memory: trace FlatView creation and destruction
[qemu/ar7.git] / include / exec / memory.h
blob5ed4042f877d3055e02eb817a8f19e51df3be0df
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
103 typedef struct IOMMUNotifier IOMMUNotifier;
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
116 * Memory region callbacks
118 struct MemoryRegionOps {
119 /* Read from the memory region. @addr is relative to @mr; @size is
120 * in bytes. */
121 uint64_t (*read)(void *opaque,
122 hwaddr addr,
123 unsigned size);
124 /* Write to the memory region. @addr is relative to @mr; @size is
125 * in bytes. */
126 void (*write)(void *opaque,
127 hwaddr addr,
128 uint64_t data,
129 unsigned size);
131 MemTxResult (*read_with_attrs)(void *opaque,
132 hwaddr addr,
133 uint64_t *data,
134 unsigned size,
135 MemTxAttrs attrs);
136 MemTxResult (*write_with_attrs)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size,
140 MemTxAttrs attrs);
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
146 * Returns a pointer to a location which contains guest code.
148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149 unsigned *offset);
151 enum device_endian endianness;
152 /* Guest-visible constraints: */
153 struct {
154 /* If nonzero, specify bounds on access sizes beyond which a machine
155 * check is thrown.
157 unsigned min_access_size;
158 unsigned max_access_size;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
162 bool unaligned;
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
168 bool (*accepts)(void *opaque, hwaddr addr,
169 unsigned size, bool is_write);
170 } valid;
171 /* Internal implementation constraints: */
172 struct {
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
176 unsigned min_access_size;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
180 unsigned max_access_size;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
184 bool unaligned;
185 } impl;
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
190 const MemoryRegionMmio old_mmio;
193 typedef struct IOMMUMemoryRegionClass {
194 /* private */
195 struct DeviceClass parent_class;
198 * Return a TLB entry that contains a given address. Flag should
199 * be the access permission of this translation operation. We can
200 * set flag to IOMMU_NONE to mean that we don't need any
201 * read/write permission checks, like, when for region replay.
203 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
204 IOMMUAccessFlags flag);
205 /* Returns minimum supported page size */
206 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
207 /* Called when IOMMU Notifier flag changed */
208 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
209 IOMMUNotifierFlag old_flags,
210 IOMMUNotifierFlag new_flags);
211 /* Set this up to provide customized IOMMU replay function */
212 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
213 } IOMMUMemoryRegionClass;
215 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
218 struct MemoryRegion {
219 Object parent_obj;
221 /* All fields are private - violators will be prosecuted */
223 /* The following fields should fit in a cache line */
224 bool romd_mode;
225 bool ram;
226 bool subpage;
227 bool readonly; /* For RAM regions */
228 bool rom_device;
229 bool flush_coalesced_mmio;
230 bool global_locking;
231 uint8_t dirty_log_mask;
232 bool is_iommu;
233 RAMBlock *ram_block;
234 Object *owner;
236 const MemoryRegionOps *ops;
237 void *opaque;
238 MemoryRegion *container;
239 Int128 size;
240 hwaddr addr;
241 void (*destructor)(MemoryRegion *mr);
242 uint64_t align;
243 bool terminates;
244 bool ram_device;
245 bool enabled;
246 bool warning_printed; /* For reservations */
247 uint8_t vga_logging_count;
248 MemoryRegion *alias;
249 hwaddr alias_offset;
250 int32_t priority;
251 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
252 QTAILQ_ENTRY(MemoryRegion) subregions_link;
253 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
254 const char *name;
255 unsigned ioeventfd_nb;
256 MemoryRegionIoeventfd *ioeventfds;
259 struct IOMMUMemoryRegion {
260 MemoryRegion parent_obj;
262 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
263 IOMMUNotifierFlag iommu_notify_flags;
266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
267 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
270 * MemoryListener: callbacks structure for updates to the physical memory map
272 * Allows a component to adjust to changes in the guest-visible memory map.
273 * Use with memory_listener_register() and memory_listener_unregister().
275 struct MemoryListener {
276 void (*begin)(MemoryListener *listener);
277 void (*commit)(MemoryListener *listener);
278 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
279 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
280 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
281 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
282 int old, int new);
283 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
284 int old, int new);
285 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
286 void (*log_global_start)(MemoryListener *listener);
287 void (*log_global_stop)(MemoryListener *listener);
288 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
289 bool match_data, uint64_t data, EventNotifier *e);
290 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
291 bool match_data, uint64_t data, EventNotifier *e);
292 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
293 hwaddr addr, hwaddr len);
294 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
295 hwaddr addr, hwaddr len);
296 /* Lower = earlier (during add), later (during del) */
297 unsigned priority;
298 AddressSpace *address_space;
299 QTAILQ_ENTRY(MemoryListener) link;
300 QTAILQ_ENTRY(MemoryListener) link_as;
304 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
306 struct AddressSpace {
307 /* All fields are private. */
308 struct rcu_head rcu;
309 char *name;
310 MemoryRegion *root;
312 /* Accessed via RCU. */
313 struct FlatView *current_map;
315 int ioeventfd_nb;
316 struct MemoryRegionIoeventfd *ioeventfds;
317 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
318 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
321 FlatView *address_space_to_flatview(AddressSpace *as);
324 * MemoryRegionSection: describes a fragment of a #MemoryRegion
326 * @mr: the region, or %NULL if empty
327 * @address_space: the address space the region is mapped in
328 * @offset_within_region: the beginning of the section, relative to @mr's start
329 * @size: the size of the section; will not exceed @mr's boundaries
330 * @offset_within_address_space: the address of the first byte of the section
331 * relative to the region's address space
332 * @readonly: writes to this section are ignored
334 struct MemoryRegionSection {
335 MemoryRegion *mr;
336 FlatView *fv;
337 hwaddr offset_within_region;
338 Int128 size;
339 hwaddr offset_within_address_space;
340 bool readonly;
344 * memory_region_init: Initialize a memory region
346 * The region typically acts as a container for other memory regions. Use
347 * memory_region_add_subregion() to add subregions.
349 * @mr: the #MemoryRegion to be initialized
350 * @owner: the object that tracks the region's reference count
351 * @name: used for debugging; not visible to the user or ABI
352 * @size: size of the region; any subregions beyond this size will be clipped
354 void memory_region_init(MemoryRegion *mr,
355 struct Object *owner,
356 const char *name,
357 uint64_t size);
360 * memory_region_ref: Add 1 to a memory region's reference count
362 * Whenever memory regions are accessed outside the BQL, they need to be
363 * preserved against hot-unplug. MemoryRegions actually do not have their
364 * own reference count; they piggyback on a QOM object, their "owner".
365 * This function adds a reference to the owner.
367 * All MemoryRegions must have an owner if they can disappear, even if the
368 * device they belong to operates exclusively under the BQL. This is because
369 * the region could be returned at any time by memory_region_find, and this
370 * is usually under guest control.
372 * @mr: the #MemoryRegion
374 void memory_region_ref(MemoryRegion *mr);
377 * memory_region_unref: Remove 1 to a memory region's reference count
379 * Whenever memory regions are accessed outside the BQL, they need to be
380 * preserved against hot-unplug. MemoryRegions actually do not have their
381 * own reference count; they piggyback on a QOM object, their "owner".
382 * This function removes a reference to the owner and possibly destroys it.
384 * @mr: the #MemoryRegion
386 void memory_region_unref(MemoryRegion *mr);
389 * memory_region_init_io: Initialize an I/O memory region.
391 * Accesses into the region will cause the callbacks in @ops to be called.
392 * if @size is nonzero, subregions will be clipped to @size.
394 * @mr: the #MemoryRegion to be initialized.
395 * @owner: the object that tracks the region's reference count
396 * @ops: a structure containing read and write callbacks to be used when
397 * I/O is performed on the region.
398 * @opaque: passed to the read and write callbacks of the @ops structure.
399 * @name: used for debugging; not visible to the user or ABI
400 * @size: size of the region.
402 void memory_region_init_io(MemoryRegion *mr,
403 struct Object *owner,
404 const MemoryRegionOps *ops,
405 void *opaque,
406 const char *name,
407 uint64_t size);
410 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
411 * into the region will modify memory
412 * directly.
414 * @mr: the #MemoryRegion to be initialized.
415 * @owner: the object that tracks the region's reference count
416 * @name: Region name, becomes part of RAMBlock name used in migration stream
417 * must be unique within any device
418 * @size: size of the region.
419 * @errp: pointer to Error*, to store an error if it happens.
421 * Note that this function does not do anything to cause the data in the
422 * RAM memory region to be migrated; that is the responsibility of the caller.
424 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
425 struct Object *owner,
426 const char *name,
427 uint64_t size,
428 Error **errp);
431 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
432 * RAM. Accesses into the region will
433 * modify memory directly. Only an initial
434 * portion of this RAM is actually used.
435 * The used size can change across reboots.
437 * @mr: the #MemoryRegion to be initialized.
438 * @owner: the object that tracks the region's reference count
439 * @name: Region name, becomes part of RAMBlock name used in migration stream
440 * must be unique within any device
441 * @size: used size of the region.
442 * @max_size: max size of the region.
443 * @resized: callback to notify owner about used size change.
444 * @errp: pointer to Error*, to store an error if it happens.
446 * Note that this function does not do anything to cause the data in the
447 * RAM memory region to be migrated; that is the responsibility of the caller.
449 void memory_region_init_resizeable_ram(MemoryRegion *mr,
450 struct Object *owner,
451 const char *name,
452 uint64_t size,
453 uint64_t max_size,
454 void (*resized)(const char*,
455 uint64_t length,
456 void *host),
457 Error **errp);
458 #ifdef __linux__
460 * memory_region_init_ram_from_file: Initialize RAM memory region with a
461 * mmap-ed backend.
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: Region name, becomes part of RAMBlock name used in migration stream
466 * must be unique within any device
467 * @size: size of the region.
468 * @share: %true if memory must be mmaped with the MAP_SHARED flag
469 * @path: the path in which to allocate the RAM.
470 * @errp: pointer to Error*, to store an error if it happens.
472 * Note that this function does not do anything to cause the data in the
473 * RAM memory region to be migrated; that is the responsibility of the caller.
475 void memory_region_init_ram_from_file(MemoryRegion *mr,
476 struct Object *owner,
477 const char *name,
478 uint64_t size,
479 bool share,
480 const char *path,
481 Error **errp);
484 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
485 * mmap-ed backend.
487 * @mr: the #MemoryRegion to be initialized.
488 * @owner: the object that tracks the region's reference count
489 * @name: the name of the region.
490 * @size: size of the region.
491 * @share: %true if memory must be mmaped with the MAP_SHARED flag
492 * @fd: the fd to mmap.
493 * @errp: pointer to Error*, to store an error if it happens.
495 * Note that this function does not do anything to cause the data in the
496 * RAM memory region to be migrated; that is the responsibility of the caller.
498 void memory_region_init_ram_from_fd(MemoryRegion *mr,
499 struct Object *owner,
500 const char *name,
501 uint64_t size,
502 bool share,
503 int fd,
504 Error **errp);
505 #endif
508 * memory_region_init_ram_ptr: Initialize RAM memory region from a
509 * user-provided pointer. Accesses into the
510 * region will modify memory directly.
512 * @mr: the #MemoryRegion to be initialized.
513 * @owner: the object that tracks the region's reference count
514 * @name: Region name, becomes part of RAMBlock name used in migration stream
515 * must be unique within any device
516 * @size: size of the region.
517 * @ptr: memory to be mapped; must contain at least @size bytes.
519 * Note that this function does not do anything to cause the data in the
520 * RAM memory region to be migrated; that is the responsibility of the caller.
522 void memory_region_init_ram_ptr(MemoryRegion *mr,
523 struct Object *owner,
524 const char *name,
525 uint64_t size,
526 void *ptr);
529 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
530 * a user-provided pointer.
532 * A RAM device represents a mapping to a physical device, such as to a PCI
533 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
534 * into the VM address space and access to the region will modify memory
535 * directly. However, the memory region should not be included in a memory
536 * dump (device may not be enabled/mapped at the time of the dump), and
537 * operations incompatible with manipulating MMIO should be avoided. Replaces
538 * skip_dump flag.
540 * @mr: the #MemoryRegion to be initialized.
541 * @owner: the object that tracks the region's reference count
542 * @name: the name of the region.
543 * @size: size of the region.
544 * @ptr: memory to be mapped; must contain at least @size bytes.
546 * Note that this function does not do anything to cause the data in the
547 * RAM memory region to be migrated; that is the responsibility of the caller.
548 * (For RAM device memory regions, migrating the contents rarely makes sense.)
550 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
551 struct Object *owner,
552 const char *name,
553 uint64_t size,
554 void *ptr);
557 * memory_region_init_alias: Initialize a memory region that aliases all or a
558 * part of another memory region.
560 * @mr: the #MemoryRegion to be initialized.
561 * @owner: the object that tracks the region's reference count
562 * @name: used for debugging; not visible to the user or ABI
563 * @orig: the region to be referenced; @mr will be equivalent to
564 * @orig between @offset and @offset + @size - 1.
565 * @offset: start of the section in @orig to be referenced.
566 * @size: size of the region.
568 void memory_region_init_alias(MemoryRegion *mr,
569 struct Object *owner,
570 const char *name,
571 MemoryRegion *orig,
572 hwaddr offset,
573 uint64_t size);
576 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
578 * This has the same effect as calling memory_region_init_ram_nomigrate()
579 * and then marking the resulting region read-only with
580 * memory_region_set_readonly().
582 * Note that this function does not do anything to cause the data in the
583 * RAM side of the memory region to be migrated; that is the responsibility
584 * of the caller.
586 * @mr: the #MemoryRegion to be initialized.
587 * @owner: the object that tracks the region's reference count
588 * @name: Region name, becomes part of RAMBlock name used in migration stream
589 * must be unique within any device
590 * @size: size of the region.
591 * @errp: pointer to Error*, to store an error if it happens.
593 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
594 struct Object *owner,
595 const char *name,
596 uint64_t size,
597 Error **errp);
600 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
601 * Writes are handled via callbacks.
603 * Note that this function does not do anything to cause the data in the
604 * RAM side of the memory region to be migrated; that is the responsibility
605 * of the caller.
607 * @mr: the #MemoryRegion to be initialized.
608 * @owner: the object that tracks the region's reference count
609 * @ops: callbacks for write access handling (must not be NULL).
610 * @name: Region name, becomes part of RAMBlock name used in migration stream
611 * must be unique within any device
612 * @size: size of the region.
613 * @errp: pointer to Error*, to store an error if it happens.
615 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
616 struct Object *owner,
617 const MemoryRegionOps *ops,
618 void *opaque,
619 const char *name,
620 uint64_t size,
621 Error **errp);
624 * memory_region_init_reservation: Initialize a memory region that reserves
625 * I/O space.
627 * A reservation region primariy serves debugging purposes. It claims I/O
628 * space that is not supposed to be handled by QEMU itself. Any access via
629 * the memory API will cause an abort().
630 * This function is deprecated. Use memory_region_init_io() with NULL
631 * callbacks instead.
633 * @mr: the #MemoryRegion to be initialized
634 * @owner: the object that tracks the region's reference count
635 * @name: used for debugging; not visible to the user or ABI
636 * @size: size of the region.
638 static inline void memory_region_init_reservation(MemoryRegion *mr,
639 Object *owner,
640 const char *name,
641 uint64_t size)
643 memory_region_init_io(mr, owner, NULL, mr, name, size);
647 * memory_region_init_iommu: Initialize a memory region of a custom type
648 * that translates addresses
650 * An IOMMU region translates addresses and forwards accesses to a target
651 * memory region.
653 * @typename: QOM class name
654 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
655 * @instance_size: the IOMMUMemoryRegion subclass instance size
656 * @owner: the object that tracks the region's reference count
657 * @ops: a function that translates addresses into the @target region
658 * @name: used for debugging; not visible to the user or ABI
659 * @size: size of the region.
661 void memory_region_init_iommu(void *_iommu_mr,
662 size_t instance_size,
663 const char *mrtypename,
664 Object *owner,
665 const char *name,
666 uint64_t size);
669 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
670 * region will modify memory directly.
672 * @mr: the #MemoryRegion to be initialized
673 * @owner: the object that tracks the region's reference count (must be
674 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
675 * @name: name of the memory region
676 * @size: size of the region in bytes
677 * @errp: pointer to Error*, to store an error if it happens.
679 * This function allocates RAM for a board model or device, and
680 * arranges for it to be migrated (by calling vmstate_register_ram()
681 * if @owner is a DeviceState, or vmstate_register_ram_global() if
682 * @owner is NULL).
684 * TODO: Currently we restrict @owner to being either NULL (for
685 * global RAM regions with no owner) or devices, so that we can
686 * give the RAM block a unique name for migration purposes.
687 * We should lift this restriction and allow arbitrary Objects.
688 * If you pass a non-NULL non-device @owner then we will assert.
690 void memory_region_init_ram(MemoryRegion *mr,
691 struct Object *owner,
692 const char *name,
693 uint64_t size,
694 Error **errp);
697 * memory_region_init_rom: Initialize a ROM memory region.
699 * This has the same effect as calling memory_region_init_ram()
700 * and then marking the resulting region read-only with
701 * memory_region_set_readonly(). This includes arranging for the
702 * contents to be migrated.
704 * TODO: Currently we restrict @owner to being either NULL (for
705 * global RAM regions with no owner) or devices, so that we can
706 * give the RAM block a unique name for migration purposes.
707 * We should lift this restriction and allow arbitrary Objects.
708 * If you pass a non-NULL non-device @owner then we will assert.
710 * @mr: the #MemoryRegion to be initialized.
711 * @owner: the object that tracks the region's reference count
712 * @name: Region name, becomes part of RAMBlock name used in migration stream
713 * must be unique within any device
714 * @size: size of the region.
715 * @errp: pointer to Error*, to store an error if it happens.
717 void memory_region_init_rom(MemoryRegion *mr,
718 struct Object *owner,
719 const char *name,
720 uint64_t size,
721 Error **errp);
724 * memory_region_init_rom_device: Initialize a ROM memory region.
725 * Writes are handled via callbacks.
727 * This function initializes a memory region backed by RAM for reads
728 * and callbacks for writes, and arranges for the RAM backing to
729 * be migrated (by calling vmstate_register_ram()
730 * if @owner is a DeviceState, or vmstate_register_ram_global() if
731 * @owner is NULL).
733 * TODO: Currently we restrict @owner to being either NULL (for
734 * global RAM regions with no owner) or devices, so that we can
735 * give the RAM block a unique name for migration purposes.
736 * We should lift this restriction and allow arbitrary Objects.
737 * If you pass a non-NULL non-device @owner then we will assert.
739 * @mr: the #MemoryRegion to be initialized.
740 * @owner: the object that tracks the region's reference count
741 * @ops: callbacks for write access handling (must not be NULL).
742 * @name: Region name, becomes part of RAMBlock name used in migration stream
743 * must be unique within any device
744 * @size: size of the region.
745 * @errp: pointer to Error*, to store an error if it happens.
747 void memory_region_init_rom_device(MemoryRegion *mr,
748 struct Object *owner,
749 const MemoryRegionOps *ops,
750 void *opaque,
751 const char *name,
752 uint64_t size,
753 Error **errp);
757 * memory_region_owner: get a memory region's owner.
759 * @mr: the memory region being queried.
761 struct Object *memory_region_owner(MemoryRegion *mr);
764 * memory_region_size: get a memory region's size.
766 * @mr: the memory region being queried.
768 uint64_t memory_region_size(MemoryRegion *mr);
771 * memory_region_is_ram: check whether a memory region is random access
773 * Returns %true is a memory region is random access.
775 * @mr: the memory region being queried
777 static inline bool memory_region_is_ram(MemoryRegion *mr)
779 return mr->ram;
783 * memory_region_is_ram_device: check whether a memory region is a ram device
785 * Returns %true is a memory region is a device backed ram region
787 * @mr: the memory region being queried
789 bool memory_region_is_ram_device(MemoryRegion *mr);
792 * memory_region_is_romd: check whether a memory region is in ROMD mode
794 * Returns %true if a memory region is a ROM device and currently set to allow
795 * direct reads.
797 * @mr: the memory region being queried
799 static inline bool memory_region_is_romd(MemoryRegion *mr)
801 return mr->rom_device && mr->romd_mode;
805 * memory_region_get_iommu: check whether a memory region is an iommu
807 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
808 * otherwise NULL.
810 * @mr: the memory region being queried
812 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
814 if (mr->alias) {
815 return memory_region_get_iommu(mr->alias);
817 if (mr->is_iommu) {
818 return (IOMMUMemoryRegion *) mr;
820 return NULL;
824 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
825 * if an iommu or NULL if not
827 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
828 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
830 * @mr: the memory region being queried
832 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
833 IOMMUMemoryRegion *iommu_mr)
835 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
838 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
841 * memory_region_iommu_get_min_page_size: get minimum supported page size
842 * for an iommu
844 * Returns minimum supported page size for an iommu.
846 * @iommu_mr: the memory region being queried
848 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
851 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
853 * The notification type will be decided by entry.perm bits:
855 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
856 * - For MAP (newly added entry) notifies: set entry.perm to the
857 * permission of the page (which is definitely !IOMMU_NONE).
859 * Note: for any IOMMU implementation, an in-place mapping change
860 * should be notified with an UNMAP followed by a MAP.
862 * @iommu_mr: the memory region that was changed
863 * @entry: the new entry in the IOMMU translation table. The entry
864 * replaces all old entries for the same virtual I/O address range.
865 * Deleted entries have .@perm == 0.
867 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
868 IOMMUTLBEntry entry);
871 * memory_region_notify_one: notify a change in an IOMMU translation
872 * entry to a single notifier
874 * This works just like memory_region_notify_iommu(), but it only
875 * notifies a specific notifier, not all of them.
877 * @notifier: the notifier to be notified
878 * @entry: the new entry in the IOMMU translation table. The entry
879 * replaces all old entries for the same virtual I/O address range.
880 * Deleted entries have .@perm == 0.
882 void memory_region_notify_one(IOMMUNotifier *notifier,
883 IOMMUTLBEntry *entry);
886 * memory_region_register_iommu_notifier: register a notifier for changes to
887 * IOMMU translation entries.
889 * @mr: the memory region to observe
890 * @n: the IOMMUNotifier to be added; the notify callback receives a
891 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
892 * ceases to be valid on exit from the notifier.
894 void memory_region_register_iommu_notifier(MemoryRegion *mr,
895 IOMMUNotifier *n);
898 * memory_region_iommu_replay: replay existing IOMMU translations to
899 * a notifier with the minimum page granularity returned by
900 * mr->iommu_ops->get_page_size().
902 * @iommu_mr: the memory region to observe
903 * @n: the notifier to which to replay iommu mappings
905 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
908 * memory_region_iommu_replay_all: replay existing IOMMU translations
909 * to all the notifiers registered.
911 * @iommu_mr: the memory region to observe
913 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
916 * memory_region_unregister_iommu_notifier: unregister a notifier for
917 * changes to IOMMU translation entries.
919 * @mr: the memory region which was observed and for which notity_stopped()
920 * needs to be called
921 * @n: the notifier to be removed.
923 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
924 IOMMUNotifier *n);
927 * memory_region_name: get a memory region's name
929 * Returns the string that was used to initialize the memory region.
931 * @mr: the memory region being queried
933 const char *memory_region_name(const MemoryRegion *mr);
936 * memory_region_is_logging: return whether a memory region is logging writes
938 * Returns %true if the memory region is logging writes for the given client
940 * @mr: the memory region being queried
941 * @client: the client being queried
943 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
946 * memory_region_get_dirty_log_mask: return the clients for which a
947 * memory region is logging writes.
949 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
950 * are the bit indices.
952 * @mr: the memory region being queried
954 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
957 * memory_region_is_rom: check whether a memory region is ROM
959 * Returns %true is a memory region is read-only memory.
961 * @mr: the memory region being queried
963 static inline bool memory_region_is_rom(MemoryRegion *mr)
965 return mr->ram && mr->readonly;
970 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
972 * Returns a file descriptor backing a file-based RAM memory region,
973 * or -1 if the region is not a file-based RAM memory region.
975 * @mr: the RAM or alias memory region being queried.
977 int memory_region_get_fd(MemoryRegion *mr);
980 * memory_region_from_host: Convert a pointer into a RAM memory region
981 * and an offset within it.
983 * Given a host pointer inside a RAM memory region (created with
984 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
985 * the MemoryRegion and the offset within it.
987 * Use with care; by the time this function returns, the returned pointer is
988 * not protected by RCU anymore. If the caller is not within an RCU critical
989 * section and does not hold the iothread lock, it must have other means of
990 * protecting the pointer, such as a reference to the region that includes
991 * the incoming ram_addr_t.
993 * @mr: the memory region being queried.
995 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
998 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1000 * Returns a host pointer to a RAM memory region (created with
1001 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1003 * Use with care; by the time this function returns, the returned pointer is
1004 * not protected by RCU anymore. If the caller is not within an RCU critical
1005 * section and does not hold the iothread lock, it must have other means of
1006 * protecting the pointer, such as a reference to the region that includes
1007 * the incoming ram_addr_t.
1009 * @mr: the memory region being queried.
1011 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1013 /* memory_region_ram_resize: Resize a RAM region.
1015 * Only legal before guest might have detected the memory size: e.g. on
1016 * incoming migration, or right after reset.
1018 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1019 * @newsize: the new size the region
1020 * @errp: pointer to Error*, to store an error if it happens.
1022 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1023 Error **errp);
1026 * memory_region_set_log: Turn dirty logging on or off for a region.
1028 * Turns dirty logging on or off for a specified client (display, migration).
1029 * Only meaningful for RAM regions.
1031 * @mr: the memory region being updated.
1032 * @log: whether dirty logging is to be enabled or disabled.
1033 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1035 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1038 * memory_region_get_dirty: Check whether a range of bytes is dirty
1039 * for a specified client.
1041 * Checks whether a range of bytes has been written to since the last
1042 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1043 * must be enabled.
1045 * @mr: the memory region being queried.
1046 * @addr: the address (relative to the start of the region) being queried.
1047 * @size: the size of the range being queried.
1048 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1049 * %DIRTY_MEMORY_VGA.
1051 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1052 hwaddr size, unsigned client);
1055 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1057 * Marks a range of bytes as dirty, after it has been dirtied outside
1058 * guest code.
1060 * @mr: the memory region being dirtied.
1061 * @addr: the address (relative to the start of the region) being dirtied.
1062 * @size: size of the range being dirtied.
1064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1065 hwaddr size);
1068 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1069 * for a specified client. It clears them.
1071 * Checks whether a range of bytes has been written to since the last
1072 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1073 * must be enabled.
1075 * @mr: the memory region being queried.
1076 * @addr: the address (relative to the start of the region) being queried.
1077 * @size: the size of the range being queried.
1078 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1079 * %DIRTY_MEMORY_VGA.
1081 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1082 hwaddr size, unsigned client);
1085 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1086 * bitmap and clear it.
1088 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1089 * returns the snapshot. The snapshot can then be used to query dirty
1090 * status, using memory_region_snapshot_get_dirty. Unlike
1091 * memory_region_test_and_clear_dirty this allows to query the same
1092 * page multiple times, which is especially useful for display updates
1093 * where the scanlines often are not page aligned.
1095 * The dirty bitmap region which gets copyed into the snapshot (and
1096 * cleared afterwards) can be larger than requested. The boundaries
1097 * are rounded up/down so complete bitmap longs (covering 64 pages on
1098 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1099 * isn't a problem for display updates as the extra pages are outside
1100 * the visible area, and in case the visible area changes a full
1101 * display redraw is due anyway. Should other use cases for this
1102 * function emerge we might have to revisit this implementation
1103 * detail.
1105 * Use g_free to release DirtyBitmapSnapshot.
1107 * @mr: the memory region being queried.
1108 * @addr: the address (relative to the start of the region) being queried.
1109 * @size: the size of the range being queried.
1110 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1112 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1113 hwaddr addr,
1114 hwaddr size,
1115 unsigned client);
1118 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1119 * in the specified dirty bitmap snapshot.
1121 * @mr: the memory region being queried.
1122 * @snap: the dirty bitmap snapshot
1123 * @addr: the address (relative to the start of the region) being queried.
1124 * @size: the size of the range being queried.
1126 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1127 DirtyBitmapSnapshot *snap,
1128 hwaddr addr, hwaddr size);
1131 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1132 * any external TLBs (e.g. kvm)
1134 * Flushes dirty information from accelerators such as kvm and vhost-net
1135 * and makes it available to users of the memory API.
1137 * @mr: the region being flushed.
1139 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1142 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1143 * client.
1145 * Marks a range of pages as no longer dirty.
1147 * @mr: the region being updated.
1148 * @addr: the start of the subrange being cleaned.
1149 * @size: the size of the subrange being cleaned.
1150 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1151 * %DIRTY_MEMORY_VGA.
1153 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1154 hwaddr size, unsigned client);
1157 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1159 * Allows a memory region to be marked as read-only (turning it into a ROM).
1160 * only useful on RAM regions.
1162 * @mr: the region being updated.
1163 * @readonly: whether rhe region is to be ROM or RAM.
1165 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1168 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1170 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1171 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1172 * device is mapped to guest memory and satisfies read access directly.
1173 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1174 * Writes are always handled by the #MemoryRegion.write function.
1176 * @mr: the memory region to be updated
1177 * @romd_mode: %true to put the region into ROMD mode
1179 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1182 * memory_region_set_coalescing: Enable memory coalescing for the region.
1184 * Enabled writes to a region to be queued for later processing. MMIO ->write
1185 * callbacks may be delayed until a non-coalesced MMIO is issued.
1186 * Only useful for IO regions. Roughly similar to write-combining hardware.
1188 * @mr: the memory region to be write coalesced
1190 void memory_region_set_coalescing(MemoryRegion *mr);
1193 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1194 * a region.
1196 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1197 * Multiple calls can be issued coalesced disjoint ranges.
1199 * @mr: the memory region to be updated.
1200 * @offset: the start of the range within the region to be coalesced.
1201 * @size: the size of the subrange to be coalesced.
1203 void memory_region_add_coalescing(MemoryRegion *mr,
1204 hwaddr offset,
1205 uint64_t size);
1208 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1210 * Disables any coalescing caused by memory_region_set_coalescing() or
1211 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1212 * hardware.
1214 * @mr: the memory region to be updated.
1216 void memory_region_clear_coalescing(MemoryRegion *mr);
1219 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1220 * accesses.
1222 * Ensure that pending coalesced MMIO request are flushed before the memory
1223 * region is accessed. This property is automatically enabled for all regions
1224 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1226 * @mr: the memory region to be updated.
1228 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1231 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1232 * accesses.
1234 * Clear the automatic coalesced MMIO flushing enabled via
1235 * memory_region_set_flush_coalesced. Note that this service has no effect on
1236 * memory regions that have MMIO coalescing enabled for themselves. For them,
1237 * automatic flushing will stop once coalescing is disabled.
1239 * @mr: the memory region to be updated.
1241 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1244 * memory_region_set_global_locking: Declares the access processing requires
1245 * QEMU's global lock.
1247 * When this is invoked, accesses to the memory region will be processed while
1248 * holding the global lock of QEMU. This is the default behavior of memory
1249 * regions.
1251 * @mr: the memory region to be updated.
1253 void memory_region_set_global_locking(MemoryRegion *mr);
1256 * memory_region_clear_global_locking: Declares that access processing does
1257 * not depend on the QEMU global lock.
1259 * By clearing this property, accesses to the memory region will be processed
1260 * outside of QEMU's global lock (unless the lock is held on when issuing the
1261 * access request). In this case, the device model implementing the access
1262 * handlers is responsible for synchronization of concurrency.
1264 * @mr: the memory region to be updated.
1266 void memory_region_clear_global_locking(MemoryRegion *mr);
1269 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1270 * is written to a location.
1272 * Marks a word in an IO region (initialized with memory_region_init_io())
1273 * as a trigger for an eventfd event. The I/O callback will not be called.
1274 * The caller must be prepared to handle failure (that is, take the required
1275 * action if the callback _is_ called).
1277 * @mr: the memory region being updated.
1278 * @addr: the address within @mr that is to be monitored
1279 * @size: the size of the access to trigger the eventfd
1280 * @match_data: whether to match against @data, instead of just @addr
1281 * @data: the data to match against the guest write
1282 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1284 void memory_region_add_eventfd(MemoryRegion *mr,
1285 hwaddr addr,
1286 unsigned size,
1287 bool match_data,
1288 uint64_t data,
1289 EventNotifier *e);
1292 * memory_region_del_eventfd: Cancel an eventfd.
1294 * Cancels an eventfd trigger requested by a previous
1295 * memory_region_add_eventfd() call.
1297 * @mr: the memory region being updated.
1298 * @addr: the address within @mr that is to be monitored
1299 * @size: the size of the access to trigger the eventfd
1300 * @match_data: whether to match against @data, instead of just @addr
1301 * @data: the data to match against the guest write
1302 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1304 void memory_region_del_eventfd(MemoryRegion *mr,
1305 hwaddr addr,
1306 unsigned size,
1307 bool match_data,
1308 uint64_t data,
1309 EventNotifier *e);
1312 * memory_region_add_subregion: Add a subregion to a container.
1314 * Adds a subregion at @offset. The subregion may not overlap with other
1315 * subregions (except for those explicitly marked as overlapping). A region
1316 * may only be added once as a subregion (unless removed with
1317 * memory_region_del_subregion()); use memory_region_init_alias() if you
1318 * want a region to be a subregion in multiple locations.
1320 * @mr: the region to contain the new subregion; must be a container
1321 * initialized with memory_region_init().
1322 * @offset: the offset relative to @mr where @subregion is added.
1323 * @subregion: the subregion to be added.
1325 void memory_region_add_subregion(MemoryRegion *mr,
1326 hwaddr offset,
1327 MemoryRegion *subregion);
1329 * memory_region_add_subregion_overlap: Add a subregion to a container
1330 * with overlap.
1332 * Adds a subregion at @offset. The subregion may overlap with other
1333 * subregions. Conflicts are resolved by having a higher @priority hide a
1334 * lower @priority. Subregions without priority are taken as @priority 0.
1335 * A region may only be added once as a subregion (unless removed with
1336 * memory_region_del_subregion()); use memory_region_init_alias() if you
1337 * want a region to be a subregion in multiple locations.
1339 * @mr: the region to contain the new subregion; must be a container
1340 * initialized with memory_region_init().
1341 * @offset: the offset relative to @mr where @subregion is added.
1342 * @subregion: the subregion to be added.
1343 * @priority: used for resolving overlaps; highest priority wins.
1345 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1346 hwaddr offset,
1347 MemoryRegion *subregion,
1348 int priority);
1351 * memory_region_get_ram_addr: Get the ram address associated with a memory
1352 * region
1354 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1356 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1358 * memory_region_del_subregion: Remove a subregion.
1360 * Removes a subregion from its container.
1362 * @mr: the container to be updated.
1363 * @subregion: the region being removed; must be a current subregion of @mr.
1365 void memory_region_del_subregion(MemoryRegion *mr,
1366 MemoryRegion *subregion);
1369 * memory_region_set_enabled: dynamically enable or disable a region
1371 * Enables or disables a memory region. A disabled memory region
1372 * ignores all accesses to itself and its subregions. It does not
1373 * obscure sibling subregions with lower priority - it simply behaves as
1374 * if it was removed from the hierarchy.
1376 * Regions default to being enabled.
1378 * @mr: the region to be updated
1379 * @enabled: whether to enable or disable the region
1381 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1384 * memory_region_set_address: dynamically update the address of a region
1386 * Dynamically updates the address of a region, relative to its container.
1387 * May be used on regions are currently part of a memory hierarchy.
1389 * @mr: the region to be updated
1390 * @addr: new address, relative to container region
1392 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1395 * memory_region_set_size: dynamically update the size of a region.
1397 * Dynamically updates the size of a region.
1399 * @mr: the region to be updated
1400 * @size: used size of the region.
1402 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1405 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1407 * Dynamically updates the offset into the target region that an alias points
1408 * to, as if the fourth argument to memory_region_init_alias() has changed.
1410 * @mr: the #MemoryRegion to be updated; should be an alias.
1411 * @offset: the new offset into the target memory region
1413 void memory_region_set_alias_offset(MemoryRegion *mr,
1414 hwaddr offset);
1417 * memory_region_present: checks if an address relative to a @container
1418 * translates into #MemoryRegion within @container
1420 * Answer whether a #MemoryRegion within @container covers the address
1421 * @addr.
1423 * @container: a #MemoryRegion within which @addr is a relative address
1424 * @addr: the area within @container to be searched
1426 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1429 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1430 * into any address space.
1432 * @mr: a #MemoryRegion which should be checked if it's mapped
1434 bool memory_region_is_mapped(MemoryRegion *mr);
1437 * memory_region_find: translate an address/size relative to a
1438 * MemoryRegion into a #MemoryRegionSection.
1440 * Locates the first #MemoryRegion within @mr that overlaps the range
1441 * given by @addr and @size.
1443 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1444 * It will have the following characteristics:
1445 * .@size = 0 iff no overlap was found
1446 * .@mr is non-%NULL iff an overlap was found
1448 * Remember that in the return value the @offset_within_region is
1449 * relative to the returned region (in the .@mr field), not to the
1450 * @mr argument.
1452 * Similarly, the .@offset_within_address_space is relative to the
1453 * address space that contains both regions, the passed and the
1454 * returned one. However, in the special case where the @mr argument
1455 * has no container (and thus is the root of the address space), the
1456 * following will hold:
1457 * .@offset_within_address_space >= @addr
1458 * .@offset_within_address_space + .@size <= @addr + @size
1460 * @mr: a MemoryRegion within which @addr is a relative address
1461 * @addr: start of the area within @as to be searched
1462 * @size: size of the area to be searched
1464 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1465 hwaddr addr, uint64_t size);
1468 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1470 * Synchronizes the dirty page log for all address spaces.
1472 void memory_global_dirty_log_sync(void);
1475 * memory_region_transaction_begin: Start a transaction.
1477 * During a transaction, changes will be accumulated and made visible
1478 * only when the transaction ends (is committed).
1480 void memory_region_transaction_begin(void);
1483 * memory_region_transaction_commit: Commit a transaction and make changes
1484 * visible to the guest.
1486 void memory_region_transaction_commit(void);
1489 * memory_listener_register: register callbacks to be called when memory
1490 * sections are mapped or unmapped into an address
1491 * space
1493 * @listener: an object containing the callbacks to be called
1494 * @filter: if non-%NULL, only regions in this address space will be observed
1496 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1499 * memory_listener_unregister: undo the effect of memory_listener_register()
1501 * @listener: an object containing the callbacks to be removed
1503 void memory_listener_unregister(MemoryListener *listener);
1506 * memory_global_dirty_log_start: begin dirty logging for all regions
1508 void memory_global_dirty_log_start(void);
1511 * memory_global_dirty_log_stop: end dirty logging for all regions
1513 void memory_global_dirty_log_stop(void);
1515 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1516 bool dispatch_tree);
1519 * memory_region_request_mmio_ptr: request a pointer to an mmio
1520 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1521 * When the device wants to invalidate the pointer it will call
1522 * memory_region_invalidate_mmio_ptr.
1524 * @mr: #MemoryRegion to check
1525 * @addr: address within that region
1527 * Returns true on success, false otherwise.
1529 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1532 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1533 * previously requested.
1534 * In the end that means that if something wants to execute from this area it
1535 * will need to request the pointer again.
1537 * @mr: #MemoryRegion associated to the pointer.
1538 * @addr: address within that region
1539 * @size: size of that area.
1541 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1542 unsigned size);
1545 * memory_region_dispatch_read: perform a read directly to the specified
1546 * MemoryRegion.
1548 * @mr: #MemoryRegion to access
1549 * @addr: address within that region
1550 * @pval: pointer to uint64_t which the data is written to
1551 * @size: size of the access in bytes
1552 * @attrs: memory transaction attributes to use for the access
1554 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1555 hwaddr addr,
1556 uint64_t *pval,
1557 unsigned size,
1558 MemTxAttrs attrs);
1560 * memory_region_dispatch_write: perform a write directly to the specified
1561 * MemoryRegion.
1563 * @mr: #MemoryRegion to access
1564 * @addr: address within that region
1565 * @data: data to write
1566 * @size: size of the access in bytes
1567 * @attrs: memory transaction attributes to use for the access
1569 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1570 hwaddr addr,
1571 uint64_t data,
1572 unsigned size,
1573 MemTxAttrs attrs);
1576 * address_space_init: initializes an address space
1578 * @as: an uninitialized #AddressSpace
1579 * @root: a #MemoryRegion that routes addresses for the address space
1580 * @name: an address space name. The name is only used for debugging
1581 * output.
1583 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1586 * address_space_destroy: destroy an address space
1588 * Releases all resources associated with an address space. After an address space
1589 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1590 * as well.
1592 * @as: address space to be destroyed
1594 void address_space_destroy(AddressSpace *as);
1597 * address_space_rw: read from or write to an address space.
1599 * Return a MemTxResult indicating whether the operation succeeded
1600 * or failed (eg unassigned memory, device rejected the transaction,
1601 * IOMMU fault).
1603 * @as: #AddressSpace to be accessed
1604 * @addr: address within that address space
1605 * @attrs: memory transaction attributes
1606 * @buf: buffer with the data transferred
1607 * @is_write: indicates the transfer direction
1609 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1610 MemTxAttrs attrs, uint8_t *buf,
1611 int len, bool is_write);
1614 * address_space_write: write to address space.
1616 * Return a MemTxResult indicating whether the operation succeeded
1617 * or failed (eg unassigned memory, device rejected the transaction,
1618 * IOMMU fault).
1620 * @as: #AddressSpace to be accessed
1621 * @addr: address within that address space
1622 * @attrs: memory transaction attributes
1623 * @buf: buffer with the data transferred
1625 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1626 MemTxAttrs attrs,
1627 const uint8_t *buf, int len);
1629 /* address_space_ld*: load from an address space
1630 * address_space_st*: store to an address space
1632 * These functions perform a load or store of the byte, word,
1633 * longword or quad to the specified address within the AddressSpace.
1634 * The _le suffixed functions treat the data as little endian;
1635 * _be indicates big endian; no suffix indicates "same endianness
1636 * as guest CPU".
1638 * The "guest CPU endianness" accessors are deprecated for use outside
1639 * target-* code; devices should be CPU-agnostic and use either the LE
1640 * or the BE accessors.
1642 * @as #AddressSpace to be accessed
1643 * @addr: address within that address space
1644 * @val: data value, for stores
1645 * @attrs: memory transaction attributes
1646 * @result: location to write the success/failure of the transaction;
1647 * if NULL, this information is discarded
1649 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1650 MemTxAttrs attrs, MemTxResult *result);
1651 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1652 MemTxAttrs attrs, MemTxResult *result);
1653 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1654 MemTxAttrs attrs, MemTxResult *result);
1655 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1656 MemTxAttrs attrs, MemTxResult *result);
1657 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1658 MemTxAttrs attrs, MemTxResult *result);
1659 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1660 MemTxAttrs attrs, MemTxResult *result);
1661 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1662 MemTxAttrs attrs, MemTxResult *result);
1663 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1664 MemTxAttrs attrs, MemTxResult *result);
1665 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1666 MemTxAttrs attrs, MemTxResult *result);
1667 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1668 MemTxAttrs attrs, MemTxResult *result);
1669 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1670 MemTxAttrs attrs, MemTxResult *result);
1671 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1672 MemTxAttrs attrs, MemTxResult *result);
1673 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1674 MemTxAttrs attrs, MemTxResult *result);
1675 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1676 MemTxAttrs attrs, MemTxResult *result);
1678 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1679 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1680 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1681 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1682 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1683 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1684 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1685 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1686 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1687 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1688 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1689 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1690 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1691 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1693 struct MemoryRegionCache {
1694 hwaddr xlat;
1695 hwaddr len;
1696 AddressSpace *as;
1699 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1701 /* address_space_cache_init: prepare for repeated access to a physical
1702 * memory region
1704 * @cache: #MemoryRegionCache to be filled
1705 * @as: #AddressSpace to be accessed
1706 * @addr: address within that address space
1707 * @len: length of buffer
1708 * @is_write: indicates the transfer direction
1710 * Will only work with RAM, and may map a subset of the requested range by
1711 * returning a value that is less than @len. On failure, return a negative
1712 * errno value.
1714 * Because it only works with RAM, this function can be used for
1715 * read-modify-write operations. In this case, is_write should be %true.
1717 * Note that addresses passed to the address_space_*_cached functions
1718 * are relative to @addr.
1720 int64_t address_space_cache_init(MemoryRegionCache *cache,
1721 AddressSpace *as,
1722 hwaddr addr,
1723 hwaddr len,
1724 bool is_write);
1727 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1729 * @cache: The #MemoryRegionCache to operate on.
1730 * @addr: The first physical address that was written, relative to the
1731 * address that was passed to @address_space_cache_init.
1732 * @access_len: The number of bytes that were written starting at @addr.
1734 void address_space_cache_invalidate(MemoryRegionCache *cache,
1735 hwaddr addr,
1736 hwaddr access_len);
1739 * address_space_cache_destroy: free a #MemoryRegionCache
1741 * @cache: The #MemoryRegionCache whose memory should be released.
1743 void address_space_cache_destroy(MemoryRegionCache *cache);
1745 /* address_space_ld*_cached: load from a cached #MemoryRegion
1746 * address_space_st*_cached: store into a cached #MemoryRegion
1748 * These functions perform a load or store of the byte, word,
1749 * longword or quad to the specified address. The address is
1750 * a physical address in the AddressSpace, but it must lie within
1751 * a #MemoryRegion that was mapped with address_space_cache_init.
1753 * The _le suffixed functions treat the data as little endian;
1754 * _be indicates big endian; no suffix indicates "same endianness
1755 * as guest CPU".
1757 * The "guest CPU endianness" accessors are deprecated for use outside
1758 * target-* code; devices should be CPU-agnostic and use either the LE
1759 * or the BE accessors.
1761 * @cache: previously initialized #MemoryRegionCache to be accessed
1762 * @addr: address within the address space
1763 * @val: data value, for stores
1764 * @attrs: memory transaction attributes
1765 * @result: location to write the success/failure of the transaction;
1766 * if NULL, this information is discarded
1768 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1769 MemTxAttrs attrs, MemTxResult *result);
1770 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1771 MemTxAttrs attrs, MemTxResult *result);
1772 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1773 MemTxAttrs attrs, MemTxResult *result);
1774 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1775 MemTxAttrs attrs, MemTxResult *result);
1776 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1777 MemTxAttrs attrs, MemTxResult *result);
1778 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1779 MemTxAttrs attrs, MemTxResult *result);
1780 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1781 MemTxAttrs attrs, MemTxResult *result);
1782 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1783 MemTxAttrs attrs, MemTxResult *result);
1784 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1785 MemTxAttrs attrs, MemTxResult *result);
1786 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1787 MemTxAttrs attrs, MemTxResult *result);
1788 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1789 MemTxAttrs attrs, MemTxResult *result);
1790 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1791 MemTxAttrs attrs, MemTxResult *result);
1792 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1793 MemTxAttrs attrs, MemTxResult *result);
1794 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1795 MemTxAttrs attrs, MemTxResult *result);
1797 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1798 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1799 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1800 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1801 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1802 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1803 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1804 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1805 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1806 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1807 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1808 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1809 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1810 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1811 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1812 * entry. Should be called from an RCU critical section.
1814 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1815 bool is_write);
1817 /* address_space_translate: translate an address range into an address space
1818 * into a MemoryRegion and an address range into that section. Should be
1819 * called from an RCU critical section, to avoid that the last reference
1820 * to the returned region disappears after address_space_translate returns.
1822 * @as: #AddressSpace to be accessed
1823 * @addr: address within that address space
1824 * @xlat: pointer to address within the returned memory region section's
1825 * #MemoryRegion.
1826 * @len: pointer to length
1827 * @is_write: indicates the transfer direction
1829 MemoryRegion *flatview_translate(FlatView *fv,
1830 hwaddr addr, hwaddr *xlat,
1831 hwaddr *len, bool is_write);
1833 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1834 hwaddr addr, hwaddr *xlat,
1835 hwaddr *len, bool is_write)
1837 return flatview_translate(address_space_to_flatview(as),
1838 addr, xlat, len, is_write);
1841 /* address_space_access_valid: check for validity of accessing an address
1842 * space range
1844 * Check whether memory is assigned to the given address space range, and
1845 * access is permitted by any IOMMU regions that are active for the address
1846 * space.
1848 * For now, addr and len should be aligned to a page size. This limitation
1849 * will be lifted in the future.
1851 * @as: #AddressSpace to be accessed
1852 * @addr: address within that address space
1853 * @len: length of the area to be checked
1854 * @is_write: indicates the transfer direction
1856 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1858 /* address_space_map: map a physical memory region into a host virtual address
1860 * May map a subset of the requested range, given by and returned in @plen.
1861 * May return %NULL if resources needed to perform the mapping are exhausted.
1862 * Use only for reads OR writes - not for read-modify-write operations.
1863 * Use cpu_register_map_client() to know when retrying the map operation is
1864 * likely to succeed.
1866 * @as: #AddressSpace to be accessed
1867 * @addr: address within that address space
1868 * @plen: pointer to length of buffer; updated on return
1869 * @is_write: indicates the transfer direction
1871 void *address_space_map(AddressSpace *as, hwaddr addr,
1872 hwaddr *plen, bool is_write);
1874 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1876 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1877 * the amount of memory that was actually read or written by the caller.
1879 * @as: #AddressSpace used
1880 * @addr: address within that address space
1881 * @len: buffer length as returned by address_space_map()
1882 * @access_len: amount of data actually transferred
1883 * @is_write: indicates the transfer direction
1885 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1886 int is_write, hwaddr access_len);
1889 /* Internal functions, part of the implementation of address_space_read. */
1890 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1891 MemTxAttrs attrs, uint8_t *buf,
1892 int len, hwaddr addr1, hwaddr l,
1893 MemoryRegion *mr);
1895 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1896 MemTxAttrs attrs, uint8_t *buf, int len);
1897 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1899 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1901 if (is_write) {
1902 return memory_region_is_ram(mr) &&
1903 !mr->readonly && !memory_region_is_ram_device(mr);
1904 } else {
1905 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1906 memory_region_is_romd(mr);
1911 * address_space_read: read from an address space.
1913 * Return a MemTxResult indicating whether the operation succeeded
1914 * or failed (eg unassigned memory, device rejected the transaction,
1915 * IOMMU fault).
1917 * @as: #AddressSpace to be accessed
1918 * @addr: address within that address space
1919 * @attrs: memory transaction attributes
1920 * @buf: buffer with the data transferred
1922 static inline __attribute__((__always_inline__))
1923 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1924 uint8_t *buf, int len)
1926 MemTxResult result = MEMTX_OK;
1927 hwaddr l, addr1;
1928 void *ptr;
1929 MemoryRegion *mr;
1931 if (__builtin_constant_p(len)) {
1932 if (len) {
1933 rcu_read_lock();
1934 l = len;
1935 mr = flatview_translate(fv, addr, &addr1, &l, false);
1936 if (len == l && memory_access_is_direct(mr, false)) {
1937 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1938 memcpy(buf, ptr, len);
1939 } else {
1940 result = flatview_read_continue(fv, addr, attrs, buf, len,
1941 addr1, l, mr);
1943 rcu_read_unlock();
1945 } else {
1946 result = flatview_read_full(fv, addr, attrs, buf, len);
1948 return result;
1951 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1952 MemTxAttrs attrs, uint8_t *buf,
1953 int len)
1955 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1959 * address_space_read_cached: read from a cached RAM region
1961 * @cache: Cached region to be addressed
1962 * @addr: address relative to the base of the RAM region
1963 * @buf: buffer with the data transferred
1964 * @len: length of the data transferred
1966 static inline void
1967 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1968 void *buf, int len)
1970 assert(addr < cache->len && len <= cache->len - addr);
1971 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1975 * address_space_write_cached: write to a cached RAM region
1977 * @cache: Cached region to be addressed
1978 * @addr: address relative to the base of the RAM region
1979 * @buf: buffer with the data transferred
1980 * @len: length of the data transferred
1982 static inline void
1983 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1984 void *buf, int len)
1986 assert(addr < cache->len && len <= cache->len - addr);
1987 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1990 #endif
1992 #endif