2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
72 /* SLOF memory layout:
74 * SLOF raw image loaded at 0, copies its romfs right below the flat
75 * device-tree, then position SLOF itself 31M below that
77 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * We load our kernel at 4M, leaving space for SLOF initial image
82 #define FDT_MAX_SIZE 0x100000
83 #define RTAS_MAX_SIZE 0x10000
84 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
85 #define FW_MAX_SIZE 0x400000
86 #define FW_FILE_NAME "slof.bin"
87 #define FW_OVERHEAD 0x2800000
88 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
90 #define MIN_RMA_SLOF 128UL
92 #define TIMEBASE_FREQ 512000000ULL
94 #define PHANDLE_XICP 0x00001111
96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98 static XICSState
*try_create_xics(const char *type
, int nr_servers
,
99 int nr_irqs
, Error
**errp
)
104 dev
= qdev_create(NULL
, type
);
105 qdev_prop_set_uint32(dev
, "nr_servers", nr_servers
);
106 qdev_prop_set_uint32(dev
, "nr_irqs", nr_irqs
);
107 object_property_set_bool(OBJECT(dev
), true, "realized", &err
);
109 error_propagate(errp
, err
);
110 object_unparent(OBJECT(dev
));
113 return XICS_COMMON(dev
);
116 static XICSState
*xics_system_init(MachineState
*machine
,
117 int nr_servers
, int nr_irqs
, Error
**errp
)
119 XICSState
*icp
= NULL
;
124 if (machine_kernel_irqchip_allowed(machine
)) {
125 icp
= try_create_xics(TYPE_KVM_XICS
, nr_servers
, nr_irqs
, &err
);
127 if (machine_kernel_irqchip_required(machine
) && !icp
) {
128 error_reportf_err(err
,
129 "kernel_irqchip requested but unavailable: ");
136 icp
= try_create_xics(TYPE_XICS
, nr_servers
, nr_irqs
, errp
);
142 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
146 uint32_t servers_prop
[smt_threads
];
147 uint32_t gservers_prop
[smt_threads
* 2];
148 int index
= ppc_get_vcpu_dt_id(cpu
);
150 if (cpu
->cpu_version
) {
151 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->cpu_version
);
157 /* Build interrupt servers and gservers properties */
158 for (i
= 0; i
< smt_threads
; i
++) {
159 servers_prop
[i
] = cpu_to_be32(index
+ i
);
160 /* Hack, direct the group queues back to cpu 0 */
161 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
162 gservers_prop
[i
*2 + 1] = 0;
164 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
165 servers_prop
, sizeof(servers_prop
));
169 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
170 gservers_prop
, sizeof(gservers_prop
));
175 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
178 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
179 int index
= ppc_get_vcpu_dt_id(cpu
);
180 uint32_t associativity
[] = {cpu_to_be32(0x5),
184 cpu_to_be32(cs
->numa_node
),
187 /* Advertise NUMA via ibm,associativity */
188 if (nb_numa_nodes
> 1) {
189 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
190 sizeof(associativity
));
196 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
198 int ret
= 0, offset
, cpus_offset
;
201 int smt
= kvmppc_smt_threads();
202 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
205 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
206 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
207 int index
= ppc_get_vcpu_dt_id(cpu
);
209 if ((index
% smt
) != 0) {
213 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
215 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
216 if (cpus_offset
< 0) {
217 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
219 if (cpus_offset
< 0) {
223 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
225 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
231 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
232 pft_size_prop
, sizeof(pft_size_prop
));
237 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
242 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
243 ppc_get_compat_smt_threads(cpu
));
252 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
255 size_t maxcells
= maxsize
/ sizeof(uint32_t);
259 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
260 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
262 if (!sps
->page_shift
) {
265 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
266 if (sps
->enc
[count
].page_shift
== 0) {
270 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
273 *(p
++) = cpu_to_be32(sps
->page_shift
);
274 *(p
++) = cpu_to_be32(sps
->slb_enc
);
275 *(p
++) = cpu_to_be32(count
);
276 for (j
= 0; j
< count
; j
++) {
277 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
278 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
282 return (p
- prop
) * sizeof(uint32_t);
285 static hwaddr
spapr_node0_size(void)
287 MachineState
*machine
= MACHINE(qdev_get_machine());
291 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
292 if (numa_info
[i
].node_mem
) {
293 return MIN(pow2floor(numa_info
[i
].node_mem
),
298 return machine
->ram_size
;
305 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
306 #exp, fdt_strerror(ret)); \
311 static void add_str(GString
*s
, const gchar
*s1
)
313 g_string_append_len(s
, s1
, strlen(s1
) + 1);
316 static void *spapr_create_fdt_skel(hwaddr initrd_base
,
320 const char *kernel_cmdline
,
324 uint32_t start_prop
= cpu_to_be32(initrd_base
);
325 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
326 GString
*hypertas
= g_string_sized_new(256);
327 GString
*qemu_hypertas
= g_string_sized_new(256);
328 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
329 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(max_cpus
)};
330 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
333 add_str(hypertas
, "hcall-pft");
334 add_str(hypertas
, "hcall-term");
335 add_str(hypertas
, "hcall-dabr");
336 add_str(hypertas
, "hcall-interrupt");
337 add_str(hypertas
, "hcall-tce");
338 add_str(hypertas
, "hcall-vio");
339 add_str(hypertas
, "hcall-splpar");
340 add_str(hypertas
, "hcall-bulk");
341 add_str(hypertas
, "hcall-set-mode");
342 add_str(qemu_hypertas
, "hcall-memop1");
344 fdt
= g_malloc0(FDT_MAX_SIZE
);
345 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
348 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
351 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
353 _FDT((fdt_finish_reservemap(fdt
)));
356 _FDT((fdt_begin_node(fdt
, "")));
357 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
358 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
359 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
362 * Add info to guest to indentify which host is it being run on
363 * and what is the uuid of the guest
365 if (kvmppc_get_host_model(&buf
)) {
366 _FDT((fdt_property_string(fdt
, "host-model", buf
)));
369 if (kvmppc_get_host_serial(&buf
)) {
370 _FDT((fdt_property_string(fdt
, "host-serial", buf
)));
374 buf
= g_strdup_printf(UUID_FMT
, qemu_uuid
[0], qemu_uuid
[1],
375 qemu_uuid
[2], qemu_uuid
[3], qemu_uuid
[4],
376 qemu_uuid
[5], qemu_uuid
[6], qemu_uuid
[7],
377 qemu_uuid
[8], qemu_uuid
[9], qemu_uuid
[10],
378 qemu_uuid
[11], qemu_uuid
[12], qemu_uuid
[13],
379 qemu_uuid
[14], qemu_uuid
[15]);
381 _FDT((fdt_property_string(fdt
, "vm,uuid", buf
)));
383 _FDT((fdt_property_string(fdt
, "system-id", buf
)));
387 if (qemu_get_vm_name()) {
388 _FDT((fdt_property_string(fdt
, "ibm,partition-name",
389 qemu_get_vm_name())));
392 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
393 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
396 _FDT((fdt_begin_node(fdt
, "chosen")));
398 /* Set Form1_affinity */
399 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
401 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
402 _FDT((fdt_property(fdt
, "linux,initrd-start",
403 &start_prop
, sizeof(start_prop
))));
404 _FDT((fdt_property(fdt
, "linux,initrd-end",
405 &end_prop
, sizeof(end_prop
))));
407 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
408 cpu_to_be64(kernel_size
) };
410 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
412 _FDT((fdt_property(fdt
, "qemu,boot-kernel-le", NULL
, 0)));
416 _FDT((fdt_property_cell(fdt
, "qemu,boot-menu", boot_menu
)));
418 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
419 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
420 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
422 _FDT((fdt_end_node(fdt
)));
425 _FDT((fdt_begin_node(fdt
, "rtas")));
427 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
428 add_str(hypertas
, "hcall-multi-tce");
430 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas
->str
,
432 g_string_free(hypertas
, TRUE
);
433 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas
->str
,
434 qemu_hypertas
->len
)));
435 g_string_free(qemu_hypertas
, TRUE
);
437 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
438 refpoints
, sizeof(refpoints
))));
440 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
441 _FDT((fdt_property_cell(fdt
, "rtas-event-scan-rate",
442 RTAS_EVENT_SCAN_RATE
)));
445 _FDT((fdt_property(fdt
, "ibm,change-msix-capable", NULL
, 0)));
449 * According to PAPR, rtas ibm,os-term does not guarantee a return
450 * back to the guest cpu.
452 * While an additional ibm,extended-os-term property indicates that
453 * rtas call return will always occur. Set this property.
455 _FDT((fdt_property(fdt
, "ibm,extended-os-term", NULL
, 0)));
457 _FDT((fdt_end_node(fdt
)));
459 /* interrupt controller */
460 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
462 _FDT((fdt_property_string(fdt
, "device_type",
463 "PowerPC-External-Interrupt-Presentation")));
464 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
465 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
466 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
467 interrupt_server_ranges_prop
,
468 sizeof(interrupt_server_ranges_prop
))));
469 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
470 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
471 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
473 _FDT((fdt_end_node(fdt
)));
476 _FDT((fdt_begin_node(fdt
, "vdevice")));
478 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
479 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
480 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
481 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
482 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
483 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
485 _FDT((fdt_end_node(fdt
)));
488 spapr_events_fdt_skel(fdt
, epow_irq
);
490 /* /hypervisor node */
492 uint8_t hypercall
[16];
494 /* indicate KVM hypercall interface */
495 _FDT((fdt_begin_node(fdt
, "hypervisor")));
496 _FDT((fdt_property_string(fdt
, "compatible", "linux,kvm")));
497 if (kvmppc_has_cap_fixup_hcalls()) {
499 * Older KVM versions with older guest kernels were broken with the
500 * magic page, don't allow the guest to map it.
502 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
503 sizeof(hypercall
))) {
504 _FDT((fdt_property(fdt
, "hcall-instructions", hypercall
,
505 sizeof(hypercall
))));
508 _FDT((fdt_end_node(fdt
)));
511 _FDT((fdt_end_node(fdt
))); /* close root node */
512 _FDT((fdt_finish(fdt
)));
517 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
520 uint32_t associativity
[] = {
521 cpu_to_be32(0x4), /* length */
522 cpu_to_be32(0x0), cpu_to_be32(0x0),
523 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
526 uint64_t mem_reg_property
[2];
529 mem_reg_property
[0] = cpu_to_be64(start
);
530 mem_reg_property
[1] = cpu_to_be64(size
);
532 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
533 off
= fdt_add_subnode(fdt
, 0, mem_name
);
535 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
536 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
537 sizeof(mem_reg_property
))));
538 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
539 sizeof(associativity
))));
543 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
545 MachineState
*machine
= MACHINE(spapr
);
546 hwaddr mem_start
, node_size
;
547 int i
, nb_nodes
= nb_numa_nodes
;
548 NodeInfo
*nodes
= numa_info
;
551 /* No NUMA nodes, assume there is just one node with whole RAM */
552 if (!nb_numa_nodes
) {
554 ramnode
.node_mem
= machine
->ram_size
;
558 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
559 if (!nodes
[i
].node_mem
) {
562 if (mem_start
>= machine
->ram_size
) {
565 node_size
= nodes
[i
].node_mem
;
566 if (node_size
> machine
->ram_size
- mem_start
) {
567 node_size
= machine
->ram_size
- mem_start
;
571 /* ppc_spapr_init() checks for rma_size <= node0_size already */
572 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
573 mem_start
+= spapr
->rma_size
;
574 node_size
-= spapr
->rma_size
;
576 for ( ; node_size
; ) {
577 hwaddr sizetmp
= pow2floor(node_size
);
579 /* mem_start != 0 here */
580 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
581 sizetmp
= 1ULL << ctzl(mem_start
);
584 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
585 node_size
-= sizetmp
;
586 mem_start
+= sizetmp
;
593 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
594 sPAPRMachineState
*spapr
)
596 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
597 CPUPPCState
*env
= &cpu
->env
;
598 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
599 int index
= ppc_get_vcpu_dt_id(cpu
);
600 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
601 0xffffffff, 0xffffffff};
602 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
603 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
604 uint32_t page_sizes_prop
[64];
605 size_t page_sizes_prop_size
;
606 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
607 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
609 /* Note: we keep CI large pages off for now because a 64K capable guest
610 * provisioned with large pages might otherwise try to map a qemu
611 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
612 * even if that qemu runs on a 4k host.
614 * We can later add this bit back when we are confident this is not
615 * an issue (!HV KVM or 64K host)
617 uint8_t pa_features_206
[] = { 6, 0,
618 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
619 uint8_t pa_features_207
[] = { 24, 0,
620 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
621 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
623 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
624 uint8_t *pa_features
;
627 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
628 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
630 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
631 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
632 env
->dcache_line_size
)));
633 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
634 env
->dcache_line_size
)));
635 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
636 env
->icache_line_size
)));
637 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
638 env
->icache_line_size
)));
640 if (pcc
->l1_dcache_size
) {
641 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
642 pcc
->l1_dcache_size
)));
644 fprintf(stderr
, "Warning: Unknown L1 dcache size for cpu\n");
646 if (pcc
->l1_icache_size
) {
647 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
648 pcc
->l1_icache_size
)));
650 fprintf(stderr
, "Warning: Unknown L1 icache size for cpu\n");
653 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
654 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
655 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
656 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
657 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
658 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
660 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
661 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
664 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
665 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
666 segs
, sizeof(segs
))));
669 /* Advertise VMX/VSX (vector extensions) if available
670 * 0 / no property == no vector extensions
671 * 1 == VMX / Altivec available
672 * 2 == VSX available */
673 if (env
->insns_flags
& PPC_ALTIVEC
) {
674 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
676 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
679 /* Advertise DFP (Decimal Floating Point) if available
680 * 0 / no property == no DFP
681 * 1 == DFP available */
682 if (env
->insns_flags2
& PPC2_DFP
) {
683 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
686 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
687 sizeof(page_sizes_prop
));
688 if (page_sizes_prop_size
) {
689 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
690 page_sizes_prop
, page_sizes_prop_size
)));
693 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
694 if (env
->mmu_model
== POWERPC_MMU_2_06
) {
695 pa_features
= pa_features_206
;
696 pa_size
= sizeof(pa_features_206
);
697 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
698 pa_features
= pa_features_207
;
699 pa_size
= sizeof(pa_features_207
);
701 if (env
->ci_large_pages
) {
702 pa_features
[3] |= 0x20;
704 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
706 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
707 cs
->cpu_index
/ vcpus_per_socket
)));
709 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
710 pft_size_prop
, sizeof(pft_size_prop
))));
712 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
714 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
715 ppc_get_compat_smt_threads(cpu
)));
718 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
723 int smt
= kvmppc_smt_threads();
725 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
727 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
728 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
731 * We walk the CPUs in reverse order to ensure that CPU DT nodes
732 * created by fdt_add_subnode() end up in the right order in FDT
733 * for the guest kernel the enumerate the CPUs correctly.
735 CPU_FOREACH_REVERSE(cs
) {
736 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
737 int index
= ppc_get_vcpu_dt_id(cpu
);
738 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
741 if ((index
% smt
) != 0) {
745 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
746 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
749 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
755 * Adds ibm,dynamic-reconfiguration-memory node.
756 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
757 * of this device tree node.
759 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
761 MachineState
*machine
= MACHINE(spapr
);
763 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
764 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
765 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
766 uint32_t *int_buf
, *cur_index
, buf_len
;
767 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
770 * Don't create the node if there are no DR LMBs.
777 * Allocate enough buffer size to fit in ibm,dynamic-memory
778 * or ibm,associativity-lookup-arrays
780 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
782 cur_index
= int_buf
= g_malloc0(buf_len
);
784 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
786 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
787 sizeof(prop_lmb_size
));
792 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
797 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
802 /* ibm,dynamic-memory */
803 int_buf
[0] = cpu_to_be32(nr_lmbs
);
805 for (i
= 0; i
< nr_lmbs
; i
++) {
806 sPAPRDRConnector
*drc
;
807 sPAPRDRConnectorClass
*drck
;
808 uint64_t addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;;
809 uint32_t *dynamic_memory
= cur_index
;
811 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
814 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
816 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
817 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
818 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
819 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
821 if (addr
< machine
->ram_size
||
822 memory_region_present(get_system_memory(), addr
)) {
823 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
825 dynamic_memory
[5] = cpu_to_be32(0);
828 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
830 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
835 /* ibm,associativity-lookup-arrays */
837 int_buf
[0] = cpu_to_be32(nr_nodes
);
838 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
840 for (i
= 0; i
< nr_nodes
; i
++) {
841 uint32_t associativity
[] = {
847 memcpy(cur_index
, associativity
, sizeof(associativity
));
850 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
851 (cur_index
- int_buf
) * sizeof(uint32_t));
857 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
858 target_ulong addr
, target_ulong size
,
859 bool cpu_update
, bool memory_update
)
861 void *fdt
, *fdt_skel
;
862 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
863 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
867 /* Create sceleton */
868 fdt_skel
= g_malloc0(size
);
869 _FDT((fdt_create(fdt_skel
, size
)));
870 _FDT((fdt_begin_node(fdt_skel
, "")));
871 _FDT((fdt_end_node(fdt_skel
)));
872 _FDT((fdt_finish(fdt_skel
)));
873 fdt
= g_malloc0(size
);
874 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
877 /* Fixup cpu nodes */
879 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
882 /* Generate ibm,dynamic-reconfiguration-memory node if required */
883 if (memory_update
&& smc
->dr_lmb_enabled
) {
884 _FDT((spapr_populate_drconf_memory(spapr
, fdt
)));
887 /* Pack resulting tree */
888 _FDT((fdt_pack(fdt
)));
890 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
891 trace_spapr_cas_failed(size
);
895 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
896 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
897 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
903 static void spapr_finalize_fdt(sPAPRMachineState
*spapr
,
908 MachineState
*machine
= MACHINE(qdev_get_machine());
909 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
910 const char *boot_device
= machine
->boot_order
;
917 fdt
= g_malloc(FDT_MAX_SIZE
);
919 /* open out the base tree into a temp buffer for the final tweaks */
920 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
922 ret
= spapr_populate_memory(spapr
, fdt
);
924 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
928 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
930 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
934 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
935 ret
= spapr_rng_populate_dt(fdt
);
937 fprintf(stderr
, "could not set up rng device in the fdt\n");
942 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
943 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
945 error_report("couldn't setup PCI devices in fdt");
951 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
953 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
957 spapr_populate_cpus_dt_node(fdt
, spapr
);
959 bootlist
= get_boot_devices_list(&cb
, true);
960 if (cb
&& bootlist
) {
961 int offset
= fdt_path_offset(fdt
, "/chosen");
965 for (i
= 0; i
< cb
; i
++) {
966 if (bootlist
[i
] == '\n') {
971 ret
= fdt_setprop_string(fdt
, offset
, "qemu,boot-list", bootlist
);
974 if (boot_device
&& strlen(boot_device
)) {
975 int offset
= fdt_path_offset(fdt
, "/chosen");
980 fdt_setprop_string(fdt
, offset
, "qemu,boot-device", boot_device
);
983 if (!spapr
->has_graphics
) {
984 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
987 if (smc
->dr_lmb_enabled
) {
988 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
991 _FDT((fdt_pack(fdt
)));
993 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
994 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
995 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
999 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1000 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1006 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1008 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1011 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
1013 CPUPPCState
*env
= &cpu
->env
;
1016 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1017 env
->gpr
[3] = H_PRIVILEGE
;
1019 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1023 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1024 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1025 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1026 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1027 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1030 * Get the fd to access the kernel htab, re-opening it if necessary
1032 static int get_htab_fd(sPAPRMachineState
*spapr
)
1034 if (spapr
->htab_fd
>= 0) {
1035 return spapr
->htab_fd
;
1038 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1039 if (spapr
->htab_fd
< 0) {
1040 error_report("Unable to open fd for reading hash table from KVM: %s",
1044 return spapr
->htab_fd
;
1047 static void close_htab_fd(sPAPRMachineState
*spapr
)
1049 if (spapr
->htab_fd
>= 0) {
1050 close(spapr
->htab_fd
);
1052 spapr
->htab_fd
= -1;
1055 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1059 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1060 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1061 * that's much more than is needed for Linux guests */
1062 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1063 shift
= MAX(shift
, 18); /* Minimum architected size */
1064 shift
= MIN(shift
, 46); /* Maximum architected size */
1068 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1073 /* Clean up any HPT info from a previous boot */
1074 g_free(spapr
->htab
);
1076 spapr
->htab_shift
= 0;
1077 close_htab_fd(spapr
);
1079 rc
= kvmppc_reset_htab(shift
);
1081 /* kernel-side HPT needed, but couldn't allocate one */
1082 error_setg_errno(errp
, errno
,
1083 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1085 /* This is almost certainly fatal, but if the caller really
1086 * wants to carry on with shift == 0, it's welcome to try */
1087 } else if (rc
> 0) {
1088 /* kernel-side HPT allocated */
1091 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1095 spapr
->htab_shift
= shift
;
1098 /* kernel-side HPT not needed, allocate in userspace instead */
1099 size_t size
= 1ULL << shift
;
1102 spapr
->htab
= qemu_memalign(size
, size
);
1104 error_setg_errno(errp
, errno
,
1105 "Could not allocate HPT of order %d", shift
);
1109 memset(spapr
->htab
, 0, size
);
1110 spapr
->htab_shift
= shift
;
1112 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1113 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1118 static int find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1120 bool matched
= false;
1122 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1127 error_report("Device %s is not supported by this machine yet.",
1128 qdev_fw_name(DEVICE(sbdev
)));
1135 static void ppc_spapr_reset(void)
1137 MachineState
*machine
= MACHINE(qdev_get_machine());
1138 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1139 PowerPCCPU
*first_ppc_cpu
;
1140 uint32_t rtas_limit
;
1142 /* Check for unknown sysbus devices */
1143 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1145 /* Allocate and/or reset the hash page table */
1146 spapr_reallocate_hpt(spapr
,
1147 spapr_hpt_shift_for_ramsize(machine
->maxram_size
),
1150 /* Update the RMA size if necessary */
1151 if (spapr
->vrma_adjust
) {
1152 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1156 qemu_devices_reset();
1159 * We place the device tree and RTAS just below either the top of the RMA,
1160 * or just below 2GB, whichever is lowere, so that it can be
1161 * processed with 32-bit real mode code if necessary
1163 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1164 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1165 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
1168 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
1171 /* Copy RTAS over */
1172 cpu_physical_memory_write(spapr
->rtas_addr
, spapr
->rtas_blob
,
1175 /* Set up the entry state */
1176 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1177 first_ppc_cpu
->env
.gpr
[3] = spapr
->fdt_addr
;
1178 first_ppc_cpu
->env
.gpr
[5] = 0;
1179 first_cpu
->halted
= 0;
1180 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1184 static void spapr_cpu_reset(void *opaque
)
1186 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1187 PowerPCCPU
*cpu
= opaque
;
1188 CPUState
*cs
= CPU(cpu
);
1189 CPUPPCState
*env
= &cpu
->env
;
1193 /* All CPUs start halted. CPU0 is unhalted from the machine level
1194 * reset code and the rest are explicitly started up by the guest
1195 * using an RTAS call */
1198 env
->spr
[SPR_HIOR
] = 0;
1200 ppc_hash64_set_external_hpt(cpu
, spapr
->htab
, spapr
->htab_shift
,
1204 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1206 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1207 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1210 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1214 qdev_init_nofail(dev
);
1216 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1219 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1221 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1223 qdev_init_nofail(dev
);
1226 object_property_add_alias(qdev_get_machine(), "rtc-time",
1227 OBJECT(spapr
->rtc
), "date", NULL
);
1230 /* Returns whether we want to use VGA or not */
1231 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1233 switch (vga_interface_type
) {
1240 return pci_vga_init(pci_bus
) != NULL
;
1243 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1248 static int spapr_post_load(void *opaque
, int version_id
)
1250 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1253 /* In earlier versions, there was no separate qdev for the PAPR
1254 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1255 * So when migrating from those versions, poke the incoming offset
1256 * value into the RTC device */
1257 if (version_id
< 3) {
1258 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1264 static bool version_before_3(void *opaque
, int version_id
)
1266 return version_id
< 3;
1269 static const VMStateDescription vmstate_spapr
= {
1272 .minimum_version_id
= 1,
1273 .post_load
= spapr_post_load
,
1274 .fields
= (VMStateField
[]) {
1275 /* used to be @next_irq */
1276 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1279 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1281 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1282 VMSTATE_END_OF_LIST()
1286 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1288 sPAPRMachineState
*spapr
= opaque
;
1290 /* "Iteration" header */
1291 qemu_put_be32(f
, spapr
->htab_shift
);
1294 spapr
->htab_save_index
= 0;
1295 spapr
->htab_first_pass
= true;
1297 assert(kvm_enabled());
1304 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1307 bool has_timeout
= max_ns
!= -1;
1308 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1309 int index
= spapr
->htab_save_index
;
1310 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1312 assert(spapr
->htab_first_pass
);
1317 /* Consume invalid HPTEs */
1318 while ((index
< htabslots
)
1319 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1321 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1324 /* Consume valid HPTEs */
1326 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1327 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1329 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1332 if (index
> chunkstart
) {
1333 int n_valid
= index
- chunkstart
;
1335 qemu_put_be32(f
, chunkstart
);
1336 qemu_put_be16(f
, n_valid
);
1337 qemu_put_be16(f
, 0);
1338 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1339 HASH_PTE_SIZE_64
* n_valid
);
1342 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1346 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1348 if (index
>= htabslots
) {
1349 assert(index
== htabslots
);
1351 spapr
->htab_first_pass
= false;
1353 spapr
->htab_save_index
= index
;
1356 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1359 bool final
= max_ns
< 0;
1360 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1361 int examined
= 0, sent
= 0;
1362 int index
= spapr
->htab_save_index
;
1363 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1365 assert(!spapr
->htab_first_pass
);
1368 int chunkstart
, invalidstart
;
1370 /* Consume non-dirty HPTEs */
1371 while ((index
< htabslots
)
1372 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1378 /* Consume valid dirty HPTEs */
1379 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1380 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1381 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1382 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1387 invalidstart
= index
;
1388 /* Consume invalid dirty HPTEs */
1389 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1390 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1391 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1392 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1397 if (index
> chunkstart
) {
1398 int n_valid
= invalidstart
- chunkstart
;
1399 int n_invalid
= index
- invalidstart
;
1401 qemu_put_be32(f
, chunkstart
);
1402 qemu_put_be16(f
, n_valid
);
1403 qemu_put_be16(f
, n_invalid
);
1404 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1405 HASH_PTE_SIZE_64
* n_valid
);
1406 sent
+= index
- chunkstart
;
1408 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1413 if (examined
>= htabslots
) {
1417 if (index
>= htabslots
) {
1418 assert(index
== htabslots
);
1421 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1423 if (index
>= htabslots
) {
1424 assert(index
== htabslots
);
1428 spapr
->htab_save_index
= index
;
1430 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1433 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1434 #define MAX_KVM_BUF_SIZE 2048
1436 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1438 sPAPRMachineState
*spapr
= opaque
;
1442 /* Iteration header */
1443 qemu_put_be32(f
, 0);
1446 assert(kvm_enabled());
1448 fd
= get_htab_fd(spapr
);
1453 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1457 } else if (spapr
->htab_first_pass
) {
1458 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1460 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1464 qemu_put_be32(f
, 0);
1465 qemu_put_be16(f
, 0);
1466 qemu_put_be16(f
, 0);
1471 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1473 sPAPRMachineState
*spapr
= opaque
;
1476 /* Iteration header */
1477 qemu_put_be32(f
, 0);
1482 assert(kvm_enabled());
1484 fd
= get_htab_fd(spapr
);
1489 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1493 close_htab_fd(spapr
);
1495 if (spapr
->htab_first_pass
) {
1496 htab_save_first_pass(f
, spapr
, -1);
1498 htab_save_later_pass(f
, spapr
, -1);
1502 qemu_put_be32(f
, 0);
1503 qemu_put_be16(f
, 0);
1504 qemu_put_be16(f
, 0);
1509 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1511 sPAPRMachineState
*spapr
= opaque
;
1512 uint32_t section_hdr
;
1515 if (version_id
< 1 || version_id
> 1) {
1516 error_report("htab_load() bad version");
1520 section_hdr
= qemu_get_be32(f
);
1523 Error
*local_err
= NULL
;
1525 /* First section gives the htab size */
1526 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1528 error_report_err(local_err
);
1535 assert(kvm_enabled());
1537 fd
= kvmppc_get_htab_fd(true);
1539 error_report("Unable to open fd to restore KVM hash table: %s",
1546 uint16_t n_valid
, n_invalid
;
1548 index
= qemu_get_be32(f
);
1549 n_valid
= qemu_get_be16(f
);
1550 n_invalid
= qemu_get_be16(f
);
1552 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1557 if ((index
+ n_valid
+ n_invalid
) >
1558 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1559 /* Bad index in stream */
1561 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1562 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1568 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1569 HASH_PTE_SIZE_64
* n_valid
);
1572 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1573 HASH_PTE_SIZE_64
* n_invalid
);
1580 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1595 static SaveVMHandlers savevm_htab_handlers
= {
1596 .save_live_setup
= htab_save_setup
,
1597 .save_live_iterate
= htab_save_iterate
,
1598 .save_live_complete_precopy
= htab_save_complete
,
1599 .load_state
= htab_load
,
1602 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1605 MachineState
*machine
= MACHINE(qdev_get_machine());
1606 machine
->boot_order
= g_strdup(boot_device
);
1609 static void spapr_cpu_init(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
,
1612 CPUPPCState
*env
= &cpu
->env
;
1614 /* Set time-base frequency to 512 MHz */
1615 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
1617 /* Enable PAPR mode in TCG or KVM */
1618 cpu_ppc_set_papr(cpu
);
1620 if (cpu
->max_compat
) {
1621 Error
*local_err
= NULL
;
1623 ppc_set_compat(cpu
, cpu
->max_compat
, &local_err
);
1625 error_propagate(errp
, local_err
);
1630 xics_cpu_setup(spapr
->icp
, cpu
);
1632 qemu_register_reset(spapr_cpu_reset
, cpu
);
1636 * Reset routine for LMB DR devices.
1638 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1639 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1640 * when it walks all its children devices. LMB devices reset occurs
1641 * as part of spapr_ppc_reset().
1643 static void spapr_drc_reset(void *opaque
)
1645 sPAPRDRConnector
*drc
= opaque
;
1646 DeviceState
*d
= DEVICE(drc
);
1653 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1655 MachineState
*machine
= MACHINE(spapr
);
1656 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1657 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1660 for (i
= 0; i
< nr_lmbs
; i
++) {
1661 sPAPRDRConnector
*drc
;
1664 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1665 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1667 qemu_register_reset(spapr_drc_reset
, drc
);
1672 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1673 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1674 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1676 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
1680 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1681 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
1682 " is not aligned to %llu MiB",
1684 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1688 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1689 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
1690 " is not aligned to %llu MiB",
1692 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1696 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1697 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1699 "Node %d memory size 0x%" PRIx64
1700 " is not aligned to %llu MiB",
1701 i
, numa_info
[i
].node_mem
,
1702 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1708 /* pSeries LPAR / sPAPR hardware init */
1709 static void ppc_spapr_init(MachineState
*machine
)
1711 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1712 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1713 const char *kernel_filename
= machine
->kernel_filename
;
1714 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1715 const char *initrd_filename
= machine
->initrd_filename
;
1719 MemoryRegion
*sysmem
= get_system_memory();
1720 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1721 MemoryRegion
*rma_region
;
1723 hwaddr rma_alloc_size
;
1724 hwaddr node0_size
= spapr_node0_size();
1725 uint32_t initrd_base
= 0;
1726 long kernel_size
= 0, initrd_size
= 0;
1727 long load_limit
, fw_size
;
1728 bool kernel_le
= false;
1731 msi_nonbroken
= true;
1733 QLIST_INIT(&spapr
->phbs
);
1735 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
1737 /* Allocate RMA if necessary */
1738 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
1740 if (rma_alloc_size
== -1) {
1741 error_report("Unable to create RMA");
1745 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
1746 spapr
->rma_size
= rma_alloc_size
;
1748 spapr
->rma_size
= node0_size
;
1750 /* With KVM, we don't actually know whether KVM supports an
1751 * unbounded RMA (PR KVM) or is limited by the hash table size
1752 * (HV KVM using VRMA), so we always assume the latter
1754 * In that case, we also limit the initial allocations for RTAS
1755 * etc... to 256M since we have no way to know what the VRMA size
1756 * is going to be as it depends on the size of the hash table
1757 * isn't determined yet.
1759 if (kvm_enabled()) {
1760 spapr
->vrma_adjust
= 1;
1761 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
1765 if (spapr
->rma_size
> node0_size
) {
1766 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
1771 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1772 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
1774 /* Set up Interrupt Controller before we create the VCPUs */
1775 spapr
->icp
= xics_system_init(machine
,
1776 DIV_ROUND_UP(max_cpus
* kvmppc_smt_threads(),
1778 XICS_IRQS
, &error_fatal
);
1780 if (smc
->dr_lmb_enabled
) {
1781 spapr_validate_node_memory(machine
, &error_fatal
);
1785 if (machine
->cpu_model
== NULL
) {
1786 machine
->cpu_model
= kvm_enabled() ? "host" : "POWER7";
1788 for (i
= 0; i
< smp_cpus
; i
++) {
1789 cpu
= cpu_ppc_init(machine
->cpu_model
);
1791 error_report("Unable to find PowerPC CPU definition");
1794 spapr_cpu_init(spapr
, cpu
, &error_fatal
);
1797 if (kvm_enabled()) {
1798 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1799 kvmppc_enable_logical_ci_hcalls();
1800 kvmppc_enable_set_mode_hcall();
1804 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
1806 memory_region_add_subregion(sysmem
, 0, ram
);
1808 if (rma_alloc_size
&& rma
) {
1809 rma_region
= g_new(MemoryRegion
, 1);
1810 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
1811 rma_alloc_size
, rma
);
1812 vmstate_register_ram_global(rma_region
);
1813 memory_region_add_subregion(sysmem
, 0, rma_region
);
1816 /* initialize hotplug memory address space */
1817 if (machine
->ram_size
< machine
->maxram_size
) {
1818 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1820 if (machine
->ram_slots
> SPAPR_MAX_RAM_SLOTS
) {
1821 error_report("Specified number of memory slots %"
1822 PRIu64
" exceeds max supported %d",
1823 machine
->ram_slots
, SPAPR_MAX_RAM_SLOTS
);
1827 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
1828 SPAPR_HOTPLUG_MEM_ALIGN
);
1829 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
1830 "hotplug-memory", hotplug_mem_size
);
1831 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
1832 &spapr
->hotplug_memory
.mr
);
1835 if (smc
->dr_lmb_enabled
) {
1836 spapr_create_lmb_dr_connectors(spapr
);
1839 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
1841 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1844 spapr
->rtas_size
= get_image_size(filename
);
1845 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
1846 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
1847 error_report("Could not load LPAR rtas '%s'", filename
);
1850 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
1851 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1852 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
1857 /* Set up EPOW events infrastructure */
1858 spapr_events_init(spapr
);
1860 /* Set up the RTC RTAS interfaces */
1861 spapr_rtc_create(spapr
);
1863 /* Set up VIO bus */
1864 spapr
->vio_bus
= spapr_vio_bus_init();
1866 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
1867 if (serial_hds
[i
]) {
1868 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
1872 /* We always have at least the nvram device on VIO */
1873 spapr_create_nvram(spapr
);
1876 spapr_pci_rtas_init();
1878 phb
= spapr_create_phb(spapr
, 0);
1880 for (i
= 0; i
< nb_nics
; i
++) {
1881 NICInfo
*nd
= &nd_table
[i
];
1884 nd
->model
= g_strdup("ibmveth");
1887 if (strcmp(nd
->model
, "ibmveth") == 0) {
1888 spapr_vlan_create(spapr
->vio_bus
, nd
);
1890 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
1894 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
1895 spapr_vscsi_create(spapr
->vio_bus
);
1899 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
1900 spapr
->has_graphics
= true;
1901 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
1905 if (smc
->use_ohci_by_default
) {
1906 pci_create_simple(phb
->bus
, -1, "pci-ohci");
1908 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
1911 if (spapr
->has_graphics
) {
1912 USBBus
*usb_bus
= usb_bus_find(-1);
1914 usb_create_simple(usb_bus
, "usb-kbd");
1915 usb_create_simple(usb_bus
, "usb-mouse");
1919 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
1921 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1926 if (kernel_filename
) {
1927 uint64_t lowaddr
= 0;
1929 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
1930 NULL
, &lowaddr
, NULL
, 1, PPC_ELF_MACHINE
,
1932 if (kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
1933 kernel_size
= load_elf(kernel_filename
,
1934 translate_kernel_address
, NULL
,
1935 NULL
, &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
1937 kernel_le
= kernel_size
> 0;
1939 if (kernel_size
< 0) {
1940 error_report("error loading %s: %s",
1941 kernel_filename
, load_elf_strerror(kernel_size
));
1946 if (initrd_filename
) {
1947 /* Try to locate the initrd in the gap between the kernel
1948 * and the firmware. Add a bit of space just in case
1950 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
1951 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
1952 load_limit
- initrd_base
);
1953 if (initrd_size
< 0) {
1954 error_report("could not load initial ram disk '%s'",
1964 if (bios_name
== NULL
) {
1965 bios_name
= FW_FILE_NAME
;
1967 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1969 error_report("Could not find LPAR firmware '%s'", bios_name
);
1972 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
1974 error_report("Could not load LPAR firmware '%s'", filename
);
1979 /* FIXME: Should register things through the MachineState's qdev
1980 * interface, this is a legacy from the sPAPREnvironment structure
1981 * which predated MachineState but had a similar function */
1982 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
1983 register_savevm_live(NULL
, "spapr/htab", -1, 1,
1984 &savevm_htab_handlers
, spapr
);
1986 /* Prepare the device tree */
1987 spapr
->fdt_skel
= spapr_create_fdt_skel(initrd_base
, initrd_size
,
1988 kernel_size
, kernel_le
,
1990 spapr
->check_exception_irq
);
1991 assert(spapr
->fdt_skel
!= NULL
);
1994 QTAILQ_INIT(&spapr
->ccs_list
);
1995 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
1997 qemu_register_boot_set(spapr_boot_set
, spapr
);
2000 static int spapr_kvm_type(const char *vm_type
)
2006 if (!strcmp(vm_type
, "HV")) {
2010 if (!strcmp(vm_type
, "PR")) {
2014 error_report("Unknown kvm-type specified '%s'", vm_type
);
2019 * Implementation of an interface to adjust firmware path
2020 * for the bootindex property handling.
2022 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2025 #define CAST(type, obj, name) \
2026 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2027 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2028 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2031 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2032 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2033 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2037 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2038 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2039 * in the top 16 bits of the 64-bit LUN
2041 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2042 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2043 (uint64_t)id
<< 48);
2044 } else if (virtio
) {
2046 * We use SRP luns of the form 01000000 | (target << 8) | lun
2047 * in the top 32 bits of the 64-bit LUN
2048 * Note: the quote above is from SLOF and it is wrong,
2049 * the actual binding is:
2050 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2052 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2053 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2054 (uint64_t)id
<< 32);
2057 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2058 * in the top 32 bits of the 64-bit LUN
2060 unsigned usb_port
= atoi(usb
->port
->path
);
2061 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2062 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2063 (uint64_t)id
<< 32);
2068 /* Replace "pci" with "pci@800000020000000" */
2069 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2075 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2077 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2079 return g_strdup(spapr
->kvm_type
);
2082 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2084 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2086 g_free(spapr
->kvm_type
);
2087 spapr
->kvm_type
= g_strdup(value
);
2090 static void spapr_machine_initfn(Object
*obj
)
2092 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2094 spapr
->htab_fd
= -1;
2095 object_property_add_str(obj
, "kvm-type",
2096 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2097 object_property_set_description(obj
, "kvm-type",
2098 "Specifies the KVM virtualization mode (HV, PR)",
2102 static void spapr_machine_finalizefn(Object
*obj
)
2104 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2106 g_free(spapr
->kvm_type
);
2109 static void ppc_cpu_do_nmi_on_cpu(void *arg
)
2113 cpu_synchronize_state(cs
);
2114 ppc_cpu_do_system_reset(cs
);
2117 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2122 async_run_on_cpu(cs
, ppc_cpu_do_nmi_on_cpu
, cs
);
2126 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr
, uint64_t size
,
2127 uint32_t node
, Error
**errp
)
2129 sPAPRDRConnector
*drc
;
2130 sPAPRDRConnectorClass
*drck
;
2131 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2132 int i
, fdt_offset
, fdt_size
;
2136 * Check for DRC connectors and send hotplug notification to the
2137 * guest only in case of hotplugged memory. This allows cold plugged
2138 * memory to be specified at boot time.
2140 if (!dev
->hotplugged
) {
2144 for (i
= 0; i
< nr_lmbs
; i
++) {
2145 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2146 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2149 fdt
= create_device_tree(&fdt_size
);
2150 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2151 SPAPR_MEMORY_BLOCK_SIZE
);
2153 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2154 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2155 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2157 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
, nr_lmbs
);
2160 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2161 uint32_t node
, Error
**errp
)
2163 Error
*local_err
= NULL
;
2164 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2165 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2166 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2167 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2168 uint64_t align
= memory_region_get_alignment(mr
);
2169 uint64_t size
= memory_region_size(mr
);
2172 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2173 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2174 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2178 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2183 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2185 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2189 spapr_add_lmbs(dev
, addr
, size
, node
, &error_abort
);
2192 error_propagate(errp
, local_err
);
2195 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2196 DeviceState
*dev
, Error
**errp
)
2198 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2200 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2203 if (!smc
->dr_lmb_enabled
) {
2204 error_setg(errp
, "Memory hotplug not supported for this machine");
2207 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2211 if (node
< 0 || node
>= MAX_NODES
) {
2212 error_setg(errp
, "Invaild node %d", node
);
2217 * Currently PowerPC kernel doesn't allow hot-adding memory to
2218 * memory-less node, but instead will silently add the memory
2219 * to the first node that has some memory. This causes two
2220 * unexpected behaviours for the user.
2222 * - Memory gets hotplugged to a different node than what the user
2224 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2225 * to memory-less node, a reboot will set things accordingly
2226 * and the previously hotplugged memory now ends in the right node.
2227 * This appears as if some memory moved from one node to another.
2229 * So until kernel starts supporting memory hotplug to memory-less
2230 * nodes, just prevent such attempts upfront in QEMU.
2232 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2233 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2238 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2242 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2243 DeviceState
*dev
, Error
**errp
)
2245 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2246 error_setg(errp
, "Memory hot unplug not supported by sPAPR");
2250 static HotplugHandler
*spapr_get_hotpug_handler(MachineState
*machine
,
2253 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2254 return HOTPLUG_HANDLER(machine
);
2259 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2261 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2262 * socket means much for the paravirtualized PAPR platform) */
2263 return cpu_index
/ smp_threads
/ smp_cores
;
2266 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
2268 MachineClass
*mc
= MACHINE_CLASS(oc
);
2269 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2270 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
2271 NMIClass
*nc
= NMI_CLASS(oc
);
2272 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2274 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
2277 * We set up the default / latest behaviour here. The class_init
2278 * functions for the specific versioned machine types can override
2279 * these details for backwards compatibility
2281 mc
->init
= ppc_spapr_init
;
2282 mc
->reset
= ppc_spapr_reset
;
2283 mc
->block_default_type
= IF_SCSI
;
2284 mc
->max_cpus
= MAX_CPUMASK_BITS
;
2285 mc
->no_parallel
= 1;
2286 mc
->default_boot_order
= "";
2287 mc
->default_ram_size
= 512 * M_BYTE
;
2288 mc
->kvm_type
= spapr_kvm_type
;
2289 mc
->has_dynamic_sysbus
= true;
2290 mc
->pci_allow_0_address
= true;
2291 mc
->get_hotplug_handler
= spapr_get_hotpug_handler
;
2292 hc
->plug
= spapr_machine_device_plug
;
2293 hc
->unplug
= spapr_machine_device_unplug
;
2294 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
2296 smc
->dr_lmb_enabled
= true;
2297 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
2298 nc
->nmi_monitor_handler
= spapr_nmi
;
2301 static const TypeInfo spapr_machine_info
= {
2302 .name
= TYPE_SPAPR_MACHINE
,
2303 .parent
= TYPE_MACHINE
,
2305 .instance_size
= sizeof(sPAPRMachineState
),
2306 .instance_init
= spapr_machine_initfn
,
2307 .instance_finalize
= spapr_machine_finalizefn
,
2308 .class_size
= sizeof(sPAPRMachineClass
),
2309 .class_init
= spapr_machine_class_init
,
2310 .interfaces
= (InterfaceInfo
[]) {
2311 { TYPE_FW_PATH_PROVIDER
},
2313 { TYPE_HOTPLUG_HANDLER
},
2318 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2319 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2322 MachineClass *mc = MACHINE_CLASS(oc); \
2323 spapr_machine_##suffix##_class_options(mc); \
2325 mc->alias = "pseries"; \
2326 mc->is_default = 1; \
2329 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2331 MachineState *machine = MACHINE(obj); \
2332 spapr_machine_##suffix##_instance_options(machine); \
2334 static const TypeInfo spapr_machine_##suffix##_info = { \
2335 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2336 .parent = TYPE_SPAPR_MACHINE, \
2337 .class_init = spapr_machine_##suffix##_class_init, \
2338 .instance_init = spapr_machine_##suffix##_instance_init, \
2340 static void spapr_machine_register_##suffix(void) \
2342 type_register(&spapr_machine_##suffix##_info); \
2344 type_init(spapr_machine_register_##suffix)
2349 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
2353 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
2355 /* Defaults for the latest behaviour inherited from the base class */
2358 DEFINE_SPAPR_MACHINE(2_6
, "2.6", true);
2363 #define SPAPR_COMPAT_2_5 \
2366 .driver = "spapr-vlan", \
2367 .property = "use-rx-buffer-pools", \
2371 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
2375 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
2377 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2379 spapr_machine_2_6_class_options(mc
);
2380 smc
->use_ohci_by_default
= true;
2381 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
2384 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
2389 #define SPAPR_COMPAT_2_4 \
2393 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
2395 spapr_machine_2_5_instance_options(machine
);
2398 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
2400 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2402 spapr_machine_2_5_class_options(mc
);
2403 smc
->dr_lmb_enabled
= false;
2404 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
2407 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
2412 #define SPAPR_COMPAT_2_3 \
2416 .driver = "spapr-pci-host-bridge",\
2417 .property = "dynamic-reconfiguration",\
2421 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
2423 spapr_machine_2_4_instance_options(machine
);
2424 savevm_skip_section_footers();
2425 global_state_set_optional();
2426 savevm_skip_configuration();
2429 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
2431 spapr_machine_2_4_class_options(mc
);
2432 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
2434 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
2440 #define SPAPR_COMPAT_2_2 \
2444 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2445 .property = "mem_win_size",\
2446 .value = "0x20000000",\
2449 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
2451 spapr_machine_2_3_instance_options(machine
);
2452 machine
->suppress_vmdesc
= true;
2455 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
2457 spapr_machine_2_3_class_options(mc
);
2458 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
2460 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
2465 #define SPAPR_COMPAT_2_1 \
2469 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
2471 spapr_machine_2_2_instance_options(machine
);
2474 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
2476 spapr_machine_2_2_class_options(mc
);
2477 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
2479 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
2481 static void spapr_machine_register_types(void)
2483 type_register_static(&spapr_machine_info
);
2486 type_init(spapr_machine_register_types
)