block: Add bdrv_aio_cancel_async
[qemu/ar7.git] / target-arm / op_helper.c
blobb956216c4ba28e51bd5a7eeb4b2283530e59ba1f
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState *env, int tt)
29 ARMCPU *cpu = arm_env_get_cpu(env);
30 CPUState *cs = CPU(cpu);
32 cs->exception_index = tt;
33 cpu_loop_exit(cs);
36 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
37 uint32_t rn, uint32_t maxindex)
39 uint32_t val;
40 uint32_t tmp;
41 int index;
42 int shift;
43 uint64_t *table;
44 table = (uint64_t *)&env->vfp.regs[rn];
45 val = 0;
46 for (shift = 0; shift < 32; shift += 8) {
47 index = (ireg >> shift) & 0xff;
48 if (index < maxindex) {
49 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
50 val |= tmp << shift;
51 } else {
52 val |= def & (0xff << shift);
55 return val;
58 #if !defined(CONFIG_USER_ONLY)
60 /* try to fill the TLB and return an exception if error. If retaddr is
61 * NULL, it means that the function was called in C code (i.e. not
62 * from generated code or from helper.c)
64 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
65 uintptr_t retaddr)
67 int ret;
69 ret = arm_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
70 if (unlikely(ret)) {
71 ARMCPU *cpu = ARM_CPU(cs);
72 CPUARMState *env = &cpu->env;
74 if (retaddr) {
75 /* now we have a real cpu fault */
76 cpu_restore_state(cs, retaddr);
78 raise_exception(env, cs->exception_index);
81 #endif
83 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
85 uint32_t res = a + b;
86 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
87 env->QF = 1;
88 return res;
91 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
93 uint32_t res = a + b;
94 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
95 env->QF = 1;
96 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
98 return res;
101 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
103 uint32_t res = a - b;
104 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
105 env->QF = 1;
106 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
108 return res;
111 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
113 uint32_t res;
114 if (val >= 0x40000000) {
115 res = ~SIGNBIT;
116 env->QF = 1;
117 } else if (val <= (int32_t)0xc0000000) {
118 res = SIGNBIT;
119 env->QF = 1;
120 } else {
121 res = val << 1;
123 return res;
126 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
128 uint32_t res = a + b;
129 if (res < a) {
130 env->QF = 1;
131 res = ~0;
133 return res;
136 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
138 uint32_t res = a - b;
139 if (res > a) {
140 env->QF = 1;
141 res = 0;
143 return res;
146 /* Signed saturation. */
147 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
149 int32_t top;
150 uint32_t mask;
152 top = val >> shift;
153 mask = (1u << shift) - 1;
154 if (top > 0) {
155 env->QF = 1;
156 return mask;
157 } else if (top < -1) {
158 env->QF = 1;
159 return ~mask;
161 return val;
164 /* Unsigned saturation. */
165 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
167 uint32_t max;
169 max = (1u << shift) - 1;
170 if (val < 0) {
171 env->QF = 1;
172 return 0;
173 } else if (val > max) {
174 env->QF = 1;
175 return max;
177 return val;
180 /* Signed saturate. */
181 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
183 return do_ssat(env, x, shift);
186 /* Dual halfword signed saturate. */
187 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
189 uint32_t res;
191 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
192 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
193 return res;
196 /* Unsigned saturate. */
197 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
199 return do_usat(env, x, shift);
202 /* Dual halfword unsigned saturate. */
203 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
205 uint32_t res;
207 res = (uint16_t)do_usat(env, (int16_t)x, shift);
208 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
209 return res;
212 void HELPER(wfi)(CPUARMState *env)
214 CPUState *cs = CPU(arm_env_get_cpu(env));
216 cs->exception_index = EXCP_HLT;
217 cs->halted = 1;
218 cpu_loop_exit(cs);
221 void HELPER(wfe)(CPUARMState *env)
223 CPUState *cs = CPU(arm_env_get_cpu(env));
225 /* Don't actually halt the CPU, just yield back to top
226 * level loop
228 cs->exception_index = EXCP_YIELD;
229 cpu_loop_exit(cs);
232 /* Raise an internal-to-QEMU exception. This is limited to only
233 * those EXCP values which are special cases for QEMU to interrupt
234 * execution and not to be used for exceptions which are passed to
235 * the guest (those must all have syndrome information and thus should
236 * use exception_with_syndrome).
238 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
240 CPUState *cs = CPU(arm_env_get_cpu(env));
242 assert(excp_is_internal(excp));
243 cs->exception_index = excp;
244 cpu_loop_exit(cs);
247 /* Raise an exception with the specified syndrome register value */
248 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
249 uint32_t syndrome)
251 CPUState *cs = CPU(arm_env_get_cpu(env));
253 assert(!excp_is_internal(excp));
254 cs->exception_index = excp;
255 env->exception.syndrome = syndrome;
256 cpu_loop_exit(cs);
259 uint32_t HELPER(cpsr_read)(CPUARMState *env)
261 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
264 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
266 cpsr_write(env, val, mask);
269 /* Access to user mode registers from privileged modes. */
270 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
272 uint32_t val;
274 if (regno == 13) {
275 val = env->banked_r13[0];
276 } else if (regno == 14) {
277 val = env->banked_r14[0];
278 } else if (regno >= 8
279 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
280 val = env->usr_regs[regno - 8];
281 } else {
282 val = env->regs[regno];
284 return val;
287 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
289 if (regno == 13) {
290 env->banked_r13[0] = val;
291 } else if (regno == 14) {
292 env->banked_r14[0] = val;
293 } else if (regno >= 8
294 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
295 env->usr_regs[regno - 8] = val;
296 } else {
297 env->regs[regno] = val;
301 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
303 const ARMCPRegInfo *ri = rip;
304 switch (ri->accessfn(env, ri)) {
305 case CP_ACCESS_OK:
306 return;
307 case CP_ACCESS_TRAP:
308 env->exception.syndrome = syndrome;
309 break;
310 case CP_ACCESS_TRAP_UNCATEGORIZED:
311 env->exception.syndrome = syn_uncategorized();
312 break;
313 default:
314 g_assert_not_reached();
316 raise_exception(env, EXCP_UDEF);
319 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
321 const ARMCPRegInfo *ri = rip;
323 ri->writefn(env, ri, value);
326 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
328 const ARMCPRegInfo *ri = rip;
330 return ri->readfn(env, ri);
333 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
335 const ARMCPRegInfo *ri = rip;
337 ri->writefn(env, ri, value);
340 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
342 const ARMCPRegInfo *ri = rip;
344 return ri->readfn(env, ri);
347 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
349 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
350 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
351 * to catch that case at translate time.
353 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
354 raise_exception(env, EXCP_UDEF);
357 switch (op) {
358 case 0x05: /* SPSel */
359 update_spsel(env, imm);
360 break;
361 case 0x1e: /* DAIFSet */
362 env->daif |= (imm << 6) & PSTATE_DAIF;
363 break;
364 case 0x1f: /* DAIFClear */
365 env->daif &= ~((imm << 6) & PSTATE_DAIF);
366 break;
367 default:
368 g_assert_not_reached();
372 void HELPER(clear_pstate_ss)(CPUARMState *env)
374 env->pstate &= ~PSTATE_SS;
377 void HELPER(exception_return)(CPUARMState *env)
379 int cur_el = arm_current_pl(env);
380 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
381 uint32_t spsr = env->banked_spsr[spsr_idx];
382 int new_el, i;
384 aarch64_save_sp(env, cur_el);
386 env->exclusive_addr = -1;
388 /* We must squash the PSTATE.SS bit to zero unless both of the
389 * following hold:
390 * 1. debug exceptions are currently disabled
391 * 2. singlestep will be active in the EL we return to
392 * We check 1 here and 2 after we've done the pstate/cpsr write() to
393 * transition to the EL we're going to.
395 if (arm_generate_debug_exceptions(env)) {
396 spsr &= ~PSTATE_SS;
399 if (spsr & PSTATE_nRW) {
400 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
401 env->aarch64 = 0;
402 new_el = 0;
403 env->uncached_cpsr = 0x10;
404 cpsr_write(env, spsr, ~0);
405 if (!arm_singlestep_active(env)) {
406 env->uncached_cpsr &= ~PSTATE_SS;
408 for (i = 0; i < 15; i++) {
409 env->regs[i] = env->xregs[i];
412 env->regs[15] = env->elr_el[1] & ~0x1;
413 } else {
414 new_el = extract32(spsr, 2, 2);
415 if (new_el > cur_el
416 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
417 /* Disallow return to an EL which is unimplemented or higher
418 * than the current one.
420 goto illegal_return;
422 if (extract32(spsr, 1, 1)) {
423 /* Return with reserved M[1] bit set */
424 goto illegal_return;
426 if (new_el == 0 && (spsr & PSTATE_SP)) {
427 /* Return to EL0 with M[0] bit set */
428 goto illegal_return;
430 env->aarch64 = 1;
431 pstate_write(env, spsr);
432 if (!arm_singlestep_active(env)) {
433 env->pstate &= ~PSTATE_SS;
435 aarch64_restore_sp(env, new_el);
436 env->pc = env->elr_el[cur_el];
439 return;
441 illegal_return:
442 /* Illegal return events of various kinds have architecturally
443 * mandated behaviour:
444 * restore NZCV and DAIF from SPSR_ELx
445 * set PSTATE.IL
446 * restore PC from ELR_ELx
447 * no change to exception level, execution state or stack pointer
449 env->pstate |= PSTATE_IL;
450 env->pc = env->elr_el[cur_el];
451 spsr &= PSTATE_NZCV | PSTATE_DAIF;
452 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
453 pstate_write(env, spsr);
454 if (!arm_singlestep_active(env)) {
455 env->pstate &= ~PSTATE_SS;
459 /* Return true if the linked breakpoint entry lbn passes its checks */
460 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
462 CPUARMState *env = &cpu->env;
463 uint64_t bcr = env->cp15.dbgbcr[lbn];
464 int brps = extract32(cpu->dbgdidr, 24, 4);
465 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
466 int bt;
467 uint32_t contextidr;
469 /* Links to unimplemented or non-context aware breakpoints are
470 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
471 * as if linked to an UNKNOWN context-aware breakpoint (in which
472 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
473 * We choose the former.
475 if (lbn > brps || lbn < (brps - ctx_cmps)) {
476 return false;
479 bcr = env->cp15.dbgbcr[lbn];
481 if (extract64(bcr, 0, 1) == 0) {
482 /* Linked breakpoint disabled : generate no events */
483 return false;
486 bt = extract64(bcr, 20, 4);
488 /* We match the whole register even if this is AArch32 using the
489 * short descriptor format (in which case it holds both PROCID and ASID),
490 * since we don't implement the optional v7 context ID masking.
492 contextidr = extract64(env->cp15.contextidr_el1, 0, 32);
494 switch (bt) {
495 case 3: /* linked context ID match */
496 if (arm_current_pl(env) > 1) {
497 /* Context matches never fire in EL2 or (AArch64) EL3 */
498 return false;
500 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
501 case 5: /* linked address mismatch (reserved in AArch64) */
502 case 9: /* linked VMID match (reserved if no EL2) */
503 case 11: /* linked context ID and VMID match (reserved if no EL2) */
504 default:
505 /* Links to Unlinked context breakpoints must generate no
506 * events; we choose to do the same for reserved values too.
508 return false;
511 return false;
514 static bool wp_matches(ARMCPU *cpu, int n)
516 CPUARMState *env = &cpu->env;
517 uint64_t wcr = env->cp15.dbgwcr[n];
518 int pac, hmc, ssc, wt, lbn;
519 /* TODO: check against CPU security state when we implement TrustZone */
520 bool is_secure = false;
522 if (!env->cpu_watchpoint[n]
523 || !(env->cpu_watchpoint[n]->flags & BP_WATCHPOINT_HIT)) {
524 return false;
527 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
528 * enabled and that the address and access type match; check the
529 * remaining fields, including linked breakpoints.
530 * Note that some combinations of {PAC, HMC SSC} are reserved and
531 * must act either like some valid combination or as if the watchpoint
532 * were disabled. We choose the former, and use this together with
533 * the fact that EL3 must always be Secure and EL2 must always be
534 * Non-Secure to simplify the code slightly compared to the full
535 * table in the ARM ARM.
537 pac = extract64(wcr, 1, 2);
538 hmc = extract64(wcr, 13, 1);
539 ssc = extract64(wcr, 14, 2);
541 switch (ssc) {
542 case 0:
543 break;
544 case 1:
545 case 3:
546 if (is_secure) {
547 return false;
549 break;
550 case 2:
551 if (!is_secure) {
552 return false;
554 break;
557 /* TODO: this is not strictly correct because the LDRT/STRT/LDT/STT
558 * "unprivileged access" instructions should match watchpoints as if
559 * they were accesses done at EL0, even if the CPU is at EL1 or higher.
560 * Implementing this would require reworking the core watchpoint code
561 * to plumb the mmu_idx through to this point. Luckily Linux does not
562 * rely on this behaviour currently.
564 switch (arm_current_pl(env)) {
565 case 3:
566 case 2:
567 if (!hmc) {
568 return false;
570 break;
571 case 1:
572 if (extract32(pac, 0, 1) == 0) {
573 return false;
575 break;
576 case 0:
577 if (extract32(pac, 1, 1) == 0) {
578 return false;
580 break;
581 default:
582 g_assert_not_reached();
585 wt = extract64(wcr, 20, 1);
586 lbn = extract64(wcr, 16, 4);
588 if (wt && !linked_bp_matches(cpu, lbn)) {
589 return false;
592 return true;
595 static bool check_watchpoints(ARMCPU *cpu)
597 CPUARMState *env = &cpu->env;
598 int n;
600 /* If watchpoints are disabled globally or we can't take debug
601 * exceptions here then watchpoint firings are ignored.
603 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
604 || !arm_generate_debug_exceptions(env)) {
605 return false;
608 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
609 if (wp_matches(cpu, n)) {
610 return true;
613 return false;
616 void arm_debug_excp_handler(CPUState *cs)
618 /* Called by core code when a watchpoint or breakpoint fires;
619 * need to check which one and raise the appropriate exception.
621 ARMCPU *cpu = ARM_CPU(cs);
622 CPUARMState *env = &cpu->env;
623 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
625 if (wp_hit) {
626 if (wp_hit->flags & BP_CPU) {
627 cs->watchpoint_hit = NULL;
628 if (check_watchpoints(cpu)) {
629 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
630 bool same_el = arm_debug_target_el(env) == arm_current_pl(env);
632 env->exception.syndrome = syn_watchpoint(same_el, 0, wnr);
633 if (extended_addresses_enabled(env)) {
634 env->exception.fsr = (1 << 9) | 0x22;
635 } else {
636 env->exception.fsr = 0x2;
638 env->exception.vaddress = wp_hit->hitaddr;
639 raise_exception(env, EXCP_DATA_ABORT);
640 } else {
641 cpu_resume_from_signal(cs, NULL);
647 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
648 The only way to do that in TCG is a conditional branch, which clobbers
649 all our temporaries. For now implement these as helper functions. */
651 /* Similarly for variable shift instructions. */
653 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
655 int shift = i & 0xff;
656 if (shift >= 32) {
657 if (shift == 32)
658 env->CF = x & 1;
659 else
660 env->CF = 0;
661 return 0;
662 } else if (shift != 0) {
663 env->CF = (x >> (32 - shift)) & 1;
664 return x << shift;
666 return x;
669 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
671 int shift = i & 0xff;
672 if (shift >= 32) {
673 if (shift == 32)
674 env->CF = (x >> 31) & 1;
675 else
676 env->CF = 0;
677 return 0;
678 } else if (shift != 0) {
679 env->CF = (x >> (shift - 1)) & 1;
680 return x >> shift;
682 return x;
685 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
687 int shift = i & 0xff;
688 if (shift >= 32) {
689 env->CF = (x >> 31) & 1;
690 return (int32_t)x >> 31;
691 } else if (shift != 0) {
692 env->CF = (x >> (shift - 1)) & 1;
693 return (int32_t)x >> shift;
695 return x;
698 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
700 int shift1, shift;
701 shift1 = i & 0xff;
702 shift = shift1 & 0x1f;
703 if (shift == 0) {
704 if (shift1 != 0)
705 env->CF = (x >> 31) & 1;
706 return x;
707 } else {
708 env->CF = (x >> (shift - 1)) & 1;
709 return ((uint32_t)x >> shift) | (x << (32 - shift));