2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
40 static inline bool excp_is_internal(int excp
)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp
== EXCP_INTERRUPT
48 || excp
== EXCP_HALTED
49 || excp
== EXCP_EXCEPTION_EXIT
50 || excp
== EXCP_KERNEL_TRAP
51 || excp
== EXCP_SEMIHOST
;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL
, NPRIV
, 0, 1)
61 FIELD(V7M_CONTROL
, SPSEL
, 1, 1)
62 FIELD(V7M_CONTROL
, FPCA
, 2, 1)
63 FIELD(V7M_CONTROL
, SFPA
, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET
, ES
, 0, 1)
67 FIELD(V7M_EXCRET
, RES0
, 1, 1)
68 FIELD(V7M_EXCRET
, SPSEL
, 2, 1)
69 FIELD(V7M_EXCRET
, MODE
, 3, 1)
70 FIELD(V7M_EXCRET
, FTYPE
, 4, 1)
71 FIELD(V7M_EXCRET
, DCRS
, 5, 1)
72 FIELD(V7M_EXCRET
, S
, 6, 1)
73 FIELD(V7M_EXCRET
, RES1
, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN
raise_exception(CPUARMState
*env
, uint32_t excp
,
104 uint32_t syndrome
, uint32_t target_el
);
107 * Similarly, but also use unwinding to restore cpu state.
109 void QEMU_NORETURN
raise_exception_ra(CPUARMState
*env
, uint32_t excp
,
110 uint32_t syndrome
, uint32_t target_el
,
114 * For AArch64, map a given EL to an index in the banked_spsr array.
115 * Note that this mapping and the AArch32 mapping defined in bank_number()
116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117 * mandated mapping between each other.
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el
)
121 static const unsigned int map
[4] = {
122 [1] = BANK_SVC
, /* EL1. */
123 [2] = BANK_HYP
, /* EL2. */
124 [3] = BANK_MON
, /* EL3. */
126 assert(el
>= 1 && el
<= 3);
130 /* Map CPU modes onto saved register banks. */
131 static inline int bank_number(int mode
)
134 case ARM_CPU_MODE_USR
:
135 case ARM_CPU_MODE_SYS
:
137 case ARM_CPU_MODE_SVC
:
139 case ARM_CPU_MODE_ABT
:
141 case ARM_CPU_MODE_UND
:
143 case ARM_CPU_MODE_IRQ
:
145 case ARM_CPU_MODE_FIQ
:
147 case ARM_CPU_MODE_HYP
:
149 case ARM_CPU_MODE_MON
:
152 g_assert_not_reached();
156 * r14_bank_number: Map CPU mode onto register bank for r14
158 * Given an AArch32 CPU mode, return the index into the saved register
159 * banks to use for the R14 (LR) in that mode. This is the same as
160 * bank_number(), except for the special case of Hyp mode, where
161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162 * This should be used as the index into env->banked_r14[], and
163 * bank_number() used for the index into env->banked_r13[] and
164 * env->banked_spsr[].
166 static inline int r14_bank_number(int mode
)
168 return (mode
== ARM_CPU_MODE_HYP
) ? BANK_USRSYS
: bank_number(mode
);
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
);
172 void arm_translate_init(void);
174 enum arm_fprounding
{
183 int arm_rmode_to_sf(int rmode
);
185 static inline void aarch64_save_sp(CPUARMState
*env
, int el
)
187 if (env
->pstate
& PSTATE_SP
) {
188 env
->sp_el
[el
] = env
->xregs
[31];
190 env
->sp_el
[0] = env
->xregs
[31];
194 static inline void aarch64_restore_sp(CPUARMState
*env
, int el
)
196 if (env
->pstate
& PSTATE_SP
) {
197 env
->xregs
[31] = env
->sp_el
[el
];
199 env
->xregs
[31] = env
->sp_el
[0];
203 static inline void update_spsel(CPUARMState
*env
, uint32_t imm
)
205 unsigned int cur_el
= arm_current_el(env
);
206 /* Update PSTATE SPSel bit; this requires us to update the
207 * working stack pointer in xregs[31].
209 if (!((imm
^ env
->pstate
) & PSTATE_SP
)) {
212 aarch64_save_sp(env
, cur_el
);
213 env
->pstate
= deposit32(env
->pstate
, 0, 1, imm
);
215 /* We rely on illegal updates to SPsel from EL0 to get trapped
216 * at translation time.
218 assert(cur_el
>= 1 && cur_el
<= 3);
219 aarch64_restore_sp(env
, cur_el
);
226 * Returns the implementation defined bit-width of physical addresses.
227 * The ARMv8 reference manuals refer to this as PAMax().
229 static inline unsigned int arm_pamax(ARMCPU
*cpu
)
231 static const unsigned int pamax_map
[] = {
239 unsigned int parange
=
240 FIELD_EX64(cpu
->isar
.id_aa64mmfr0
, ID_AA64MMFR0
, PARANGE
);
242 /* id_aa64mmfr0 is a read-only register so values outside of the
243 * supported mappings can be considered an implementation error. */
244 assert(parange
< ARRAY_SIZE(pamax_map
));
245 return pamax_map
[parange
];
248 /* Return true if extended addresses are enabled.
249 * This is always the case if our translation regime is 64 bit,
250 * but depends on TTBCR.EAE for 32 bit.
252 static inline bool extended_addresses_enabled(CPUARMState
*env
)
254 TCR
*tcr
= &env
->cp15
.tcr_el
[arm_is_secure(env
) ? 3 : 1];
255 return arm_el_is_aa64(env
, 1) ||
256 (arm_feature(env
, ARM_FEATURE_LPAE
) && (tcr
->raw_tcr
& TTBCR_EAE
));
259 /* Valid Syndrome Register EC field values */
260 enum arm_exception_class
{
261 EC_UNCATEGORIZED
= 0x00,
263 EC_CP15RTTRAP
= 0x03,
264 EC_CP15RRTTRAP
= 0x04,
265 EC_CP14RTTRAP
= 0x05,
266 EC_CP14DTTRAP
= 0x06,
267 EC_ADVSIMDFPACCESSTRAP
= 0x07,
270 EC_CP14RRTTRAP
= 0x0c,
272 EC_ILLEGALSTATE
= 0x0e,
279 EC_SYSTEMREGISTERTRAP
= 0x18,
280 EC_SVEACCESSTRAP
= 0x19,
282 EC_INSNABORT_SAME_EL
= 0x21,
283 EC_PCALIGNMENT
= 0x22,
285 EC_DATAABORT_SAME_EL
= 0x25,
286 EC_SPALIGNMENT
= 0x26,
287 EC_AA32_FPTRAP
= 0x28,
288 EC_AA64_FPTRAP
= 0x2c,
290 EC_BREAKPOINT
= 0x30,
291 EC_BREAKPOINT_SAME_EL
= 0x31,
292 EC_SOFTWARESTEP
= 0x32,
293 EC_SOFTWARESTEP_SAME_EL
= 0x33,
294 EC_WATCHPOINT
= 0x34,
295 EC_WATCHPOINT_SAME_EL
= 0x35,
297 EC_VECTORCATCH
= 0x3a,
301 #define ARM_EL_EC_SHIFT 26
302 #define ARM_EL_IL_SHIFT 25
303 #define ARM_EL_ISV_SHIFT 24
304 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
305 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
307 static inline uint32_t syn_get_ec(uint32_t syn
)
309 return syn
>> ARM_EL_EC_SHIFT
;
312 /* Utility functions for constructing various kinds of syndrome value.
313 * Note that in general we follow the AArch64 syndrome values; in a
314 * few cases the value in HSR for exceptions taken to AArch32 Hyp
315 * mode differs slightly, and we fix this up when populating HSR in
316 * arm_cpu_do_interrupt_aarch32_hyp().
317 * The exception is FP/SIMD access traps -- these report extra information
318 * when taking an exception to AArch32. For those we include the extra coproc
319 * and TA fields, and mask them out when taking the exception to AArch64.
321 static inline uint32_t syn_uncategorized(void)
323 return (EC_UNCATEGORIZED
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
326 static inline uint32_t syn_aa64_svc(uint32_t imm16
)
328 return (EC_AA64_SVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
331 static inline uint32_t syn_aa64_hvc(uint32_t imm16
)
333 return (EC_AA64_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
336 static inline uint32_t syn_aa64_smc(uint32_t imm16
)
338 return (EC_AA64_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
341 static inline uint32_t syn_aa32_svc(uint32_t imm16
, bool is_16bit
)
343 return (EC_AA32_SVC
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
344 | (is_16bit
? 0 : ARM_EL_IL
);
347 static inline uint32_t syn_aa32_hvc(uint32_t imm16
)
349 return (EC_AA32_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
352 static inline uint32_t syn_aa32_smc(void)
354 return (EC_AA32_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
357 static inline uint32_t syn_aa64_bkpt(uint32_t imm16
)
359 return (EC_AA64_BKPT
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
362 static inline uint32_t syn_aa32_bkpt(uint32_t imm16
, bool is_16bit
)
364 return (EC_AA32_BKPT
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
365 | (is_16bit
? 0 : ARM_EL_IL
);
368 static inline uint32_t syn_aa64_sysregtrap(int op0
, int op1
, int op2
,
369 int crn
, int crm
, int rt
,
372 return (EC_SYSTEMREGISTERTRAP
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
373 | (op0
<< 20) | (op2
<< 17) | (op1
<< 14) | (crn
<< 10) | (rt
<< 5)
374 | (crm
<< 1) | isread
;
377 static inline uint32_t syn_cp14_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
378 int crn
, int crm
, int rt
, int isread
,
381 return (EC_CP14RTTRAP
<< ARM_EL_EC_SHIFT
)
382 | (is_16bit
? 0 : ARM_EL_IL
)
383 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
384 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
387 static inline uint32_t syn_cp15_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
388 int crn
, int crm
, int rt
, int isread
,
391 return (EC_CP15RTTRAP
<< ARM_EL_EC_SHIFT
)
392 | (is_16bit
? 0 : ARM_EL_IL
)
393 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
394 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
397 static inline uint32_t syn_cp14_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
398 int rt
, int rt2
, int isread
,
401 return (EC_CP14RRTTRAP
<< ARM_EL_EC_SHIFT
)
402 | (is_16bit
? 0 : ARM_EL_IL
)
403 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
404 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
407 static inline uint32_t syn_cp15_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
408 int rt
, int rt2
, int isread
,
411 return (EC_CP15RRTTRAP
<< ARM_EL_EC_SHIFT
)
412 | (is_16bit
? 0 : ARM_EL_IL
)
413 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
414 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
417 static inline uint32_t syn_fp_access_trap(int cv
, int cond
, bool is_16bit
)
419 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
420 return (EC_ADVSIMDFPACCESSTRAP
<< ARM_EL_EC_SHIFT
)
421 | (is_16bit
? 0 : ARM_EL_IL
)
422 | (cv
<< 24) | (cond
<< 20) | 0xa;
425 static inline uint32_t syn_simd_access_trap(int cv
, int cond
, bool is_16bit
)
427 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
428 return (EC_ADVSIMDFPACCESSTRAP
<< ARM_EL_EC_SHIFT
)
429 | (is_16bit
? 0 : ARM_EL_IL
)
430 | (cv
<< 24) | (cond
<< 20) | (1 << 5);
433 static inline uint32_t syn_sve_access_trap(void)
435 return EC_SVEACCESSTRAP
<< ARM_EL_EC_SHIFT
;
438 static inline uint32_t syn_pactrap(void)
440 return EC_PACTRAP
<< ARM_EL_EC_SHIFT
;
443 static inline uint32_t syn_btitrap(int btype
)
445 return (EC_BTITRAP
<< ARM_EL_EC_SHIFT
) | btype
;
448 static inline uint32_t syn_insn_abort(int same_el
, int ea
, int s1ptw
, int fsc
)
450 return (EC_INSNABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
451 | ARM_EL_IL
| (ea
<< 9) | (s1ptw
<< 7) | fsc
;
454 static inline uint32_t syn_data_abort_no_iss(int same_el
,
455 int ea
, int cm
, int s1ptw
,
458 return (EC_DATAABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
460 | (ea
<< 9) | (cm
<< 8) | (s1ptw
<< 7) | (wnr
<< 6) | fsc
;
463 static inline uint32_t syn_data_abort_with_iss(int same_el
,
464 int sas
, int sse
, int srt
,
466 int ea
, int cm
, int s1ptw
,
470 return (EC_DATAABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
471 | (is_16bit
? 0 : ARM_EL_IL
)
472 | ARM_EL_ISV
| (sas
<< 22) | (sse
<< 21) | (srt
<< 16)
473 | (sf
<< 15) | (ar
<< 14)
474 | (ea
<< 9) | (cm
<< 8) | (s1ptw
<< 7) | (wnr
<< 6) | fsc
;
477 static inline uint32_t syn_swstep(int same_el
, int isv
, int ex
)
479 return (EC_SOFTWARESTEP
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
480 | ARM_EL_IL
| (isv
<< 24) | (ex
<< 6) | 0x22;
483 static inline uint32_t syn_watchpoint(int same_el
, int cm
, int wnr
)
485 return (EC_WATCHPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
486 | ARM_EL_IL
| (cm
<< 8) | (wnr
<< 6) | 0x22;
489 static inline uint32_t syn_breakpoint(int same_el
)
491 return (EC_BREAKPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
495 static inline uint32_t syn_wfx(int cv
, int cond
, int ti
, bool is_16bit
)
497 return (EC_WFX_TRAP
<< ARM_EL_EC_SHIFT
) |
498 (is_16bit
? 0 : (1 << ARM_EL_IL_SHIFT
)) |
499 (cv
<< 24) | (cond
<< 20) | ti
;
502 /* Update a QEMU watchpoint based on the information the guest has set in the
503 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
505 void hw_watchpoint_update(ARMCPU
*cpu
, int n
);
506 /* Update the QEMU watchpoints for every guest watchpoint. This does a
507 * complete delete-and-reinstate of the QEMU watchpoint list and so is
508 * suitable for use after migration or on reset.
510 void hw_watchpoint_update_all(ARMCPU
*cpu
);
511 /* Update a QEMU breakpoint based on the information the guest has set in the
512 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
514 void hw_breakpoint_update(ARMCPU
*cpu
, int n
);
515 /* Update the QEMU breakpoints for every guest breakpoint. This does a
516 * complete delete-and-reinstate of the QEMU breakpoint list and so is
517 * suitable for use after migration or on reset.
519 void hw_breakpoint_update_all(ARMCPU
*cpu
);
521 /* Callback function for checking if a watchpoint should trigger. */
522 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
);
524 /* Adjust addresses (in BE32 mode) before testing against watchpoint
527 vaddr
arm_adjust_watchpoint_address(CPUState
*cs
, vaddr addr
, int len
);
529 /* Callback function for when a watchpoint or breakpoint triggers. */
530 void arm_debug_excp_handler(CPUState
*cs
);
532 #ifdef CONFIG_USER_ONLY
533 static inline bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
)
538 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
539 bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
);
540 /* Actually handle a PSCI call */
541 void arm_handle_psci_call(ARMCPU
*cpu
);
545 * arm_clear_exclusive: clear the exclusive monitor
547 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
549 static inline void arm_clear_exclusive(CPUARMState
*env
)
551 env
->exclusive_addr
= -1;
555 * ARMFaultType: type of an ARM MMU fault
556 * This corresponds to the v8A pseudocode's Fault enumeration,
557 * with extensions for QEMU internal conditions.
559 typedef enum ARMFaultType
{
566 ARMFault_Translation
,
567 ARMFault_AddressSize
,
568 ARMFault_SyncExternal
,
569 ARMFault_SyncExternalOnWalk
,
571 ARMFault_SyncParityOnWalk
,
572 ARMFault_AsyncParity
,
573 ARMFault_AsyncExternal
,
575 ARMFault_TLBConflict
,
578 ARMFault_ICacheMaint
,
579 ARMFault_QEMU_NSCExec
, /* v8M: NS executing in S&NSC memory */
580 ARMFault_QEMU_SFault
, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
584 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
585 * @type: Type of fault
586 * @level: Table walk level (for translation, access flag and permission faults)
587 * @domain: Domain of the fault address (for non-LPAE CPUs only)
588 * @s2addr: Address that caused a fault at stage 2
589 * @stage2: True if we faulted at stage 2
590 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
591 * @ea: True if we should set the EA (external abort type) bit in syndrome
593 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo
;
594 struct ARMMMUFaultInfo
{
605 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
606 * Compare pseudocode EncodeSDFSC(), though unlike that function
607 * we set up a whole FSR-format code including domain field and
608 * putting the high bit of the FSC into bit 10.
610 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo
*fi
)
617 case ARMFault_AccessFlag
:
618 fsc
= fi
->level
== 1 ? 0x3 : 0x6;
620 case ARMFault_Alignment
:
623 case ARMFault_Permission
:
624 fsc
= fi
->level
== 1 ? 0xd : 0xf;
626 case ARMFault_Domain
:
627 fsc
= fi
->level
== 1 ? 0x9 : 0xb;
629 case ARMFault_Translation
:
630 fsc
= fi
->level
== 1 ? 0x5 : 0x7;
632 case ARMFault_SyncExternal
:
633 fsc
= 0x8 | (fi
->ea
<< 12);
635 case ARMFault_SyncExternalOnWalk
:
636 fsc
= fi
->level
== 1 ? 0xc : 0xe;
637 fsc
|= (fi
->ea
<< 12);
639 case ARMFault_SyncParity
:
642 case ARMFault_SyncParityOnWalk
:
643 fsc
= fi
->level
== 1 ? 0x40c : 0x40e;
645 case ARMFault_AsyncParity
:
648 case ARMFault_AsyncExternal
:
649 fsc
= 0x406 | (fi
->ea
<< 12);
654 case ARMFault_TLBConflict
:
657 case ARMFault_Lockdown
:
660 case ARMFault_Exclusive
:
663 case ARMFault_ICacheMaint
:
666 case ARMFault_Background
:
669 case ARMFault_QEMU_NSCExec
:
670 fsc
= M_FAKE_FSR_NSC_EXEC
;
672 case ARMFault_QEMU_SFault
:
673 fsc
= M_FAKE_FSR_SFAULT
;
676 /* Other faults can't occur in a context that requires a
677 * short-format status code.
679 g_assert_not_reached();
682 fsc
|= (fi
->domain
<< 4);
687 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
688 * Compare pseudocode EncodeLDFSC(), though unlike that function
689 * we fill in also the LPAE bit 9 of a DFSR format.
691 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo
*fi
)
698 case ARMFault_AddressSize
:
701 case ARMFault_AccessFlag
:
702 fsc
= (fi
->level
& 3) | (0x2 << 2);
704 case ARMFault_Permission
:
705 fsc
= (fi
->level
& 3) | (0x3 << 2);
707 case ARMFault_Translation
:
708 fsc
= (fi
->level
& 3) | (0x1 << 2);
710 case ARMFault_SyncExternal
:
711 fsc
= 0x10 | (fi
->ea
<< 12);
713 case ARMFault_SyncExternalOnWalk
:
714 fsc
= (fi
->level
& 3) | (0x5 << 2) | (fi
->ea
<< 12);
716 case ARMFault_SyncParity
:
719 case ARMFault_SyncParityOnWalk
:
720 fsc
= (fi
->level
& 3) | (0x7 << 2);
722 case ARMFault_AsyncParity
:
725 case ARMFault_AsyncExternal
:
726 fsc
= 0x11 | (fi
->ea
<< 12);
728 case ARMFault_Alignment
:
734 case ARMFault_TLBConflict
:
737 case ARMFault_Lockdown
:
740 case ARMFault_Exclusive
:
744 /* Other faults can't occur in a context that requires a
745 * long-format status code.
747 g_assert_not_reached();
754 static inline bool arm_extabort_type(MemTxResult result
)
756 /* The EA bit in syndromes and fault status registers is an
757 * IMPDEF classification of external aborts. ARM implementations
758 * usually use this to indicate AXI bus Decode error (0) or
759 * Slave error (1); in QEMU we follow that.
761 return result
!= MEMTX_DECODE_ERROR
;
764 /* Do a page table walk and add page to TLB if possible */
765 bool arm_tlb_fill(CPUState
*cpu
, vaddr address
,
766 MMUAccessType access_type
, int mmu_idx
,
767 ARMMMUFaultInfo
*fi
);
769 /* Return true if the stage 1 translation regime is using LPAE format page
771 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
);
773 /* Raise a data fault alignment exception for the specified virtual address */
774 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
,
775 MMUAccessType access_type
,
776 int mmu_idx
, uintptr_t retaddr
);
778 /* arm_cpu_do_transaction_failed: handle a memory system error response
779 * (eg "no device/memory present at address") by raising an external abort
782 void arm_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
783 vaddr addr
, unsigned size
,
784 MMUAccessType access_type
,
785 int mmu_idx
, MemTxAttrs attrs
,
786 MemTxResult response
, uintptr_t retaddr
);
788 /* Call any registered EL change hooks */
789 static inline void arm_call_pre_el_change_hook(ARMCPU
*cpu
)
791 ARMELChangeHook
*hook
, *next
;
792 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
793 hook
->hook(cpu
, hook
->opaque
);
796 static inline void arm_call_el_change_hook(ARMCPU
*cpu
)
798 ARMELChangeHook
*hook
, *next
;
799 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
800 hook
->hook(cpu
, hook
->opaque
);
804 /* Return true if this address translation regime is secure */
805 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
808 case ARMMMUIdx_S12NSE0
:
809 case ARMMMUIdx_S12NSE1
:
810 case ARMMMUIdx_S1NSE0
:
811 case ARMMMUIdx_S1NSE1
:
814 case ARMMMUIdx_MPrivNegPri
:
815 case ARMMMUIdx_MUserNegPri
:
816 case ARMMMUIdx_MPriv
:
817 case ARMMMUIdx_MUser
:
820 case ARMMMUIdx_S1SE0
:
821 case ARMMMUIdx_S1SE1
:
822 case ARMMMUIdx_MSPrivNegPri
:
823 case ARMMMUIdx_MSUserNegPri
:
824 case ARMMMUIdx_MSPriv
:
825 case ARMMMUIdx_MSUser
:
828 g_assert_not_reached();
832 /* Return the FSR value for a debug exception (watchpoint, hardware
833 * breakpoint or BKPT insn) targeting the specified exception level.
835 static inline uint32_t arm_debug_exception_fsr(CPUARMState
*env
)
837 ARMMMUFaultInfo fi
= { .type
= ARMFault_Debug
};
838 int target_el
= arm_debug_target_el(env
);
839 bool using_lpae
= false;
841 if (target_el
== 2 || arm_el_is_aa64(env
, target_el
)) {
844 if (arm_feature(env
, ARM_FEATURE_LPAE
) &&
845 (env
->cp15
.tcr_el
[target_el
].raw_tcr
& TTBCR_EAE
)) {
851 return arm_fi_to_lfsc(&fi
);
853 return arm_fi_to_sfsc(&fi
);
857 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
858 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
860 #define MEMOPIDX_SHIFT 8
863 * v7m_using_psp: Return true if using process stack pointer
864 * Return true if the CPU is currently using the process stack
865 * pointer, or false if it is using the main stack pointer.
867 static inline bool v7m_using_psp(CPUARMState
*env
)
869 /* Handler mode always uses the main stack; for thread mode
870 * the CONTROL.SPSEL bit determines the answer.
871 * Note that in v7M it is not possible to be in Handler mode with
872 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
874 return !arm_v7m_is_handler_mode(env
) &&
875 env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_SPSEL_MASK
;
879 * v7m_sp_limit: Return SP limit for current CPU state
880 * Return the SP limit value for the current CPU security state
883 static inline uint32_t v7m_sp_limit(CPUARMState
*env
)
885 if (v7m_using_psp(env
)) {
886 return env
->v7m
.psplim
[env
->v7m
.secure
];
888 return env
->v7m
.msplim
[env
->v7m
.secure
];
893 * aarch32_mode_name(): Return name of the AArch32 CPU mode
894 * @psr: Program Status Register indicating CPU mode
896 * Returns, for debug logging purposes, a printable representation
897 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
898 * the low bits of the specified PSR.
900 static inline const char *aarch32_mode_name(uint32_t psr
)
902 static const char cpu_mode_names
[16][4] = {
903 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
904 "???", "???", "hyp", "und", "???", "???", "???", "sys"
907 return cpu_mode_names
[psr
& 0xf];
911 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
913 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
914 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
915 * Must be called with the iothread lock held.
917 void arm_cpu_update_virq(ARMCPU
*cpu
);
920 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
922 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
923 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
924 * Must be called with the iothread lock held.
926 void arm_cpu_update_vfiq(ARMCPU
*cpu
);
930 * @env: The cpu environment
932 * Return the full ARMMMUIdx for the current translation regime.
934 ARMMMUIdx
arm_mmu_idx(CPUARMState
*env
);
937 * arm_stage1_mmu_idx:
938 * @env: The cpu environment
940 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
942 #ifdef CONFIG_USER_ONLY
943 static inline ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
)
945 return ARMMMUIdx_S1NSE0
;
948 ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
);
952 * Parameters of a given virtual address, as extracted from the
953 * translation control register (TCR) for a given regime.
955 typedef struct ARMVAParameters
{
966 ARMVAParameters
aa64_va_parameters_both(CPUARMState
*env
, uint64_t va
,
968 ARMVAParameters
aa64_va_parameters(CPUARMState
*env
, uint64_t va
,
969 ARMMMUIdx mmu_idx
, bool data
);