, &id)) {
1876 break;
1879 if (id == 0xff) {
1880 break;
1882 if (id == cap) {
1883 return pos;
1886 pos += PCI_CAP_LIST_NEXT;
1888 return 0;
1891 static void xen_pt_config_reg_init(XenPCIPassthroughState *s,
1892 XenPTRegGroup *reg_grp, XenPTRegInfo *reg,
1893 Error **errp)
1895 XenPTReg *reg_entry;
1896 uint32_t data = 0;
1897 int rc = 0;
1899 reg_entry = g_new0(XenPTReg, 1);
1900 reg_entry->reg = reg;
1902 if (reg->init) {
1903 uint32_t host_mask, size_mask;
1904 unsigned int offset;
1905 uint32_t val;
1907 /* initialize emulate register */
1908 rc = reg->init(s, reg_entry->reg,
1909 reg_grp->base_offset + reg->offset, &data);
1910 if (rc < 0) {
1911 g_free(reg_entry);
1912 error_setg(errp, "Init emulate register fail");
1913 return;
1915 if (data == XEN_PT_INVALID_REG) {
1916 /* free unused BAR register entry */
1917 g_free(reg_entry);
1918 return;
1920 /* Sync up the data to dev.config */
1921 offset = reg_grp->base_offset + reg->offset;
1922 size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
1924 switch (reg->size) {
1925 case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
1926 break;
1927 case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
1928 break;
1929 case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
1930 break;
1931 default: abort();
1933 if (rc) {
1934 /* Serious issues when we cannot read the host values! */
1935 g_free(reg_entry);
1936 error_setg(errp, "Cannot read host values");
1937 return;
1939 /* Set bits in emu_mask are the ones we emulate. The dev.config shall
1940 * contain the emulated view of the guest - therefore we flip the mask
1941 * to mask out the host values (which dev.config initially has) . */
1942 host_mask = size_mask & ~reg->emu_mask;
1944 if ((data & host_mask) != (val & host_mask)) {
1945 uint32_t new_val;
1947 /* Mask out host (including past size). */
1948 new_val = val & host_mask;
1949 /* Merge emulated ones (excluding the non-emulated ones). */
1950 new_val |= data & host_mask;
1951 /* Leave intact host and emulated values past the size - even though
1952 * we do not care as we write per reg->size granularity, but for the
1953 * logging below lets have the proper value. */
1954 new_val |= ((val | data)) & ~size_mask;
1955 XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
1956 offset, data, val, new_val);
1957 val = new_val;
1958 } else
1959 val = data;
1961 if (val & ~size_mask) {
1962 error_setg(errp, "Offset 0x%04x:0x%04x expands past"
1963 " register size (%d)", offset, val, reg->size);
1964 g_free(reg_entry);
1965 return;
1967 /* This could be just pci_set_long as we don't modify the bits
1968 * past reg->size, but in case this routine is run in parallel or the
1969 * init value is larger, we do not want to over-write registers. */
1970 switch (reg->size) {
1971 case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
1972 break;
1973 case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
1974 break;
1975 case 4: pci_set_long(s->dev.config + offset, val);
1976 break;
1977 default: abort();
1979 /* set register value pointer to the data. */
1980 reg_entry->ptr.byte = s->dev.config + offset;
1983 /* list add register entry */
1984 QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
1987 void xen_pt_config_init(XenPCIPassthroughState *s, Error **errp)
1989 int i, rc;
1990 Error *err = NULL;
1992 QLIST_INIT(&s->reg_grps);
1994 for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
1995 uint32_t reg_grp_offset = 0;
1996 XenPTRegGroup *reg_grp_entry = NULL;
1998 if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
1999 && xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
2000 if (xen_pt_hide_dev_cap(&s->real_device,
2001 xen_pt_emu_reg_grps[i].grp_id)) {
2002 continue;
2005 reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
2007 if (!reg_grp_offset) {
2008 continue;
2013 * By default we will trap up to 0x40 in the cfg space.
2014 * If an intel device is pass through we need to trap 0xfc,
2015 * therefore the size should be 0xff.
2017 if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
2018 reg_grp_offset = XEN_PCI_INTEL_OPREGION;
2021 reg_grp_entry = g_new0(XenPTRegGroup, 1);
2022 QLIST_INIT(&reg_grp_entry->reg_tbl_list);
2023 QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
2025 reg_grp_entry->base_offset = reg_grp_offset;
2026 reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
2027 if (xen_pt_emu_reg_grps[i].size_init) {
2028 /* get register group size */
2029 rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
2030 reg_grp_offset,
2031 &reg_grp_entry->size);
2032 if (rc < 0) {
2033 error_setg(&err, "Failed to initialize %d/%zu, type = 0x%x,"
2034 " rc: %d", i, ARRAY_SIZE(xen_pt_emu_reg_grps),
2035 xen_pt_emu_reg_grps[i].grp_type, rc);
2036 error_propagate(errp, err);
2037 xen_pt_config_delete(s);
2038 return;
2042 if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
2043 if (xen_pt_emu_reg_grps[i].emu_regs) {
2044 int j = 0;
2045 XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
2047 /* initialize capability register */
2048 for (j = 0; regs->size != 0; j++, regs++) {
2049 xen_pt_config_reg_init(s, reg_grp_entry, regs, &err);
2050 if (err) {
2051 error_append_hint(&err, "Failed to initialize %d/%zu"
2052 " reg 0x%x in grp_type = 0x%x (%d/%zu)",
2053 j, ARRAY_SIZE(xen_pt_emu_reg_grps[i].emu_regs),
2054 regs->offset, xen_pt_emu_reg_grps[i].grp_type,
2055 i, ARRAY_SIZE(xen_pt_emu_reg_grps));
2056 error_propagate(errp, err);
2057 xen_pt_config_delete(s);
2058 return;
2066 /* delete all emulate register */
2067 void xen_pt_config_delete(XenPCIPassthroughState *s)
2069 struct XenPTRegGroup *reg_group, *next_grp;
2070 struct XenPTReg *reg, *next_reg;
2072 /* free MSI/MSI-X info table */
2073 if (s->msix) {
2074 xen_pt_msix_unmap(s);
2076 g_free(s->msi);
2078 /* free all register group entry */
2079 QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
2080 /* free all register entry */
2081 QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
2082 QLIST_REMOVE(reg, entries);
2083 g_free(reg);
2086 QLIST_REMOVE(reg_group, entries);
2087 g_free(reg_group);