Merge remote-tracking branch 'remotes/kraxel/tags/usb-20190220-pull-request' into...
[qemu/ar7.git] / target / arm / cpu.h
blob84ae6849c2ff75d99c7e8c79f0d5c50ee234d98e
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 /* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
144 typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
153 uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP 2
159 #define GTIMER_SEC 3
160 #define NUM_GTIMERS 4
162 typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166 } TCR;
168 /* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
185 * Hn = regs[n].d[0] bits 15..0
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
191 * Align the data for use with TCG host vector operations.
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ 16
196 #else
197 # define ARM_MAX_VQ 1
198 #endif
200 typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all. */
206 typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
210 /* In AArch32 mode, PAC keys do not exist at all. */
211 typedef struct ARMPACKey {
212 uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
217 typedef struct CPUARMState {
218 /* Regs for current mode. */
219 uint32_t regs[16];
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
236 * DAIF (exception masks) are kept in env->daif
237 * BTYPE is kept in env->btype
238 * all other bits are stored in their correct places in env->pstate
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
243 /* Frequently accessed CPSR bits are stored separately for efficiency.
244 This contains all the other bits. Use cpsr_{read,write} to access
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
249 /* Banked registers. */
250 uint64_t banked_spsr[8];
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
263 uint32_t QF; /* 0 or 1 */
264 uint32_t GE; /* cpsr[19:16] */
265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
270 uint64_t elr_el[4]; /* AArch64 exception link regs */
271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
273 /* System control coprocessor (cp15) */
274 struct {
275 uint32_t c0_cpuid;
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
283 uint64_t csselr_el[4];
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
292 uint64_t sctlr_el[4];
294 uint64_t cpacr_el1; /* Architectural feature access control register */
295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
297 uint64_t sder; /* Secure debug enable register. */
298 uint32_t nsacr; /* Non-secure access control register. */
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
306 uint64_t ttbr0_el[4];
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
315 uint64_t ttbr1_el[4];
317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
320 TCR vtcr_el2; /* Virtualization Translation Control. */
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
323 union { /* MMU domain access control register
324 * MPU write buffer control.
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
330 struct {
331 uint64_t dacr32_el2;
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
336 uint64_t hcr_el2; /* Hypervisor configuration register */
337 uint64_t scr_el3; /* Secure configuration register. */
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
343 struct {
344 uint64_t ifsr32_el2;
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
354 uint64_t esr_el[4];
356 uint32_t c6_region[8]; /* MPU base/size registers. */
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360 #ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365 #else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370 #endif
371 uint64_t _unused_far3;
373 uint64_t far_el[4];
375 uint64_t hpfar_el2;
376 uint64_t hstr_el2;
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
384 uint64_t par_el[4];
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
393 uint64_t c9_pmselr; /* perf monitor counter selection register */
394 uint64_t c9_pminten; /* perf monitor interrupt enables */
395 union { /* Memory attribute redirection */
396 struct {
397 #ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404 #else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411 #endif
413 uint64_t mair_el[4];
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
422 uint64_t vbar_el[4];
424 uint32_t mvbar; /* (monitor) vector base address register */
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
436 uint64_t contextidr_el[4];
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
445 uint64_t tpidr_el[4];
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460 ARMGenericTimer c14_timer[NUM_GTIMERS];
461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
474 uint64_t mdscr_el1;
475 uint64_t oslsr_el1; /* OS Lock Status */
476 uint64_t mdcr_el2;
477 uint64_t mdcr_el3;
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
483 uint64_t c15_ccnt;
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
491 uint64_t c15_ccnt_delta;
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
498 } cp15;
500 struct {
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
512 uint32_t other_sp;
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
522 uint32_t sfsr; /* Secure Fault Status Register */
523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
524 uint32_t bfar; /* BusFault Address */
525 uint32_t sfar; /* Secure Fault Address Register */
526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
527 int exception;
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
530 uint32_t aircr; /* only holds r/w state if security extn implemented */
531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
532 uint32_t csselr[M_REG_NUM_BANKS];
533 uint32_t scr[M_REG_NUM_BANKS];
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
536 } v7m;
538 /* Information associated with an exception about to be taken:
539 * code which raises an exception must set cs->exception_index and
540 * the relevant parts of this structure; the cpu_do_interrupt function
541 * will then set the guest-visible registers as part of the exception
542 * entry process.
544 struct {
545 uint32_t syndrome; /* AArch64 format syndrome register */
546 uint32_t fsr; /* AArch32 format fault status register info */
547 uint64_t vaddress; /* virtual addr associated with exception, if any */
548 uint32_t target_el; /* EL the exception should be targeted for */
549 /* If we implement EL2 we will also need to store information
550 * about the intermediate physical address for stage 2 faults.
552 } exception;
554 /* Information associated with an SError */
555 struct {
556 uint8_t pending;
557 uint8_t has_esr;
558 uint64_t esr;
559 } serror;
561 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
562 uint32_t irq_line_state;
564 /* Thumb-2 EE state. */
565 uint32_t teecr;
566 uint32_t teehbr;
568 /* VFP coprocessor state. */
569 struct {
570 ARMVectorReg zregs[32];
572 #ifdef TARGET_AARCH64
573 /* Store FFR as pregs[16] to make it easier to treat as any other. */
574 #define FFR_PRED_NUM 16
575 ARMPredicateReg pregs[17];
576 /* Scratch space for aa64 sve predicate temporary. */
577 ARMPredicateReg preg_tmp;
578 #endif
580 /* We store these fpcsr fields separately for convenience. */
581 uint32_t qc[4] QEMU_ALIGNED(16);
582 int vec_len;
583 int vec_stride;
585 uint32_t xregs[16];
587 /* Scratch space for aa32 neon expansion. */
588 uint32_t scratch[8];
590 /* There are a number of distinct float control structures:
592 * fp_status: is the "normal" fp status.
593 * fp_status_fp16: used for half-precision calculations
594 * standard_fp_status : the ARM "Standard FPSCR Value"
596 * Half-precision operations are governed by a separate
597 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
598 * status structure to control this.
600 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
601 * round-to-nearest and is used by any operations (generally
602 * Neon) which the architecture defines as controlled by the
603 * standard FPSCR value rather than the FPSCR.
605 * To avoid having to transfer exception bits around, we simply
606 * say that the FPSCR cumulative exception flags are the logical
607 * OR of the flags in the three fp statuses. This relies on the
608 * only thing which needs to read the exception flags being
609 * an explicit FPSCR read.
611 float_status fp_status;
612 float_status fp_status_f16;
613 float_status standard_fp_status;
615 /* ZCR_EL[1-3] */
616 uint64_t zcr_el[4];
617 } vfp;
618 uint64_t exclusive_addr;
619 uint64_t exclusive_val;
620 uint64_t exclusive_high;
622 /* iwMMXt coprocessor state. */
623 struct {
624 uint64_t regs[16];
625 uint64_t val;
627 uint32_t cregs[16];
628 } iwmmxt;
630 #ifdef TARGET_AARCH64
631 ARMPACKey apia_key;
632 ARMPACKey apib_key;
633 ARMPACKey apda_key;
634 ARMPACKey apdb_key;
635 ARMPACKey apga_key;
636 #endif
638 #if defined(CONFIG_USER_ONLY)
639 /* For usermode syscall translation. */
640 int eabi;
641 #endif
643 struct CPUBreakpoint *cpu_breakpoint[16];
644 struct CPUWatchpoint *cpu_watchpoint[16];
646 /* Fields up to this point are cleared by a CPU reset */
647 struct {} end_reset_fields;
649 CPU_COMMON
651 /* Fields after CPU_COMMON are preserved across CPU reset. */
653 /* Internal CPU feature flags. */
654 uint64_t features;
656 /* PMSAv7 MPU */
657 struct {
658 uint32_t *drbar;
659 uint32_t *drsr;
660 uint32_t *dracr;
661 uint32_t rnr[M_REG_NUM_BANKS];
662 } pmsav7;
664 /* PMSAv8 MPU */
665 struct {
666 /* The PMSAv8 implementation also shares some PMSAv7 config
667 * and state:
668 * pmsav7.rnr (region number register)
669 * pmsav7_dregion (number of configured regions)
671 uint32_t *rbar[M_REG_NUM_BANKS];
672 uint32_t *rlar[M_REG_NUM_BANKS];
673 uint32_t mair0[M_REG_NUM_BANKS];
674 uint32_t mair1[M_REG_NUM_BANKS];
675 } pmsav8;
677 /* v8M SAU */
678 struct {
679 uint32_t *rbar;
680 uint32_t *rlar;
681 uint32_t rnr;
682 uint32_t ctrl;
683 } sau;
685 void *nvic;
686 const struct arm_boot_info *boot_info;
687 /* Store GICv3CPUState to access from this struct */
688 void *gicv3state;
689 } CPUARMState;
692 * ARMELChangeHookFn:
693 * type of a function which can be registered via arm_register_el_change_hook()
694 * to get callbacks when the CPU changes its exception level or mode.
696 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
697 typedef struct ARMELChangeHook ARMELChangeHook;
698 struct ARMELChangeHook {
699 ARMELChangeHookFn *hook;
700 void *opaque;
701 QLIST_ENTRY(ARMELChangeHook) node;
704 /* These values map onto the return values for
705 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
706 typedef enum ARMPSCIState {
707 PSCI_ON = 0,
708 PSCI_OFF = 1,
709 PSCI_ON_PENDING = 2
710 } ARMPSCIState;
712 typedef struct ARMISARegisters ARMISARegisters;
715 * ARMCPU:
716 * @env: #CPUARMState
718 * An ARM CPU core.
720 struct ARMCPU {
721 /*< private >*/
722 CPUState parent_obj;
723 /*< public >*/
725 CPUARMState env;
727 /* Coprocessor information */
728 GHashTable *cp_regs;
729 /* For marshalling (mostly coprocessor) register state between the
730 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731 * we use these arrays.
733 /* List of register indexes managed via these arrays; (full KVM style
734 * 64 bit indexes, not CPRegInfo 32 bit indexes)
736 uint64_t *cpreg_indexes;
737 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738 uint64_t *cpreg_values;
739 /* Length of the indexes, values, reset_values arrays */
740 int32_t cpreg_array_len;
741 /* These are used only for migration: incoming data arrives in
742 * these fields and is sanity checked in post_load before copying
743 * to the working data structures above.
745 uint64_t *cpreg_vmstate_indexes;
746 uint64_t *cpreg_vmstate_values;
747 int32_t cpreg_vmstate_array_len;
749 DynamicGDBXMLInfo dyn_xml;
751 /* Timers used by the generic (architected) timer */
752 QEMUTimer *gt_timer[NUM_GTIMERS];
754 * Timer used by the PMU. Its state is restored after migration by
755 * pmu_op_finish() - it does not need other handling during migration
757 QEMUTimer *pmu_timer;
758 /* GPIO outputs for generic timer */
759 qemu_irq gt_timer_outputs[NUM_GTIMERS];
760 /* GPIO output for GICv3 maintenance interrupt signal */
761 qemu_irq gicv3_maintenance_interrupt;
762 /* GPIO output for the PMU interrupt */
763 qemu_irq pmu_interrupt;
765 /* MemoryRegion to use for secure physical accesses */
766 MemoryRegion *secure_memory;
768 /* For v8M, pointer to the IDAU interface provided by board/SoC */
769 Object *idau;
771 /* 'compatible' string for this CPU for Linux device trees */
772 const char *dtb_compatible;
774 /* PSCI version for this CPU
775 * Bits[31:16] = Major Version
776 * Bits[15:0] = Minor Version
778 uint32_t psci_version;
780 /* Should CPU start in PSCI powered-off state? */
781 bool start_powered_off;
783 /* Current power state, access guarded by BQL */
784 ARMPSCIState power_state;
786 /* CPU has virtualization extension */
787 bool has_el2;
788 /* CPU has security extension */
789 bool has_el3;
790 /* CPU has PMU (Performance Monitor Unit) */
791 bool has_pmu;
793 /* CPU has memory protection unit */
794 bool has_mpu;
795 /* PMSAv7 MPU number of supported regions */
796 uint32_t pmsav7_dregion;
797 /* v8M SAU number of supported regions */
798 uint32_t sau_sregion;
800 /* PSCI conduit used to invoke PSCI methods
801 * 0 - disabled, 1 - smc, 2 - hvc
803 uint32_t psci_conduit;
805 /* For v8M, initial value of the Secure VTOR */
806 uint32_t init_svtor;
808 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
809 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
811 uint32_t kvm_target;
813 /* KVM init features for this CPU */
814 uint32_t kvm_init_features[7];
816 /* Uniprocessor system with MP extensions */
817 bool mp_is_up;
819 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
820 * and the probe failed (so we need to report the error in realize)
822 bool host_cpu_probe_failed;
824 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
825 * register.
827 int32_t core_count;
829 /* The instance init functions for implementation-specific subclasses
830 * set these fields to specify the implementation-dependent values of
831 * various constant registers and reset values of non-constant
832 * registers.
833 * Some of these might become QOM properties eventually.
834 * Field names match the official register names as defined in the
835 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
836 * is used for reset values of non-constant registers; no reset_
837 * prefix means a constant register.
838 * Some of these registers are split out into a substructure that
839 * is shared with the translators to control the ISA.
841 struct ARMISARegisters {
842 uint32_t id_isar0;
843 uint32_t id_isar1;
844 uint32_t id_isar2;
845 uint32_t id_isar3;
846 uint32_t id_isar4;
847 uint32_t id_isar5;
848 uint32_t id_isar6;
849 uint32_t mvfr0;
850 uint32_t mvfr1;
851 uint32_t mvfr2;
852 uint64_t id_aa64isar0;
853 uint64_t id_aa64isar1;
854 uint64_t id_aa64pfr0;
855 uint64_t id_aa64pfr1;
856 uint64_t id_aa64mmfr0;
857 uint64_t id_aa64mmfr1;
858 } isar;
859 uint32_t midr;
860 uint32_t revidr;
861 uint32_t reset_fpsid;
862 uint32_t ctr;
863 uint32_t reset_sctlr;
864 uint32_t id_pfr0;
865 uint32_t id_pfr1;
866 uint32_t id_dfr0;
867 uint64_t pmceid0;
868 uint64_t pmceid1;
869 uint32_t id_afr0;
870 uint32_t id_mmfr0;
871 uint32_t id_mmfr1;
872 uint32_t id_mmfr2;
873 uint32_t id_mmfr3;
874 uint32_t id_mmfr4;
875 uint64_t id_aa64dfr0;
876 uint64_t id_aa64dfr1;
877 uint64_t id_aa64afr0;
878 uint64_t id_aa64afr1;
879 uint32_t dbgdidr;
880 uint32_t clidr;
881 uint64_t mp_affinity; /* MP ID without feature bits */
882 /* The elements of this array are the CCSIDR values for each cache,
883 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
885 uint32_t ccsidr[16];
886 uint64_t reset_cbar;
887 uint32_t reset_auxcr;
888 bool reset_hivecs;
889 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
890 uint32_t dcz_blocksize;
891 uint64_t rvbar;
893 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
894 int gic_num_lrs; /* number of list registers */
895 int gic_vpribits; /* number of virtual priority bits */
896 int gic_vprebits; /* number of virtual preemption bits */
898 /* Whether the cfgend input is high (i.e. this CPU should reset into
899 * big-endian mode). This setting isn't used directly: instead it modifies
900 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
901 * architecture version.
903 bool cfgend;
905 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
906 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
908 int32_t node_id; /* NUMA node this CPU belongs to */
910 /* Used to synchronize KVM and QEMU in-kernel device levels */
911 uint8_t device_irq_level;
913 /* Used to set the maximum vector length the cpu will support. */
914 uint32_t sve_max_vq;
917 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
919 return container_of(env, ARMCPU, env);
922 void arm_cpu_post_init(Object *obj);
924 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
926 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
928 #define ENV_OFFSET offsetof(ARMCPU, env)
930 #ifndef CONFIG_USER_ONLY
931 extern const struct VMStateDescription vmstate_arm_cpu;
932 #endif
934 void arm_cpu_do_interrupt(CPUState *cpu);
935 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
936 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
938 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
939 int flags);
941 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
942 MemTxAttrs *attrs);
944 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
945 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
947 /* Dynamically generates for gdb stub an XML description of the sysregs from
948 * the cp_regs hashtable. Returns the registered sysregs number.
950 int arm_gen_dynamic_xml(CPUState *cpu);
952 /* Returns the dynamically generated XML for the gdb stub.
953 * Returns a pointer to the XML contents for the specified XML file or NULL
954 * if the XML name doesn't match the predefined one.
956 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
958 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
959 int cpuid, void *opaque);
960 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
961 int cpuid, void *opaque);
963 #ifdef TARGET_AARCH64
964 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
966 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
967 void aarch64_sve_change_el(CPUARMState *env, int old_el,
968 int new_el, bool el0_a64);
969 #else
970 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
971 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
972 int n, bool a)
974 #endif
976 target_ulong do_arm_semihosting(CPUARMState *env);
977 void aarch64_sync_32_to_64(CPUARMState *env);
978 void aarch64_sync_64_to_32(CPUARMState *env);
980 int fp_exception_el(CPUARMState *env, int cur_el);
981 int sve_exception_el(CPUARMState *env, int cur_el);
982 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
984 static inline bool is_a64(CPUARMState *env)
986 return env->aarch64;
989 /* you can call this signal handler from your SIGBUS and SIGSEGV
990 signal handlers to inform the virtual CPU of exceptions. non zero
991 is returned if the signal was handled by the virtual CPU. */
992 int cpu_arm_signal_handler(int host_signum, void *pinfo,
993 void *puc);
996 * pmccntr_op_start/finish
997 * @env: CPUARMState
999 * Convert the counter in the PMCCNTR between its delta form (the typical mode
1000 * when it's enabled) and the guest-visible value. These two calls must always
1001 * surround any action which might affect the counter.
1003 void pmccntr_op_start(CPUARMState *env);
1004 void pmccntr_op_finish(CPUARMState *env);
1007 * pmu_op_start/finish
1008 * @env: CPUARMState
1010 * Convert all PMU counters between their delta form (the typical mode when
1011 * they are enabled) and the guest-visible values. These two calls must
1012 * surround any action which might affect the counters.
1014 void pmu_op_start(CPUARMState *env);
1015 void pmu_op_finish(CPUARMState *env);
1018 * Called when a PMU counter is due to overflow
1020 void arm_pmu_timer_cb(void *opaque);
1023 * Functions to register as EL change hooks for PMU mode filtering
1025 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1026 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1029 * pmu_init
1030 * @cpu: ARMCPU
1032 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1033 * for the current configuration
1035 void pmu_init(ARMCPU *cpu);
1037 /* SCTLR bit meanings. Several bits have been reused in newer
1038 * versions of the architecture; in that case we define constants
1039 * for both old and new bit meanings. Code which tests against those
1040 * bits should probably check or otherwise arrange that the CPU
1041 * is the architectural version it expects.
1043 #define SCTLR_M (1U << 0)
1044 #define SCTLR_A (1U << 1)
1045 #define SCTLR_C (1U << 2)
1046 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1047 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1048 #define SCTLR_SA (1U << 3) /* AArch64 only */
1049 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1050 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1051 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1052 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1053 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1054 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1055 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1056 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1057 #define SCTLR_ITD (1U << 7) /* v8 onward */
1058 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1059 #define SCTLR_SED (1U << 8) /* v8 onward */
1060 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1061 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1062 #define SCTLR_F (1U << 10) /* up to v6 */
1063 #define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1064 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1065 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1066 #define SCTLR_I (1U << 12)
1067 #define SCTLR_V (1U << 13) /* AArch32 only */
1068 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1069 #define SCTLR_RR (1U << 14) /* up to v7 */
1070 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1071 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1072 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1073 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1074 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1075 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1076 #define SCTLR_BR (1U << 17) /* PMSA only */
1077 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1078 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1079 #define SCTLR_WXN (1U << 19)
1080 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1081 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1082 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1083 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1084 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1085 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1086 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1087 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1088 #define SCTLR_VE (1U << 24) /* up to v7 */
1089 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1090 #define SCTLR_EE (1U << 25)
1091 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1092 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1093 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1094 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1095 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1096 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1097 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1098 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1099 #define SCTLR_TE (1U << 30) /* AArch32 only */
1100 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1101 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1102 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1103 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1104 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1105 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1106 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1107 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1108 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1109 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1111 #define CPTR_TCPAC (1U << 31)
1112 #define CPTR_TTA (1U << 20)
1113 #define CPTR_TFP (1U << 10)
1114 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1115 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1117 #define MDCR_EPMAD (1U << 21)
1118 #define MDCR_EDAD (1U << 20)
1119 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1120 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1121 #define MDCR_SDD (1U << 16)
1122 #define MDCR_SPD (3U << 14)
1123 #define MDCR_TDRA (1U << 11)
1124 #define MDCR_TDOSA (1U << 10)
1125 #define MDCR_TDA (1U << 9)
1126 #define MDCR_TDE (1U << 8)
1127 #define MDCR_HPME (1U << 7)
1128 #define MDCR_TPM (1U << 6)
1129 #define MDCR_TPMCR (1U << 5)
1130 #define MDCR_HPMN (0x1fU)
1132 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1133 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1135 #define CPSR_M (0x1fU)
1136 #define CPSR_T (1U << 5)
1137 #define CPSR_F (1U << 6)
1138 #define CPSR_I (1U << 7)
1139 #define CPSR_A (1U << 8)
1140 #define CPSR_E (1U << 9)
1141 #define CPSR_IT_2_7 (0xfc00U)
1142 #define CPSR_GE (0xfU << 16)
1143 #define CPSR_IL (1U << 20)
1144 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1145 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1146 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1147 * where it is live state but not accessible to the AArch32 code.
1149 #define CPSR_RESERVED (0x7U << 21)
1150 #define CPSR_J (1U << 24)
1151 #define CPSR_IT_0_1 (3U << 25)
1152 #define CPSR_Q (1U << 27)
1153 #define CPSR_V (1U << 28)
1154 #define CPSR_C (1U << 29)
1155 #define CPSR_Z (1U << 30)
1156 #define CPSR_N (1U << 31)
1157 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1158 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1160 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1161 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1162 | CPSR_NZCV)
1163 /* Bits writable in user mode. */
1164 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1165 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1166 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1167 /* Mask of bits which may be set by exception return copying them from SPSR */
1168 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1170 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1171 #define XPSR_EXCP 0x1ffU
1172 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1173 #define XPSR_IT_2_7 CPSR_IT_2_7
1174 #define XPSR_GE CPSR_GE
1175 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1176 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1177 #define XPSR_IT_0_1 CPSR_IT_0_1
1178 #define XPSR_Q CPSR_Q
1179 #define XPSR_V CPSR_V
1180 #define XPSR_C CPSR_C
1181 #define XPSR_Z CPSR_Z
1182 #define XPSR_N CPSR_N
1183 #define XPSR_NZCV CPSR_NZCV
1184 #define XPSR_IT CPSR_IT
1186 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1187 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1188 #define TTBCR_PD0 (1U << 4)
1189 #define TTBCR_PD1 (1U << 5)
1190 #define TTBCR_EPD0 (1U << 7)
1191 #define TTBCR_IRGN0 (3U << 8)
1192 #define TTBCR_ORGN0 (3U << 10)
1193 #define TTBCR_SH0 (3U << 12)
1194 #define TTBCR_T1SZ (3U << 16)
1195 #define TTBCR_A1 (1U << 22)
1196 #define TTBCR_EPD1 (1U << 23)
1197 #define TTBCR_IRGN1 (3U << 24)
1198 #define TTBCR_ORGN1 (3U << 26)
1199 #define TTBCR_SH1 (1U << 28)
1200 #define TTBCR_EAE (1U << 31)
1202 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1203 * Only these are valid when in AArch64 mode; in
1204 * AArch32 mode SPSRs are basically CPSR-format.
1206 #define PSTATE_SP (1U)
1207 #define PSTATE_M (0xFU)
1208 #define PSTATE_nRW (1U << 4)
1209 #define PSTATE_F (1U << 6)
1210 #define PSTATE_I (1U << 7)
1211 #define PSTATE_A (1U << 8)
1212 #define PSTATE_D (1U << 9)
1213 #define PSTATE_BTYPE (3U << 10)
1214 #define PSTATE_IL (1U << 20)
1215 #define PSTATE_SS (1U << 21)
1216 #define PSTATE_V (1U << 28)
1217 #define PSTATE_C (1U << 29)
1218 #define PSTATE_Z (1U << 30)
1219 #define PSTATE_N (1U << 31)
1220 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1221 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1222 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1223 /* Mode values for AArch64 */
1224 #define PSTATE_MODE_EL3h 13
1225 #define PSTATE_MODE_EL3t 12
1226 #define PSTATE_MODE_EL2h 9
1227 #define PSTATE_MODE_EL2t 8
1228 #define PSTATE_MODE_EL1h 5
1229 #define PSTATE_MODE_EL1t 4
1230 #define PSTATE_MODE_EL0t 0
1232 /* Write a new value to v7m.exception, thus transitioning into or out
1233 * of Handler mode; this may result in a change of active stack pointer.
1235 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1237 /* Map EL and handler into a PSTATE_MODE. */
1238 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1240 return (el << 2) | handler;
1243 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1244 * interprocessing, so we don't attempt to sync with the cpsr state used by
1245 * the 32 bit decoder.
1247 static inline uint32_t pstate_read(CPUARMState *env)
1249 int ZF;
1251 ZF = (env->ZF == 0);
1252 return (env->NF & 0x80000000) | (ZF << 30)
1253 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1254 | env->pstate | env->daif | (env->btype << 10);
1257 static inline void pstate_write(CPUARMState *env, uint32_t val)
1259 env->ZF = (~val) & PSTATE_Z;
1260 env->NF = val;
1261 env->CF = (val >> 29) & 1;
1262 env->VF = (val << 3) & 0x80000000;
1263 env->daif = val & PSTATE_DAIF;
1264 env->btype = (val >> 10) & 3;
1265 env->pstate = val & ~CACHED_PSTATE_BITS;
1268 /* Return the current CPSR value. */
1269 uint32_t cpsr_read(CPUARMState *env);
1271 typedef enum CPSRWriteType {
1272 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1273 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1274 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1275 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1276 } CPSRWriteType;
1278 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1279 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1280 CPSRWriteType write_type);
1282 /* Return the current xPSR value. */
1283 static inline uint32_t xpsr_read(CPUARMState *env)
1285 int ZF;
1286 ZF = (env->ZF == 0);
1287 return (env->NF & 0x80000000) | (ZF << 30)
1288 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1289 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1290 | ((env->condexec_bits & 0xfc) << 8)
1291 | env->v7m.exception;
1294 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1295 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1297 if (mask & XPSR_NZCV) {
1298 env->ZF = (~val) & XPSR_Z;
1299 env->NF = val;
1300 env->CF = (val >> 29) & 1;
1301 env->VF = (val << 3) & 0x80000000;
1303 if (mask & XPSR_Q) {
1304 env->QF = ((val & XPSR_Q) != 0);
1306 if (mask & XPSR_T) {
1307 env->thumb = ((val & XPSR_T) != 0);
1309 if (mask & XPSR_IT_0_1) {
1310 env->condexec_bits &= ~3;
1311 env->condexec_bits |= (val >> 25) & 3;
1313 if (mask & XPSR_IT_2_7) {
1314 env->condexec_bits &= 3;
1315 env->condexec_bits |= (val >> 8) & 0xfc;
1317 if (mask & XPSR_EXCP) {
1318 /* Note that this only happens on exception exit */
1319 write_v7m_exception(env, val & XPSR_EXCP);
1323 #define HCR_VM (1ULL << 0)
1324 #define HCR_SWIO (1ULL << 1)
1325 #define HCR_PTW (1ULL << 2)
1326 #define HCR_FMO (1ULL << 3)
1327 #define HCR_IMO (1ULL << 4)
1328 #define HCR_AMO (1ULL << 5)
1329 #define HCR_VF (1ULL << 6)
1330 #define HCR_VI (1ULL << 7)
1331 #define HCR_VSE (1ULL << 8)
1332 #define HCR_FB (1ULL << 9)
1333 #define HCR_BSU_MASK (3ULL << 10)
1334 #define HCR_DC (1ULL << 12)
1335 #define HCR_TWI (1ULL << 13)
1336 #define HCR_TWE (1ULL << 14)
1337 #define HCR_TID0 (1ULL << 15)
1338 #define HCR_TID1 (1ULL << 16)
1339 #define HCR_TID2 (1ULL << 17)
1340 #define HCR_TID3 (1ULL << 18)
1341 #define HCR_TSC (1ULL << 19)
1342 #define HCR_TIDCP (1ULL << 20)
1343 #define HCR_TACR (1ULL << 21)
1344 #define HCR_TSW (1ULL << 22)
1345 #define HCR_TPCP (1ULL << 23)
1346 #define HCR_TPU (1ULL << 24)
1347 #define HCR_TTLB (1ULL << 25)
1348 #define HCR_TVM (1ULL << 26)
1349 #define HCR_TGE (1ULL << 27)
1350 #define HCR_TDZ (1ULL << 28)
1351 #define HCR_HCD (1ULL << 29)
1352 #define HCR_TRVM (1ULL << 30)
1353 #define HCR_RW (1ULL << 31)
1354 #define HCR_CD (1ULL << 32)
1355 #define HCR_ID (1ULL << 33)
1356 #define HCR_E2H (1ULL << 34)
1357 #define HCR_TLOR (1ULL << 35)
1358 #define HCR_TERR (1ULL << 36)
1359 #define HCR_TEA (1ULL << 37)
1360 #define HCR_MIOCNCE (1ULL << 38)
1361 #define HCR_APK (1ULL << 40)
1362 #define HCR_API (1ULL << 41)
1363 #define HCR_NV (1ULL << 42)
1364 #define HCR_NV1 (1ULL << 43)
1365 #define HCR_AT (1ULL << 44)
1366 #define HCR_NV2 (1ULL << 45)
1367 #define HCR_FWB (1ULL << 46)
1368 #define HCR_FIEN (1ULL << 47)
1369 #define HCR_TID4 (1ULL << 49)
1370 #define HCR_TICAB (1ULL << 50)
1371 #define HCR_TOCU (1ULL << 52)
1372 #define HCR_TTLBIS (1ULL << 54)
1373 #define HCR_TTLBOS (1ULL << 55)
1374 #define HCR_ATA (1ULL << 56)
1375 #define HCR_DCT (1ULL << 57)
1378 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1379 * HCR_MASK and then clear it again if the feature bit is not set in
1380 * hcr_write().
1382 #define HCR_MASK ((1ULL << 34) - 1)
1384 #define SCR_NS (1U << 0)
1385 #define SCR_IRQ (1U << 1)
1386 #define SCR_FIQ (1U << 2)
1387 #define SCR_EA (1U << 3)
1388 #define SCR_FW (1U << 4)
1389 #define SCR_AW (1U << 5)
1390 #define SCR_NET (1U << 6)
1391 #define SCR_SMD (1U << 7)
1392 #define SCR_HCE (1U << 8)
1393 #define SCR_SIF (1U << 9)
1394 #define SCR_RW (1U << 10)
1395 #define SCR_ST (1U << 11)
1396 #define SCR_TWI (1U << 12)
1397 #define SCR_TWE (1U << 13)
1398 #define SCR_TLOR (1U << 14)
1399 #define SCR_TERR (1U << 15)
1400 #define SCR_APK (1U << 16)
1401 #define SCR_API (1U << 17)
1402 #define SCR_EEL2 (1U << 18)
1403 #define SCR_EASE (1U << 19)
1404 #define SCR_NMEA (1U << 20)
1405 #define SCR_FIEN (1U << 21)
1406 #define SCR_ENSCXT (1U << 25)
1407 #define SCR_ATA (1U << 26)
1409 /* Return the current FPSCR value. */
1410 uint32_t vfp_get_fpscr(CPUARMState *env);
1411 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1413 /* FPCR, Floating Point Control Register
1414 * FPSR, Floating Poiht Status Register
1416 * For A64 the FPSCR is split into two logically distinct registers,
1417 * FPCR and FPSR. However since they still use non-overlapping bits
1418 * we store the underlying state in fpscr and just mask on read/write.
1420 #define FPSR_MASK 0xf800009f
1421 #define FPCR_MASK 0x07ff9f00
1423 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1424 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1425 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1426 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1427 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1428 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1429 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1430 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1431 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1432 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1434 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1436 return vfp_get_fpscr(env) & FPSR_MASK;
1439 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1441 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1442 vfp_set_fpscr(env, new_fpscr);
1445 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1447 return vfp_get_fpscr(env) & FPCR_MASK;
1450 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1452 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1453 vfp_set_fpscr(env, new_fpscr);
1456 enum arm_cpu_mode {
1457 ARM_CPU_MODE_USR = 0x10,
1458 ARM_CPU_MODE_FIQ = 0x11,
1459 ARM_CPU_MODE_IRQ = 0x12,
1460 ARM_CPU_MODE_SVC = 0x13,
1461 ARM_CPU_MODE_MON = 0x16,
1462 ARM_CPU_MODE_ABT = 0x17,
1463 ARM_CPU_MODE_HYP = 0x1a,
1464 ARM_CPU_MODE_UND = 0x1b,
1465 ARM_CPU_MODE_SYS = 0x1f
1468 /* VFP system registers. */
1469 #define ARM_VFP_FPSID 0
1470 #define ARM_VFP_FPSCR 1
1471 #define ARM_VFP_MVFR2 5
1472 #define ARM_VFP_MVFR1 6
1473 #define ARM_VFP_MVFR0 7
1474 #define ARM_VFP_FPEXC 8
1475 #define ARM_VFP_FPINST 9
1476 #define ARM_VFP_FPINST2 10
1478 /* iwMMXt coprocessor control registers. */
1479 #define ARM_IWMMXT_wCID 0
1480 #define ARM_IWMMXT_wCon 1
1481 #define ARM_IWMMXT_wCSSF 2
1482 #define ARM_IWMMXT_wCASF 3
1483 #define ARM_IWMMXT_wCGR0 8
1484 #define ARM_IWMMXT_wCGR1 9
1485 #define ARM_IWMMXT_wCGR2 10
1486 #define ARM_IWMMXT_wCGR3 11
1488 /* V7M CCR bits */
1489 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1490 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1491 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1492 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1493 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1494 FIELD(V7M_CCR, STKALIGN, 9, 1)
1495 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1496 FIELD(V7M_CCR, DC, 16, 1)
1497 FIELD(V7M_CCR, IC, 17, 1)
1498 FIELD(V7M_CCR, BP, 18, 1)
1500 /* V7M SCR bits */
1501 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1502 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1503 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1504 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1506 /* V7M AIRCR bits */
1507 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1508 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1509 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1510 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1511 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1512 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1513 FIELD(V7M_AIRCR, PRIS, 14, 1)
1514 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1515 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1517 /* V7M CFSR bits for MMFSR */
1518 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1519 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1520 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1521 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1522 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1523 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1525 /* V7M CFSR bits for BFSR */
1526 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1527 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1528 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1529 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1530 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1531 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1532 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1534 /* V7M CFSR bits for UFSR */
1535 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1536 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1537 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1538 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1539 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1540 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1541 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1543 /* V7M CFSR bit masks covering all of the subregister bits */
1544 FIELD(V7M_CFSR, MMFSR, 0, 8)
1545 FIELD(V7M_CFSR, BFSR, 8, 8)
1546 FIELD(V7M_CFSR, UFSR, 16, 16)
1548 /* V7M HFSR bits */
1549 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1550 FIELD(V7M_HFSR, FORCED, 30, 1)
1551 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1553 /* V7M DFSR bits */
1554 FIELD(V7M_DFSR, HALTED, 0, 1)
1555 FIELD(V7M_DFSR, BKPT, 1, 1)
1556 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1557 FIELD(V7M_DFSR, VCATCH, 3, 1)
1558 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1560 /* V7M SFSR bits */
1561 FIELD(V7M_SFSR, INVEP, 0, 1)
1562 FIELD(V7M_SFSR, INVIS, 1, 1)
1563 FIELD(V7M_SFSR, INVER, 2, 1)
1564 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1565 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1566 FIELD(V7M_SFSR, LSPERR, 5, 1)
1567 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1568 FIELD(V7M_SFSR, LSERR, 7, 1)
1570 /* v7M MPU_CTRL bits */
1571 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1572 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1573 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1575 /* v7M CLIDR bits */
1576 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1577 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1578 FIELD(V7M_CLIDR, LOC, 24, 3)
1579 FIELD(V7M_CLIDR, LOUU, 27, 3)
1580 FIELD(V7M_CLIDR, ICB, 30, 2)
1582 FIELD(V7M_CSSELR, IND, 0, 1)
1583 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1584 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1585 * define a mask for this and check that it doesn't permit running off
1586 * the end of the array.
1588 FIELD(V7M_CSSELR, INDEX, 0, 4)
1591 * System register ID fields.
1593 FIELD(ID_ISAR0, SWAP, 0, 4)
1594 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1595 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1596 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1597 FIELD(ID_ISAR0, COPROC, 16, 4)
1598 FIELD(ID_ISAR0, DEBUG, 20, 4)
1599 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1601 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1602 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1603 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1604 FIELD(ID_ISAR1, EXTEND, 12, 4)
1605 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1606 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1607 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1608 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1610 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1611 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1612 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1613 FIELD(ID_ISAR2, MULT, 12, 4)
1614 FIELD(ID_ISAR2, MULTS, 16, 4)
1615 FIELD(ID_ISAR2, MULTU, 20, 4)
1616 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1617 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1619 FIELD(ID_ISAR3, SATURATE, 0, 4)
1620 FIELD(ID_ISAR3, SIMD, 4, 4)
1621 FIELD(ID_ISAR3, SVC, 8, 4)
1622 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1623 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1624 FIELD(ID_ISAR3, T32COPY, 20, 4)
1625 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1626 FIELD(ID_ISAR3, T32EE, 28, 4)
1628 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1629 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1630 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1631 FIELD(ID_ISAR4, SMC, 12, 4)
1632 FIELD(ID_ISAR4, BARRIER, 16, 4)
1633 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1634 FIELD(ID_ISAR4, PSR_M, 24, 4)
1635 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1637 FIELD(ID_ISAR5, SEVL, 0, 4)
1638 FIELD(ID_ISAR5, AES, 4, 4)
1639 FIELD(ID_ISAR5, SHA1, 8, 4)
1640 FIELD(ID_ISAR5, SHA2, 12, 4)
1641 FIELD(ID_ISAR5, CRC32, 16, 4)
1642 FIELD(ID_ISAR5, RDM, 24, 4)
1643 FIELD(ID_ISAR5, VCMA, 28, 4)
1645 FIELD(ID_ISAR6, JSCVT, 0, 4)
1646 FIELD(ID_ISAR6, DP, 4, 4)
1647 FIELD(ID_ISAR6, FHM, 8, 4)
1648 FIELD(ID_ISAR6, SB, 12, 4)
1649 FIELD(ID_ISAR6, SPECRES, 16, 4)
1651 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1652 FIELD(ID_MMFR4, AC2, 4, 4)
1653 FIELD(ID_MMFR4, XNX, 8, 4)
1654 FIELD(ID_MMFR4, CNP, 12, 4)
1655 FIELD(ID_MMFR4, HPDS, 16, 4)
1656 FIELD(ID_MMFR4, LSM, 20, 4)
1657 FIELD(ID_MMFR4, CCIDX, 24, 4)
1658 FIELD(ID_MMFR4, EVT, 28, 4)
1660 FIELD(ID_AA64ISAR0, AES, 4, 4)
1661 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1662 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1663 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1664 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1665 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1666 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1667 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1668 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1669 FIELD(ID_AA64ISAR0, DP, 44, 4)
1670 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1671 FIELD(ID_AA64ISAR0, TS, 52, 4)
1672 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1673 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1675 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1676 FIELD(ID_AA64ISAR1, APA, 4, 4)
1677 FIELD(ID_AA64ISAR1, API, 8, 4)
1678 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1679 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1680 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1681 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1682 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1683 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1684 FIELD(ID_AA64ISAR1, SB, 36, 4)
1685 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1687 FIELD(ID_AA64PFR0, EL0, 0, 4)
1688 FIELD(ID_AA64PFR0, EL1, 4, 4)
1689 FIELD(ID_AA64PFR0, EL2, 8, 4)
1690 FIELD(ID_AA64PFR0, EL3, 12, 4)
1691 FIELD(ID_AA64PFR0, FP, 16, 4)
1692 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1693 FIELD(ID_AA64PFR0, GIC, 24, 4)
1694 FIELD(ID_AA64PFR0, RAS, 28, 4)
1695 FIELD(ID_AA64PFR0, SVE, 32, 4)
1697 FIELD(ID_AA64PFR1, BT, 0, 4)
1698 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1699 FIELD(ID_AA64PFR1, MTE, 8, 4)
1700 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1702 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1703 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1704 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1705 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1706 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1707 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1708 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1709 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1710 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1711 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1712 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1713 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1715 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1716 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1717 FIELD(ID_AA64MMFR1, VH, 8, 4)
1718 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1719 FIELD(ID_AA64MMFR1, LO, 16, 4)
1720 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1721 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1722 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1724 FIELD(ID_DFR0, COPDBG, 0, 4)
1725 FIELD(ID_DFR0, COPSDBG, 4, 4)
1726 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1727 FIELD(ID_DFR0, COPTRC, 12, 4)
1728 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1729 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1730 FIELD(ID_DFR0, PERFMON, 24, 4)
1731 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1733 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1735 /* If adding a feature bit which corresponds to a Linux ELF
1736 * HWCAP bit, remember to update the feature-bit-to-hwcap
1737 * mapping in linux-user/elfload.c:get_elf_hwcap().
1739 enum arm_features {
1740 ARM_FEATURE_VFP,
1741 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1742 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1743 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1744 ARM_FEATURE_V6,
1745 ARM_FEATURE_V6K,
1746 ARM_FEATURE_V7,
1747 ARM_FEATURE_THUMB2,
1748 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1749 ARM_FEATURE_VFP3,
1750 ARM_FEATURE_VFP_FP16,
1751 ARM_FEATURE_NEON,
1752 ARM_FEATURE_M, /* Microcontroller profile. */
1753 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1754 ARM_FEATURE_THUMB2EE,
1755 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1756 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1757 ARM_FEATURE_V4T,
1758 ARM_FEATURE_V5,
1759 ARM_FEATURE_STRONGARM,
1760 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1761 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1762 ARM_FEATURE_GENERIC_TIMER,
1763 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1764 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1765 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1766 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1767 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1768 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1769 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1770 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1771 ARM_FEATURE_V8,
1772 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1773 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1774 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1775 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1776 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1777 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1778 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1779 ARM_FEATURE_PMU, /* has PMU support */
1780 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1781 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1782 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1785 static inline int arm_feature(CPUARMState *env, int feature)
1787 return (env->features & (1ULL << feature)) != 0;
1790 #if !defined(CONFIG_USER_ONLY)
1791 /* Return true if exception levels below EL3 are in secure state,
1792 * or would be following an exception return to that level.
1793 * Unlike arm_is_secure() (which is always a question about the
1794 * _current_ state of the CPU) this doesn't care about the current
1795 * EL or mode.
1797 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1799 if (arm_feature(env, ARM_FEATURE_EL3)) {
1800 return !(env->cp15.scr_el3 & SCR_NS);
1801 } else {
1802 /* If EL3 is not supported then the secure state is implementation
1803 * defined, in which case QEMU defaults to non-secure.
1805 return false;
1809 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1810 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1812 if (arm_feature(env, ARM_FEATURE_EL3)) {
1813 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1814 /* CPU currently in AArch64 state and EL3 */
1815 return true;
1816 } else if (!is_a64(env) &&
1817 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1818 /* CPU currently in AArch32 state and monitor mode */
1819 return true;
1822 return false;
1825 /* Return true if the processor is in secure state */
1826 static inline bool arm_is_secure(CPUARMState *env)
1828 if (arm_is_el3_or_mon(env)) {
1829 return true;
1831 return arm_is_secure_below_el3(env);
1834 #else
1835 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1837 return false;
1840 static inline bool arm_is_secure(CPUARMState *env)
1842 return false;
1844 #endif
1847 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1848 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1849 * "for all purposes other than a direct read or write access of HCR_EL2."
1850 * Not included here is HCR_RW.
1852 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1854 /* Return true if the specified exception level is running in AArch64 state. */
1855 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1857 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1858 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1860 assert(el >= 1 && el <= 3);
1861 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1863 /* The highest exception level is always at the maximum supported
1864 * register width, and then lower levels have a register width controlled
1865 * by bits in the SCR or HCR registers.
1867 if (el == 3) {
1868 return aa64;
1871 if (arm_feature(env, ARM_FEATURE_EL3)) {
1872 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1875 if (el == 2) {
1876 return aa64;
1879 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1880 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1883 return aa64;
1886 /* Function for determing whether guest cp register reads and writes should
1887 * access the secure or non-secure bank of a cp register. When EL3 is
1888 * operating in AArch32 state, the NS-bit determines whether the secure
1889 * instance of a cp register should be used. When EL3 is AArch64 (or if
1890 * it doesn't exist at all) then there is no register banking, and all
1891 * accesses are to the non-secure version.
1893 static inline bool access_secure_reg(CPUARMState *env)
1895 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1896 !arm_el_is_aa64(env, 3) &&
1897 !(env->cp15.scr_el3 & SCR_NS));
1899 return ret;
1902 /* Macros for accessing a specified CP register bank */
1903 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1904 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1906 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1907 do { \
1908 if (_secure) { \
1909 (_env)->cp15._regname##_s = (_val); \
1910 } else { \
1911 (_env)->cp15._regname##_ns = (_val); \
1913 } while (0)
1915 /* Macros for automatically accessing a specific CP register bank depending on
1916 * the current secure state of the system. These macros are not intended for
1917 * supporting instruction translation reads/writes as these are dependent
1918 * solely on the SCR.NS bit and not the mode.
1920 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1921 A32_BANKED_REG_GET((_env), _regname, \
1922 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1924 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1925 A32_BANKED_REG_SET((_env), _regname, \
1926 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1927 (_val))
1929 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1930 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1931 uint32_t cur_el, bool secure);
1933 /* Interface between CPU and Interrupt controller. */
1934 #ifndef CONFIG_USER_ONLY
1935 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1936 #else
1937 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1939 return true;
1941 #endif
1943 * armv7m_nvic_set_pending: mark the specified exception as pending
1944 * @opaque: the NVIC
1945 * @irq: the exception number to mark pending
1946 * @secure: false for non-banked exceptions or for the nonsecure
1947 * version of a banked exception, true for the secure version of a banked
1948 * exception.
1950 * Marks the specified exception as pending. Note that we will assert()
1951 * if @secure is true and @irq does not specify one of the fixed set
1952 * of architecturally banked exceptions.
1954 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1956 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1957 * @opaque: the NVIC
1958 * @irq: the exception number to mark pending
1959 * @secure: false for non-banked exceptions or for the nonsecure
1960 * version of a banked exception, true for the secure version of a banked
1961 * exception.
1963 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1964 * exceptions (exceptions generated in the course of trying to take
1965 * a different exception).
1967 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1969 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1970 * exception, and whether it targets Secure state
1971 * @opaque: the NVIC
1972 * @pirq: set to pending exception number
1973 * @ptargets_secure: set to whether pending exception targets Secure
1975 * This function writes the number of the highest priority pending
1976 * exception (the one which would be made active by
1977 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1978 * to true if the current highest priority pending exception should
1979 * be taken to Secure state, false for NS.
1981 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1982 bool *ptargets_secure);
1984 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1985 * @opaque: the NVIC
1987 * Move the current highest priority pending exception from the pending
1988 * state to the active state, and update v7m.exception to indicate that
1989 * it is the exception currently being handled.
1991 void armv7m_nvic_acknowledge_irq(void *opaque);
1993 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1994 * @opaque: the NVIC
1995 * @irq: the exception number to complete
1996 * @secure: true if this exception was secure
1998 * Returns: -1 if the irq was not active
1999 * 1 if completing this irq brought us back to base (no active irqs)
2000 * 0 if there is still an irq active after this one was completed
2001 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2003 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2005 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2006 * @opaque: the NVIC
2008 * Returns: the raw execution priority as defined by the v8M architecture.
2009 * This is the execution priority minus the effects of AIRCR.PRIS,
2010 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2011 * (v8M ARM ARM I_PKLD.)
2013 int armv7m_nvic_raw_execution_priority(void *opaque);
2015 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2016 * priority is negative for the specified security state.
2017 * @opaque: the NVIC
2018 * @secure: the security state to test
2019 * This corresponds to the pseudocode IsReqExecPriNeg().
2021 #ifndef CONFIG_USER_ONLY
2022 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2023 #else
2024 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2026 return false;
2028 #endif
2030 /* Interface for defining coprocessor registers.
2031 * Registers are defined in tables of arm_cp_reginfo structs
2032 * which are passed to define_arm_cp_regs().
2035 /* When looking up a coprocessor register we look for it
2036 * via an integer which encodes all of:
2037 * coprocessor number
2038 * Crn, Crm, opc1, opc2 fields
2039 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2040 * or via MRRC/MCRR?)
2041 * non-secure/secure bank (AArch32 only)
2042 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2043 * (In this case crn and opc2 should be zero.)
2044 * For AArch64, there is no 32/64 bit size distinction;
2045 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2046 * and 4 bit CRn and CRm. The encoding patterns are chosen
2047 * to be easy to convert to and from the KVM encodings, and also
2048 * so that the hashtable can contain both AArch32 and AArch64
2049 * registers (to allow for interprocessing where we might run
2050 * 32 bit code on a 64 bit core).
2052 /* This bit is private to our hashtable cpreg; in KVM register
2053 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2054 * in the upper bits of the 64 bit ID.
2056 #define CP_REG_AA64_SHIFT 28
2057 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2059 /* To enable banking of coprocessor registers depending on ns-bit we
2060 * add a bit to distinguish between secure and non-secure cpregs in the
2061 * hashtable.
2063 #define CP_REG_NS_SHIFT 29
2064 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2066 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2067 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2068 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2070 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2071 (CP_REG_AA64_MASK | \
2072 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2073 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2074 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2075 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2076 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2077 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2079 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2080 * version used as a key for the coprocessor register hashtable
2082 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2084 uint32_t cpregid = kvmid;
2085 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2086 cpregid |= CP_REG_AA64_MASK;
2087 } else {
2088 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2089 cpregid |= (1 << 15);
2092 /* KVM is always non-secure so add the NS flag on AArch32 register
2093 * entries.
2095 cpregid |= 1 << CP_REG_NS_SHIFT;
2097 return cpregid;
2100 /* Convert a truncated 32 bit hashtable key into the full
2101 * 64 bit KVM register ID.
2103 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2105 uint64_t kvmid;
2107 if (cpregid & CP_REG_AA64_MASK) {
2108 kvmid = cpregid & ~CP_REG_AA64_MASK;
2109 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2110 } else {
2111 kvmid = cpregid & ~(1 << 15);
2112 if (cpregid & (1 << 15)) {
2113 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2114 } else {
2115 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2118 return kvmid;
2121 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2122 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2123 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2124 * TCG can assume the value to be constant (ie load at translate time)
2125 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2126 * indicates that the TB should not be ended after a write to this register
2127 * (the default is that the TB ends after cp writes). OVERRIDE permits
2128 * a register definition to override a previous definition for the
2129 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2130 * old must have the OVERRIDE bit set.
2131 * ALIAS indicates that this register is an alias view of some underlying
2132 * state which is also visible via another register, and that the other
2133 * register is handling migration and reset; registers marked ALIAS will not be
2134 * migrated but may have their state set by syncing of register state from KVM.
2135 * NO_RAW indicates that this register has no underlying state and does not
2136 * support raw access for state saving/loading; it will not be used for either
2137 * migration or KVM state synchronization. (Typically this is for "registers"
2138 * which are actually used as instructions for cache maintenance and so on.)
2139 * IO indicates that this register does I/O and therefore its accesses
2140 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2141 * registers which implement clocks or timers require this.
2143 #define ARM_CP_SPECIAL 0x0001
2144 #define ARM_CP_CONST 0x0002
2145 #define ARM_CP_64BIT 0x0004
2146 #define ARM_CP_SUPPRESS_TB_END 0x0008
2147 #define ARM_CP_OVERRIDE 0x0010
2148 #define ARM_CP_ALIAS 0x0020
2149 #define ARM_CP_IO 0x0040
2150 #define ARM_CP_NO_RAW 0x0080
2151 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2152 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2153 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2154 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2155 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2156 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2157 #define ARM_CP_FPU 0x1000
2158 #define ARM_CP_SVE 0x2000
2159 #define ARM_CP_NO_GDB 0x4000
2160 /* Used only as a terminator for ARMCPRegInfo lists */
2161 #define ARM_CP_SENTINEL 0xffff
2162 /* Mask of only the flag bits in a type field */
2163 #define ARM_CP_FLAG_MASK 0x70ff
2165 /* Valid values for ARMCPRegInfo state field, indicating which of
2166 * the AArch32 and AArch64 execution states this register is visible in.
2167 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2168 * If the reginfo is declared to be visible in both states then a second
2169 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2170 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2171 * Note that we rely on the values of these enums as we iterate through
2172 * the various states in some places.
2174 enum {
2175 ARM_CP_STATE_AA32 = 0,
2176 ARM_CP_STATE_AA64 = 1,
2177 ARM_CP_STATE_BOTH = 2,
2180 /* ARM CP register secure state flags. These flags identify security state
2181 * attributes for a given CP register entry.
2182 * The existence of both or neither secure and non-secure flags indicates that
2183 * the register has both a secure and non-secure hash entry. A single one of
2184 * these flags causes the register to only be hashed for the specified
2185 * security state.
2186 * Although definitions may have any combination of the S/NS bits, each
2187 * registered entry will only have one to identify whether the entry is secure
2188 * or non-secure.
2190 enum {
2191 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2192 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2195 /* Return true if cptype is a valid type field. This is used to try to
2196 * catch errors where the sentinel has been accidentally left off the end
2197 * of a list of registers.
2199 static inline bool cptype_valid(int cptype)
2201 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2202 || ((cptype & ARM_CP_SPECIAL) &&
2203 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2206 /* Access rights:
2207 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2208 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2209 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2210 * (ie any of the privileged modes in Secure state, or Monitor mode).
2211 * If a register is accessible in one privilege level it's always accessible
2212 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2213 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2214 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2215 * terminology a little and call this PL3.
2216 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2217 * with the ELx exception levels.
2219 * If access permissions for a register are more complex than can be
2220 * described with these bits, then use a laxer set of restrictions, and
2221 * do the more restrictive/complex check inside a helper function.
2223 #define PL3_R 0x80
2224 #define PL3_W 0x40
2225 #define PL2_R (0x20 | PL3_R)
2226 #define PL2_W (0x10 | PL3_W)
2227 #define PL1_R (0x08 | PL2_R)
2228 #define PL1_W (0x04 | PL2_W)
2229 #define PL0_R (0x02 | PL1_R)
2230 #define PL0_W (0x01 | PL1_W)
2233 * For user-mode some registers are accessible to EL0 via a kernel
2234 * trap-and-emulate ABI. In this case we define the read permissions
2235 * as actually being PL0_R. However some bits of any given register
2236 * may still be masked.
2238 #ifdef CONFIG_USER_ONLY
2239 #define PL0U_R PL0_R
2240 #else
2241 #define PL0U_R PL1_R
2242 #endif
2244 #define PL3_RW (PL3_R | PL3_W)
2245 #define PL2_RW (PL2_R | PL2_W)
2246 #define PL1_RW (PL1_R | PL1_W)
2247 #define PL0_RW (PL0_R | PL0_W)
2249 /* Return the highest implemented Exception Level */
2250 static inline int arm_highest_el(CPUARMState *env)
2252 if (arm_feature(env, ARM_FEATURE_EL3)) {
2253 return 3;
2255 if (arm_feature(env, ARM_FEATURE_EL2)) {
2256 return 2;
2258 return 1;
2261 /* Return true if a v7M CPU is in Handler mode */
2262 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2264 return env->v7m.exception != 0;
2267 /* Return the current Exception Level (as per ARMv8; note that this differs
2268 * from the ARMv7 Privilege Level).
2270 static inline int arm_current_el(CPUARMState *env)
2272 if (arm_feature(env, ARM_FEATURE_M)) {
2273 return arm_v7m_is_handler_mode(env) ||
2274 !(env->v7m.control[env->v7m.secure] & 1);
2277 if (is_a64(env)) {
2278 return extract32(env->pstate, 2, 2);
2281 switch (env->uncached_cpsr & 0x1f) {
2282 case ARM_CPU_MODE_USR:
2283 return 0;
2284 case ARM_CPU_MODE_HYP:
2285 return 2;
2286 case ARM_CPU_MODE_MON:
2287 return 3;
2288 default:
2289 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2290 /* If EL3 is 32-bit then all secure privileged modes run in
2291 * EL3
2293 return 3;
2296 return 1;
2300 typedef struct ARMCPRegInfo ARMCPRegInfo;
2302 typedef enum CPAccessResult {
2303 /* Access is permitted */
2304 CP_ACCESS_OK = 0,
2305 /* Access fails due to a configurable trap or enable which would
2306 * result in a categorized exception syndrome giving information about
2307 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2308 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2309 * PL1 if in EL0, otherwise to the current EL).
2311 CP_ACCESS_TRAP = 1,
2312 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2313 * Note that this is not a catch-all case -- the set of cases which may
2314 * result in this failure is specifically defined by the architecture.
2316 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2317 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2318 CP_ACCESS_TRAP_EL2 = 3,
2319 CP_ACCESS_TRAP_EL3 = 4,
2320 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2321 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2322 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2323 /* Access fails and results in an exception syndrome for an FP access,
2324 * trapped directly to EL2 or EL3
2326 CP_ACCESS_TRAP_FP_EL2 = 7,
2327 CP_ACCESS_TRAP_FP_EL3 = 8,
2328 } CPAccessResult;
2330 /* Access functions for coprocessor registers. These cannot fail and
2331 * may not raise exceptions.
2333 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2334 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2335 uint64_t value);
2336 /* Access permission check functions for coprocessor registers. */
2337 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2338 const ARMCPRegInfo *opaque,
2339 bool isread);
2340 /* Hook function for register reset */
2341 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2343 #define CP_ANY 0xff
2345 /* Definition of an ARM coprocessor register */
2346 struct ARMCPRegInfo {
2347 /* Name of register (useful mainly for debugging, need not be unique) */
2348 const char *name;
2349 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2350 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2351 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2352 * will be decoded to this register. The register read and write
2353 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2354 * used by the program, so it is possible to register a wildcard and
2355 * then behave differently on read/write if necessary.
2356 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2357 * must both be zero.
2358 * For AArch64-visible registers, opc0 is also used.
2359 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2360 * way to distinguish (for KVM's benefit) guest-visible system registers
2361 * from demuxed ones provided to preserve the "no side effects on
2362 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2363 * visible (to match KVM's encoding); cp==0 will be converted to
2364 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2366 uint8_t cp;
2367 uint8_t crn;
2368 uint8_t crm;
2369 uint8_t opc0;
2370 uint8_t opc1;
2371 uint8_t opc2;
2372 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2373 int state;
2374 /* Register type: ARM_CP_* bits/values */
2375 int type;
2376 /* Access rights: PL*_[RW] */
2377 int access;
2378 /* Security state: ARM_CP_SECSTATE_* bits/values */
2379 int secure;
2380 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2381 * this register was defined: can be used to hand data through to the
2382 * register read/write functions, since they are passed the ARMCPRegInfo*.
2384 void *opaque;
2385 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2386 * fieldoffset is non-zero, the reset value of the register.
2388 uint64_t resetvalue;
2389 /* Offset of the field in CPUARMState for this register.
2391 * This is not needed if either:
2392 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2393 * 2. both readfn and writefn are specified
2395 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2397 /* Offsets of the secure and non-secure fields in CPUARMState for the
2398 * register if it is banked. These fields are only used during the static
2399 * registration of a register. During hashing the bank associated
2400 * with a given security state is copied to fieldoffset which is used from
2401 * there on out.
2403 * It is expected that register definitions use either fieldoffset or
2404 * bank_fieldoffsets in the definition but not both. It is also expected
2405 * that both bank offsets are set when defining a banked register. This
2406 * use indicates that a register is banked.
2408 ptrdiff_t bank_fieldoffsets[2];
2410 /* Function for making any access checks for this register in addition to
2411 * those specified by the 'access' permissions bits. If NULL, no extra
2412 * checks required. The access check is performed at runtime, not at
2413 * translate time.
2415 CPAccessFn *accessfn;
2416 /* Function for handling reads of this register. If NULL, then reads
2417 * will be done by loading from the offset into CPUARMState specified
2418 * by fieldoffset.
2420 CPReadFn *readfn;
2421 /* Function for handling writes of this register. If NULL, then writes
2422 * will be done by writing to the offset into CPUARMState specified
2423 * by fieldoffset.
2425 CPWriteFn *writefn;
2426 /* Function for doing a "raw" read; used when we need to copy
2427 * coprocessor state to the kernel for KVM or out for
2428 * migration. This only needs to be provided if there is also a
2429 * readfn and it has side effects (for instance clear-on-read bits).
2431 CPReadFn *raw_readfn;
2432 /* Function for doing a "raw" write; used when we need to copy KVM
2433 * kernel coprocessor state into userspace, or for inbound
2434 * migration. This only needs to be provided if there is also a
2435 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2436 * or similar behaviour.
2438 CPWriteFn *raw_writefn;
2439 /* Function for resetting the register. If NULL, then reset will be done
2440 * by writing resetvalue to the field specified in fieldoffset. If
2441 * fieldoffset is 0 then no reset will be done.
2443 CPResetFn *resetfn;
2446 /* Macros which are lvalues for the field in CPUARMState for the
2447 * ARMCPRegInfo *ri.
2449 #define CPREG_FIELD32(env, ri) \
2450 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2451 #define CPREG_FIELD64(env, ri) \
2452 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2454 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2456 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2457 const ARMCPRegInfo *regs, void *opaque);
2458 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2459 const ARMCPRegInfo *regs, void *opaque);
2460 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2462 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2464 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2466 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2468 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2471 * Definition of an ARM co-processor register as viewed from
2472 * userspace. This is used for presenting sanitised versions of
2473 * registers to userspace when emulating the Linux AArch64 CPU
2474 * ID/feature ABI (advertised as HWCAP_CPUID).
2476 typedef struct ARMCPRegUserSpaceInfo {
2477 /* Name of register */
2478 const char *name;
2480 /* Is the name actually a glob pattern */
2481 bool is_glob;
2483 /* Only some bits are exported to user space */
2484 uint64_t exported_bits;
2486 /* Fixed bits are applied after the mask */
2487 uint64_t fixed_bits;
2488 } ARMCPRegUserSpaceInfo;
2490 #define REGUSERINFO_SENTINEL { .name = NULL }
2492 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2494 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2495 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2496 uint64_t value);
2497 /* CPReadFn that can be used for read-as-zero behaviour */
2498 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2500 /* CPResetFn that does nothing, for use if no reset is required even
2501 * if fieldoffset is non zero.
2503 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2505 /* Return true if this reginfo struct's field in the cpu state struct
2506 * is 64 bits wide.
2508 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2510 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2513 static inline bool cp_access_ok(int current_el,
2514 const ARMCPRegInfo *ri, int isread)
2516 return (ri->access >> ((current_el * 2) + isread)) & 1;
2519 /* Raw read of a coprocessor register (as needed for migration, etc) */
2520 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2523 * write_list_to_cpustate
2524 * @cpu: ARMCPU
2526 * For each register listed in the ARMCPU cpreg_indexes list, write
2527 * its value from the cpreg_values list into the ARMCPUState structure.
2528 * This updates TCG's working data structures from KVM data or
2529 * from incoming migration state.
2531 * Returns: true if all register values were updated correctly,
2532 * false if some register was unknown or could not be written.
2533 * Note that we do not stop early on failure -- we will attempt
2534 * writing all registers in the list.
2536 bool write_list_to_cpustate(ARMCPU *cpu);
2539 * write_cpustate_to_list:
2540 * @cpu: ARMCPU
2541 * @kvm_sync: true if this is for syncing back to KVM
2543 * For each register listed in the ARMCPU cpreg_indexes list, write
2544 * its value from the ARMCPUState structure into the cpreg_values list.
2545 * This is used to copy info from TCG's working data structures into
2546 * KVM or for outbound migration.
2548 * @kvm_sync is true if we are doing this in order to sync the
2549 * register state back to KVM. In this case we will only update
2550 * values in the list if the previous list->cpustate sync actually
2551 * successfully wrote the CPU state. Otherwise we will keep the value
2552 * that is in the list.
2554 * Returns: true if all register values were read correctly,
2555 * false if some register was unknown or could not be read.
2556 * Note that we do not stop early on failure -- we will attempt
2557 * reading all registers in the list.
2559 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2561 #define ARM_CPUID_TI915T 0x54029152
2562 #define ARM_CPUID_TI925T 0x54029252
2564 #if defined(CONFIG_USER_ONLY)
2565 #define TARGET_PAGE_BITS 12
2566 #else
2567 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2568 * have to support 1K tiny pages.
2570 #define TARGET_PAGE_BITS_VARY
2571 #define TARGET_PAGE_BITS_MIN 10
2572 #endif
2574 #if defined(TARGET_AARCH64)
2575 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2576 # define TARGET_VIRT_ADDR_SPACE_BITS 48
2577 #else
2578 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2579 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2580 #endif
2582 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2583 unsigned int target_el)
2585 CPUARMState *env = cs->env_ptr;
2586 unsigned int cur_el = arm_current_el(env);
2587 bool secure = arm_is_secure(env);
2588 bool pstate_unmasked;
2589 int8_t unmasked = 0;
2590 uint64_t hcr_el2;
2592 /* Don't take exceptions if they target a lower EL.
2593 * This check should catch any exceptions that would not be taken but left
2594 * pending.
2596 if (cur_el > target_el) {
2597 return false;
2600 hcr_el2 = arm_hcr_el2_eff(env);
2602 switch (excp_idx) {
2603 case EXCP_FIQ:
2604 pstate_unmasked = !(env->daif & PSTATE_F);
2605 break;
2607 case EXCP_IRQ:
2608 pstate_unmasked = !(env->daif & PSTATE_I);
2609 break;
2611 case EXCP_VFIQ:
2612 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2613 /* VFIQs are only taken when hypervized and non-secure. */
2614 return false;
2616 return !(env->daif & PSTATE_F);
2617 case EXCP_VIRQ:
2618 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2619 /* VIRQs are only taken when hypervized and non-secure. */
2620 return false;
2622 return !(env->daif & PSTATE_I);
2623 default:
2624 g_assert_not_reached();
2627 /* Use the target EL, current execution state and SCR/HCR settings to
2628 * determine whether the corresponding CPSR bit is used to mask the
2629 * interrupt.
2631 if ((target_el > cur_el) && (target_el != 1)) {
2632 /* Exceptions targeting a higher EL may not be maskable */
2633 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2634 /* 64-bit masking rules are simple: exceptions to EL3
2635 * can't be masked, and exceptions to EL2 can only be
2636 * masked from Secure state. The HCR and SCR settings
2637 * don't affect the masking logic, only the interrupt routing.
2639 if (target_el == 3 || !secure) {
2640 unmasked = 1;
2642 } else {
2643 /* The old 32-bit-only environment has a more complicated
2644 * masking setup. HCR and SCR bits not only affect interrupt
2645 * routing but also change the behaviour of masking.
2647 bool hcr, scr;
2649 switch (excp_idx) {
2650 case EXCP_FIQ:
2651 /* If FIQs are routed to EL3 or EL2 then there are cases where
2652 * we override the CPSR.F in determining if the exception is
2653 * masked or not. If neither of these are set then we fall back
2654 * to the CPSR.F setting otherwise we further assess the state
2655 * below.
2657 hcr = hcr_el2 & HCR_FMO;
2658 scr = (env->cp15.scr_el3 & SCR_FIQ);
2660 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2661 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2662 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2663 * when non-secure but only when FIQs are only routed to EL3.
2665 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2666 break;
2667 case EXCP_IRQ:
2668 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2669 * we may override the CPSR.I masking when in non-secure state.
2670 * The SCR.IRQ setting has already been taken into consideration
2671 * when setting the target EL, so it does not have a further
2672 * affect here.
2674 hcr = hcr_el2 & HCR_IMO;
2675 scr = false;
2676 break;
2677 default:
2678 g_assert_not_reached();
2681 if ((scr || hcr) && !secure) {
2682 unmasked = 1;
2687 /* The PSTATE bits only mask the interrupt if we have not overriden the
2688 * ability above.
2690 return unmasked || pstate_unmasked;
2693 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2694 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2695 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2697 #define cpu_signal_handler cpu_arm_signal_handler
2698 #define cpu_list arm_cpu_list
2700 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2702 * If EL3 is 64-bit:
2703 * + NonSecure EL1 & 0 stage 1
2704 * + NonSecure EL1 & 0 stage 2
2705 * + NonSecure EL2
2706 * + Secure EL1 & EL0
2707 * + Secure EL3
2708 * If EL3 is 32-bit:
2709 * + NonSecure PL1 & 0 stage 1
2710 * + NonSecure PL1 & 0 stage 2
2711 * + NonSecure PL2
2712 * + Secure PL0 & PL1
2713 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2715 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2716 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2717 * may differ in access permissions even if the VA->PA map is the same
2718 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2719 * translation, which means that we have one mmu_idx that deals with two
2720 * concatenated translation regimes [this sort of combined s1+2 TLB is
2721 * architecturally permitted]
2722 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2723 * handling via the TLB. The only way to do a stage 1 translation without
2724 * the immediate stage 2 translation is via the ATS or AT system insns,
2725 * which can be slow-pathed and always do a page table walk.
2726 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2727 * translation regimes, because they map reasonably well to each other
2728 * and they can't both be active at the same time.
2729 * This gives us the following list of mmu_idx values:
2731 * NS EL0 (aka NS PL0) stage 1+2
2732 * NS EL1 (aka NS PL1) stage 1+2
2733 * NS EL2 (aka NS PL2)
2734 * S EL3 (aka S PL1)
2735 * S EL0 (aka S PL0)
2736 * S EL1 (not used if EL3 is 32 bit)
2737 * NS EL0+1 stage 2
2739 * (The last of these is an mmu_idx because we want to be able to use the TLB
2740 * for the accesses done as part of a stage 1 page table walk, rather than
2741 * having to walk the stage 2 page table over and over.)
2743 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2744 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2745 * NS EL2 if we ever model a Cortex-R52).
2747 * M profile CPUs are rather different as they do not have a true MMU.
2748 * They have the following different MMU indexes:
2749 * User
2750 * Privileged
2751 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2752 * Privileged, execution priority negative (ditto)
2753 * If the CPU supports the v8M Security Extension then there are also:
2754 * Secure User
2755 * Secure Privileged
2756 * Secure User, execution priority negative
2757 * Secure Privileged, execution priority negative
2759 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2760 * are not quite the same -- different CPU types (most notably M profile
2761 * vs A/R profile) would like to use MMU indexes with different semantics,
2762 * but since we don't ever need to use all of those in a single CPU we
2763 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2764 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2765 * the same for any particular CPU.
2766 * Variables of type ARMMUIdx are always full values, and the core
2767 * index values are in variables of type 'int'.
2769 * Our enumeration includes at the end some entries which are not "true"
2770 * mmu_idx values in that they don't have corresponding TLBs and are only
2771 * valid for doing slow path page table walks.
2773 * The constant names here are patterned after the general style of the names
2774 * of the AT/ATS operations.
2775 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2776 * For M profile we arrange them to have a bit for priv, a bit for negpri
2777 * and a bit for secure.
2779 #define ARM_MMU_IDX_A 0x10 /* A profile */
2780 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2781 #define ARM_MMU_IDX_M 0x40 /* M profile */
2783 /* meanings of the bits for M profile mmu idx values */
2784 #define ARM_MMU_IDX_M_PRIV 0x1
2785 #define ARM_MMU_IDX_M_NEGPRI 0x2
2786 #define ARM_MMU_IDX_M_S 0x4
2788 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2789 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2791 typedef enum ARMMMUIdx {
2792 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2793 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2794 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2795 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2796 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2797 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2798 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2799 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2800 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2801 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2802 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2803 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2804 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2805 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2806 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2807 /* Indexes below here don't have TLBs and are used only for AT system
2808 * instructions or for the first stage of an S12 page table walk.
2810 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2811 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2812 } ARMMMUIdx;
2814 /* Bit macros for the core-mmu-index values for each index,
2815 * for use when calling tlb_flush_by_mmuidx() and friends.
2817 typedef enum ARMMMUIdxBit {
2818 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2819 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2820 ARMMMUIdxBit_S1E2 = 1 << 2,
2821 ARMMMUIdxBit_S1E3 = 1 << 3,
2822 ARMMMUIdxBit_S1SE0 = 1 << 4,
2823 ARMMMUIdxBit_S1SE1 = 1 << 5,
2824 ARMMMUIdxBit_S2NS = 1 << 6,
2825 ARMMMUIdxBit_MUser = 1 << 0,
2826 ARMMMUIdxBit_MPriv = 1 << 1,
2827 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2828 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2829 ARMMMUIdxBit_MSUser = 1 << 4,
2830 ARMMMUIdxBit_MSPriv = 1 << 5,
2831 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2832 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2833 } ARMMMUIdxBit;
2835 #define MMU_USER_IDX 0
2837 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2839 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2842 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2844 if (arm_feature(env, ARM_FEATURE_M)) {
2845 return mmu_idx | ARM_MMU_IDX_M;
2846 } else {
2847 return mmu_idx | ARM_MMU_IDX_A;
2851 /* Return the exception level we're running at if this is our mmu_idx */
2852 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2854 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2855 case ARM_MMU_IDX_A:
2856 return mmu_idx & 3;
2857 case ARM_MMU_IDX_M:
2858 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2859 default:
2860 g_assert_not_reached();
2864 /* Return the MMU index for a v7M CPU in the specified security and
2865 * privilege state.
2867 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2868 bool secstate, bool priv);
2870 /* Return the MMU index for a v7M CPU in the specified security state */
2871 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2874 * cpu_mmu_index:
2875 * @env: The cpu environment
2876 * @ifetch: True for code access, false for data access.
2878 * Return the core mmu index for the current translation regime.
2879 * This function is used by generic TCG code paths.
2881 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2883 /* Indexes used when registering address spaces with cpu_address_space_init */
2884 typedef enum ARMASIdx {
2885 ARMASIdx_NS = 0,
2886 ARMASIdx_S = 1,
2887 } ARMASIdx;
2889 /* Return the Exception Level targeted by debug exceptions. */
2890 static inline int arm_debug_target_el(CPUARMState *env)
2892 bool secure = arm_is_secure(env);
2893 bool route_to_el2 = false;
2895 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2896 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2897 env->cp15.mdcr_el2 & MDCR_TDE;
2900 if (route_to_el2) {
2901 return 2;
2902 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2903 !arm_el_is_aa64(env, 3) && secure) {
2904 return 3;
2905 } else {
2906 return 1;
2910 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2912 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2913 * CSSELR is RAZ/WI.
2915 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2918 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2919 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2921 int cur_el = arm_current_el(env);
2922 int debug_el;
2924 if (cur_el == 3) {
2925 return false;
2928 /* MDCR_EL3.SDD disables debug events from Secure state */
2929 if (arm_is_secure_below_el3(env)
2930 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2931 return false;
2935 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2936 * while not masking the (D)ebug bit in DAIF.
2938 debug_el = arm_debug_target_el(env);
2940 if (cur_el == debug_el) {
2941 return extract32(env->cp15.mdscr_el1, 13, 1)
2942 && !(env->daif & PSTATE_D);
2945 /* Otherwise the debug target needs to be a higher EL */
2946 return debug_el > cur_el;
2949 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2951 int el = arm_current_el(env);
2953 if (el == 0 && arm_el_is_aa64(env, 1)) {
2954 return aa64_generate_debug_exceptions(env);
2957 if (arm_is_secure(env)) {
2958 int spd;
2960 if (el == 0 && (env->cp15.sder & 1)) {
2961 /* SDER.SUIDEN means debug exceptions from Secure EL0
2962 * are always enabled. Otherwise they are controlled by
2963 * SDCR.SPD like those from other Secure ELs.
2965 return true;
2968 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2969 switch (spd) {
2970 case 1:
2971 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2972 case 0:
2973 /* For 0b00 we return true if external secure invasive debug
2974 * is enabled. On real hardware this is controlled by external
2975 * signals to the core. QEMU always permits debug, and behaves
2976 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2978 return true;
2979 case 2:
2980 return false;
2981 case 3:
2982 return true;
2986 return el != 2;
2989 /* Return true if debugging exceptions are currently enabled.
2990 * This corresponds to what in ARM ARM pseudocode would be
2991 * if UsingAArch32() then
2992 * return AArch32.GenerateDebugExceptions()
2993 * else
2994 * return AArch64.GenerateDebugExceptions()
2995 * We choose to push the if() down into this function for clarity,
2996 * since the pseudocode has it at all callsites except for the one in
2997 * CheckSoftwareStep(), where it is elided because both branches would
2998 * always return the same value.
3000 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3002 if (env->aarch64) {
3003 return aa64_generate_debug_exceptions(env);
3004 } else {
3005 return aa32_generate_debug_exceptions(env);
3009 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3010 * implicitly means this always returns false in pre-v8 CPUs.)
3012 static inline bool arm_singlestep_active(CPUARMState *env)
3014 return extract32(env->cp15.mdscr_el1, 0, 1)
3015 && arm_el_is_aa64(env, arm_debug_target_el(env))
3016 && arm_generate_debug_exceptions(env);
3019 static inline bool arm_sctlr_b(CPUARMState *env)
3021 return
3022 /* We need not implement SCTLR.ITD in user-mode emulation, so
3023 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3024 * This lets people run BE32 binaries with "-cpu any".
3026 #ifndef CONFIG_USER_ONLY
3027 !arm_feature(env, ARM_FEATURE_V7) &&
3028 #endif
3029 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3032 /* Return true if the processor is in big-endian mode. */
3033 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3035 int cur_el;
3037 /* In 32bit endianness is determined by looking at CPSR's E bit */
3038 if (!is_a64(env)) {
3039 return
3040 #ifdef CONFIG_USER_ONLY
3041 /* In system mode, BE32 is modelled in line with the
3042 * architecture (as word-invariant big-endianness), where loads
3043 * and stores are done little endian but from addresses which
3044 * are adjusted by XORing with the appropriate constant. So the
3045 * endianness to use for the raw data access is not affected by
3046 * SCTLR.B.
3047 * In user mode, however, we model BE32 as byte-invariant
3048 * big-endianness (because user-only code cannot tell the
3049 * difference), and so we need to use a data access endianness
3050 * that depends on SCTLR.B.
3052 arm_sctlr_b(env) ||
3053 #endif
3054 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3057 cur_el = arm_current_el(env);
3059 if (cur_el == 0) {
3060 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3063 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3066 #include "exec/cpu-all.h"
3068 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3069 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3070 * We put flags which are shared between 32 and 64 bit mode at the top
3071 * of the word, and flags which apply to only one mode at the bottom.
3073 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3074 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3075 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3076 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3077 /* Target EL if we take a floating-point-disabled exception */
3078 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3079 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3081 /* Bit usage when in AArch32 state: */
3082 FIELD(TBFLAG_A32, THUMB, 0, 1)
3083 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3084 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3085 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3086 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3087 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3088 /* We store the bottom two bits of the CPAR as TB flags and handle
3089 * checks on the other bits at runtime
3091 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3092 /* Indicates whether cp register reads and writes by guest code should access
3093 * the secure or nonsecure bank of banked registers; note that this is not
3094 * the same thing as the current security state of the processor!
3096 FIELD(TBFLAG_A32, NS, 19, 1)
3097 /* For M profile only, Handler (ie not Thread) mode */
3098 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3099 /* For M profile only, whether we should generate stack-limit checks */
3100 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3102 /* Bit usage when in AArch64 state */
3103 FIELD(TBFLAG_A64, TBII, 0, 2)
3104 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3105 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3106 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3107 FIELD(TBFLAG_A64, BT, 9, 1)
3108 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3109 FIELD(TBFLAG_A64, TBID, 12, 2)
3111 static inline bool bswap_code(bool sctlr_b)
3113 #ifdef CONFIG_USER_ONLY
3114 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3115 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3116 * would also end up as a mixed-endian mode with BE code, LE data.
3118 return
3119 #ifdef TARGET_WORDS_BIGENDIAN
3121 #endif
3122 sctlr_b;
3123 #else
3124 /* All code access in ARM is little endian, and there are no loaders
3125 * doing swaps that need to be reversed
3127 return 0;
3128 #endif
3131 #ifdef CONFIG_USER_ONLY
3132 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3134 return
3135 #ifdef TARGET_WORDS_BIGENDIAN
3137 #endif
3138 arm_cpu_data_is_big_endian(env);
3140 #endif
3142 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3143 target_ulong *cs_base, uint32_t *flags);
3145 enum {
3146 QEMU_PSCI_CONDUIT_DISABLED = 0,
3147 QEMU_PSCI_CONDUIT_SMC = 1,
3148 QEMU_PSCI_CONDUIT_HVC = 2,
3151 #ifndef CONFIG_USER_ONLY
3152 /* Return the address space index to use for a memory access */
3153 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3155 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3158 /* Return the AddressSpace to use for a memory access
3159 * (which depends on whether the access is S or NS, and whether
3160 * the board gave us a separate AddressSpace for S accesses).
3162 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3164 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3166 #endif
3169 * arm_register_pre_el_change_hook:
3170 * Register a hook function which will be called immediately before this
3171 * CPU changes exception level or mode. The hook function will be
3172 * passed a pointer to the ARMCPU and the opaque data pointer passed
3173 * to this function when the hook was registered.
3175 * Note that if a pre-change hook is called, any registered post-change hooks
3176 * are guaranteed to subsequently be called.
3178 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3179 void *opaque);
3181 * arm_register_el_change_hook:
3182 * Register a hook function which will be called immediately after this
3183 * CPU changes exception level or mode. The hook function will be
3184 * passed a pointer to the ARMCPU and the opaque data pointer passed
3185 * to this function when the hook was registered.
3187 * Note that any registered hooks registered here are guaranteed to be called
3188 * if pre-change hooks have been.
3190 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3191 *opaque);
3194 * aa32_vfp_dreg:
3195 * Return a pointer to the Dn register within env in 32-bit mode.
3197 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3199 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3203 * aa32_vfp_qreg:
3204 * Return a pointer to the Qn register within env in 32-bit mode.
3206 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3208 return &env->vfp.zregs[regno].d[0];
3212 * aa64_vfp_qreg:
3213 * Return a pointer to the Qn register within env in 64-bit mode.
3215 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3217 return &env->vfp.zregs[regno].d[0];
3220 /* Shared between translate-sve.c and sve_helper.c. */
3221 extern const uint64_t pred_esz_masks[4];
3224 * 32-bit feature tests via id registers.
3226 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3228 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3231 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3233 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3236 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3238 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3241 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3243 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3246 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3248 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3251 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3253 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3256 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3258 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3261 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3263 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3266 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3268 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3271 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3273 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3276 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3278 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3281 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3284 * This is a placeholder for use by VCMA until the rest of
3285 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3286 * At which point we can properly set and check MVFR1.FPHP.
3288 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3292 * 64-bit feature tests via id registers.
3294 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3296 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3299 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3301 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3304 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3306 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3309 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3311 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3314 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3316 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3319 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3321 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3324 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3326 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3329 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3331 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3334 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3336 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3339 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3341 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3344 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3346 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3349 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3351 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3354 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3356 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3359 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3362 * Note that while QEMU will only implement the architected algorithm
3363 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3364 * defined algorithms, and thus API+GPI, and this predicate controls
3365 * migration of the 128-bit keys.
3367 return (id->id_aa64isar1 &
3368 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3369 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3370 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3371 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3374 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3376 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3377 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3380 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3382 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3385 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3387 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3390 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3392 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3395 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3397 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3401 * Forward to the above feature tests given an ARMCPU pointer.
3403 #define cpu_isar_feature(name, cpu) \
3404 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3406 #endif