target/i386/hvf: add rdmsr 35H MSR_CORE_THREAD_COUNT
[qemu/ar7.git] / target / arm / helper.c
blob0e1a3b94211cab3a43815824ea4b84a976dace21
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "hw/semihosting/common-semi.h"
38 #endif
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 #ifndef CONFIG_USER_ONLY
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
59 ARMCPU *cpu = env_archcpu(env);
60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
62 /* VFP data registers are always little-endian. */
63 if (reg < nregs) {
64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
66 if (arm_feature(env, ARM_FEATURE_NEON)) {
67 /* Aliases for Q regs. */
68 nregs += 16;
69 if (reg < nregs) {
70 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71 return gdb_get_reg128(buf, q[0], q[1]);
74 switch (reg - nregs) {
75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
79 return 0;
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
84 ARMCPU *cpu = env_archcpu(env);
85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
87 if (reg < nregs) {
88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89 return 8;
91 if (arm_feature(env, ARM_FEATURE_NEON)) {
92 nregs += 16;
93 if (reg < nregs) {
94 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95 q[0] = ldq_le_p(buf);
96 q[1] = ldq_le_p(buf + 8);
97 return 16;
100 switch (reg - nregs) {
101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
105 return 0;
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
110 switch (reg) {
111 case 0 ... 31:
113 /* 128 bit FP register - quads are in LE order */
114 uint64_t *q = aa64_vfp_qreg(env, reg);
115 return gdb_get_reg128(buf, q[1], q[0]);
117 case 32:
118 /* FPSR */
119 return gdb_get_reg32(buf, vfp_get_fpsr(env));
120 case 33:
121 /* FPCR */
122 return gdb_get_reg32(buf,vfp_get_fpcr(env));
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
212 * arm_get/set_gdb_*: get/set a gdb register
213 * @env: the CPU state
214 * @buf: a buffer to copy to/from
215 * @reg: register number (offset from start of group)
217 * We return the number of bytes copied
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
222 ARMCPU *cpu = env_archcpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
246 ARMCPU *cpu = env_archcpu(env);
248 switch (reg) {
249 /* The first 32 registers are the zregs */
250 case 0 ... 31:
252 int vq, len = 0;
253 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254 len += gdb_get_reg128(buf,
255 env->vfp.zregs[reg].d[vq * 2 + 1],
256 env->vfp.zregs[reg].d[vq * 2]);
258 return len;
260 case 32:
261 return gdb_get_reg32(buf, vfp_get_fpsr(env));
262 case 33:
263 return gdb_get_reg32(buf, vfp_get_fpcr(env));
264 /* then 16 predicates and the ffr */
265 case 34 ... 50:
267 int preg = reg - 34;
268 int vq, len = 0;
269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
272 return len;
274 case 51:
277 * We report in Vector Granules (VG) which is 64bit in a Z reg
278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281 return gdb_get_reg64(buf, vq * 2);
283 default:
284 /* gdbstub asked for something out our range */
285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286 break;
289 return 0;
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
294 ARMCPU *cpu = env_archcpu(env);
296 /* The first 32 registers are the zregs */
297 switch (reg) {
298 /* The first 32 registers are the zregs */
299 case 0 ... 31:
301 int vq, len = 0;
302 uint64_t *p = (uint64_t *) buf;
303 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305 env->vfp.zregs[reg].d[vq * 2] = *p++;
306 len += 16;
308 return len;
310 case 32:
311 vfp_set_fpsr(env, *(uint32_t *)buf);
312 return 4;
313 case 33:
314 vfp_set_fpcr(env, *(uint32_t *)buf);
315 return 4;
316 case 34 ... 50:
318 int preg = reg - 34;
319 int vq, len = 0;
320 uint64_t *p = (uint64_t *) buf;
321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322 env->vfp.pregs[preg].p[vq / 4] = *p++;
323 len += 8;
325 return len;
327 case 51:
328 /* cannot set vg via gdbstub */
329 return 0;
330 default:
331 /* gdbstub asked for something out our range */
332 break;
335 return 0;
337 #endif /* TARGET_AARCH64 */
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
341 /* Return true if the regdef would cause an assertion if you called
342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343 * program bug for it not to have the NO_RAW flag).
344 * NB that returning false here doesn't necessarily mean that calling
345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346 * read/write access functions which are safe for raw use" from "has
347 * read/write access functions which have side effects but has forgotten
348 * to provide raw access functions".
349 * The tests here line up with the conditions in read/write_raw_cp_reg()
350 * and assertions in raw_read()/raw_write().
352 if ((ri->type & ARM_CP_CONST) ||
353 ri->fieldoffset ||
354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355 return false;
357 return true;
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
362 /* Write the coprocessor state from cpu->env to the (index,value) list. */
363 int i;
364 bool ok = true;
366 for (i = 0; i < cpu->cpreg_array_len; i++) {
367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368 const ARMCPRegInfo *ri;
369 uint64_t newval;
371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372 if (!ri) {
373 ok = false;
374 continue;
376 if (ri->type & ARM_CP_NO_RAW) {
377 continue;
380 newval = read_raw_cp_reg(&cpu->env, ri);
381 if (kvm_sync) {
383 * Only sync if the previous list->cpustate sync succeeded.
384 * Rather than tracking the success/failure state for every
385 * item in the list, we just recheck "does the raw write we must
386 * have made in write_list_to_cpustate() read back OK" here.
388 uint64_t oldval = cpu->cpreg_values[i];
390 if (oldval == newval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, oldval);
395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396 continue;
399 write_raw_cp_reg(&cpu->env, ri, newval);
401 cpu->cpreg_values[i] = newval;
403 return ok;
406 bool write_list_to_cpustate(ARMCPU *cpu)
408 int i;
409 bool ok = true;
411 for (i = 0; i < cpu->cpreg_array_len; i++) {
412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413 uint64_t v = cpu->cpreg_values[i];
414 const ARMCPRegInfo *ri;
416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417 if (!ri) {
418 ok = false;
419 continue;
421 if (ri->type & ARM_CP_NO_RAW) {
422 continue;
424 /* Write value and confirm it reads back as written
425 * (to catch read-only registers and partially read-only
426 * registers where the incoming migration value doesn't match)
428 write_raw_cp_reg(&cpu->env, ri, v);
429 if (read_raw_cp_reg(&cpu->env, ri) != v) {
430 ok = false;
433 return ok;
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
438 ARMCPU *cpu = opaque;
439 uint64_t regidx;
440 const ARMCPRegInfo *ri;
442 regidx = *(uint32_t *)key;
443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447 /* The value array need not be initialized at this point */
448 cpu->cpreg_array_len++;
452 static void count_cpreg(gpointer key, gpointer opaque)
454 ARMCPU *cpu = opaque;
455 uint64_t regidx;
456 const ARMCPRegInfo *ri;
458 regidx = *(uint32_t *)key;
459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462 cpu->cpreg_array_len++;
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
471 if (aidx > bidx) {
472 return 1;
474 if (aidx < bidx) {
475 return -1;
477 return 0;
480 void init_cpreg_list(ARMCPU *cpu)
482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483 * Note that we require cpreg_tuples[] to be sorted by key ID.
485 GList *keys;
486 int arraylen;
488 keys = g_hash_table_get_keys(cpu->cp_regs);
489 keys = g_list_sort(keys, cpreg_key_compare);
491 cpu->cpreg_array_len = 0;
493 g_list_foreach(keys, count_cpreg, cpu);
495 arraylen = cpu->cpreg_array_len;
496 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497 cpu->cpreg_values = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501 cpu->cpreg_array_len = 0;
503 g_list_foreach(keys, add_cpreg_to_list, cpu);
505 assert(cpu->cpreg_array_len == arraylen);
507 g_list_free(keys);
511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514 const ARMCPRegInfo *ri,
515 bool isread)
517 if (!is_a64(env) && arm_current_el(env) == 3 &&
518 arm_is_secure_below_el3(env)) {
519 return CP_ACCESS_TRAP_UNCATEGORIZED;
521 return CP_ACCESS_OK;
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527 * We assume that the .access field is set to PL1_RW.
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530 const ARMCPRegInfo *ri,
531 bool isread)
533 if (arm_current_el(env) == 3) {
534 return CP_ACCESS_OK;
536 if (arm_is_secure_below_el3(env)) {
537 if (env->cp15.scr_el3 & SCR_EEL2) {
538 return CP_ACCESS_TRAP_EL2;
540 return CP_ACCESS_TRAP_EL3;
542 /* This will be EL1 NS and EL2 NS, which just UNDEF */
543 return CP_ACCESS_TRAP_UNCATEGORIZED;
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
551 /* Check for traps to "powerdown debug" registers, which are controlled
552 * by MDCR.TDOSA
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555 bool isread)
557 int el = arm_current_el(env);
558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560 (arm_hcr_el2_eff(env) & HCR_TGE);
562 if (el < 2 && mdcr_el2_tdosa) {
563 return CP_ACCESS_TRAP_EL2;
565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566 return CP_ACCESS_TRAP_EL3;
568 return CP_ACCESS_OK;
571 /* Check for traps to "debug ROM" registers, which are controlled
572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575 bool isread)
577 int el = arm_current_el(env);
578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580 (arm_hcr_el2_eff(env) & HCR_TGE);
582 if (el < 2 && mdcr_el2_tdra) {
583 return CP_ACCESS_TRAP_EL2;
585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586 return CP_ACCESS_TRAP_EL3;
588 return CP_ACCESS_OK;
591 /* Check for traps to general debug registers, which are controlled
592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595 bool isread)
597 int el = arm_current_el(env);
598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600 (arm_hcr_el2_eff(env) & HCR_TGE);
602 if (el < 2 && mdcr_el2_tda) {
603 return CP_ACCESS_TRAP_EL2;
605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606 return CP_ACCESS_TRAP_EL3;
608 return CP_ACCESS_OK;
611 /* Check for traps to performance monitor registers, which are controlled
612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615 bool isread)
617 int el = arm_current_el(env);
618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621 return CP_ACCESS_TRAP_EL2;
623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624 return CP_ACCESS_TRAP_EL3;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1) {
634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635 if (arm_hcr_el2_eff(env) & trap) {
636 return CP_ACCESS_TRAP_EL2;
639 return CP_ACCESS_OK;
642 /* Check for traps from EL1 due to HCR_EL2.TSW. */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644 bool isread)
646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647 return CP_ACCESS_TRAP_EL2;
649 return CP_ACCESS_OK;
652 /* Check for traps from EL1 due to HCR_EL2.TACR. */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654 bool isread)
656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657 return CP_ACCESS_TRAP_EL2;
659 return CP_ACCESS_OK;
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664 bool isread)
666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667 return CP_ACCESS_TRAP_EL2;
669 return CP_ACCESS_OK;
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
674 ARMCPU *cpu = env_archcpu(env);
676 raw_write(env, ri, value);
677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
682 ARMCPU *cpu = env_archcpu(env);
684 if (raw_read(env, ri) != value) {
685 /* Unlike real hardware the qemu TLB uses virtual addresses,
686 * not modified virtual addresses, so this causes a TLB flush.
688 tlb_flush(CPU(cpu));
689 raw_write(env, ri, value);
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 ARMCPU *cpu = env_archcpu(env);
698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699 && !extended_addresses_enabled(env)) {
700 /* For VMSA (when not using the LPAE long descriptor page table
701 * format) this register includes the ASID, so do a TLB flush.
702 * For PMSA it is purely a process ID and no action is needed.
704 tlb_flush(CPU(cpu));
706 raw_write(env, ri, value);
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
713 CPUState *cs = env_cpu(env);
715 tlb_flush_all_cpus_synced(cs);
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
721 CPUState *cs = env_cpu(env);
723 tlb_flush_all_cpus_synced(cs);
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = env_cpu(env);
731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = env_cpu(env);
739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
743 * Non-IS variants of TLB operations are upgraded to
744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745 * force broadcast of these operations.
747 static bool tlb_force_broadcast(CPUARMState *env)
749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 /* Invalidate all (TLBIALL) */
756 CPUState *cs = env_cpu(env);
758 if (tlb_force_broadcast(env)) {
759 tlb_flush_all_cpus_synced(cs);
760 } else {
761 tlb_flush(cs);
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769 CPUState *cs = env_cpu(env);
771 value &= TARGET_PAGE_MASK;
772 if (tlb_force_broadcast(env)) {
773 tlb_flush_page_all_cpus_synced(cs, value);
774 } else {
775 tlb_flush_page(cs, value);
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780 uint64_t value)
782 /* Invalidate by ASID (TLBIASID) */
783 CPUState *cs = env_cpu(env);
785 if (tlb_force_broadcast(env)) {
786 tlb_flush_all_cpus_synced(cs);
787 } else {
788 tlb_flush(cs);
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796 CPUState *cs = env_cpu(env);
798 value &= TARGET_PAGE_MASK;
799 if (tlb_force_broadcast(env)) {
800 tlb_flush_page_all_cpus_synced(cs, value);
801 } else {
802 tlb_flush_page(cs, value);
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 CPUState *cs = env_cpu(env);
811 tlb_flush_by_mmuidx(cs,
812 ARMMMUIdxBit_E10_1 |
813 ARMMMUIdxBit_E10_1_PAN |
814 ARMMMUIdxBit_E10_0);
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx_all_cpus_synced(cs,
823 ARMMMUIdxBit_E10_1 |
824 ARMMMUIdxBit_E10_1_PAN |
825 ARMMMUIdxBit_E10_0);
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 CPUState *cs = env_cpu(env);
834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 CPUState *cs = env_cpu(env);
842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 CPUState *cs = env_cpu(env);
849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 CPUState *cs = env_cpu(env);
858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861 ARMMMUIdxBit_E2);
864 static const ARMCPRegInfo cp_reginfo[] = {
865 /* Define the secure and non-secure FCSE identifier CP registers
866 * separately because there is no secure bank in V8 (no _EL3). This allows
867 * the secure register to be properly reset and migrated. There is also no
868 * v8 EL1 version of the register so the non-secure instance stands alone.
870 { .name = "FCSEIDR",
871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875 { .name = "FCSEIDR_S",
876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880 /* Define the secure and non-secure context identifier CP registers
881 * separately because there is no secure bank in V8 (no _EL3). This allows
882 * the secure register to be properly reset and migrated. In the
883 * non-secure case, the 32-bit register will have reset and migration
884 * disabled during registration as it is handled by the 64-bit instance.
886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888 .access = PL1_RW, .accessfn = access_tvm_trvm,
889 .secure = ARM_CP_SECSTATE_NS,
890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894 .access = PL1_RW, .accessfn = access_tvm_trvm,
895 .secure = ARM_CP_SECSTATE_S,
896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898 REGINFO_SENTINEL
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902 /* NB: Some of these registers exist in v8 but with more precise
903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
905 /* MMU Domain access control / MPU write buffer control */
906 { .name = "DACR",
907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909 .writefn = dacr_write, .raw_writefn = raw_write,
910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913 * For v6 and v5, these mappings are overly broad.
915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923 /* Cache maintenance ops; some of this space may be overridden later. */
924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927 REGINFO_SENTINEL
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931 /* Not all pre-v6 cores implemented this WFI, so this is slightly
932 * over-broad.
934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935 .access = PL1_W, .type = ARM_CP_WFI },
936 REGINFO_SENTINEL
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941 * is UNPREDICTABLE; we choose to NOP as most implementations do).
943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944 .access = PL1_W, .type = ARM_CP_WFI },
945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947 * OMAPCP will override this space.
949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951 .resetvalue = 0 },
952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954 .resetvalue = 0 },
955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958 .resetvalue = 0 },
959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960 * implementing it as RAZ means the "debug architecture version" bits
961 * will read as a reserved value, which should cause Linux to not try
962 * to use the debug hardware.
964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966 /* MMU TLB control. Note that the wildcarding means we cover not just
967 * the unified TLB ops but also the dside/iside/inner-shareable variants.
969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971 .type = ARM_CP_NO_RAW },
972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974 .type = ARM_CP_NO_RAW },
975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977 .type = ARM_CP_NO_RAW },
978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980 .type = ARM_CP_NO_RAW },
981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985 REGINFO_SENTINEL
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989 uint64_t value)
991 uint32_t mask = 0;
993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994 if (!arm_feature(env, ARM_FEATURE_V8)) {
995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000 /* VFP coprocessor: cp10 & cp11 [23:20] */
1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1003 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004 /* ASEDIS [31] bit is RAO/WI */
1005 value |= (1 << 31);
1008 /* VFPv3 and upwards with NEON implement 32 double precision
1009 * registers (D0-D31).
1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013 value |= (1 << 30);
1016 value &= mask;
1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025 value &= ~(0xf << 20);
1026 value |= env->cp15.cpacr_el1 & (0xf << 20);
1029 env->cp15.cpacr_el1 = value;
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1038 uint64_t value = env->cp15.cpacr_el1;
1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042 value &= ~(0xf << 20);
1044 return value;
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1050 /* Call cpacr_write() so that we reset with the correct RAO bits set
1051 * for our CPU features.
1053 cpacr_write(env, ri, 0);
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057 bool isread)
1059 if (arm_feature(env, ARM_FEATURE_V8)) {
1060 /* Check if CPACR accesses are to be trapped to EL2 */
1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063 return CP_ACCESS_TRAP_EL2;
1064 /* Check if CPACR accesses are to be trapped to EL3 */
1065 } else if (arm_current_el(env) < 3 &&
1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1071 return CP_ACCESS_OK;
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075 bool isread)
1077 /* Check if CPTR accesses are set to trap to EL3 */
1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079 return CP_ACCESS_TRAP_EL3;
1082 return CP_ACCESS_OK;
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086 /* prefetch by MVA in v6, NOP in v7 */
1087 { .name = "MVA_prefetch",
1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089 .access = PL1_W, .type = ARM_CP_NOP },
1090 /* We need to break the TB after ISB to execute self-modifying code
1091 * correctly and also to take any pending interrupts immediately.
1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097 .access = PL0_W, .type = ARM_CP_NOP },
1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099 .access = PL0_W, .type = ARM_CP_NOP },
1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101 .access = PL1_RW, .accessfn = access_tvm_trvm,
1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103 offsetof(CPUARMState, cp15.ifar_ns) },
1104 .resetvalue = 0, },
1105 /* Watchpoint Fault Address Register : should actually only be present
1106 * for 1136, 1176, 11MPCore.
1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114 REGINFO_SENTINEL
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK 0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC 0x40
1121 #define PMCRDP 0x20
1122 #define PMCRX 0x10
1123 #define PMCRD 0x8
1124 #define PMCRC 0x4
1125 #define PMCRP 0x2
1126 #define PMCRE 0x1
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1133 #define PMXEVTYPER_P 0x80000000
1134 #define PMXEVTYPER_U 0x40000000
1135 #define PMXEVTYPER_NSK 0x20000000
1136 #define PMXEVTYPER_NSU 0x10000000
1137 #define PMXEVTYPER_NSH 0x08000000
1138 #define PMXEVTYPER_M 0x04000000
1139 #define PMXEVTYPER_MT 0x02000000
1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143 PMXEVTYPER_M | PMXEVTYPER_MT | \
1144 PMXEVTYPER_EVTCOUNT)
1146 #define PMCCFILTR 0xf8000000
1147 #define PMCCFILTR_M PMXEVTYPER_M
1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1161 typedef struct pm_event {
1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164 bool (*supported)(CPUARMState *);
1166 * Retrieve the current count of the underlying event. The programmed
1167 * counters hold a difference from the return value from this function
1169 uint64_t (*get_count)(CPUARMState *);
1171 * Return how many nanoseconds it will take (at a minimum) for count events
1172 * to occur. A negative value indicates the counter will never overflow, or
1173 * that the counter has otherwise arranged for the overflow bit to be set
1174 * and the PMU interrupt to be raised on overflow.
1176 int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1179 static bool event_always_supported(CPUARMState *env)
1181 return true;
1184 static uint64_t swinc_get_count(CPUARMState *env)
1187 * SW_INCR events are written directly to the pmevcntr's by writes to
1188 * PMSWINC, so there is no underlying count maintained by the PMU itself
1190 return 0;
1193 static int64_t swinc_ns_per(uint64_t ignored)
1195 return -1;
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1202 static uint64_t cycles_get_count(CPUARMState *env)
1204 #ifndef CONFIG_USER_ONLY
1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208 return cpu_get_host_ticks();
1209 #endif
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1218 static bool instructions_supported(CPUARMState *env)
1220 return icount_enabled() == 1; /* Precise instruction counting */
1223 static uint64_t instructions_get_count(CPUARMState *env)
1225 return (uint64_t)icount_get_raw();
1228 static int64_t instructions_ns_per(uint64_t icount)
1230 return icount_to_ns((int64_t)icount);
1232 #endif
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1236 /* For events which are supported in any v8.1 PMU */
1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1242 /* For events which are supported in any v8.1 PMU */
1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1248 /* For events which on QEMU never fire, so their count is always zero */
1249 return 0;
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1254 /* An event which never fires can never overflow */
1255 return -1;
1258 static const pm_event pm_events[] = {
1259 { .number = 0x000, /* SW_INCR */
1260 .supported = event_always_supported,
1261 .get_count = swinc_get_count,
1262 .ns_per_count = swinc_ns_per,
1264 #ifndef CONFIG_USER_ONLY
1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266 .supported = instructions_supported,
1267 .get_count = instructions_get_count,
1268 .ns_per_count = instructions_ns_per,
1270 { .number = 0x011, /* CPU_CYCLES, Cycle */
1271 .supported = event_always_supported,
1272 .get_count = cycles_get_count,
1273 .ns_per_count = cycles_ns_per,
1275 #endif
1276 { .number = 0x023, /* STALL_FRONTEND */
1277 .supported = pmu_8_1_events_supported,
1278 .get_count = zero_event_get_count,
1279 .ns_per_count = zero_event_ns_per,
1281 { .number = 0x024, /* STALL_BACKEND */
1282 .supported = pmu_8_1_events_supported,
1283 .get_count = zero_event_get_count,
1284 .ns_per_count = zero_event_ns_per,
1286 { .number = 0x03c, /* STALL */
1287 .supported = pmu_8_4_events_supported,
1288 .get_count = zero_event_get_count,
1289 .ns_per_count = zero_event_ns_per,
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1307 * Note: Events in the 0x40XX range are not currently supported.
1309 void pmu_init(ARMCPU *cpu)
1311 unsigned int i;
1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315 * events to them
1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318 supported_event_map[i] = UNSUPPORTED_EVENT;
1320 cpu->pmceid0 = 0;
1321 cpu->pmceid1 = 0;
1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324 const pm_event *cnt = &pm_events[i];
1325 assert(cnt->number <= MAX_EVENT_ID);
1326 /* We do not currently support events in the 0x40xx range */
1327 assert(cnt->number <= 0x3f);
1329 if (cnt->supported(&cpu->env)) {
1330 supported_event_map[cnt->number] = i;
1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332 if (cnt->number & 0x20) {
1333 cpu->pmceid1 |= event_mask;
1334 } else {
1335 cpu->pmceid0 |= event_mask;
1342 * Check at runtime whether a PMU event is supported for the current machine
1344 static bool event_supported(uint16_t number)
1346 if (number > MAX_EVENT_ID) {
1347 return false;
1349 return supported_event_map[number] != UNSUPPORTED_EVENT;
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353 bool isread)
1355 /* Performance monitor registers user accessibility is controlled
1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357 * trapping to EL2 or EL3 for other accesses.
1359 int el = arm_current_el(env);
1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363 return CP_ACCESS_TRAP;
1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366 return CP_ACCESS_TRAP_EL2;
1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369 return CP_ACCESS_TRAP_EL3;
1372 return CP_ACCESS_OK;
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376 const ARMCPRegInfo *ri,
1377 bool isread)
1379 /* ER: event counter read trap control */
1380 if (arm_feature(env, ARM_FEATURE_V8)
1381 && arm_current_el(env) == 0
1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383 && isread) {
1384 return CP_ACCESS_OK;
1387 return pmreg_access(env, ri, isread);
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391 const ARMCPRegInfo *ri,
1392 bool isread)
1394 /* SW: software increment write trap control */
1395 if (arm_feature(env, ARM_FEATURE_V8)
1396 && arm_current_el(env) == 0
1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398 && !isread) {
1399 return CP_ACCESS_OK;
1402 return pmreg_access(env, ri, isread);
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406 const ARMCPRegInfo *ri,
1407 bool isread)
1409 /* ER: event counter read trap control */
1410 if (arm_feature(env, ARM_FEATURE_V8)
1411 && arm_current_el(env) == 0
1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413 return CP_ACCESS_OK;
1416 return pmreg_access(env, ri, isread);
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420 const ARMCPRegInfo *ri,
1421 bool isread)
1423 /* CR: cycle counter read trap control */
1424 if (arm_feature(env, ARM_FEATURE_V8)
1425 && arm_current_el(env) == 0
1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427 && isread) {
1428 return CP_ACCESS_OK;
1431 return pmreg_access(env, ri, isread);
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1439 uint64_t filter;
1440 bool e, p, u, nsk, nsu, nsh, m;
1441 bool enabled, prohibited, filtered;
1442 bool secure = arm_is_secure(env);
1443 int el = arm_current_el(env);
1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1447 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448 return false;
1451 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452 (counter < hpmn || counter == 31)) {
1453 e = env->cp15.c9_pmcr & PMCRE;
1454 } else {
1455 e = mdcr_el2 & MDCR_HPME;
1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1459 if (!secure) {
1460 if (el == 2 && (counter < hpmn || counter == 31)) {
1461 prohibited = mdcr_el2 & MDCR_HPMD;
1462 } else {
1463 prohibited = false;
1465 } else {
1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467 !(env->cp15.mdcr_el3 & MDCR_SPME);
1470 if (prohibited && counter == 31) {
1471 prohibited = env->cp15.c9_pmcr & PMCRDP;
1474 if (counter == 31) {
1475 filter = env->cp15.pmccfiltr_el0;
1476 } else {
1477 filter = env->cp15.c14_pmevtyper[counter];
1480 p = filter & PMXEVTYPER_P;
1481 u = filter & PMXEVTYPER_U;
1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485 m = arm_el_is_aa64(env, 1) &&
1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1488 if (el == 0) {
1489 filtered = secure ? u : u != nsu;
1490 } else if (el == 1) {
1491 filtered = secure ? p : p != nsk;
1492 } else if (el == 2) {
1493 filtered = !nsh;
1494 } else { /* EL3 */
1495 filtered = m != p;
1498 if (counter != 31) {
1500 * If not checking PMCCNTR, ensure the counter is setup to an event we
1501 * support
1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504 if (!event_supported(event)) {
1505 return false;
1509 return enabled && !prohibited && !filtered;
1512 static void pmu_update_irq(CPUARMState *env)
1514 ARMCPU *cpu = env_archcpu(env);
1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1525 static void pmccntr_op_start(CPUARMState *env)
1527 uint64_t cycles = cycles_get_count(env);
1529 if (pmu_counter_enabled(env, 31)) {
1530 uint64_t eff_cycles = cycles;
1531 if (env->cp15.c9_pmcr & PMCRD) {
1532 /* Increment once every 64 processor clock cycles */
1533 eff_cycles /= 64;
1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539 1ull << 63 : 1ull << 31;
1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541 env->cp15.c9_pmovsr |= (1 << 31);
1542 pmu_update_irq(env);
1545 env->cp15.c15_ccnt = new_pmccntr;
1547 env->cp15.c15_ccnt_delta = cycles;
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1555 static void pmccntr_op_finish(CPUARMState *env)
1557 if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559 /* Calculate when the counter will next overflow */
1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562 remaining_cycles = (uint32_t)remaining_cycles;
1564 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1566 if (overflow_in > 0) {
1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568 overflow_in;
1569 ARMCPU *cpu = env_archcpu(env);
1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1572 #endif
1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575 if (env->cp15.c9_pmcr & PMCRD) {
1576 /* Increment once every 64 processor clock cycles */
1577 prev_cycles /= 64;
1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587 uint64_t count = 0;
1588 if (event_supported(event)) {
1589 uint16_t event_idx = supported_event_map[event];
1590 count = pm_events[event_idx].get_count(env);
1593 if (pmu_counter_enabled(env, counter)) {
1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597 env->cp15.c9_pmovsr |= (1 << counter);
1598 pmu_update_irq(env);
1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1602 env->cp15.c14_pmevcntr_delta[counter] = count;
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1607 if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610 uint16_t event_idx = supported_event_map[event];
1611 uint64_t delta = UINT32_MAX -
1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1615 if (overflow_in > 0) {
1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617 overflow_in;
1618 ARMCPU *cpu = env_archcpu(env);
1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1621 #endif
1623 env->cp15.c14_pmevcntr_delta[counter] -=
1624 env->cp15.c14_pmevcntr[counter];
1628 void pmu_op_start(CPUARMState *env)
1630 unsigned int i;
1631 pmccntr_op_start(env);
1632 for (i = 0; i < pmu_num_counters(env); i++) {
1633 pmevcntr_op_start(env, i);
1637 void pmu_op_finish(CPUARMState *env)
1639 unsigned int i;
1640 pmccntr_op_finish(env);
1641 for (i = 0; i < pmu_num_counters(env); i++) {
1642 pmevcntr_op_finish(env, i);
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1648 pmu_op_start(&cpu->env);
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1653 pmu_op_finish(&cpu->env);
1656 void arm_pmu_timer_cb(void *opaque)
1658 ARMCPU *cpu = opaque;
1661 * Update all the counter values based on the current underlying counts,
1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664 * counter may expire.
1666 pmu_op_start(&cpu->env);
1667 pmu_op_finish(&cpu->env);
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 uint64_t value)
1673 pmu_op_start(env);
1675 if (value & PMCRC) {
1676 /* The counter has been reset */
1677 env->cp15.c15_ccnt = 0;
1680 if (value & PMCRP) {
1681 unsigned int i;
1682 for (i = 0; i < pmu_num_counters(env); i++) {
1683 env->cp15.c14_pmevcntr[i] = 0;
1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1690 pmu_op_finish(env);
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 unsigned int i;
1697 for (i = 0; i < pmu_num_counters(env); i++) {
1698 /* Increment a counter's count iff: */
1699 if ((value & (1 << i)) && /* counter's bit is set */
1700 /* counter is enabled and not filtered */
1701 pmu_counter_enabled(env, i) &&
1702 /* counter is SW_INCR */
1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704 pmevcntr_op_start(env, i);
1707 * Detect if this write causes an overflow since we can't predict
1708 * PMSWINC overflows like we can for other events
1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713 env->cp15.c9_pmovsr |= (1 << i);
1714 pmu_update_irq(env);
1717 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1719 pmevcntr_op_finish(env, i);
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 uint64_t ret;
1727 pmccntr_op_start(env);
1728 ret = env->cp15.c15_ccnt;
1729 pmccntr_op_finish(env);
1730 return ret;
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739 * accessed.
1741 env->cp15.c9_pmselr = value & 0x1f;
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 pmccntr_op_start(env);
1748 env->cp15.c15_ccnt = value;
1749 pmccntr_op_finish(env);
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1755 uint64_t cur_val = pmccntr_read(env, NULL);
1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1763 pmccntr_op_start(env);
1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765 pmccntr_op_finish(env);
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint64_t value)
1771 pmccntr_op_start(env);
1772 /* M is not accessible from AArch32 */
1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774 (value & PMCCFILTR);
1775 pmccntr_op_finish(env);
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1780 /* M is not visible in AArch32 */
1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 value &= pmu_counter_mask(env);
1788 env->cp15.c9_pmcnten |= value;
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 value &= pmu_counter_mask(env);
1795 env->cp15.c9_pmcnten &= ~value;
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pmovsr &= ~value;
1803 pmu_update_irq(env);
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pmovsr |= value;
1811 pmu_update_irq(env);
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value, const uint8_t counter)
1817 if (counter == 31) {
1818 pmccfiltr_write(env, ri, value);
1819 } else if (counter < pmu_num_counters(env)) {
1820 pmevcntr_op_start(env, counter);
1823 * If this counter's event type is changing, store the current
1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825 * pmevcntr_op_finish has the correct baseline when it converts back to
1826 * a delta.
1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829 PMXEVTYPER_EVTCOUNT;
1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831 if (old_event != new_event) {
1832 uint64_t count = 0;
1833 if (event_supported(new_event)) {
1834 uint16_t event_idx = supported_event_map[new_event];
1835 count = pm_events[event_idx].get_count(env);
1837 env->cp15.c14_pmevcntr_delta[counter] = count;
1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841 pmevcntr_op_finish(env, counter);
1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844 * PMSELR value is equal to or greater than the number of implemented
1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850 const uint8_t counter)
1852 if (counter == 31) {
1853 return env->cp15.pmccfiltr_el0;
1854 } else if (counter < pmu_num_counters(env)) {
1855 return env->cp15.c14_pmevtyper[counter];
1856 } else {
1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1861 return 0;
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869 pmevtyper_write(env, ri, value, counter);
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873 uint64_t value)
1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876 env->cp15.c14_pmevtyper[counter] = value;
1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880 * pmu_op_finish calls when loading saved state for a migration. Because
1881 * we're potentially updating the type of event here, the value written to
1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883 * different counter type. Therefore, we need to set this value to the
1884 * current count for the counter type we're writing so that pmu_op_finish
1885 * has the correct count for its calculation.
1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888 if (event_supported(event)) {
1889 uint16_t event_idx = supported_event_map[event];
1890 env->cp15.c14_pmevcntr_delta[counter] =
1891 pm_events[event_idx].get_count(env);
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898 return pmevtyper_read(env, ri, counter);
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value)
1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value, uint8_t counter)
1915 if (counter < pmu_num_counters(env)) {
1916 pmevcntr_op_start(env, counter);
1917 env->cp15.c14_pmevcntr[counter] = value;
1918 pmevcntr_op_finish(env, counter);
1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922 * are CONSTRAINED UNPREDICTABLE.
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint8_t counter)
1929 if (counter < pmu_num_counters(env)) {
1930 uint64_t ret;
1931 pmevcntr_op_start(env, counter);
1932 ret = env->cp15.c14_pmevcntr[counter];
1933 pmevcntr_op_finish(env, counter);
1934 return ret;
1935 } else {
1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937 * are CONSTRAINED UNPREDICTABLE. */
1938 return 0;
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 pmevcntr_write(env, ri, value, counter);
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952 return pmevcntr_read(env, ri, counter);
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959 assert(counter < pmu_num_counters(env));
1960 env->cp15.c14_pmevcntr[counter] = value;
1961 pmevcntr_write(env, ri, value, counter);
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967 assert(counter < pmu_num_counters(env));
1968 return env->cp15.c14_pmevcntr[counter];
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 if (arm_feature(env, ARM_FEATURE_V8)) {
1986 env->cp15.c9_pmuserenr = value & 0xf;
1987 } else {
1988 env->cp15.c9_pmuserenr = value & 1;
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 uint64_t value)
1995 /* We have no event counters so only the C bit can be changed */
1996 value &= pmu_counter_mask(env);
1997 env->cp15.c9_pminten |= value;
1998 pmu_update_irq(env);
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002 uint64_t value)
2004 value &= pmu_counter_mask(env);
2005 env->cp15.c9_pminten &= ~value;
2006 pmu_update_irq(env);
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010 uint64_t value)
2012 /* Note that even though the AArch64 view of this register has bits
2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014 * architectural requirements for bits which are RES0 only in some
2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2018 raw_write(env, ri, value & ~0x1FULL);
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2023 /* Begin with base v8.0 state. */
2024 uint32_t valid_mask = 0x3fff;
2025 ARMCPU *cpu = env_archcpu(env);
2027 if (ri->state == ARM_CP_STATE_AA64) {
2028 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2032 valid_mask &= ~SCR_NET;
2034 if (cpu_isar_feature(aa64_lor, cpu)) {
2035 valid_mask |= SCR_TLOR;
2037 if (cpu_isar_feature(aa64_pauth, cpu)) {
2038 valid_mask |= SCR_API | SCR_APK;
2040 if (cpu_isar_feature(aa64_sel2, cpu)) {
2041 valid_mask |= SCR_EEL2;
2043 if (cpu_isar_feature(aa64_mte, cpu)) {
2044 valid_mask |= SCR_ATA;
2046 } else {
2047 valid_mask &= ~(SCR_RW | SCR_ST);
2050 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051 valid_mask &= ~SCR_HCE;
2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054 * supported if EL2 exists. The bit is UNK/SBZP when
2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056 * when EL2 is unavailable.
2057 * On ARMv8, this bit is always available.
2059 if (arm_feature(env, ARM_FEATURE_V7) &&
2060 !arm_feature(env, ARM_FEATURE_V8)) {
2061 valid_mask &= ~SCR_SMD;
2065 /* Clear all-context RES0 bits. */
2066 value &= valid_mask;
2067 raw_write(env, ri, value);
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2073 * scr_write will set the RES1 bits on an AArch64-only CPU.
2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2076 scr_write(env, ri, 0);
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080 const ARMCPRegInfo *ri,
2081 bool isread)
2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084 return CP_ACCESS_TRAP_EL2;
2087 return CP_ACCESS_OK;
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2092 ARMCPU *cpu = env_archcpu(env);
2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095 * bank
2097 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098 ri->secure & ARM_CP_SECSTATE_S);
2100 return cpu->ccsidr[index];
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104 uint64_t value)
2106 raw_write(env, ri, value & 0xf);
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2111 CPUState *cs = env_cpu(env);
2112 bool el1 = arm_current_el(env) == 1;
2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114 uint64_t ret = 0;
2116 if (hcr_el2 & HCR_IMO) {
2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118 ret |= CPSR_I;
2120 } else {
2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122 ret |= CPSR_I;
2126 if (hcr_el2 & HCR_FMO) {
2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128 ret |= CPSR_F;
2130 } else {
2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132 ret |= CPSR_F;
2136 /* External aborts are not possible in QEMU so A bit is always clear */
2137 return ret;
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141 bool isread)
2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144 return CP_ACCESS_TRAP_EL2;
2147 return CP_ACCESS_OK;
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151 bool isread)
2153 if (arm_feature(env, ARM_FEATURE_V8)) {
2154 return access_aa64_tid1(env, ri, isread);
2157 return CP_ACCESS_OK;
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163 .access = PL1_W, .type = ARM_CP_NOP },
2164 /* Performance monitors are implementation defined in v7,
2165 * but with an ARM recommended set of registers, which we
2166 * follow.
2168 * Performance registers fall into three categories:
2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176 .access = PL0_RW, .type = ARM_CP_ALIAS,
2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178 .writefn = pmcntenset_write,
2179 .accessfn = pmreg_access,
2180 .raw_writefn = raw_write },
2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183 .access = PL0_RW, .accessfn = pmreg_access,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187 .access = PL0_RW,
2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189 .accessfn = pmreg_access,
2190 .writefn = pmcntenclr_write,
2191 .type = ARM_CP_ALIAS },
2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194 .access = PL0_RW, .accessfn = pmreg_access,
2195 .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197 .writefn = pmcntenclr_write },
2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199 .access = PL0_RW, .type = ARM_CP_IO,
2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201 .accessfn = pmreg_access,
2202 .writefn = pmovsr_write,
2203 .raw_writefn = raw_write },
2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsr_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212 .access = PL0_W, .accessfn = pmreg_access_swinc,
2213 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214 .writefn = pmswinc_write },
2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217 .access = PL0_W, .accessfn = pmreg_access_swinc,
2218 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219 .writefn = pmswinc_write },
2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221 .access = PL0_RW, .type = ARM_CP_ALIAS,
2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224 .raw_writefn = raw_write},
2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227 .access = PL0_RW, .accessfn = pmreg_access_selr,
2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229 .writefn = pmselr_write, .raw_writefn = raw_write, },
2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233 .accessfn = pmreg_access_ccntr },
2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239 .readfn = pmccntr_read, .writefn = pmccntr_write,
2240 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243 .access = PL0_RW, .accessfn = pmreg_access,
2244 .type = ARM_CP_ALIAS | ARM_CP_IO,
2245 .resetvalue = 0, },
2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249 .access = PL0_RW, .accessfn = pmreg_access,
2250 .type = ARM_CP_IO,
2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252 .resetvalue = 0, },
2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255 .accessfn = pmreg_access,
2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260 .accessfn = pmreg_access,
2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264 .accessfn = pmreg_access_xevcntr,
2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269 .accessfn = pmreg_access_xevcntr,
2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274 .resetvalue = 0,
2275 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280 .resetvalue = 0,
2281 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283 .access = PL1_RW, .accessfn = access_tpm,
2284 .type = ARM_CP_ALIAS | ARM_CP_IO,
2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286 .resetvalue = 0,
2287 .writefn = pmintenset_write, .raw_writefn = raw_write },
2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290 .access = PL1_RW, .accessfn = access_tpm,
2291 .type = ARM_CP_IO,
2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293 .writefn = pmintenset_write, .raw_writefn = raw_write,
2294 .resetvalue = 0x0 },
2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296 .access = PL1_RW, .accessfn = access_tpm,
2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299 .writefn = pmintenclr_write, },
2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302 .access = PL1_RW, .accessfn = access_tpm,
2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305 .writefn = pmintenclr_write },
2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308 .access = PL1_R,
2309 .accessfn = access_aa64_tid2,
2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313 .access = PL1_RW,
2314 .accessfn = access_aa64_tid2,
2315 .writefn = csselr_write, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317 offsetof(CPUARMState, cp15.csselr_ns) } },
2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319 * just RAZ for all cores:
2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323 .access = PL1_R, .type = ARM_CP_CONST,
2324 .accessfn = access_aa64_tid1,
2325 .resetvalue = 0 },
2326 /* Auxiliary fault status registers: these also are IMPDEF, and we
2327 * choose to RAZ/WI for all cores.
2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331 .access = PL1_RW, .accessfn = access_tvm_trvm,
2332 .type = ARM_CP_CONST, .resetvalue = 0 },
2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335 .access = PL1_RW, .accessfn = access_tvm_trvm,
2336 .type = ARM_CP_CONST, .resetvalue = 0 },
2337 /* MAIR can just read-as-written because we don't implement caches
2338 * and so don't need to care about memory attributes.
2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342 .access = PL1_RW, .accessfn = access_tvm_trvm,
2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344 .resetvalue = 0 },
2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348 .resetvalue = 0 },
2349 /* For non-long-descriptor page tables these are PRRR and NMRR;
2350 * regardless they still act as reads-as-written for QEMU.
2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353 * allows them to assign the correct fieldoffset based on the endianness
2354 * handled in the field definitions.
2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358 .access = PL1_RW, .accessfn = access_tvm_trvm,
2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360 offsetof(CPUARMState, cp15.mair0_ns) },
2361 .resetfn = arm_cp_reset_ignore },
2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364 .access = PL1_RW, .accessfn = access_tvm_trvm,
2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366 offsetof(CPUARMState, cp15.mair1_ns) },
2367 .resetfn = arm_cp_reset_ignore },
2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371 /* 32 bit ITLB invalidates */
2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbiall_write },
2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbimva_write },
2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380 .writefn = tlbiasid_write },
2381 /* 32 bit DTLB invalidates */
2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbiall_write },
2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbimva_write },
2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbiasid_write },
2391 /* 32 bit TLB invalidates */
2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbiall_write },
2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbimva_write },
2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400 .writefn = tlbiasid_write },
2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403 .writefn = tlbimvaa_write },
2404 REGINFO_SENTINEL
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408 /* 32 bit TLB invalidates, Inner Shareable */
2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411 .writefn = tlbiall_is_write },
2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414 .writefn = tlbimva_is_write },
2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417 .writefn = tlbiasid_is_write },
2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420 .writefn = tlbimvaa_is_write },
2421 REGINFO_SENTINEL
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425 /* PMOVSSET is not implemented in v7 before v7ve */
2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427 .access = PL0_RW, .accessfn = pmreg_access,
2428 .type = ARM_CP_ALIAS | ARM_CP_IO,
2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430 .writefn = pmovsset_write,
2431 .raw_writefn = raw_write },
2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434 .access = PL0_RW, .accessfn = pmreg_access,
2435 .type = ARM_CP_ALIAS | ARM_CP_IO,
2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437 .writefn = pmovsset_write,
2438 .raw_writefn = raw_write },
2439 REGINFO_SENTINEL
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2445 value &= 1;
2446 env->teecr = value;
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450 bool isread)
2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453 return CP_ACCESS_TRAP;
2455 return CP_ACCESS_OK;
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461 .resetvalue = 0,
2462 .writefn = teecr_write },
2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465 .accessfn = teehbr_access, .resetvalue = 0 },
2466 REGINFO_SENTINEL
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472 .access = PL0_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475 .access = PL0_RW,
2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478 .resetfn = arm_cp_reset_ignore },
2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481 .access = PL0_R|PL1_W,
2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483 .resetvalue = 0},
2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485 .access = PL0_R|PL1_W,
2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488 .resetfn = arm_cp_reset_ignore },
2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491 .access = PL1_RW,
2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494 .access = PL1_RW,
2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497 .resetvalue = 0 },
2498 REGINFO_SENTINEL
2501 #ifndef CONFIG_USER_ONLY
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504 bool isread)
2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507 * Writable only at the highest implemented exception level.
2509 int el = arm_current_el(env);
2510 uint64_t hcr;
2511 uint32_t cntkctl;
2513 switch (el) {
2514 case 0:
2515 hcr = arm_hcr_el2_eff(env);
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 cntkctl = env->cp15.cnthctl_el2;
2518 } else {
2519 cntkctl = env->cp15.c14_cntkctl;
2521 if (!extract32(cntkctl, 0, 2)) {
2522 return CP_ACCESS_TRAP;
2524 break;
2525 case 1:
2526 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527 arm_is_secure_below_el3(env)) {
2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529 return CP_ACCESS_TRAP_UNCATEGORIZED;
2531 break;
2532 case 2:
2533 case 3:
2534 break;
2537 if (!isread && el < arm_highest_el(env)) {
2538 return CP_ACCESS_TRAP_UNCATEGORIZED;
2541 return CP_ACCESS_OK;
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545 bool isread)
2547 unsigned int cur_el = arm_current_el(env);
2548 bool has_el2 = arm_is_el2_enabled(env);
2549 uint64_t hcr = arm_hcr_el2_eff(env);
2551 switch (cur_el) {
2552 case 0:
2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561 return CP_ACCESS_TRAP;
2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565 if (hcr & HCR_E2H) {
2566 if (timeridx == GTIMER_PHYS &&
2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568 return CP_ACCESS_TRAP_EL2;
2570 } else {
2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572 if (has_el2 && timeridx == GTIMER_PHYS &&
2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574 return CP_ACCESS_TRAP_EL2;
2577 break;
2579 case 1:
2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581 if (has_el2 && timeridx == GTIMER_PHYS &&
2582 (hcr & HCR_E2H
2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585 return CP_ACCESS_TRAP_EL2;
2587 break;
2589 return CP_ACCESS_OK;
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593 bool isread)
2595 unsigned int cur_el = arm_current_el(env);
2596 bool has_el2 = arm_is_el2_enabled(env);
2597 uint64_t hcr = arm_hcr_el2_eff(env);
2599 switch (cur_el) {
2600 case 0:
2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609 * EL0 if EL0[PV]TEN is zero.
2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612 return CP_ACCESS_TRAP;
2614 /* fall through */
2616 case 1:
2617 if (has_el2 && timeridx == GTIMER_PHYS) {
2618 if (hcr & HCR_E2H) {
2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621 return CP_ACCESS_TRAP_EL2;
2623 } else {
2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626 return CP_ACCESS_TRAP_EL2;
2630 break;
2632 return CP_ACCESS_OK;
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636 const ARMCPRegInfo *ri,
2637 bool isread)
2639 return gt_counter_access(env, GTIMER_PHYS, isread);
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643 const ARMCPRegInfo *ri,
2644 bool isread)
2646 return gt_counter_access(env, GTIMER_VIRT, isread);
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650 bool isread)
2652 return gt_timer_access(env, GTIMER_PHYS, isread);
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656 bool isread)
2658 return gt_timer_access(env, GTIMER_VIRT, isread);
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662 const ARMCPRegInfo *ri,
2663 bool isread)
2665 /* The AArch64 register view of the secure physical timer is
2666 * always accessible from EL3, and configurably accessible from
2667 * Secure EL1.
2669 switch (arm_current_el(env)) {
2670 case 1:
2671 if (!arm_is_secure(env)) {
2672 return CP_ACCESS_TRAP;
2674 if (!(env->cp15.scr_el3 & SCR_ST)) {
2675 return CP_ACCESS_TRAP_EL3;
2677 return CP_ACCESS_OK;
2678 case 0:
2679 case 2:
2680 return CP_ACCESS_TRAP;
2681 case 3:
2682 return CP_ACCESS_OK;
2683 default:
2684 g_assert_not_reached();
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2690 ARMCPU *cpu = env_archcpu(env);
2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2699 if (gt->ctl & 1) {
2700 /* Timer enabled: calculate and set current ISTATUS, irq, and
2701 * reset timer to when ISTATUS next has to change
2703 uint64_t offset = timeridx == GTIMER_VIRT ?
2704 cpu->env.cp15.cntvoff_el2 : 0;
2705 uint64_t count = gt_get_countervalue(&cpu->env);
2706 /* Note that this must be unsigned 64 bit arithmetic: */
2707 int istatus = count - offset >= gt->cval;
2708 uint64_t nexttick;
2709 int irqstate;
2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2713 irqstate = (istatus && !(gt->ctl & 2));
2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2716 if (istatus) {
2717 /* Next transition is when count rolls back over to zero */
2718 nexttick = UINT64_MAX;
2719 } else {
2720 /* Next transition is when we hit cval */
2721 nexttick = gt->cval + offset;
2723 /* Note that the desired next expiry time might be beyond the
2724 * signed-64-bit range of a QEMUTimer -- in this case we just
2725 * set the timer for as far in the future as possible. When the
2726 * timer expires we will reset the timer for any remaining period.
2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730 } else {
2731 timer_mod(cpu->gt_timer[timeridx], nexttick);
2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734 } else {
2735 /* Timer disabled: ISTATUS and timer output always clear */
2736 gt->ctl &= ~4;
2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738 timer_del(cpu->gt_timer[timeridx]);
2739 trace_arm_gt_recalc_disabled(timeridx);
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744 int timeridx)
2746 ARMCPU *cpu = env_archcpu(env);
2748 timer_del(cpu->gt_timer[timeridx]);
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2753 return gt_get_countervalue(env);
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2758 uint64_t hcr;
2760 switch (arm_current_el(env)) {
2761 case 2:
2762 hcr = arm_hcr_el2_eff(env);
2763 if (hcr & HCR_E2H) {
2764 return 0;
2766 break;
2767 case 0:
2768 hcr = arm_hcr_el2_eff(env);
2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770 return 0;
2772 break;
2775 return env->cp15.cntvoff_el2;
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784 int timeridx,
2785 uint64_t value)
2787 trace_arm_gt_cval_write(timeridx, value);
2788 env->cp15.c14_timer[timeridx].cval = value;
2789 gt_recalc_timer(env_archcpu(env), timeridx);
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793 int timeridx)
2795 uint64_t offset = 0;
2797 switch (timeridx) {
2798 case GTIMER_VIRT:
2799 case GTIMER_HYPVIRT:
2800 offset = gt_virt_cnt_offset(env);
2801 break;
2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805 (gt_get_countervalue(env) - offset));
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809 int timeridx,
2810 uint64_t value)
2812 uint64_t offset = 0;
2814 switch (timeridx) {
2815 case GTIMER_VIRT:
2816 case GTIMER_HYPVIRT:
2817 offset = gt_virt_cnt_offset(env);
2818 break;
2821 trace_arm_gt_tval_write(timeridx, value);
2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823 sextract64(value, 0, 32);
2824 gt_recalc_timer(env_archcpu(env), timeridx);
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 int timeridx,
2829 uint64_t value)
2831 ARMCPU *cpu = env_archcpu(env);
2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2834 trace_arm_gt_ctl_write(timeridx, value);
2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836 if ((oldval ^ value) & 1) {
2837 /* Enable toggled */
2838 gt_recalc_timer(cpu, timeridx);
2839 } else if ((oldval ^ value) & 2) {
2840 /* IMASK toggled: don't need to recalculate,
2841 * just set the interrupt line based on ISTATUS
2843 int irqstate = (oldval & 4) && !(value & 2);
2845 trace_arm_gt_imask_toggle(timeridx, irqstate);
2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2852 gt_timer_reset(env, ri, GTIMER_PHYS);
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 gt_cval_write(env, ri, GTIMER_PHYS, value);
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2863 return gt_tval_read(env, ri, GTIMER_PHYS);
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867 uint64_t value)
2869 gt_tval_write(env, ri, GTIMER_PHYS, value);
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873 uint64_t value)
2875 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2880 switch (arm_mmu_idx(env)) {
2881 case ARMMMUIdx_E20_0:
2882 case ARMMMUIdx_E20_2:
2883 case ARMMMUIdx_E20_2_PAN:
2884 case ARMMMUIdx_SE20_0:
2885 case ARMMMUIdx_SE20_2:
2886 case ARMMMUIdx_SE20_2_PAN:
2887 return GTIMER_HYP;
2888 default:
2889 return GTIMER_PHYS;
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2895 switch (arm_mmu_idx(env)) {
2896 case ARMMMUIdx_E20_0:
2897 case ARMMMUIdx_E20_2:
2898 case ARMMMUIdx_E20_2_PAN:
2899 case ARMMMUIdx_SE20_0:
2900 case ARMMMUIdx_SE20_2:
2901 case ARMMMUIdx_SE20_2_PAN:
2902 return GTIMER_HYPVIRT;
2903 default:
2904 return GTIMER_VIRT;
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909 const ARMCPRegInfo *ri)
2911 int timeridx = gt_phys_redir_timeridx(env);
2912 return env->cp15.c14_timer[timeridx].cval;
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 int timeridx = gt_phys_redir_timeridx(env);
2919 gt_cval_write(env, ri, timeridx, value);
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923 const ARMCPRegInfo *ri)
2925 int timeridx = gt_phys_redir_timeridx(env);
2926 return gt_tval_read(env, ri, timeridx);
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930 uint64_t value)
2932 int timeridx = gt_phys_redir_timeridx(env);
2933 gt_tval_write(env, ri, timeridx, value);
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937 const ARMCPRegInfo *ri)
2939 int timeridx = gt_phys_redir_timeridx(env);
2940 return env->cp15.c14_timer[timeridx].ctl;
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 int timeridx = gt_phys_redir_timeridx(env);
2947 gt_ctl_write(env, ri, timeridx, value);
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2952 gt_timer_reset(env, ri, GTIMER_VIRT);
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 uint64_t value)
2958 gt_cval_write(env, ri, GTIMER_VIRT, value);
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2963 return gt_tval_read(env, ri, GTIMER_VIRT);
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967 uint64_t value)
2969 gt_tval_write(env, ri, GTIMER_VIRT, value);
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973 uint64_t value)
2975 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979 uint64_t value)
2981 ARMCPU *cpu = env_archcpu(env);
2983 trace_arm_gt_cntvoff_write(value);
2984 raw_write(env, ri, value);
2985 gt_recalc_timer(cpu, GTIMER_VIRT);
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989 const ARMCPRegInfo *ri)
2991 int timeridx = gt_virt_redir_timeridx(env);
2992 return env->cp15.c14_timer[timeridx].cval;
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996 uint64_t value)
2998 int timeridx = gt_virt_redir_timeridx(env);
2999 gt_cval_write(env, ri, timeridx, value);
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003 const ARMCPRegInfo *ri)
3005 int timeridx = gt_virt_redir_timeridx(env);
3006 return gt_tval_read(env, ri, timeridx);
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 int timeridx = gt_virt_redir_timeridx(env);
3013 gt_tval_write(env, ri, timeridx, value);
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017 const ARMCPRegInfo *ri)
3019 int timeridx = gt_virt_redir_timeridx(env);
3020 return env->cp15.c14_timer[timeridx].ctl;
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 int timeridx = gt_virt_redir_timeridx(env);
3027 gt_ctl_write(env, ri, timeridx, value);
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3032 gt_timer_reset(env, ri, GTIMER_HYP);
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 gt_cval_write(env, ri, GTIMER_HYP, value);
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3043 return gt_tval_read(env, ri, GTIMER_HYP);
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 gt_tval_write(env, ri, GTIMER_HYP, value);
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053 uint64_t value)
3055 gt_ctl_write(env, ri, GTIMER_HYP, value);
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3060 gt_timer_reset(env, ri, GTIMER_SEC);
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 gt_cval_write(env, ri, GTIMER_SEC, value);
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3071 return gt_tval_read(env, ri, GTIMER_SEC);
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075 uint64_t value)
3077 gt_tval_write(env, ri, GTIMER_SEC, value);
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081 uint64_t value)
3083 gt_ctl_write(env, ri, GTIMER_SEC, value);
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092 uint64_t value)
3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103 uint64_t value)
3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3114 void arm_gt_ptimer_cb(void *opaque)
3116 ARMCPU *cpu = opaque;
3118 gt_recalc_timer(cpu, GTIMER_PHYS);
3121 void arm_gt_vtimer_cb(void *opaque)
3123 ARMCPU *cpu = opaque;
3125 gt_recalc_timer(cpu, GTIMER_VIRT);
3128 void arm_gt_htimer_cb(void *opaque)
3130 ARMCPU *cpu = opaque;
3132 gt_recalc_timer(cpu, GTIMER_HYP);
3135 void arm_gt_stimer_cb(void *opaque)
3137 ARMCPU *cpu = opaque;
3139 gt_recalc_timer(cpu, GTIMER_SEC);
3142 void arm_gt_hvtimer_cb(void *opaque)
3144 ARMCPU *cpu = opaque;
3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3151 ARMCPU *cpu = env_archcpu(env);
3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157 /* Note that CNTFRQ is purely reads-as-written for the benefit
3158 * of software; writing it doesn't actually change the timer frequency.
3159 * Our reset value matches the fixed frequency we implement the timer at.
3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162 .type = ARM_CP_ALIAS,
3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170 .resetfn = arm_gt_cntfrq_reset,
3172 /* overall control: mostly access permissions */
3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175 .access = PL1_RW,
3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177 .resetvalue = 0,
3179 /* per-timer control */
3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181 .secure = ARM_CP_SECSTATE_NS,
3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183 .accessfn = gt_ptimer_access,
3184 .fieldoffset = offsetoflow32(CPUARMState,
3185 cp15.c14_timer[GTIMER_PHYS].ctl),
3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3189 { .name = "CNTP_CTL_S",
3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191 .secure = ARM_CP_SECSTATE_S,
3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193 .accessfn = gt_ptimer_access,
3194 .fieldoffset = offsetoflow32(CPUARMState,
3195 cp15.c14_timer[GTIMER_SEC].ctl),
3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200 .type = ARM_CP_IO, .access = PL0_RW,
3201 .accessfn = gt_ptimer_access,
3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203 .resetvalue = 0,
3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209 .accessfn = gt_vtimer_access,
3210 .fieldoffset = offsetoflow32(CPUARMState,
3211 cp15.c14_timer[GTIMER_VIRT].ctl),
3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217 .type = ARM_CP_IO, .access = PL0_RW,
3218 .accessfn = gt_vtimer_access,
3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220 .resetvalue = 0,
3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226 .secure = ARM_CP_SECSTATE_NS,
3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228 .accessfn = gt_ptimer_access,
3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3231 { .name = "CNTP_TVAL_S",
3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233 .secure = ARM_CP_SECSTATE_S,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235 .accessfn = gt_ptimer_access,
3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246 .accessfn = gt_vtimer_access,
3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3255 /* The counter itself */
3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258 .accessfn = gt_pct_access,
3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268 .accessfn = gt_vct_access,
3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3276 /* Comparison value, indicating when the timer goes off */
3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278 .secure = ARM_CP_SECSTATE_NS,
3279 .access = PL0_RW,
3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282 .accessfn = gt_ptimer_access,
3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287 .secure = ARM_CP_SECSTATE_S,
3288 .access = PL0_RW,
3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291 .accessfn = gt_ptimer_access,
3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296 .access = PL0_RW,
3297 .type = ARM_CP_IO,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299 .resetvalue = 0, .accessfn = gt_ptimer_access,
3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304 .access = PL0_RW,
3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307 .accessfn = gt_vtimer_access,
3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313 .access = PL0_RW,
3314 .type = ARM_CP_IO,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316 .resetvalue = 0, .accessfn = gt_vtimer_access,
3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3320 /* Secure timer -- this is actually restricted to only EL3
3321 * and configurably Secure-EL1 via the accessfn.
3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326 .accessfn = gt_stimer_access,
3327 .readfn = gt_sec_tval_read,
3328 .writefn = gt_sec_tval_write,
3329 .resetfn = gt_sec_timer_reset,
3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333 .type = ARM_CP_IO, .access = PL1_RW,
3334 .accessfn = gt_stimer_access,
3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336 .resetvalue = 0,
3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341 .type = ARM_CP_IO, .access = PL1_RW,
3342 .accessfn = gt_stimer_access,
3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3346 REGINFO_SENTINEL
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350 bool isread)
3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353 return CP_ACCESS_TRAP;
3355 return CP_ACCESS_OK;
3358 #else
3360 /* In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3366 ARMCPU *cpu = env_archcpu(env);
3368 /* Currently we have no support for QEMUTimer in linux-user so we
3369 * can't call gt_get_countervalue(env), instead we directly
3370 * call the lower level functions.
3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385 .readfn = gt_virt_cnt_read,
3387 REGINFO_SENTINEL
3390 #endif
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3394 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395 raw_write(env, ri, value);
3396 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397 raw_write(env, ri, value & 0xfffff6ff);
3398 } else {
3399 raw_write(env, ri, value & 0xfffff1ff);
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407 bool isread)
3409 if (ri->opc2 & 4) {
3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411 * Secure EL1 (which can only happen if EL3 is AArch64).
3412 * They are simply UNDEF if executed from NS EL1.
3413 * They function normally from EL2 or EL3.
3415 if (arm_current_el(env) == 1) {
3416 if (arm_is_secure_below_el3(env)) {
3417 if (env->cp15.scr_el3 & SCR_EEL2) {
3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3422 return CP_ACCESS_TRAP_UNCATEGORIZED;
3425 return CP_ACCESS_OK;
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3432 hwaddr phys_addr;
3433 target_ulong page_size;
3434 int prot;
3435 bool ret;
3436 uint64_t par64;
3437 bool format64 = false;
3438 MemTxAttrs attrs = {};
3439 ARMMMUFaultInfo fi = {};
3440 ARMCacheAttrs cacheattrs = {};
3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443 &prot, &page_size, &fi, &cacheattrs);
3445 if (ret) {
3447 * Some kinds of translation fault must cause exceptions rather
3448 * than being reported in the PAR.
3450 int current_el = arm_current_el(env);
3451 int target_el;
3452 uint32_t syn, fsr, fsc;
3453 bool take_exc = false;
3455 if (fi.s1ptw && current_el == 1
3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3458 * Synchronous stage 2 fault on an access made as part of the
3459 * translation table walk for AT S1E0* or AT S1E1* insn
3460 * executed from NS EL1. If this is a synchronous external abort
3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462 * to EL3. Otherwise the fault is taken as an exception to EL2,
3463 * and HPFAR_EL2 holds the faulting IPA.
3465 if (fi.type == ARMFault_SyncExternalOnWalk &&
3466 (env->cp15.scr_el3 & SCR_EA)) {
3467 target_el = 3;
3468 } else {
3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471 env->cp15.hpfar_el2 |= HPFAR_NS;
3473 target_el = 2;
3475 take_exc = true;
3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3478 * Synchronous external aborts during a translation table walk
3479 * are taken as Data Abort exceptions.
3481 if (fi.stage2) {
3482 if (current_el == 3) {
3483 target_el = 3;
3484 } else {
3485 target_el = 2;
3487 } else {
3488 target_el = exception_target_el(env);
3490 take_exc = true;
3493 if (take_exc) {
3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497 fsr = arm_fi_to_lfsc(&fi);
3498 fsc = extract32(fsr, 0, 6);
3499 } else {
3500 fsr = arm_fi_to_sfsc(&fi);
3501 fsc = 0x3f;
3504 * Report exception with ESR indicating a fault due to a
3505 * translation table walk for a cache maintenance instruction.
3507 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508 fi.ea, 1, fi.s1ptw, 1, fsc);
3509 env->exception.vaddress = value;
3510 env->exception.fsr = fsr;
3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3515 if (is_a64(env)) {
3516 format64 = true;
3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3519 * ATS1Cxx:
3520 * * TTBCR.EAE determines whether the result is returned using the
3521 * 32-bit or the 64-bit PAR format
3522 * * Instructions executed in Hyp mode always use the 64bit format
3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525 * * The Non-secure TTBCR.EAE bit is set to 1
3526 * * The implementation includes EL2, and the value of HCR.VM is 1
3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3530 * ATS1Hx always uses the 64bit format.
3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3534 if (arm_feature(env, ARM_FEATURE_EL2)) {
3535 if (mmu_idx == ARMMMUIdx_E10_0 ||
3536 mmu_idx == ARMMMUIdx_E10_1 ||
3537 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539 } else {
3540 format64 |= arm_current_el(env) == 2;
3545 if (format64) {
3546 /* Create a 64-bit PAR */
3547 par64 = (1 << 11); /* LPAE bit always set */
3548 if (!ret) {
3549 par64 |= phys_addr & ~0xfffULL;
3550 if (!attrs.secure) {
3551 par64 |= (1 << 9); /* NS */
3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554 par64 |= cacheattrs.shareability << 7; /* SH */
3555 } else {
3556 uint32_t fsr = arm_fi_to_lfsc(&fi);
3558 par64 |= 1; /* F */
3559 par64 |= (fsr & 0x3f) << 1; /* FS */
3560 if (fi.stage2) {
3561 par64 |= (1 << 9); /* S */
3563 if (fi.s1ptw) {
3564 par64 |= (1 << 8); /* PTW */
3567 } else {
3568 /* fsr is a DFSR/IFSR value for the short descriptor
3569 * translation table format (with WnR always clear).
3570 * Convert it to a 32-bit PAR.
3572 if (!ret) {
3573 /* We do not set any attribute bits in the PAR */
3574 if (page_size == (1 << 24)
3575 && arm_feature(env, ARM_FEATURE_V7)) {
3576 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577 } else {
3578 par64 = phys_addr & 0xfffff000;
3580 if (!attrs.secure) {
3581 par64 |= (1 << 9); /* NS */
3583 } else {
3584 uint32_t fsr = arm_fi_to_sfsc(&fi);
3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587 ((fsr & 0xf) << 1) | 1;
3590 return par64;
3592 #endif /* CONFIG_TCG */
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3596 #ifdef CONFIG_TCG
3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598 uint64_t par64;
3599 ARMMMUIdx mmu_idx;
3600 int el = arm_current_el(env);
3601 bool secure = arm_is_secure_below_el3(env);
3603 switch (ri->opc2 & 6) {
3604 case 0:
3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606 switch (el) {
3607 case 3:
3608 mmu_idx = ARMMMUIdx_SE3;
3609 break;
3610 case 2:
3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3612 /* fall through */
3613 case 1:
3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616 : ARMMMUIdx_Stage1_E1_PAN);
3617 } else {
3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3620 break;
3621 default:
3622 g_assert_not_reached();
3624 break;
3625 case 2:
3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627 switch (el) {
3628 case 3:
3629 mmu_idx = ARMMMUIdx_SE10_0;
3630 break;
3631 case 2:
3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3633 mmu_idx = ARMMMUIdx_Stage1_E0;
3634 break;
3635 case 1:
3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637 break;
3638 default:
3639 g_assert_not_reached();
3641 break;
3642 case 4:
3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644 mmu_idx = ARMMMUIdx_E10_1;
3645 break;
3646 case 6:
3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648 mmu_idx = ARMMMUIdx_E10_0;
3649 break;
3650 default:
3651 g_assert_not_reached();
3654 par64 = do_ats_write(env, value, access_type, mmu_idx);
3656 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658 /* Handled by hardware accelerator. */
3659 g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664 uint64_t value)
3666 #ifdef CONFIG_TCG
3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668 uint64_t par64;
3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3672 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674 /* Handled by hardware accelerator. */
3675 g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680 bool isread)
3682 if (arm_current_el(env) == 3 &&
3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684 return CP_ACCESS_TRAP;
3686 return CP_ACCESS_OK;
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690 uint64_t value)
3692 #ifdef CONFIG_TCG
3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694 ARMMMUIdx mmu_idx;
3695 int secure = arm_is_secure_below_el3(env);
3697 switch (ri->opc2 & 6) {
3698 case 0:
3699 switch (ri->opc1) {
3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703 : ARMMMUIdx_Stage1_E1_PAN);
3704 } else {
3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3707 break;
3708 case 4: /* AT S1E2R, AT S1E2W */
3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710 break;
3711 case 6: /* AT S1E3R, AT S1E3W */
3712 mmu_idx = ARMMMUIdx_SE3;
3713 break;
3714 default:
3715 g_assert_not_reached();
3717 break;
3718 case 2: /* AT S1E0R, AT S1E0W */
3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720 break;
3721 case 4: /* AT S12E1R, AT S12E1W */
3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723 break;
3724 case 6: /* AT S12E0R, AT S12E0W */
3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726 break;
3727 default:
3728 g_assert_not_reached();
3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733 /* Handled by hardware accelerator. */
3734 g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3737 #endif
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741 .access = PL1_RW, .resetvalue = 0,
3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743 offsetoflow32(CPUARMState, cp15.par_ns) },
3744 .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746 /* This underdecoding is safe because the reginfo is NO_RAW. */
3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748 .access = PL1_W, .accessfn = ats_access,
3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751 REGINFO_SENTINEL
3754 /* Return basic MPU access permission bits. */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3757 uint32_t ret;
3758 uint32_t mask;
3759 int i;
3760 ret = 0;
3761 mask = 3;
3762 for (i = 0; i < 16; i += 2) {
3763 ret |= (val >> i) & mask;
3764 mask <<= 2;
3766 return ret;
3769 /* Pad basic MPU access permission bits to extended format. */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3772 uint32_t ret;
3773 uint32_t mask;
3774 int i;
3775 ret = 0;
3776 mask = 3;
3777 for (i = 0; i < 16; i += 2) {
3778 ret |= (val & mask) << i;
3779 mask <<= 2;
3781 return ret;
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796 uint64_t value)
3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3810 if (!u32p) {
3811 return 0;
3814 u32p += env->pmsav7.rnr[M_REG_NS];
3815 return *u32p;
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819 uint64_t value)
3821 ARMCPU *cpu = env_archcpu(env);
3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3824 if (!u32p) {
3825 return;
3828 u32p += env->pmsav7.rnr[M_REG_NS];
3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830 *u32p = value;
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
3836 ARMCPU *cpu = env_archcpu(env);
3837 uint32_t nrgs = cpu->pmsav7_dregion;
3839 if (value >= nrgs) {
3840 qemu_log_mask(LOG_GUEST_ERROR,
3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843 return;
3846 raw_write(env, ri, value);
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850 /* Reset for all these registers is handled in arm_cpu_reset(),
3851 * because the PMSAv7 is also used by M-profile CPUs, which do
3852 * not register cpregs but still need the state to be reset.
3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857 .readfn = pmsav7_read, .writefn = pmsav7_write,
3858 .resetfn = arm_cp_reset_ignore },
3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862 .readfn = pmsav7_read, .writefn = pmsav7_write,
3863 .resetfn = arm_cp_reset_ignore },
3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867 .readfn = pmsav7_read, .writefn = pmsav7_write,
3868 .resetfn = arm_cp_reset_ignore },
3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870 .access = PL1_RW,
3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872 .writefn = pmsav7_rgnr_write,
3873 .resetfn = arm_cp_reset_ignore },
3874 REGINFO_SENTINEL
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879 .access = PL1_RW, .type = ARM_CP_ALIAS,
3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883 .access = PL1_RW, .type = ARM_CP_ALIAS,
3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887 .access = PL1_RW,
3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889 .resetvalue = 0, },
3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891 .access = PL1_RW,
3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893 .resetvalue = 0, },
3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895 .access = PL1_RW,
3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898 .access = PL1_RW,
3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900 /* Protection region base and size registers */
3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925 REGINFO_SENTINEL
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3931 TCR *tcr = raw_ptr(env, ri);
3932 int maskshift = extract32(value, 0, 3);
3934 if (!arm_feature(env, ARM_FEATURE_V8)) {
3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937 * using Long-desciptor translation table format */
3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940 /* In an implementation that includes the Security Extensions
3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942 * Short-descriptor translation table format.
3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945 } else {
3946 value &= TTBCR_N;
3950 /* Update the masks corresponding to the TCR bank being written
3951 * Note that we always calculate mask and base_mask, but
3952 * they are only used for short-descriptor tables (ie if EAE is 0);
3953 * for long-descriptor tables the TCR fields are used differently
3954 * and the mask and base_mask values are meaningless.
3956 tcr->raw_tcr = value;
3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3964 ARMCPU *cpu = env_archcpu(env);
3965 TCR *tcr = raw_ptr(env, ri);
3967 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968 /* With LPAE the TTBCR could result in a change of ASID
3969 * via the TTBCR.A1 bit, so do a TLB flush.
3971 tlb_flush(CPU(cpu));
3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3974 value = deposit64(tcr->raw_tcr, 0, 32, value);
3975 vmsa_ttbcr_raw_write(env, ri, value);
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3980 TCR *tcr = raw_ptr(env, ri);
3982 /* Reset both the TCR as well as the masks corresponding to the bank of
3983 * the TCR being reset.
3985 tcr->raw_tcr = 0;
3986 tcr->mask = 0;
3987 tcr->base_mask = 0xffffc000u;
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991 uint64_t value)
3993 ARMCPU *cpu = env_archcpu(env);
3994 TCR *tcr = raw_ptr(env, ri);
3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997 tlb_flush(CPU(cpu));
3998 tcr->raw_tcr = value;
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002 uint64_t value)
4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4005 if (cpreg_field_is_64bit(ri) &&
4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007 ARMCPU *cpu = env_archcpu(env);
4008 tlb_flush(CPU(cpu));
4010 raw_write(env, ri, value);
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014 uint64_t value)
4017 * If we are running with E2&0 regime, then an ASID is active.
4018 * Flush if that might be changing. Note we're not checking
4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020 * holds the active ASID, only checking the field that might.
4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024 uint16_t mask = ARMMMUIdxBit_E20_2 |
4025 ARMMMUIdxBit_E20_2_PAN |
4026 ARMMMUIdxBit_E20_0;
4028 if (arm_is_secure_below_el3(env)) {
4029 mask >>= ARM_MMU_IDX_A_NS;
4032 tlb_flush_by_mmuidx(env_cpu(env), mask);
4034 raw_write(env, ri, value);
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038 uint64_t value)
4040 ARMCPU *cpu = env_archcpu(env);
4041 CPUState *cs = CPU(cpu);
4044 * A change in VMID to the stage2 page table (Stage2) invalidates
4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4047 if (raw_read(env, ri) != value) {
4048 uint16_t mask = ARMMMUIdxBit_E10_1 |
4049 ARMMMUIdxBit_E10_1_PAN |
4050 ARMMMUIdxBit_E10_0;
4052 if (arm_is_secure_below_el3(env)) {
4053 mask >>= ARM_MMU_IDX_A_NS;
4056 tlb_flush_by_mmuidx(cs, mask);
4057 raw_write(env, ri, value);
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073 offsetof(CPUARMState, cp15.dfar_ns) } },
4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076 .access = PL1_RW, .accessfn = access_tvm_trvm,
4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078 .resetvalue = 0, },
4079 REGINFO_SENTINEL
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089 .access = PL1_RW, .accessfn = access_tvm_trvm,
4090 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095 .access = PL1_RW, .accessfn = access_tvm_trvm,
4096 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101 .access = PL1_RW, .accessfn = access_tvm_trvm,
4102 .writefn = vmsa_tcr_el12_write,
4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106 .access = PL1_RW, .accessfn = access_tvm_trvm,
4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108 .raw_writefn = vmsa_ttbcr_raw_write,
4109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4110 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4111 REGINFO_SENTINEL
4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4115 * qemu tlbs nor adjusting cached masks.
4117 static const ARMCPRegInfo ttbcr2_reginfo = {
4118 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4119 .access = PL1_RW, .accessfn = access_tvm_trvm,
4120 .type = ARM_CP_ALIAS,
4121 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4122 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126 uint64_t value)
4128 env->cp15.c15_ticonfig = value & 0xe7;
4129 /* The OS_TYPE bit in this register changes the reported CPUID! */
4130 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4131 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135 uint64_t value)
4137 env->cp15.c15_threadid = value & 0xffff;
4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141 uint64_t value)
4143 /* Wait-for-interrupt (deprecated) */
4144 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4148 uint64_t value)
4150 /* On OMAP there are registers indicating the max/min index of dcache lines
4151 * containing a dirty line; cache flush operations have to reset these.
4153 env->cp15.c15_i_max = 0x000;
4154 env->cp15.c15_i_min = 0xff0;
4157 static const ARMCPRegInfo omap_cp_reginfo[] = {
4158 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4160 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4161 .resetvalue = 0, },
4162 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4163 .access = PL1_RW, .type = ARM_CP_NOP },
4164 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4165 .access = PL1_RW,
4166 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4167 .writefn = omap_ticonfig_write },
4168 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4169 .access = PL1_RW,
4170 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4171 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4172 .access = PL1_RW, .resetvalue = 0xff0,
4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4174 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4175 .access = PL1_RW,
4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4177 .writefn = omap_threadid_write },
4178 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4179 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4180 .type = ARM_CP_NO_RAW,
4181 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4182 /* TODO: Peripheral port remap register:
4183 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4184 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4185 * when MMU is off.
4187 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4188 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4189 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4190 .writefn = omap_cachemaint_write },
4191 { .name = "C9", .cp = 15, .crn = 9,
4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4193 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4194 REGINFO_SENTINEL
4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198 uint64_t value)
4200 env->cp15.c15_cpar = value & 0x3fff;
4203 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4204 { .name = "XSCALE_CPAR",
4205 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4206 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4207 .writefn = xscale_cpar_write, },
4208 { .name = "XSCALE_AUXCR",
4209 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4210 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4211 .resetvalue = 0, },
4212 /* XScale specific cache-lockdown: since we have no cache we NOP these
4213 * and hope the guest does not really rely on cache behaviour.
4215 { .name = "XSCALE_LOCK_ICACHE_LINE",
4216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4217 .access = PL1_W, .type = ARM_CP_NOP },
4218 { .name = "XSCALE_UNLOCK_ICACHE",
4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4220 .access = PL1_W, .type = ARM_CP_NOP },
4221 { .name = "XSCALE_DCACHE_LOCK",
4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4223 .access = PL1_RW, .type = ARM_CP_NOP },
4224 { .name = "XSCALE_UNLOCK_DCACHE",
4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4226 .access = PL1_W, .type = ARM_CP_NOP },
4227 REGINFO_SENTINEL
4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4231 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4232 * implementation of this implementation-defined space.
4233 * Ideally this should eventually disappear in favour of actually
4234 * implementing the correct behaviour for all cores.
4236 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4237 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4238 .access = PL1_RW,
4239 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4240 .resetvalue = 0 },
4241 REGINFO_SENTINEL
4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4245 /* Cache status: RAZ because we have no cache so it's always clean */
4246 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4247 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4248 .resetvalue = 0 },
4249 REGINFO_SENTINEL
4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4253 /* We never have a a block transfer operation in progress */
4254 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4255 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4256 .resetvalue = 0 },
4257 /* The cache ops themselves: these all NOP for QEMU */
4258 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4259 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4260 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4261 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4262 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4263 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4264 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4265 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4266 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4267 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4268 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4269 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4270 REGINFO_SENTINEL
4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4274 /* The cache test-and-clean instructions always return (1 << 30)
4275 * to indicate that there are no dirty cache lines.
4277 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4278 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4279 .resetvalue = (1 << 30) },
4280 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282 .resetvalue = (1 << 30) },
4283 REGINFO_SENTINEL
4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4287 /* Ignore ReadBuffer accesses */
4288 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4289 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4290 .access = PL1_RW, .resetvalue = 0,
4291 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4292 REGINFO_SENTINEL
4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4297 unsigned int cur_el = arm_current_el(env);
4299 if (arm_is_el2_enabled(env) && cur_el == 1) {
4300 return env->cp15.vpidr_el2;
4302 return raw_read(env, ri);
4305 static uint64_t mpidr_read_val(CPUARMState *env)
4307 ARMCPU *cpu = env_archcpu(env);
4308 uint64_t mpidr = cpu->mp_affinity;
4310 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4311 mpidr |= (1U << 31);
4312 /* Cores which are uniprocessor (non-coherent)
4313 * but still implement the MP extensions set
4314 * bit 30. (For instance, Cortex-R5).
4316 if (cpu->mp_is_up) {
4317 mpidr |= (1u << 30);
4320 return mpidr;
4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4325 unsigned int cur_el = arm_current_el(env);
4327 if (arm_is_el2_enabled(env) && cur_el == 1) {
4328 return env->cp15.vmpidr_el2;
4330 return mpidr_read_val(env);
4333 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4334 /* NOP AMAIR0/1 */
4335 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4336 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4337 .access = PL1_RW, .accessfn = access_tvm_trvm,
4338 .type = ARM_CP_CONST, .resetvalue = 0 },
4339 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4340 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4341 .access = PL1_RW, .accessfn = access_tvm_trvm,
4342 .type = ARM_CP_CONST, .resetvalue = 0 },
4343 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4344 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4346 offsetof(CPUARMState, cp15.par_ns)} },
4347 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4348 .access = PL1_RW, .accessfn = access_tvm_trvm,
4349 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4350 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4351 offsetof(CPUARMState, cp15.ttbr0_ns) },
4352 .writefn = vmsa_ttbr_write, },
4353 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4354 .access = PL1_RW, .accessfn = access_tvm_trvm,
4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4357 offsetof(CPUARMState, cp15.ttbr1_ns) },
4358 .writefn = vmsa_ttbr_write, },
4359 REGINFO_SENTINEL
4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4364 return vfp_get_fpcr(env);
4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 vfp_set_fpcr(env, value);
4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4375 return vfp_get_fpsr(env);
4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379 uint64_t value)
4381 vfp_set_fpsr(env, value);
4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4385 bool isread)
4387 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4388 return CP_ACCESS_TRAP;
4390 return CP_ACCESS_OK;
4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394 uint64_t value)
4396 env->daif = value & PSTATE_DAIF;
4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 return env->pstate & PSTATE_PAN;
4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405 uint64_t value)
4407 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4410 static const ARMCPRegInfo pan_reginfo = {
4411 .name = "PAN", .state = ARM_CP_STATE_AA64,
4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4413 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4414 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4419 return env->pstate & PSTATE_UAO;
4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 uint64_t value)
4425 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4428 static const ARMCPRegInfo uao_reginfo = {
4429 .name = "UAO", .state = ARM_CP_STATE_AA64,
4430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4431 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4432 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4437 return env->pstate & PSTATE_DIT;
4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441 uint64_t value)
4443 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4446 static const ARMCPRegInfo dit_reginfo = {
4447 .name = "DIT", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4449 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4450 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4453 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4454 const ARMCPRegInfo *ri,
4455 bool isread)
4457 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4458 switch (arm_current_el(env)) {
4459 case 0:
4460 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4461 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4462 return CP_ACCESS_TRAP;
4464 /* fall through */
4465 case 1:
4466 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4467 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4468 return CP_ACCESS_TRAP_EL2;
4470 break;
4472 return CP_ACCESS_OK;
4475 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4476 const ARMCPRegInfo *ri,
4477 bool isread)
4479 /* Cache invalidate/clean to Point of Unification... */
4480 switch (arm_current_el(env)) {
4481 case 0:
4482 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4483 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4484 return CP_ACCESS_TRAP;
4486 /* fall through */
4487 case 1:
4488 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4489 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4490 return CP_ACCESS_TRAP_EL2;
4492 break;
4494 return CP_ACCESS_OK;
4497 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4498 * Page D4-1736 (DDI0487A.b)
4501 static int vae1_tlbmask(CPUARMState *env)
4503 uint64_t hcr = arm_hcr_el2_eff(env);
4504 uint16_t mask;
4506 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4507 mask = ARMMMUIdxBit_E20_2 |
4508 ARMMMUIdxBit_E20_2_PAN |
4509 ARMMMUIdxBit_E20_0;
4510 } else {
4511 mask = ARMMMUIdxBit_E10_1 |
4512 ARMMMUIdxBit_E10_1_PAN |
4513 ARMMMUIdxBit_E10_0;
4516 if (arm_is_secure_below_el3(env)) {
4517 mask >>= ARM_MMU_IDX_A_NS;
4520 return mask;
4523 /* Return 56 if TBI is enabled, 64 otherwise. */
4524 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4525 uint64_t addr)
4527 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4528 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4529 int select = extract64(addr, 55, 1);
4531 return (tbi >> select) & 1 ? 56 : 64;
4534 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4536 uint64_t hcr = arm_hcr_el2_eff(env);
4537 ARMMMUIdx mmu_idx;
4539 /* Only the regime of the mmu_idx below is significant. */
4540 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4541 mmu_idx = ARMMMUIdx_E20_0;
4542 } else {
4543 mmu_idx = ARMMMUIdx_E10_0;
4546 if (arm_is_secure_below_el3(env)) {
4547 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4550 return tlbbits_for_regime(env, mmu_idx, addr);
4553 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4554 uint64_t value)
4556 CPUState *cs = env_cpu(env);
4557 int mask = vae1_tlbmask(env);
4559 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4562 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4563 uint64_t value)
4565 CPUState *cs = env_cpu(env);
4566 int mask = vae1_tlbmask(env);
4568 if (tlb_force_broadcast(env)) {
4569 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4570 } else {
4571 tlb_flush_by_mmuidx(cs, mask);
4575 static int alle1_tlbmask(CPUARMState *env)
4578 * Note that the 'ALL' scope must invalidate both stage 1 and
4579 * stage 2 translations, whereas most other scopes only invalidate
4580 * stage 1 translations.
4582 if (arm_is_secure_below_el3(env)) {
4583 return ARMMMUIdxBit_SE10_1 |
4584 ARMMMUIdxBit_SE10_1_PAN |
4585 ARMMMUIdxBit_SE10_0;
4586 } else {
4587 return ARMMMUIdxBit_E10_1 |
4588 ARMMMUIdxBit_E10_1_PAN |
4589 ARMMMUIdxBit_E10_0;
4593 static int e2_tlbmask(CPUARMState *env)
4595 if (arm_is_secure_below_el3(env)) {
4596 return ARMMMUIdxBit_SE20_0 |
4597 ARMMMUIdxBit_SE20_2 |
4598 ARMMMUIdxBit_SE20_2_PAN |
4599 ARMMMUIdxBit_SE2;
4600 } else {
4601 return ARMMMUIdxBit_E20_0 |
4602 ARMMMUIdxBit_E20_2 |
4603 ARMMMUIdxBit_E20_2_PAN |
4604 ARMMMUIdxBit_E2;
4608 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4609 uint64_t value)
4611 CPUState *cs = env_cpu(env);
4612 int mask = alle1_tlbmask(env);
4614 tlb_flush_by_mmuidx(cs, mask);
4617 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4618 uint64_t value)
4620 CPUState *cs = env_cpu(env);
4621 int mask = e2_tlbmask(env);
4623 tlb_flush_by_mmuidx(cs, mask);
4626 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627 uint64_t value)
4629 ARMCPU *cpu = env_archcpu(env);
4630 CPUState *cs = CPU(cpu);
4632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4635 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4636 uint64_t value)
4638 CPUState *cs = env_cpu(env);
4639 int mask = alle1_tlbmask(env);
4641 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4644 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645 uint64_t value)
4647 CPUState *cs = env_cpu(env);
4648 int mask = e2_tlbmask(env);
4650 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4653 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654 uint64_t value)
4656 CPUState *cs = env_cpu(env);
4658 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4661 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4662 uint64_t value)
4664 /* Invalidate by VA, EL2
4665 * Currently handles both VAE2 and VALE2, since we don't support
4666 * flush-last-level-only.
4668 CPUState *cs = env_cpu(env);
4669 int mask = e2_tlbmask(env);
4670 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4672 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4675 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4676 uint64_t value)
4678 /* Invalidate by VA, EL3
4679 * Currently handles both VAE3 and VALE3, since we don't support
4680 * flush-last-level-only.
4682 ARMCPU *cpu = env_archcpu(env);
4683 CPUState *cs = CPU(cpu);
4684 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4686 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4689 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4690 uint64_t value)
4692 CPUState *cs = env_cpu(env);
4693 int mask = vae1_tlbmask(env);
4694 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4695 int bits = vae1_tlbbits(env, pageaddr);
4697 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4700 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4701 uint64_t value)
4703 /* Invalidate by VA, EL1&0 (AArch64 version).
4704 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4705 * since we don't support flush-for-specific-ASID-only or
4706 * flush-last-level-only.
4708 CPUState *cs = env_cpu(env);
4709 int mask = vae1_tlbmask(env);
4710 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4711 int bits = vae1_tlbbits(env, pageaddr);
4713 if (tlb_force_broadcast(env)) {
4714 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4715 } else {
4716 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4720 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4721 uint64_t value)
4723 CPUState *cs = env_cpu(env);
4724 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4725 bool secure = arm_is_secure_below_el3(env);
4726 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4727 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2,
4728 pageaddr);
4730 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4734 uint64_t value)
4736 CPUState *cs = env_cpu(env);
4737 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4738 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4740 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4741 ARMMMUIdxBit_SE3, bits);
4744 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4745 bool isread)
4747 int cur_el = arm_current_el(env);
4749 if (cur_el < 2) {
4750 uint64_t hcr = arm_hcr_el2_eff(env);
4752 if (cur_el == 0) {
4753 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4754 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4755 return CP_ACCESS_TRAP_EL2;
4757 } else {
4758 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4759 return CP_ACCESS_TRAP;
4761 if (hcr & HCR_TDZ) {
4762 return CP_ACCESS_TRAP_EL2;
4765 } else if (hcr & HCR_TDZ) {
4766 return CP_ACCESS_TRAP_EL2;
4769 return CP_ACCESS_OK;
4772 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4774 ARMCPU *cpu = env_archcpu(env);
4775 int dzp_bit = 1 << 4;
4777 /* DZP indicates whether DC ZVA access is allowed */
4778 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4779 dzp_bit = 0;
4781 return cpu->dcz_blocksize | dzp_bit;
4784 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4785 bool isread)
4787 if (!(env->pstate & PSTATE_SP)) {
4788 /* Access to SP_EL0 is undefined if it's being used as
4789 * the stack pointer.
4791 return CP_ACCESS_TRAP_UNCATEGORIZED;
4793 return CP_ACCESS_OK;
4796 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4798 return env->pstate & PSTATE_SP;
4801 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4803 update_spsel(env, val);
4806 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4807 uint64_t value)
4809 ARMCPU *cpu = env_archcpu(env);
4811 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4812 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4813 value &= ~SCTLR_M;
4816 /* ??? Lots of these bits are not implemented. */
4818 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4819 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4820 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4821 } else {
4822 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4823 SCTLR_ATA0 | SCTLR_ATA);
4827 if (raw_read(env, ri) == value) {
4828 /* Skip the TLB flush if nothing actually changed; Linux likes
4829 * to do a lot of pointless SCTLR writes.
4831 return;
4834 raw_write(env, ri, value);
4836 /* This may enable/disable the MMU, so do a TLB flush. */
4837 tlb_flush(CPU(cpu));
4839 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4841 * Normally we would always end the TB on an SCTLR write; see the
4842 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4843 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4844 * of hflags from the translator, so do it here.
4846 arm_rebuild_hflags(env);
4850 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4851 bool isread)
4853 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4854 return CP_ACCESS_TRAP_FP_EL2;
4856 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4857 return CP_ACCESS_TRAP_FP_EL3;
4859 return CP_ACCESS_OK;
4862 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4863 uint64_t value)
4865 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4868 static const ARMCPRegInfo v8_cp_reginfo[] = {
4869 /* Minimal set of EL0-visible registers. This will need to be expanded
4870 * significantly for system emulation of AArch64 CPUs.
4872 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4874 .access = PL0_RW, .type = ARM_CP_NZCV },
4875 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4877 .type = ARM_CP_NO_RAW,
4878 .access = PL0_RW, .accessfn = aa64_daif_access,
4879 .fieldoffset = offsetof(CPUARMState, daif),
4880 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4881 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4882 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4883 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4884 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4885 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4887 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4888 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4889 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4891 .access = PL0_R, .type = ARM_CP_NO_RAW,
4892 .readfn = aa64_dczid_read },
4893 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4895 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4896 #ifndef CONFIG_USER_ONLY
4897 /* Avoid overhead of an access check that always passes in user-mode */
4898 .accessfn = aa64_zva_access,
4899 #endif
4901 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4902 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4903 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4904 /* Cache ops: all NOPs since we don't emulate caches */
4905 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4907 .access = PL1_W, .type = ARM_CP_NOP,
4908 .accessfn = aa64_cacheop_pou_access },
4909 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4911 .access = PL1_W, .type = ARM_CP_NOP,
4912 .accessfn = aa64_cacheop_pou_access },
4913 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4915 .access = PL0_W, .type = ARM_CP_NOP,
4916 .accessfn = aa64_cacheop_pou_access },
4917 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4918 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4919 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4920 .type = ARM_CP_NOP },
4921 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4923 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4924 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4926 .access = PL0_W, .type = ARM_CP_NOP,
4927 .accessfn = aa64_cacheop_poc_access },
4928 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4930 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4931 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4932 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4933 .access = PL0_W, .type = ARM_CP_NOP,
4934 .accessfn = aa64_cacheop_pou_access },
4935 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4936 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4937 .access = PL0_W, .type = ARM_CP_NOP,
4938 .accessfn = aa64_cacheop_poc_access },
4939 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4941 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4942 /* TLBI operations */
4943 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4944 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4945 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4946 .writefn = tlbi_aa64_vmalle1is_write },
4947 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4948 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4949 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4950 .writefn = tlbi_aa64_vae1is_write },
4951 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4953 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4954 .writefn = tlbi_aa64_vmalle1is_write },
4955 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4957 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4958 .writefn = tlbi_aa64_vae1is_write },
4959 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4961 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4962 .writefn = tlbi_aa64_vae1is_write },
4963 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4964 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4965 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4966 .writefn = tlbi_aa64_vae1is_write },
4967 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4968 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4969 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4970 .writefn = tlbi_aa64_vmalle1_write },
4971 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4972 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4973 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4974 .writefn = tlbi_aa64_vae1_write },
4975 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4977 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4978 .writefn = tlbi_aa64_vmalle1_write },
4979 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4981 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4982 .writefn = tlbi_aa64_vae1_write },
4983 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4984 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4985 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4986 .writefn = tlbi_aa64_vae1_write },
4987 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4988 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4989 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4990 .writefn = tlbi_aa64_vae1_write },
4991 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4993 .access = PL2_W, .type = ARM_CP_NOP },
4994 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4996 .access = PL2_W, .type = ARM_CP_NOP },
4997 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4999 .access = PL2_W, .type = ARM_CP_NO_RAW,
5000 .writefn = tlbi_aa64_alle1is_write },
5001 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5003 .access = PL2_W, .type = ARM_CP_NO_RAW,
5004 .writefn = tlbi_aa64_alle1is_write },
5005 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5007 .access = PL2_W, .type = ARM_CP_NOP },
5008 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5010 .access = PL2_W, .type = ARM_CP_NOP },
5011 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5013 .access = PL2_W, .type = ARM_CP_NO_RAW,
5014 .writefn = tlbi_aa64_alle1_write },
5015 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5017 .access = PL2_W, .type = ARM_CP_NO_RAW,
5018 .writefn = tlbi_aa64_alle1is_write },
5019 #ifndef CONFIG_USER_ONLY
5020 /* 64 bit address translation operations */
5021 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5023 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5024 .writefn = ats_write64 },
5025 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5027 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5028 .writefn = ats_write64 },
5029 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5031 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5032 .writefn = ats_write64 },
5033 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5034 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5035 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5036 .writefn = ats_write64 },
5037 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5038 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5039 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5040 .writefn = ats_write64 },
5041 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5043 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5044 .writefn = ats_write64 },
5045 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5047 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5048 .writefn = ats_write64 },
5049 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5051 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5052 .writefn = ats_write64 },
5053 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5054 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5055 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5056 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5057 .writefn = ats_write64 },
5058 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5059 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5060 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5061 .writefn = ats_write64 },
5062 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5063 .type = ARM_CP_ALIAS,
5064 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5065 .access = PL1_RW, .resetvalue = 0,
5066 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5067 .writefn = par_write },
5068 #endif
5069 /* TLB invalidate last level of translation table walk */
5070 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5071 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5072 .writefn = tlbimva_is_write },
5073 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5074 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5075 .writefn = tlbimvaa_is_write },
5076 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5077 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5078 .writefn = tlbimva_write },
5079 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5080 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5081 .writefn = tlbimvaa_write },
5082 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5083 .type = ARM_CP_NO_RAW, .access = PL2_W,
5084 .writefn = tlbimva_hyp_write },
5085 { .name = "TLBIMVALHIS",
5086 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5087 .type = ARM_CP_NO_RAW, .access = PL2_W,
5088 .writefn = tlbimva_hyp_is_write },
5089 { .name = "TLBIIPAS2",
5090 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5091 .type = ARM_CP_NOP, .access = PL2_W },
5092 { .name = "TLBIIPAS2IS",
5093 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5094 .type = ARM_CP_NOP, .access = PL2_W },
5095 { .name = "TLBIIPAS2L",
5096 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5097 .type = ARM_CP_NOP, .access = PL2_W },
5098 { .name = "TLBIIPAS2LIS",
5099 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5100 .type = ARM_CP_NOP, .access = PL2_W },
5101 /* 32 bit cache operations */
5102 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5103 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5104 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5105 .type = ARM_CP_NOP, .access = PL1_W },
5106 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5107 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5108 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5109 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5110 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5111 .type = ARM_CP_NOP, .access = PL1_W },
5112 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5113 .type = ARM_CP_NOP, .access = PL1_W },
5114 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5115 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5116 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5117 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5118 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5119 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5120 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5121 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5122 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5123 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5124 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5125 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5126 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5127 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5128 /* MMU Domain access control / MPU write buffer control */
5129 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5130 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5131 .writefn = dacr_write, .raw_writefn = raw_write,
5132 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5133 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5134 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5135 .type = ARM_CP_ALIAS,
5136 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5137 .access = PL1_RW,
5138 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5139 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5140 .type = ARM_CP_ALIAS,
5141 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5142 .access = PL1_RW,
5143 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5144 /* We rely on the access checks not allowing the guest to write to the
5145 * state field when SPSel indicates that it's being used as the stack
5146 * pointer.
5148 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5150 .access = PL1_RW, .accessfn = sp_el0_access,
5151 .type = ARM_CP_ALIAS,
5152 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5153 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5154 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5155 .access = PL2_RW, .type = ARM_CP_ALIAS,
5156 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5157 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5158 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5159 .type = ARM_CP_NO_RAW,
5160 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5161 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5163 .type = ARM_CP_ALIAS,
5164 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5165 .access = PL2_RW, .accessfn = fpexc32_access },
5166 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5167 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5168 .access = PL2_RW, .resetvalue = 0,
5169 .writefn = dacr_write, .raw_writefn = raw_write,
5170 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5171 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5172 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5173 .access = PL2_RW, .resetvalue = 0,
5174 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5175 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5176 .type = ARM_CP_ALIAS,
5177 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5178 .access = PL2_RW,
5179 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5180 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5181 .type = ARM_CP_ALIAS,
5182 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5183 .access = PL2_RW,
5184 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5185 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5186 .type = ARM_CP_ALIAS,
5187 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5188 .access = PL2_RW,
5189 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5190 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5191 .type = ARM_CP_ALIAS,
5192 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5193 .access = PL2_RW,
5194 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5195 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5196 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5197 .resetvalue = 0,
5198 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5199 { .name = "SDCR", .type = ARM_CP_ALIAS,
5200 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5201 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5202 .writefn = sdcr_write,
5203 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5204 REGINFO_SENTINEL
5207 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5208 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5209 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5210 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5211 .access = PL2_RW,
5212 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5213 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5214 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5215 .access = PL2_RW,
5216 .type = ARM_CP_CONST, .resetvalue = 0 },
5217 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5220 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5221 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5222 .access = PL2_RW,
5223 .type = ARM_CP_CONST, .resetvalue = 0 },
5224 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5225 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5226 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5227 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5228 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5229 .access = PL2_RW, .type = ARM_CP_CONST,
5230 .resetvalue = 0 },
5231 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5232 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5234 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5235 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5236 .access = PL2_RW, .type = ARM_CP_CONST,
5237 .resetvalue = 0 },
5238 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5239 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5240 .access = PL2_RW, .type = ARM_CP_CONST,
5241 .resetvalue = 0 },
5242 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5243 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5244 .access = PL2_RW, .type = ARM_CP_CONST,
5245 .resetvalue = 0 },
5246 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5247 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5248 .access = PL2_RW, .type = ARM_CP_CONST,
5249 .resetvalue = 0 },
5250 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5251 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5252 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5253 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5254 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5255 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5256 .type = ARM_CP_CONST, .resetvalue = 0 },
5257 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5258 .cp = 15, .opc1 = 6, .crm = 2,
5259 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5260 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5261 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5262 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5263 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5264 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5265 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5266 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5267 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5268 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5269 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5270 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5271 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5272 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5273 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5274 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5275 .resetvalue = 0 },
5276 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5278 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5279 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5280 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5281 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5282 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5283 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5284 .resetvalue = 0 },
5285 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5286 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5287 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5288 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5289 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5290 .resetvalue = 0 },
5291 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5292 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5293 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5294 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5295 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5296 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5297 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5299 .access = PL2_RW, .accessfn = access_tda,
5300 .type = ARM_CP_CONST, .resetvalue = 0 },
5301 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5302 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5303 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5304 .type = ARM_CP_CONST, .resetvalue = 0 },
5305 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5306 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5307 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5308 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5309 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5310 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5311 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5312 .type = ARM_CP_CONST,
5313 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5314 .access = PL2_RW, .resetvalue = 0 },
5315 REGINFO_SENTINEL
5318 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5319 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5320 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5321 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5322 .access = PL2_RW,
5323 .type = ARM_CP_CONST, .resetvalue = 0 },
5324 REGINFO_SENTINEL
5327 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5329 ARMCPU *cpu = env_archcpu(env);
5331 if (arm_feature(env, ARM_FEATURE_V8)) {
5332 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5333 } else {
5334 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5337 if (arm_feature(env, ARM_FEATURE_EL3)) {
5338 valid_mask &= ~HCR_HCD;
5339 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5340 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5341 * However, if we're using the SMC PSCI conduit then QEMU is
5342 * effectively acting like EL3 firmware and so the guest at
5343 * EL2 should retain the ability to prevent EL1 from being
5344 * able to make SMC calls into the ersatz firmware, so in
5345 * that case HCR.TSC should be read/write.
5347 valid_mask &= ~HCR_TSC;
5350 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5351 if (cpu_isar_feature(aa64_vh, cpu)) {
5352 valid_mask |= HCR_E2H;
5354 if (cpu_isar_feature(aa64_lor, cpu)) {
5355 valid_mask |= HCR_TLOR;
5357 if (cpu_isar_feature(aa64_pauth, cpu)) {
5358 valid_mask |= HCR_API | HCR_APK;
5360 if (cpu_isar_feature(aa64_mte, cpu)) {
5361 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5365 /* Clear RES0 bits. */
5366 value &= valid_mask;
5369 * These bits change the MMU setup:
5370 * HCR_VM enables stage 2 translation
5371 * HCR_PTW forbids certain page-table setups
5372 * HCR_DC disables stage1 and enables stage2 translation
5373 * HCR_DCT enables tagging on (disabled) stage1 translation
5375 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5376 tlb_flush(CPU(cpu));
5378 env->cp15.hcr_el2 = value;
5381 * Updates to VI and VF require us to update the status of
5382 * virtual interrupts, which are the logical OR of these bits
5383 * and the state of the input lines from the GIC. (This requires
5384 * that we have the iothread lock, which is done by marking the
5385 * reginfo structs as ARM_CP_IO.)
5386 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5387 * possible for it to be taken immediately, because VIRQ and
5388 * VFIQ are masked unless running at EL0 or EL1, and HCR
5389 * can only be written at EL2.
5391 g_assert(qemu_mutex_iothread_locked());
5392 arm_cpu_update_virq(cpu);
5393 arm_cpu_update_vfiq(cpu);
5396 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5398 do_hcr_write(env, value, 0);
5401 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5402 uint64_t value)
5404 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5405 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5406 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5409 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5410 uint64_t value)
5412 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5413 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5414 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5418 * Return the effective value of HCR_EL2.
5419 * Bits that are not included here:
5420 * RW (read from SCR_EL3.RW as needed)
5422 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5424 uint64_t ret = env->cp15.hcr_el2;
5426 if (!arm_is_el2_enabled(env)) {
5428 * "This register has no effect if EL2 is not enabled in the
5429 * current Security state". This is ARMv8.4-SecEL2 speak for
5430 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5432 * Prior to that, the language was "In an implementation that
5433 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5434 * as if this field is 0 for all purposes other than a direct
5435 * read or write access of HCR_EL2". With lots of enumeration
5436 * on a per-field basis. In current QEMU, this is condition
5437 * is arm_is_secure_below_el3.
5439 * Since the v8.4 language applies to the entire register, and
5440 * appears to be backward compatible, use that.
5442 return 0;
5446 * For a cpu that supports both aarch64 and aarch32, we can set bits
5447 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5448 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5450 if (!arm_el_is_aa64(env, 2)) {
5451 uint64_t aa32_valid;
5454 * These bits are up-to-date as of ARMv8.6.
5455 * For HCR, it's easiest to list just the 2 bits that are invalid.
5456 * For HCR2, list those that are valid.
5458 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5459 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5460 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5461 ret &= aa32_valid;
5464 if (ret & HCR_TGE) {
5465 /* These bits are up-to-date as of ARMv8.6. */
5466 if (ret & HCR_E2H) {
5467 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5468 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5469 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5470 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5471 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5472 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5473 } else {
5474 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5476 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5477 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5478 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5479 HCR_TLOR);
5482 return ret;
5485 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5486 uint64_t value)
5489 * For A-profile AArch32 EL3, if NSACR.CP10
5490 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5492 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5493 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5494 value &= ~(0x3 << 10);
5495 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5497 env->cp15.cptr_el[2] = value;
5500 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5503 * For A-profile AArch32 EL3, if NSACR.CP10
5504 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5506 uint64_t value = env->cp15.cptr_el[2];
5508 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5509 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5510 value |= 0x3 << 10;
5512 return value;
5515 static const ARMCPRegInfo el2_cp_reginfo[] = {
5516 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5517 .type = ARM_CP_IO,
5518 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5519 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5520 .writefn = hcr_write },
5521 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5522 .type = ARM_CP_ALIAS | ARM_CP_IO,
5523 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5524 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5525 .writefn = hcr_writelow },
5526 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5527 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5528 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5529 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5530 .type = ARM_CP_ALIAS,
5531 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5532 .access = PL2_RW,
5533 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5534 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5535 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5536 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5537 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5538 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5539 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5540 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5541 .type = ARM_CP_ALIAS,
5542 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5543 .access = PL2_RW,
5544 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5545 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5546 .type = ARM_CP_ALIAS,
5547 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5548 .access = PL2_RW,
5549 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5550 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5552 .access = PL2_RW, .writefn = vbar_write,
5553 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5554 .resetvalue = 0 },
5555 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5557 .access = PL3_RW, .type = ARM_CP_ALIAS,
5558 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5559 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5561 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5562 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5563 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5564 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5565 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5566 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5567 .resetvalue = 0 },
5568 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5569 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5570 .access = PL2_RW, .type = ARM_CP_ALIAS,
5571 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5572 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5573 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5574 .access = PL2_RW, .type = ARM_CP_CONST,
5575 .resetvalue = 0 },
5576 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5577 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5578 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5579 .access = PL2_RW, .type = ARM_CP_CONST,
5580 .resetvalue = 0 },
5581 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5582 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5583 .access = PL2_RW, .type = ARM_CP_CONST,
5584 .resetvalue = 0 },
5585 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5586 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5587 .access = PL2_RW, .type = ARM_CP_CONST,
5588 .resetvalue = 0 },
5589 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5590 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5591 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5592 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5593 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5594 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5595 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5596 .type = ARM_CP_ALIAS,
5597 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5598 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5599 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5600 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5601 .access = PL2_RW,
5602 /* no .writefn needed as this can't cause an ASID change;
5603 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5605 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5606 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5607 .cp = 15, .opc1 = 6, .crm = 2,
5608 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5609 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5610 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5611 .writefn = vttbr_write },
5612 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5613 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5614 .access = PL2_RW, .writefn = vttbr_write,
5615 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5616 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5617 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5618 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5619 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5620 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5621 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5622 .access = PL2_RW, .resetvalue = 0,
5623 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5624 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5625 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5626 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5627 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5628 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5629 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5630 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5631 { .name = "TLBIALLNSNH",
5632 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5633 .type = ARM_CP_NO_RAW, .access = PL2_W,
5634 .writefn = tlbiall_nsnh_write },
5635 { .name = "TLBIALLNSNHIS",
5636 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5637 .type = ARM_CP_NO_RAW, .access = PL2_W,
5638 .writefn = tlbiall_nsnh_is_write },
5639 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5640 .type = ARM_CP_NO_RAW, .access = PL2_W,
5641 .writefn = tlbiall_hyp_write },
5642 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5643 .type = ARM_CP_NO_RAW, .access = PL2_W,
5644 .writefn = tlbiall_hyp_is_write },
5645 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5646 .type = ARM_CP_NO_RAW, .access = PL2_W,
5647 .writefn = tlbimva_hyp_write },
5648 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5649 .type = ARM_CP_NO_RAW, .access = PL2_W,
5650 .writefn = tlbimva_hyp_is_write },
5651 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5653 .type = ARM_CP_NO_RAW, .access = PL2_W,
5654 .writefn = tlbi_aa64_alle2_write },
5655 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5657 .type = ARM_CP_NO_RAW, .access = PL2_W,
5658 .writefn = tlbi_aa64_vae2_write },
5659 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5660 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5661 .access = PL2_W, .type = ARM_CP_NO_RAW,
5662 .writefn = tlbi_aa64_vae2_write },
5663 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5664 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5665 .access = PL2_W, .type = ARM_CP_NO_RAW,
5666 .writefn = tlbi_aa64_alle2is_write },
5667 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5668 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5669 .type = ARM_CP_NO_RAW, .access = PL2_W,
5670 .writefn = tlbi_aa64_vae2is_write },
5671 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5672 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5673 .access = PL2_W, .type = ARM_CP_NO_RAW,
5674 .writefn = tlbi_aa64_vae2is_write },
5675 #ifndef CONFIG_USER_ONLY
5676 /* Unlike the other EL2-related AT operations, these must
5677 * UNDEF from EL3 if EL2 is not implemented, which is why we
5678 * define them here rather than with the rest of the AT ops.
5680 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5681 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5682 .access = PL2_W, .accessfn = at_s1e2_access,
5683 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5684 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5686 .access = PL2_W, .accessfn = at_s1e2_access,
5687 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5688 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5689 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5690 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5691 * to behave as if SCR.NS was 1.
5693 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5694 .access = PL2_W,
5695 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5696 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5697 .access = PL2_W,
5698 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5699 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5700 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5701 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5702 * reset values as IMPDEF. We choose to reset to 3 to comply with
5703 * both ARMv7 and ARMv8.
5705 .access = PL2_RW, .resetvalue = 3,
5706 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5707 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5708 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5709 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5710 .writefn = gt_cntvoff_write,
5711 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5712 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5714 .writefn = gt_cntvoff_write,
5715 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5716 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5719 .type = ARM_CP_IO, .access = PL2_RW,
5720 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5721 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5722 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5723 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5724 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5725 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5726 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5727 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5728 .resetfn = gt_hyp_timer_reset,
5729 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5730 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5731 .type = ARM_CP_IO,
5732 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5733 .access = PL2_RW,
5734 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5735 .resetvalue = 0,
5736 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5737 #endif
5738 /* The only field of MDCR_EL2 that has a defined architectural reset value
5739 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5741 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5742 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5743 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5744 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5745 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5746 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5747 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5748 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5749 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5750 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5751 .access = PL2_RW,
5752 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5753 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5754 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5755 .access = PL2_RW,
5756 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5757 REGINFO_SENTINEL
5760 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5761 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5762 .type = ARM_CP_ALIAS | ARM_CP_IO,
5763 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5764 .access = PL2_RW,
5765 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5766 .writefn = hcr_writehigh },
5767 REGINFO_SENTINEL
5770 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5771 bool isread)
5773 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5774 return CP_ACCESS_OK;
5776 return CP_ACCESS_TRAP_UNCATEGORIZED;
5779 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5780 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5781 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5782 .access = PL2_RW, .accessfn = sel2_access,
5783 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5784 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5786 .access = PL2_RW, .accessfn = sel2_access,
5787 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5788 REGINFO_SENTINEL
5791 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5792 bool isread)
5794 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5795 * At Secure EL1 it traps to EL3 or EL2.
5797 if (arm_current_el(env) == 3) {
5798 return CP_ACCESS_OK;
5800 if (arm_is_secure_below_el3(env)) {
5801 if (env->cp15.scr_el3 & SCR_EEL2) {
5802 return CP_ACCESS_TRAP_EL2;
5804 return CP_ACCESS_TRAP_EL3;
5806 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5807 if (isread) {
5808 return CP_ACCESS_OK;
5810 return CP_ACCESS_TRAP_UNCATEGORIZED;
5813 static const ARMCPRegInfo el3_cp_reginfo[] = {
5814 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5815 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5816 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5817 .resetfn = scr_reset, .writefn = scr_write },
5818 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5819 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5820 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5821 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5822 .writefn = scr_write },
5823 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5825 .access = PL3_RW, .resetvalue = 0,
5826 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5827 { .name = "SDER",
5828 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5829 .access = PL3_RW, .resetvalue = 0,
5830 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5831 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5832 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5833 .writefn = vbar_write, .resetvalue = 0,
5834 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5835 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5836 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5837 .access = PL3_RW, .resetvalue = 0,
5838 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5839 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5840 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5841 .access = PL3_RW,
5842 /* no .writefn needed as this can't cause an ASID change;
5843 * we must provide a .raw_writefn and .resetfn because we handle
5844 * reset and migration for the AArch32 TTBCR(S), which might be
5845 * using mask and base_mask.
5847 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5848 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5849 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5850 .type = ARM_CP_ALIAS,
5851 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5852 .access = PL3_RW,
5853 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5854 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5856 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5857 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5858 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5859 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5860 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5861 .type = ARM_CP_ALIAS,
5862 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5863 .access = PL3_RW,
5864 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5865 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5866 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5867 .access = PL3_RW, .writefn = vbar_write,
5868 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5869 .resetvalue = 0 },
5870 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5871 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5872 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5873 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5874 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5875 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5876 .access = PL3_RW, .resetvalue = 0,
5877 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5878 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5879 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5880 .access = PL3_RW, .type = ARM_CP_CONST,
5881 .resetvalue = 0 },
5882 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5883 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5884 .access = PL3_RW, .type = ARM_CP_CONST,
5885 .resetvalue = 0 },
5886 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5887 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5888 .access = PL3_RW, .type = ARM_CP_CONST,
5889 .resetvalue = 0 },
5890 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5891 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5892 .access = PL3_W, .type = ARM_CP_NO_RAW,
5893 .writefn = tlbi_aa64_alle3is_write },
5894 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5895 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5896 .access = PL3_W, .type = ARM_CP_NO_RAW,
5897 .writefn = tlbi_aa64_vae3is_write },
5898 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5899 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5900 .access = PL3_W, .type = ARM_CP_NO_RAW,
5901 .writefn = tlbi_aa64_vae3is_write },
5902 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5903 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5904 .access = PL3_W, .type = ARM_CP_NO_RAW,
5905 .writefn = tlbi_aa64_alle3_write },
5906 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5907 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5908 .access = PL3_W, .type = ARM_CP_NO_RAW,
5909 .writefn = tlbi_aa64_vae3_write },
5910 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5911 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5912 .access = PL3_W, .type = ARM_CP_NO_RAW,
5913 .writefn = tlbi_aa64_vae3_write },
5914 REGINFO_SENTINEL
5917 #ifndef CONFIG_USER_ONLY
5918 /* Test if system register redirection is to occur in the current state. */
5919 static bool redirect_for_e2h(CPUARMState *env)
5921 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5924 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5926 CPReadFn *readfn;
5928 if (redirect_for_e2h(env)) {
5929 /* Switch to the saved EL2 version of the register. */
5930 ri = ri->opaque;
5931 readfn = ri->readfn;
5932 } else {
5933 readfn = ri->orig_readfn;
5935 if (readfn == NULL) {
5936 readfn = raw_read;
5938 return readfn(env, ri);
5941 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5942 uint64_t value)
5944 CPWriteFn *writefn;
5946 if (redirect_for_e2h(env)) {
5947 /* Switch to the saved EL2 version of the register. */
5948 ri = ri->opaque;
5949 writefn = ri->writefn;
5950 } else {
5951 writefn = ri->orig_writefn;
5953 if (writefn == NULL) {
5954 writefn = raw_write;
5956 writefn(env, ri, value);
5959 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5961 struct E2HAlias {
5962 uint32_t src_key, dst_key, new_key;
5963 const char *src_name, *dst_name, *new_name;
5964 bool (*feature)(const ARMISARegisters *id);
5967 #define K(op0, op1, crn, crm, op2) \
5968 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5970 static const struct E2HAlias aliases[] = {
5971 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5972 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5973 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5974 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5975 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5976 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5977 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5978 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5979 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5980 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5981 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5982 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5983 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5984 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5985 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5986 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5987 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5988 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5989 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5990 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5991 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5992 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5993 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5994 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5995 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5996 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5997 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5998 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5999 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6000 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6001 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6002 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6005 * Note that redirection of ZCR is mentioned in the description
6006 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6007 * not in the summary table.
6009 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6010 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6012 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6013 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6015 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6016 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6018 #undef K
6020 size_t i;
6022 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6023 const struct E2HAlias *a = &aliases[i];
6024 ARMCPRegInfo *src_reg, *dst_reg;
6026 if (a->feature && !a->feature(&cpu->isar)) {
6027 continue;
6030 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6031 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6032 g_assert(src_reg != NULL);
6033 g_assert(dst_reg != NULL);
6035 /* Cross-compare names to detect typos in the keys. */
6036 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6037 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6039 /* None of the core system registers use opaque; we will. */
6040 g_assert(src_reg->opaque == NULL);
6042 /* Create alias before redirection so we dup the right data. */
6043 if (a->new_key) {
6044 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6045 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6046 bool ok;
6048 new_reg->name = a->new_name;
6049 new_reg->type |= ARM_CP_ALIAS;
6050 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6051 new_reg->access &= PL2_RW | PL3_RW;
6053 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6054 g_assert(ok);
6057 src_reg->opaque = dst_reg;
6058 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6059 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6060 if (!src_reg->raw_readfn) {
6061 src_reg->raw_readfn = raw_read;
6063 if (!src_reg->raw_writefn) {
6064 src_reg->raw_writefn = raw_write;
6066 src_reg->readfn = el2_e2h_read;
6067 src_reg->writefn = el2_e2h_write;
6070 #endif
6072 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6073 bool isread)
6075 int cur_el = arm_current_el(env);
6077 if (cur_el < 2) {
6078 uint64_t hcr = arm_hcr_el2_eff(env);
6080 if (cur_el == 0) {
6081 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6082 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6083 return CP_ACCESS_TRAP_EL2;
6085 } else {
6086 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6087 return CP_ACCESS_TRAP;
6089 if (hcr & HCR_TID2) {
6090 return CP_ACCESS_TRAP_EL2;
6093 } else if (hcr & HCR_TID2) {
6094 return CP_ACCESS_TRAP_EL2;
6098 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6099 return CP_ACCESS_TRAP_EL2;
6102 return CP_ACCESS_OK;
6105 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6106 uint64_t value)
6108 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6109 * read via a bit in OSLSR_EL1.
6111 int oslock;
6113 if (ri->state == ARM_CP_STATE_AA32) {
6114 oslock = (value == 0xC5ACCE55);
6115 } else {
6116 oslock = value & 1;
6119 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6122 static const ARMCPRegInfo debug_cp_reginfo[] = {
6123 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6124 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6125 * unlike DBGDRAR it is never accessible from EL0.
6126 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6127 * accessor.
6129 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6130 .access = PL0_R, .accessfn = access_tdra,
6131 .type = ARM_CP_CONST, .resetvalue = 0 },
6132 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6133 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6134 .access = PL1_R, .accessfn = access_tdra,
6135 .type = ARM_CP_CONST, .resetvalue = 0 },
6136 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6137 .access = PL0_R, .accessfn = access_tdra,
6138 .type = ARM_CP_CONST, .resetvalue = 0 },
6139 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6140 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6141 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6142 .access = PL1_RW, .accessfn = access_tda,
6143 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6144 .resetvalue = 0 },
6145 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6146 * We don't implement the configurable EL0 access.
6148 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6149 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6150 .type = ARM_CP_ALIAS,
6151 .access = PL1_R, .accessfn = access_tda,
6152 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6153 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6154 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6155 .access = PL1_W, .type = ARM_CP_NO_RAW,
6156 .accessfn = access_tdosa,
6157 .writefn = oslar_write },
6158 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6159 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6160 .access = PL1_R, .resetvalue = 10,
6161 .accessfn = access_tdosa,
6162 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6163 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6164 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6165 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6166 .access = PL1_RW, .accessfn = access_tdosa,
6167 .type = ARM_CP_NOP },
6168 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6169 * implement vector catch debug events yet.
6171 { .name = "DBGVCR",
6172 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6173 .access = PL1_RW, .accessfn = access_tda,
6174 .type = ARM_CP_NOP },
6175 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6176 * to save and restore a 32-bit guest's DBGVCR)
6178 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6179 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6180 .access = PL2_RW, .accessfn = access_tda,
6181 .type = ARM_CP_NOP },
6182 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6183 * Channel but Linux may try to access this register. The 32-bit
6184 * alias is DBGDCCINT.
6186 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6187 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6188 .access = PL1_RW, .accessfn = access_tda,
6189 .type = ARM_CP_NOP },
6190 REGINFO_SENTINEL
6193 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6194 /* 64 bit access versions of the (dummy) debug registers */
6195 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6196 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6197 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6198 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6199 REGINFO_SENTINEL
6202 /* Return the exception level to which exceptions should be taken
6203 * via SVEAccessTrap. If an exception should be routed through
6204 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6205 * take care of raising that exception.
6206 * C.f. the ARM pseudocode function CheckSVEEnabled.
6208 int sve_exception_el(CPUARMState *env, int el)
6210 #ifndef CONFIG_USER_ONLY
6211 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6213 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6214 bool disabled = false;
6216 /* The CPACR.ZEN controls traps to EL1:
6217 * 0, 2 : trap EL0 and EL1 accesses
6218 * 1 : trap only EL0 accesses
6219 * 3 : trap no accesses
6221 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6222 disabled = true;
6223 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6224 disabled = el == 0;
6226 if (disabled) {
6227 /* route_to_el2 */
6228 return hcr_el2 & HCR_TGE ? 2 : 1;
6231 /* Check CPACR.FPEN. */
6232 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6233 disabled = true;
6234 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6235 disabled = el == 0;
6237 if (disabled) {
6238 return 0;
6242 /* CPTR_EL2. Since TZ and TFP are positive,
6243 * they will be zero when EL2 is not present.
6245 if (el <= 2 && arm_is_el2_enabled(env)) {
6246 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6247 return 2;
6249 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6250 return 0;
6254 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6255 if (arm_feature(env, ARM_FEATURE_EL3)
6256 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6257 return 3;
6259 #endif
6260 return 0;
6263 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6265 uint32_t end_len;
6267 end_len = start_len &= 0xf;
6268 if (!test_bit(start_len, cpu->sve_vq_map)) {
6269 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6270 assert(end_len < start_len);
6272 return end_len;
6276 * Given that SVE is enabled, return the vector length for EL.
6278 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6280 ARMCPU *cpu = env_archcpu(env);
6281 uint32_t zcr_len = cpu->sve_max_vq - 1;
6283 if (el <= 1) {
6284 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6286 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6287 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6289 if (arm_feature(env, ARM_FEATURE_EL3)) {
6290 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6293 return sve_zcr_get_valid_len(cpu, zcr_len);
6296 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6297 uint64_t value)
6299 int cur_el = arm_current_el(env);
6300 int old_len = sve_zcr_len_for_el(env, cur_el);
6301 int new_len;
6303 /* Bits other than [3:0] are RAZ/WI. */
6304 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6305 raw_write(env, ri, value & 0xf);
6308 * Because we arrived here, we know both FP and SVE are enabled;
6309 * otherwise we would have trapped access to the ZCR_ELn register.
6311 new_len = sve_zcr_len_for_el(env, cur_el);
6312 if (new_len < old_len) {
6313 aarch64_sve_narrow_vq(env, new_len + 1);
6317 static const ARMCPRegInfo zcr_el1_reginfo = {
6318 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6319 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6320 .access = PL1_RW, .type = ARM_CP_SVE,
6321 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6322 .writefn = zcr_write, .raw_writefn = raw_write
6325 static const ARMCPRegInfo zcr_el2_reginfo = {
6326 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6327 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6328 .access = PL2_RW, .type = ARM_CP_SVE,
6329 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6330 .writefn = zcr_write, .raw_writefn = raw_write
6333 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6334 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6335 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6336 .access = PL2_RW, .type = ARM_CP_SVE,
6337 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6340 static const ARMCPRegInfo zcr_el3_reginfo = {
6341 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6342 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6343 .access = PL3_RW, .type = ARM_CP_SVE,
6344 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6345 .writefn = zcr_write, .raw_writefn = raw_write
6348 void hw_watchpoint_update(ARMCPU *cpu, int n)
6350 CPUARMState *env = &cpu->env;
6351 vaddr len = 0;
6352 vaddr wvr = env->cp15.dbgwvr[n];
6353 uint64_t wcr = env->cp15.dbgwcr[n];
6354 int mask;
6355 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6357 if (env->cpu_watchpoint[n]) {
6358 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6359 env->cpu_watchpoint[n] = NULL;
6362 if (!extract64(wcr, 0, 1)) {
6363 /* E bit clear : watchpoint disabled */
6364 return;
6367 switch (extract64(wcr, 3, 2)) {
6368 case 0:
6369 /* LSC 00 is reserved and must behave as if the wp is disabled */
6370 return;
6371 case 1:
6372 flags |= BP_MEM_READ;
6373 break;
6374 case 2:
6375 flags |= BP_MEM_WRITE;
6376 break;
6377 case 3:
6378 flags |= BP_MEM_ACCESS;
6379 break;
6382 /* Attempts to use both MASK and BAS fields simultaneously are
6383 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6384 * thus generating a watchpoint for every byte in the masked region.
6386 mask = extract64(wcr, 24, 4);
6387 if (mask == 1 || mask == 2) {
6388 /* Reserved values of MASK; we must act as if the mask value was
6389 * some non-reserved value, or as if the watchpoint were disabled.
6390 * We choose the latter.
6392 return;
6393 } else if (mask) {
6394 /* Watchpoint covers an aligned area up to 2GB in size */
6395 len = 1ULL << mask;
6396 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6397 * whether the watchpoint fires when the unmasked bits match; we opt
6398 * to generate the exceptions.
6400 wvr &= ~(len - 1);
6401 } else {
6402 /* Watchpoint covers bytes defined by the byte address select bits */
6403 int bas = extract64(wcr, 5, 8);
6404 int basstart;
6406 if (extract64(wvr, 2, 1)) {
6407 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6408 * ignored, and BAS[3:0] define which bytes to watch.
6410 bas &= 0xf;
6413 if (bas == 0) {
6414 /* This must act as if the watchpoint is disabled */
6415 return;
6418 /* The BAS bits are supposed to be programmed to indicate a contiguous
6419 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6420 * we fire for each byte in the word/doubleword addressed by the WVR.
6421 * We choose to ignore any non-zero bits after the first range of 1s.
6423 basstart = ctz32(bas);
6424 len = cto32(bas >> basstart);
6425 wvr += basstart;
6428 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6429 &env->cpu_watchpoint[n]);
6432 void hw_watchpoint_update_all(ARMCPU *cpu)
6434 int i;
6435 CPUARMState *env = &cpu->env;
6437 /* Completely clear out existing QEMU watchpoints and our array, to
6438 * avoid possible stale entries following migration load.
6440 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6441 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6443 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6444 hw_watchpoint_update(cpu, i);
6448 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6449 uint64_t value)
6451 ARMCPU *cpu = env_archcpu(env);
6452 int i = ri->crm;
6454 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6455 * register reads and behaves as if values written are sign extended.
6456 * Bits [1:0] are RES0.
6458 value = sextract64(value, 0, 49) & ~3ULL;
6460 raw_write(env, ri, value);
6461 hw_watchpoint_update(cpu, i);
6464 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6465 uint64_t value)
6467 ARMCPU *cpu = env_archcpu(env);
6468 int i = ri->crm;
6470 raw_write(env, ri, value);
6471 hw_watchpoint_update(cpu, i);
6474 void hw_breakpoint_update(ARMCPU *cpu, int n)
6476 CPUARMState *env = &cpu->env;
6477 uint64_t bvr = env->cp15.dbgbvr[n];
6478 uint64_t bcr = env->cp15.dbgbcr[n];
6479 vaddr addr;
6480 int bt;
6481 int flags = BP_CPU;
6483 if (env->cpu_breakpoint[n]) {
6484 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6485 env->cpu_breakpoint[n] = NULL;
6488 if (!extract64(bcr, 0, 1)) {
6489 /* E bit clear : watchpoint disabled */
6490 return;
6493 bt = extract64(bcr, 20, 4);
6495 switch (bt) {
6496 case 4: /* unlinked address mismatch (reserved if AArch64) */
6497 case 5: /* linked address mismatch (reserved if AArch64) */
6498 qemu_log_mask(LOG_UNIMP,
6499 "arm: address mismatch breakpoint types not implemented\n");
6500 return;
6501 case 0: /* unlinked address match */
6502 case 1: /* linked address match */
6504 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6505 * we behave as if the register was sign extended. Bits [1:0] are
6506 * RES0. The BAS field is used to allow setting breakpoints on 16
6507 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6508 * a bp will fire if the addresses covered by the bp and the addresses
6509 * covered by the insn overlap but the insn doesn't start at the
6510 * start of the bp address range. We choose to require the insn and
6511 * the bp to have the same address. The constraints on writing to
6512 * BAS enforced in dbgbcr_write mean we have only four cases:
6513 * 0b0000 => no breakpoint
6514 * 0b0011 => breakpoint on addr
6515 * 0b1100 => breakpoint on addr + 2
6516 * 0b1111 => breakpoint on addr
6517 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6519 int bas = extract64(bcr, 5, 4);
6520 addr = sextract64(bvr, 0, 49) & ~3ULL;
6521 if (bas == 0) {
6522 return;
6524 if (bas == 0xc) {
6525 addr += 2;
6527 break;
6529 case 2: /* unlinked context ID match */
6530 case 8: /* unlinked VMID match (reserved if no EL2) */
6531 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6532 qemu_log_mask(LOG_UNIMP,
6533 "arm: unlinked context breakpoint types not implemented\n");
6534 return;
6535 case 9: /* linked VMID match (reserved if no EL2) */
6536 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6537 case 3: /* linked context ID match */
6538 default:
6539 /* We must generate no events for Linked context matches (unless
6540 * they are linked to by some other bp/wp, which is handled in
6541 * updates for the linking bp/wp). We choose to also generate no events
6542 * for reserved values.
6544 return;
6547 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6550 void hw_breakpoint_update_all(ARMCPU *cpu)
6552 int i;
6553 CPUARMState *env = &cpu->env;
6555 /* Completely clear out existing QEMU breakpoints and our array, to
6556 * avoid possible stale entries following migration load.
6558 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6559 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6561 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6562 hw_breakpoint_update(cpu, i);
6566 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6567 uint64_t value)
6569 ARMCPU *cpu = env_archcpu(env);
6570 int i = ri->crm;
6572 raw_write(env, ri, value);
6573 hw_breakpoint_update(cpu, i);
6576 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6577 uint64_t value)
6579 ARMCPU *cpu = env_archcpu(env);
6580 int i = ri->crm;
6582 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6583 * copy of BAS[0].
6585 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6586 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6588 raw_write(env, ri, value);
6589 hw_breakpoint_update(cpu, i);
6592 static void define_debug_regs(ARMCPU *cpu)
6594 /* Define v7 and v8 architectural debug registers.
6595 * These are just dummy implementations for now.
6597 int i;
6598 int wrps, brps, ctx_cmps;
6601 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6602 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6603 * the register must not exist for this cpu.
6605 if (cpu->isar.dbgdidr != 0) {
6606 ARMCPRegInfo dbgdidr = {
6607 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6608 .opc1 = 0, .opc2 = 0,
6609 .access = PL0_R, .accessfn = access_tda,
6610 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6612 define_one_arm_cp_reg(cpu, &dbgdidr);
6615 /* Note that all these register fields hold "number of Xs minus 1". */
6616 brps = arm_num_brps(cpu);
6617 wrps = arm_num_wrps(cpu);
6618 ctx_cmps = arm_num_ctx_cmps(cpu);
6620 assert(ctx_cmps <= brps);
6622 define_arm_cp_regs(cpu, debug_cp_reginfo);
6624 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6625 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6628 for (i = 0; i < brps; i++) {
6629 ARMCPRegInfo dbgregs[] = {
6630 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6631 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6632 .access = PL1_RW, .accessfn = access_tda,
6633 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6634 .writefn = dbgbvr_write, .raw_writefn = raw_write
6636 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6637 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6638 .access = PL1_RW, .accessfn = access_tda,
6639 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6640 .writefn = dbgbcr_write, .raw_writefn = raw_write
6642 REGINFO_SENTINEL
6644 define_arm_cp_regs(cpu, dbgregs);
6647 for (i = 0; i < wrps; i++) {
6648 ARMCPRegInfo dbgregs[] = {
6649 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6650 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6651 .access = PL1_RW, .accessfn = access_tda,
6652 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6653 .writefn = dbgwvr_write, .raw_writefn = raw_write
6655 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6656 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6657 .access = PL1_RW, .accessfn = access_tda,
6658 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6659 .writefn = dbgwcr_write, .raw_writefn = raw_write
6661 REGINFO_SENTINEL
6663 define_arm_cp_regs(cpu, dbgregs);
6667 static void define_pmu_regs(ARMCPU *cpu)
6670 * v7 performance monitor control register: same implementor
6671 * field as main ID register, and we implement four counters in
6672 * addition to the cycle count register.
6674 unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6675 ARMCPRegInfo pmcr = {
6676 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6677 .access = PL0_RW,
6678 .type = ARM_CP_IO | ARM_CP_ALIAS,
6679 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6680 .accessfn = pmreg_access, .writefn = pmcr_write,
6681 .raw_writefn = raw_write,
6683 ARMCPRegInfo pmcr64 = {
6684 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6685 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6686 .access = PL0_RW, .accessfn = pmreg_access,
6687 .type = ARM_CP_IO,
6688 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6689 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6690 PMCRLC,
6691 .writefn = pmcr_write, .raw_writefn = raw_write,
6693 define_one_arm_cp_reg(cpu, &pmcr);
6694 define_one_arm_cp_reg(cpu, &pmcr64);
6695 for (i = 0; i < pmcrn; i++) {
6696 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6697 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6698 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6699 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6700 ARMCPRegInfo pmev_regs[] = {
6701 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6702 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6703 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6704 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6705 .accessfn = pmreg_access },
6706 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6707 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6708 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6709 .type = ARM_CP_IO,
6710 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6711 .raw_readfn = pmevcntr_rawread,
6712 .raw_writefn = pmevcntr_rawwrite },
6713 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6714 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6715 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6716 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6717 .accessfn = pmreg_access },
6718 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6719 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6720 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6721 .type = ARM_CP_IO,
6722 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6723 .raw_writefn = pmevtyper_rawwrite },
6724 REGINFO_SENTINEL
6726 define_arm_cp_regs(cpu, pmev_regs);
6727 g_free(pmevcntr_name);
6728 g_free(pmevcntr_el0_name);
6729 g_free(pmevtyper_name);
6730 g_free(pmevtyper_el0_name);
6732 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6733 ARMCPRegInfo v81_pmu_regs[] = {
6734 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6735 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6736 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6737 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6738 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6739 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6740 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6741 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6742 REGINFO_SENTINEL
6744 define_arm_cp_regs(cpu, v81_pmu_regs);
6746 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6747 static const ARMCPRegInfo v84_pmmir = {
6748 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6749 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6750 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6751 .resetvalue = 0
6753 define_one_arm_cp_reg(cpu, &v84_pmmir);
6757 /* We don't know until after realize whether there's a GICv3
6758 * attached, and that is what registers the gicv3 sysregs.
6759 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6760 * at runtime.
6762 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6764 ARMCPU *cpu = env_archcpu(env);
6765 uint64_t pfr1 = cpu->isar.id_pfr1;
6767 if (env->gicv3state) {
6768 pfr1 |= 1 << 28;
6770 return pfr1;
6773 #ifndef CONFIG_USER_ONLY
6774 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6776 ARMCPU *cpu = env_archcpu(env);
6777 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6779 if (env->gicv3state) {
6780 pfr0 |= 1 << 24;
6782 return pfr0;
6784 #endif
6786 /* Shared logic between LORID and the rest of the LOR* registers.
6787 * Secure state exclusion has already been dealt with.
6789 static CPAccessResult access_lor_ns(CPUARMState *env,
6790 const ARMCPRegInfo *ri, bool isread)
6792 int el = arm_current_el(env);
6794 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6795 return CP_ACCESS_TRAP_EL2;
6797 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6798 return CP_ACCESS_TRAP_EL3;
6800 return CP_ACCESS_OK;
6803 static CPAccessResult access_lor_other(CPUARMState *env,
6804 const ARMCPRegInfo *ri, bool isread)
6806 if (arm_is_secure_below_el3(env)) {
6807 /* Access denied in secure mode. */
6808 return CP_ACCESS_TRAP;
6810 return access_lor_ns(env, ri, isread);
6814 * A trivial implementation of ARMv8.1-LOR leaves all of these
6815 * registers fixed at 0, which indicates that there are zero
6816 * supported Limited Ordering regions.
6818 static const ARMCPRegInfo lor_reginfo[] = {
6819 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6820 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6821 .access = PL1_RW, .accessfn = access_lor_other,
6822 .type = ARM_CP_CONST, .resetvalue = 0 },
6823 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6824 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6825 .access = PL1_RW, .accessfn = access_lor_other,
6826 .type = ARM_CP_CONST, .resetvalue = 0 },
6827 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6828 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6829 .access = PL1_RW, .accessfn = access_lor_other,
6830 .type = ARM_CP_CONST, .resetvalue = 0 },
6831 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6832 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6833 .access = PL1_RW, .accessfn = access_lor_other,
6834 .type = ARM_CP_CONST, .resetvalue = 0 },
6835 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6836 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6837 .access = PL1_R, .accessfn = access_lor_ns,
6838 .type = ARM_CP_CONST, .resetvalue = 0 },
6839 REGINFO_SENTINEL
6842 #ifdef TARGET_AARCH64
6843 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6844 bool isread)
6846 int el = arm_current_el(env);
6848 if (el < 2 &&
6849 arm_feature(env, ARM_FEATURE_EL2) &&
6850 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6851 return CP_ACCESS_TRAP_EL2;
6853 if (el < 3 &&
6854 arm_feature(env, ARM_FEATURE_EL3) &&
6855 !(env->cp15.scr_el3 & SCR_APK)) {
6856 return CP_ACCESS_TRAP_EL3;
6858 return CP_ACCESS_OK;
6861 static const ARMCPRegInfo pauth_reginfo[] = {
6862 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6864 .access = PL1_RW, .accessfn = access_pauth,
6865 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6866 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6868 .access = PL1_RW, .accessfn = access_pauth,
6869 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6870 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6872 .access = PL1_RW, .accessfn = access_pauth,
6873 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6874 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6876 .access = PL1_RW, .accessfn = access_pauth,
6877 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6878 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6880 .access = PL1_RW, .accessfn = access_pauth,
6881 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6882 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6884 .access = PL1_RW, .accessfn = access_pauth,
6885 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6886 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6887 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6888 .access = PL1_RW, .accessfn = access_pauth,
6889 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6890 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6891 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6892 .access = PL1_RW, .accessfn = access_pauth,
6893 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6894 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6895 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6896 .access = PL1_RW, .accessfn = access_pauth,
6897 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6898 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6899 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6900 .access = PL1_RW, .accessfn = access_pauth,
6901 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6902 REGINFO_SENTINEL
6905 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6907 Error *err = NULL;
6908 uint64_t ret;
6910 /* Success sets NZCV = 0000. */
6911 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6913 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6915 * ??? Failed, for unknown reasons in the crypto subsystem.
6916 * The best we can do is log the reason and return the
6917 * timed-out indication to the guest. There is no reason
6918 * we know to expect this failure to be transitory, so the
6919 * guest may well hang retrying the operation.
6921 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6922 ri->name, error_get_pretty(err));
6923 error_free(err);
6925 env->ZF = 0; /* NZCF = 0100 */
6926 return 0;
6928 return ret;
6931 /* We do not support re-seeding, so the two registers operate the same. */
6932 static const ARMCPRegInfo rndr_reginfo[] = {
6933 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6934 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6935 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6936 .access = PL0_R, .readfn = rndr_readfn },
6937 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6938 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6939 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6940 .access = PL0_R, .readfn = rndr_readfn },
6941 REGINFO_SENTINEL
6944 #ifndef CONFIG_USER_ONLY
6945 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6946 uint64_t value)
6948 ARMCPU *cpu = env_archcpu(env);
6949 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6950 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6951 uint64_t vaddr_in = (uint64_t) value;
6952 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6953 void *haddr;
6954 int mem_idx = cpu_mmu_index(env, false);
6956 /* This won't be crossing page boundaries */
6957 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6958 if (haddr) {
6960 ram_addr_t offset;
6961 MemoryRegion *mr;
6963 /* RCU lock is already being held */
6964 mr = memory_region_from_host(haddr, &offset);
6966 if (mr) {
6967 memory_region_writeback(mr, offset, dline_size);
6972 static const ARMCPRegInfo dcpop_reg[] = {
6973 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6975 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6976 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6977 REGINFO_SENTINEL
6980 static const ARMCPRegInfo dcpodp_reg[] = {
6981 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6982 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6983 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6984 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6985 REGINFO_SENTINEL
6987 #endif /*CONFIG_USER_ONLY*/
6989 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6990 bool isread)
6992 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6993 return CP_ACCESS_TRAP_EL2;
6996 return CP_ACCESS_OK;
6999 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7000 bool isread)
7002 int el = arm_current_el(env);
7004 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7005 uint64_t hcr = arm_hcr_el2_eff(env);
7006 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7007 return CP_ACCESS_TRAP_EL2;
7010 if (el < 3 &&
7011 arm_feature(env, ARM_FEATURE_EL3) &&
7012 !(env->cp15.scr_el3 & SCR_ATA)) {
7013 return CP_ACCESS_TRAP_EL3;
7015 return CP_ACCESS_OK;
7018 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7020 return env->pstate & PSTATE_TCO;
7023 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7025 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7028 static const ARMCPRegInfo mte_reginfo[] = {
7029 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7030 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7031 .access = PL1_RW, .accessfn = access_mte,
7032 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7033 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7034 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7035 .access = PL1_RW, .accessfn = access_mte,
7036 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7037 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7039 .access = PL2_RW, .accessfn = access_mte,
7040 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7041 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7042 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7043 .access = PL3_RW,
7044 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7045 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7046 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7047 .access = PL1_RW, .accessfn = access_mte,
7048 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7049 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7050 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7051 .access = PL1_RW, .accessfn = access_mte,
7052 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7053 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7054 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7055 .access = PL1_R, .accessfn = access_aa64_tid5,
7056 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7057 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7058 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7059 .type = ARM_CP_NO_RAW,
7060 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7061 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7062 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7063 .type = ARM_CP_NOP, .access = PL1_W,
7064 .accessfn = aa64_cacheop_poc_access },
7065 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7067 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7068 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7069 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7070 .type = ARM_CP_NOP, .access = PL1_W,
7071 .accessfn = aa64_cacheop_poc_access },
7072 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7073 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7074 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7075 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7077 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7078 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7079 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7080 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7081 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7082 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7083 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7084 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7085 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7087 REGINFO_SENTINEL
7090 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7091 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7092 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7093 .type = ARM_CP_CONST, .access = PL0_RW, },
7094 REGINFO_SENTINEL
7097 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7098 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7100 .type = ARM_CP_NOP, .access = PL0_W,
7101 .accessfn = aa64_cacheop_poc_access },
7102 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7103 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7104 .type = ARM_CP_NOP, .access = PL0_W,
7105 .accessfn = aa64_cacheop_poc_access },
7106 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7108 .type = ARM_CP_NOP, .access = PL0_W,
7109 .accessfn = aa64_cacheop_poc_access },
7110 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7112 .type = ARM_CP_NOP, .access = PL0_W,
7113 .accessfn = aa64_cacheop_poc_access },
7114 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7116 .type = ARM_CP_NOP, .access = PL0_W,
7117 .accessfn = aa64_cacheop_poc_access },
7118 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7120 .type = ARM_CP_NOP, .access = PL0_W,
7121 .accessfn = aa64_cacheop_poc_access },
7122 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7124 .type = ARM_CP_NOP, .access = PL0_W,
7125 .accessfn = aa64_cacheop_poc_access },
7126 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7128 .type = ARM_CP_NOP, .access = PL0_W,
7129 .accessfn = aa64_cacheop_poc_access },
7130 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7131 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7132 .access = PL0_W, .type = ARM_CP_DC_GVA,
7133 #ifndef CONFIG_USER_ONLY
7134 /* Avoid overhead of an access check that always passes in user-mode */
7135 .accessfn = aa64_zva_access,
7136 #endif
7138 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7139 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7140 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7141 #ifndef CONFIG_USER_ONLY
7142 /* Avoid overhead of an access check that always passes in user-mode */
7143 .accessfn = aa64_zva_access,
7144 #endif
7146 REGINFO_SENTINEL
7149 #endif
7151 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7152 bool isread)
7154 int el = arm_current_el(env);
7156 if (el == 0) {
7157 uint64_t sctlr = arm_sctlr(env, el);
7158 if (!(sctlr & SCTLR_EnRCTX)) {
7159 return CP_ACCESS_TRAP;
7161 } else if (el == 1) {
7162 uint64_t hcr = arm_hcr_el2_eff(env);
7163 if (hcr & HCR_NV) {
7164 return CP_ACCESS_TRAP_EL2;
7167 return CP_ACCESS_OK;
7170 static const ARMCPRegInfo predinv_reginfo[] = {
7171 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7173 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7174 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7175 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7176 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7177 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7178 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7179 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7181 * Note the AArch32 opcodes have a different OPC1.
7183 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7184 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7185 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7186 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7187 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7188 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7189 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7190 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7191 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7192 REGINFO_SENTINEL
7195 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7197 /* Read the high 32 bits of the current CCSIDR */
7198 return extract64(ccsidr_read(env, ri), 32, 32);
7201 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7202 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7203 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7204 .access = PL1_R,
7205 .accessfn = access_aa64_tid2,
7206 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7207 REGINFO_SENTINEL
7210 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7211 bool isread)
7213 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7214 return CP_ACCESS_TRAP_EL2;
7217 return CP_ACCESS_OK;
7220 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7221 bool isread)
7223 if (arm_feature(env, ARM_FEATURE_V8)) {
7224 return access_aa64_tid3(env, ri, isread);
7227 return CP_ACCESS_OK;
7230 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7231 bool isread)
7233 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7234 return CP_ACCESS_TRAP_EL2;
7237 return CP_ACCESS_OK;
7240 static const ARMCPRegInfo jazelle_regs[] = {
7241 { .name = "JIDR",
7242 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7243 .access = PL1_R, .accessfn = access_jazelle,
7244 .type = ARM_CP_CONST, .resetvalue = 0 },
7245 { .name = "JOSCR",
7246 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7247 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7248 { .name = "JMCR",
7249 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7250 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7251 REGINFO_SENTINEL
7254 static const ARMCPRegInfo vhe_reginfo[] = {
7255 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7257 .access = PL2_RW,
7258 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7259 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7260 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7261 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7262 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7263 #ifndef CONFIG_USER_ONLY
7264 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7265 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7266 .fieldoffset =
7267 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7268 .type = ARM_CP_IO, .access = PL2_RW,
7269 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7270 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7271 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7272 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7273 .resetfn = gt_hv_timer_reset,
7274 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7275 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7276 .type = ARM_CP_IO,
7277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7278 .access = PL2_RW,
7279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7280 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7281 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7282 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7283 .type = ARM_CP_IO | ARM_CP_ALIAS,
7284 .access = PL2_RW, .accessfn = e2h_access,
7285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7286 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7287 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7289 .type = ARM_CP_IO | ARM_CP_ALIAS,
7290 .access = PL2_RW, .accessfn = e2h_access,
7291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7292 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7293 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7294 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7295 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7296 .access = PL2_RW, .accessfn = e2h_access,
7297 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7298 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7299 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7300 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7301 .access = PL2_RW, .accessfn = e2h_access,
7302 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7303 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7304 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7305 .type = ARM_CP_IO | ARM_CP_ALIAS,
7306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7307 .access = PL2_RW, .accessfn = e2h_access,
7308 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7309 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7310 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7311 .type = ARM_CP_IO | ARM_CP_ALIAS,
7312 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7313 .access = PL2_RW, .accessfn = e2h_access,
7314 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7315 #endif
7316 REGINFO_SENTINEL
7319 #ifndef CONFIG_USER_ONLY
7320 static const ARMCPRegInfo ats1e1_reginfo[] = {
7321 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7323 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7324 .writefn = ats_write64 },
7325 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7326 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7327 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7328 .writefn = ats_write64 },
7329 REGINFO_SENTINEL
7332 static const ARMCPRegInfo ats1cp_reginfo[] = {
7333 { .name = "ATS1CPRP",
7334 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7335 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7336 .writefn = ats_write },
7337 { .name = "ATS1CPWP",
7338 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7339 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7340 .writefn = ats_write },
7341 REGINFO_SENTINEL
7343 #endif
7346 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7347 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7348 * is non-zero, which is never for ARMv7, optionally in ARMv8
7349 * and mandatorily for ARMv8.2 and up.
7350 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7351 * implementation is RAZ/WI we can ignore this detail, as we
7352 * do for ACTLR.
7354 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7355 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7356 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7357 .access = PL1_RW, .accessfn = access_tacr,
7358 .type = ARM_CP_CONST, .resetvalue = 0 },
7359 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7360 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7361 .access = PL2_RW, .type = ARM_CP_CONST,
7362 .resetvalue = 0 },
7363 REGINFO_SENTINEL
7366 void register_cp_regs_for_features(ARMCPU *cpu)
7368 /* Register all the coprocessor registers based on feature bits */
7369 CPUARMState *env = &cpu->env;
7370 if (arm_feature(env, ARM_FEATURE_M)) {
7371 /* M profile has no coprocessor registers */
7372 return;
7375 define_arm_cp_regs(cpu, cp_reginfo);
7376 if (!arm_feature(env, ARM_FEATURE_V8)) {
7377 /* Must go early as it is full of wildcards that may be
7378 * overridden by later definitions.
7380 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7383 if (arm_feature(env, ARM_FEATURE_V6)) {
7384 /* The ID registers all have impdef reset values */
7385 ARMCPRegInfo v6_idregs[] = {
7386 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7388 .access = PL1_R, .type = ARM_CP_CONST,
7389 .accessfn = access_aa32_tid3,
7390 .resetvalue = cpu->isar.id_pfr0 },
7391 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7392 * the value of the GIC field until after we define these regs.
7394 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7396 .access = PL1_R, .type = ARM_CP_NO_RAW,
7397 .accessfn = access_aa32_tid3,
7398 .readfn = id_pfr1_read,
7399 .writefn = arm_cp_write_ignore },
7400 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7402 .access = PL1_R, .type = ARM_CP_CONST,
7403 .accessfn = access_aa32_tid3,
7404 .resetvalue = cpu->isar.id_dfr0 },
7405 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7407 .access = PL1_R, .type = ARM_CP_CONST,
7408 .accessfn = access_aa32_tid3,
7409 .resetvalue = cpu->id_afr0 },
7410 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7412 .access = PL1_R, .type = ARM_CP_CONST,
7413 .accessfn = access_aa32_tid3,
7414 .resetvalue = cpu->isar.id_mmfr0 },
7415 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7417 .access = PL1_R, .type = ARM_CP_CONST,
7418 .accessfn = access_aa32_tid3,
7419 .resetvalue = cpu->isar.id_mmfr1 },
7420 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7422 .access = PL1_R, .type = ARM_CP_CONST,
7423 .accessfn = access_aa32_tid3,
7424 .resetvalue = cpu->isar.id_mmfr2 },
7425 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7427 .access = PL1_R, .type = ARM_CP_CONST,
7428 .accessfn = access_aa32_tid3,
7429 .resetvalue = cpu->isar.id_mmfr3 },
7430 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7432 .access = PL1_R, .type = ARM_CP_CONST,
7433 .accessfn = access_aa32_tid3,
7434 .resetvalue = cpu->isar.id_isar0 },
7435 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7437 .access = PL1_R, .type = ARM_CP_CONST,
7438 .accessfn = access_aa32_tid3,
7439 .resetvalue = cpu->isar.id_isar1 },
7440 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7442 .access = PL1_R, .type = ARM_CP_CONST,
7443 .accessfn = access_aa32_tid3,
7444 .resetvalue = cpu->isar.id_isar2 },
7445 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7447 .access = PL1_R, .type = ARM_CP_CONST,
7448 .accessfn = access_aa32_tid3,
7449 .resetvalue = cpu->isar.id_isar3 },
7450 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7452 .access = PL1_R, .type = ARM_CP_CONST,
7453 .accessfn = access_aa32_tid3,
7454 .resetvalue = cpu->isar.id_isar4 },
7455 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7457 .access = PL1_R, .type = ARM_CP_CONST,
7458 .accessfn = access_aa32_tid3,
7459 .resetvalue = cpu->isar.id_isar5 },
7460 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7462 .access = PL1_R, .type = ARM_CP_CONST,
7463 .accessfn = access_aa32_tid3,
7464 .resetvalue = cpu->isar.id_mmfr4 },
7465 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7467 .access = PL1_R, .type = ARM_CP_CONST,
7468 .accessfn = access_aa32_tid3,
7469 .resetvalue = cpu->isar.id_isar6 },
7470 REGINFO_SENTINEL
7472 define_arm_cp_regs(cpu, v6_idregs);
7473 define_arm_cp_regs(cpu, v6_cp_reginfo);
7474 } else {
7475 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7477 if (arm_feature(env, ARM_FEATURE_V6K)) {
7478 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7480 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7481 !arm_feature(env, ARM_FEATURE_PMSA)) {
7482 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7484 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7485 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7487 if (arm_feature(env, ARM_FEATURE_V7)) {
7488 ARMCPRegInfo clidr = {
7489 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7490 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7491 .access = PL1_R, .type = ARM_CP_CONST,
7492 .accessfn = access_aa64_tid2,
7493 .resetvalue = cpu->clidr
7495 define_one_arm_cp_reg(cpu, &clidr);
7496 define_arm_cp_regs(cpu, v7_cp_reginfo);
7497 define_debug_regs(cpu);
7498 define_pmu_regs(cpu);
7499 } else {
7500 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7502 if (arm_feature(env, ARM_FEATURE_V8)) {
7503 /* AArch64 ID registers, which all have impdef reset values.
7504 * Note that within the ID register ranges the unused slots
7505 * must all RAZ, not UNDEF; future architecture versions may
7506 * define new registers here.
7508 ARMCPRegInfo v8_idregs[] = {
7510 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7511 * emulation because we don't know the right value for the
7512 * GIC field until after we define these regs.
7514 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7516 .access = PL1_R,
7517 #ifdef CONFIG_USER_ONLY
7518 .type = ARM_CP_CONST,
7519 .resetvalue = cpu->isar.id_aa64pfr0
7520 #else
7521 .type = ARM_CP_NO_RAW,
7522 .accessfn = access_aa64_tid3,
7523 .readfn = id_aa64pfr0_read,
7524 .writefn = arm_cp_write_ignore
7525 #endif
7527 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7529 .access = PL1_R, .type = ARM_CP_CONST,
7530 .accessfn = access_aa64_tid3,
7531 .resetvalue = cpu->isar.id_aa64pfr1},
7532 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7534 .access = PL1_R, .type = ARM_CP_CONST,
7535 .accessfn = access_aa64_tid3,
7536 .resetvalue = 0 },
7537 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7539 .access = PL1_R, .type = ARM_CP_CONST,
7540 .accessfn = access_aa64_tid3,
7541 .resetvalue = 0 },
7542 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7544 .access = PL1_R, .type = ARM_CP_CONST,
7545 .accessfn = access_aa64_tid3,
7546 /* At present, only SVEver == 0 is defined anyway. */
7547 .resetvalue = 0 },
7548 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7550 .access = PL1_R, .type = ARM_CP_CONST,
7551 .accessfn = access_aa64_tid3,
7552 .resetvalue = 0 },
7553 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7555 .access = PL1_R, .type = ARM_CP_CONST,
7556 .accessfn = access_aa64_tid3,
7557 .resetvalue = 0 },
7558 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7560 .access = PL1_R, .type = ARM_CP_CONST,
7561 .accessfn = access_aa64_tid3,
7562 .resetvalue = 0 },
7563 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7565 .access = PL1_R, .type = ARM_CP_CONST,
7566 .accessfn = access_aa64_tid3,
7567 .resetvalue = cpu->isar.id_aa64dfr0 },
7568 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7570 .access = PL1_R, .type = ARM_CP_CONST,
7571 .accessfn = access_aa64_tid3,
7572 .resetvalue = cpu->isar.id_aa64dfr1 },
7573 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7575 .access = PL1_R, .type = ARM_CP_CONST,
7576 .accessfn = access_aa64_tid3,
7577 .resetvalue = 0 },
7578 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7580 .access = PL1_R, .type = ARM_CP_CONST,
7581 .accessfn = access_aa64_tid3,
7582 .resetvalue = 0 },
7583 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7585 .access = PL1_R, .type = ARM_CP_CONST,
7586 .accessfn = access_aa64_tid3,
7587 .resetvalue = cpu->id_aa64afr0 },
7588 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7590 .access = PL1_R, .type = ARM_CP_CONST,
7591 .accessfn = access_aa64_tid3,
7592 .resetvalue = cpu->id_aa64afr1 },
7593 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7595 .access = PL1_R, .type = ARM_CP_CONST,
7596 .accessfn = access_aa64_tid3,
7597 .resetvalue = 0 },
7598 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7600 .access = PL1_R, .type = ARM_CP_CONST,
7601 .accessfn = access_aa64_tid3,
7602 .resetvalue = 0 },
7603 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7605 .access = PL1_R, .type = ARM_CP_CONST,
7606 .accessfn = access_aa64_tid3,
7607 .resetvalue = cpu->isar.id_aa64isar0 },
7608 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7610 .access = PL1_R, .type = ARM_CP_CONST,
7611 .accessfn = access_aa64_tid3,
7612 .resetvalue = cpu->isar.id_aa64isar1 },
7613 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7615 .access = PL1_R, .type = ARM_CP_CONST,
7616 .accessfn = access_aa64_tid3,
7617 .resetvalue = 0 },
7618 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7620 .access = PL1_R, .type = ARM_CP_CONST,
7621 .accessfn = access_aa64_tid3,
7622 .resetvalue = 0 },
7623 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7625 .access = PL1_R, .type = ARM_CP_CONST,
7626 .accessfn = access_aa64_tid3,
7627 .resetvalue = 0 },
7628 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7630 .access = PL1_R, .type = ARM_CP_CONST,
7631 .accessfn = access_aa64_tid3,
7632 .resetvalue = 0 },
7633 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7635 .access = PL1_R, .type = ARM_CP_CONST,
7636 .accessfn = access_aa64_tid3,
7637 .resetvalue = 0 },
7638 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7640 .access = PL1_R, .type = ARM_CP_CONST,
7641 .accessfn = access_aa64_tid3,
7642 .resetvalue = 0 },
7643 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7645 .access = PL1_R, .type = ARM_CP_CONST,
7646 .accessfn = access_aa64_tid3,
7647 .resetvalue = cpu->isar.id_aa64mmfr0 },
7648 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7649 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7650 .access = PL1_R, .type = ARM_CP_CONST,
7651 .accessfn = access_aa64_tid3,
7652 .resetvalue = cpu->isar.id_aa64mmfr1 },
7653 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7654 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7655 .access = PL1_R, .type = ARM_CP_CONST,
7656 .accessfn = access_aa64_tid3,
7657 .resetvalue = cpu->isar.id_aa64mmfr2 },
7658 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7660 .access = PL1_R, .type = ARM_CP_CONST,
7661 .accessfn = access_aa64_tid3,
7662 .resetvalue = 0 },
7663 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7665 .access = PL1_R, .type = ARM_CP_CONST,
7666 .accessfn = access_aa64_tid3,
7667 .resetvalue = 0 },
7668 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7669 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7670 .access = PL1_R, .type = ARM_CP_CONST,
7671 .accessfn = access_aa64_tid3,
7672 .resetvalue = 0 },
7673 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7675 .access = PL1_R, .type = ARM_CP_CONST,
7676 .accessfn = access_aa64_tid3,
7677 .resetvalue = 0 },
7678 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7680 .access = PL1_R, .type = ARM_CP_CONST,
7681 .accessfn = access_aa64_tid3,
7682 .resetvalue = 0 },
7683 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7685 .access = PL1_R, .type = ARM_CP_CONST,
7686 .accessfn = access_aa64_tid3,
7687 .resetvalue = cpu->isar.mvfr0 },
7688 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7689 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7690 .access = PL1_R, .type = ARM_CP_CONST,
7691 .accessfn = access_aa64_tid3,
7692 .resetvalue = cpu->isar.mvfr1 },
7693 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7695 .access = PL1_R, .type = ARM_CP_CONST,
7696 .accessfn = access_aa64_tid3,
7697 .resetvalue = cpu->isar.mvfr2 },
7698 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7700 .access = PL1_R, .type = ARM_CP_CONST,
7701 .accessfn = access_aa64_tid3,
7702 .resetvalue = 0 },
7703 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7705 .access = PL1_R, .type = ARM_CP_CONST,
7706 .accessfn = access_aa64_tid3,
7707 .resetvalue = cpu->isar.id_pfr2 },
7708 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7710 .access = PL1_R, .type = ARM_CP_CONST,
7711 .accessfn = access_aa64_tid3,
7712 .resetvalue = 0 },
7713 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7715 .access = PL1_R, .type = ARM_CP_CONST,
7716 .accessfn = access_aa64_tid3,
7717 .resetvalue = 0 },
7718 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7720 .access = PL1_R, .type = ARM_CP_CONST,
7721 .accessfn = access_aa64_tid3,
7722 .resetvalue = 0 },
7723 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7724 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7725 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7726 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7727 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7729 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7730 .resetvalue = cpu->pmceid0 },
7731 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7732 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7733 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7734 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7735 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7738 .resetvalue = cpu->pmceid1 },
7739 REGINFO_SENTINEL
7741 #ifdef CONFIG_USER_ONLY
7742 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7743 { .name = "ID_AA64PFR0_EL1",
7744 .exported_bits = 0x000f000f00ff0000,
7745 .fixed_bits = 0x0000000000000011 },
7746 { .name = "ID_AA64PFR1_EL1",
7747 .exported_bits = 0x00000000000000f0 },
7748 { .name = "ID_AA64PFR*_EL1_RESERVED",
7749 .is_glob = true },
7750 { .name = "ID_AA64ZFR0_EL1" },
7751 { .name = "ID_AA64MMFR0_EL1",
7752 .fixed_bits = 0x00000000ff000000 },
7753 { .name = "ID_AA64MMFR1_EL1" },
7754 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7755 .is_glob = true },
7756 { .name = "ID_AA64DFR0_EL1",
7757 .fixed_bits = 0x0000000000000006 },
7758 { .name = "ID_AA64DFR1_EL1" },
7759 { .name = "ID_AA64DFR*_EL1_RESERVED",
7760 .is_glob = true },
7761 { .name = "ID_AA64AFR*",
7762 .is_glob = true },
7763 { .name = "ID_AA64ISAR0_EL1",
7764 .exported_bits = 0x00fffffff0fffff0 },
7765 { .name = "ID_AA64ISAR1_EL1",
7766 .exported_bits = 0x000000f0ffffffff },
7767 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7768 .is_glob = true },
7769 REGUSERINFO_SENTINEL
7771 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7772 #endif
7773 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7774 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7775 !arm_feature(env, ARM_FEATURE_EL2)) {
7776 ARMCPRegInfo rvbar = {
7777 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7778 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7779 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7781 define_one_arm_cp_reg(cpu, &rvbar);
7783 define_arm_cp_regs(cpu, v8_idregs);
7784 define_arm_cp_regs(cpu, v8_cp_reginfo);
7786 if (arm_feature(env, ARM_FEATURE_EL2)) {
7787 uint64_t vmpidr_def = mpidr_read_val(env);
7788 ARMCPRegInfo vpidr_regs[] = {
7789 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7790 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7791 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7792 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7793 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7794 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7795 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7796 .access = PL2_RW, .resetvalue = cpu->midr,
7797 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7798 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7799 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7800 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7801 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7802 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7805 .access = PL2_RW,
7806 .resetvalue = vmpidr_def,
7807 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7808 REGINFO_SENTINEL
7810 define_arm_cp_regs(cpu, vpidr_regs);
7811 define_arm_cp_regs(cpu, el2_cp_reginfo);
7812 if (arm_feature(env, ARM_FEATURE_V8)) {
7813 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7815 if (cpu_isar_feature(aa64_sel2, cpu)) {
7816 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7818 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7819 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7820 ARMCPRegInfo rvbar = {
7821 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7822 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7823 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7825 define_one_arm_cp_reg(cpu, &rvbar);
7827 } else {
7828 /* If EL2 is missing but higher ELs are enabled, we need to
7829 * register the no_el2 reginfos.
7831 if (arm_feature(env, ARM_FEATURE_EL3)) {
7832 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7833 * of MIDR_EL1 and MPIDR_EL1.
7835 ARMCPRegInfo vpidr_regs[] = {
7836 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7837 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7838 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7839 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7840 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7841 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7842 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7843 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7844 .type = ARM_CP_NO_RAW,
7845 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7846 REGINFO_SENTINEL
7848 define_arm_cp_regs(cpu, vpidr_regs);
7849 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7850 if (arm_feature(env, ARM_FEATURE_V8)) {
7851 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7855 if (arm_feature(env, ARM_FEATURE_EL3)) {
7856 define_arm_cp_regs(cpu, el3_cp_reginfo);
7857 ARMCPRegInfo el3_regs[] = {
7858 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7859 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7860 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7861 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7862 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7863 .access = PL3_RW,
7864 .raw_writefn = raw_write, .writefn = sctlr_write,
7865 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7866 .resetvalue = cpu->reset_sctlr },
7867 REGINFO_SENTINEL
7870 define_arm_cp_regs(cpu, el3_regs);
7872 /* The behaviour of NSACR is sufficiently various that we don't
7873 * try to describe it in a single reginfo:
7874 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7875 * reads as constant 0xc00 from NS EL1 and NS EL2
7876 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7877 * if v7 without EL3, register doesn't exist
7878 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7880 if (arm_feature(env, ARM_FEATURE_EL3)) {
7881 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7882 ARMCPRegInfo nsacr = {
7883 .name = "NSACR", .type = ARM_CP_CONST,
7884 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7885 .access = PL1_RW, .accessfn = nsacr_access,
7886 .resetvalue = 0xc00
7888 define_one_arm_cp_reg(cpu, &nsacr);
7889 } else {
7890 ARMCPRegInfo nsacr = {
7891 .name = "NSACR",
7892 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7893 .access = PL3_RW | PL1_R,
7894 .resetvalue = 0,
7895 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7897 define_one_arm_cp_reg(cpu, &nsacr);
7899 } else {
7900 if (arm_feature(env, ARM_FEATURE_V8)) {
7901 ARMCPRegInfo nsacr = {
7902 .name = "NSACR", .type = ARM_CP_CONST,
7903 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7904 .access = PL1_R,
7905 .resetvalue = 0xc00
7907 define_one_arm_cp_reg(cpu, &nsacr);
7911 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7912 if (arm_feature(env, ARM_FEATURE_V6)) {
7913 /* PMSAv6 not implemented */
7914 assert(arm_feature(env, ARM_FEATURE_V7));
7915 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7916 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7917 } else {
7918 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7920 } else {
7921 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7922 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7923 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7924 if (cpu_isar_feature(aa32_hpd, cpu)) {
7925 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7928 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7929 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7931 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7932 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7934 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7935 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7937 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7938 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7940 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7941 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7943 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7944 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7946 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7947 define_arm_cp_regs(cpu, omap_cp_reginfo);
7949 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7950 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7952 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7953 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7955 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7956 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7958 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7959 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7961 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7962 define_arm_cp_regs(cpu, jazelle_regs);
7964 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7965 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7966 * be read-only (ie write causes UNDEF exception).
7969 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7970 /* Pre-v8 MIDR space.
7971 * Note that the MIDR isn't a simple constant register because
7972 * of the TI925 behaviour where writes to another register can
7973 * cause the MIDR value to change.
7975 * Unimplemented registers in the c15 0 0 0 space default to
7976 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7977 * and friends override accordingly.
7979 { .name = "MIDR",
7980 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7981 .access = PL1_R, .resetvalue = cpu->midr,
7982 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7983 .readfn = midr_read,
7984 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7985 .type = ARM_CP_OVERRIDE },
7986 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7987 { .name = "DUMMY",
7988 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7989 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7990 { .name = "DUMMY",
7991 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7992 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7993 { .name = "DUMMY",
7994 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7995 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7996 { .name = "DUMMY",
7997 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7998 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7999 { .name = "DUMMY",
8000 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8001 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8002 REGINFO_SENTINEL
8004 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8005 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8007 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8008 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8009 .readfn = midr_read },
8010 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8011 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8012 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8013 .access = PL1_R, .resetvalue = cpu->midr },
8014 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8016 .access = PL1_R, .resetvalue = cpu->midr },
8017 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8019 .access = PL1_R,
8020 .accessfn = access_aa64_tid1,
8021 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8022 REGINFO_SENTINEL
8024 ARMCPRegInfo id_cp_reginfo[] = {
8025 /* These are common to v8 and pre-v8 */
8026 { .name = "CTR",
8027 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8028 .access = PL1_R, .accessfn = ctr_el0_access,
8029 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8030 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8031 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8032 .access = PL0_R, .accessfn = ctr_el0_access,
8033 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8034 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8035 { .name = "TCMTR",
8036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8037 .access = PL1_R,
8038 .accessfn = access_aa32_tid1,
8039 .type = ARM_CP_CONST, .resetvalue = 0 },
8040 REGINFO_SENTINEL
8042 /* TLBTR is specific to VMSA */
8043 ARMCPRegInfo id_tlbtr_reginfo = {
8044 .name = "TLBTR",
8045 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8046 .access = PL1_R,
8047 .accessfn = access_aa32_tid1,
8048 .type = ARM_CP_CONST, .resetvalue = 0,
8050 /* MPUIR is specific to PMSA V6+ */
8051 ARMCPRegInfo id_mpuir_reginfo = {
8052 .name = "MPUIR",
8053 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8054 .access = PL1_R, .type = ARM_CP_CONST,
8055 .resetvalue = cpu->pmsav7_dregion << 8
8057 ARMCPRegInfo crn0_wi_reginfo = {
8058 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8059 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8060 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8062 #ifdef CONFIG_USER_ONLY
8063 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8064 { .name = "MIDR_EL1",
8065 .exported_bits = 0x00000000ffffffff },
8066 { .name = "REVIDR_EL1" },
8067 REGUSERINFO_SENTINEL
8069 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8070 #endif
8071 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8072 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8073 ARMCPRegInfo *r;
8074 /* Register the blanket "writes ignored" value first to cover the
8075 * whole space. Then update the specific ID registers to allow write
8076 * access, so that they ignore writes rather than causing them to
8077 * UNDEF.
8079 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8080 for (r = id_pre_v8_midr_cp_reginfo;
8081 r->type != ARM_CP_SENTINEL; r++) {
8082 r->access = PL1_RW;
8084 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8085 r->access = PL1_RW;
8087 id_mpuir_reginfo.access = PL1_RW;
8088 id_tlbtr_reginfo.access = PL1_RW;
8090 if (arm_feature(env, ARM_FEATURE_V8)) {
8091 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8092 } else {
8093 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8095 define_arm_cp_regs(cpu, id_cp_reginfo);
8096 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8097 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8098 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8099 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8103 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8104 ARMCPRegInfo mpidr_cp_reginfo[] = {
8105 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8106 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8107 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8108 REGINFO_SENTINEL
8110 #ifdef CONFIG_USER_ONLY
8111 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8112 { .name = "MPIDR_EL1",
8113 .fixed_bits = 0x0000000080000000 },
8114 REGUSERINFO_SENTINEL
8116 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8117 #endif
8118 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8121 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8122 ARMCPRegInfo auxcr_reginfo[] = {
8123 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8124 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8125 .access = PL1_RW, .accessfn = access_tacr,
8126 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8127 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8128 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8129 .access = PL2_RW, .type = ARM_CP_CONST,
8130 .resetvalue = 0 },
8131 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8132 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8133 .access = PL3_RW, .type = ARM_CP_CONST,
8134 .resetvalue = 0 },
8135 REGINFO_SENTINEL
8137 define_arm_cp_regs(cpu, auxcr_reginfo);
8138 if (cpu_isar_feature(aa32_ac2, cpu)) {
8139 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8143 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8145 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8146 * There are two flavours:
8147 * (1) older 32-bit only cores have a simple 32-bit CBAR
8148 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8149 * 32-bit register visible to AArch32 at a different encoding
8150 * to the "flavour 1" register and with the bits rearranged to
8151 * be able to squash a 64-bit address into the 32-bit view.
8152 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8153 * in future if we support AArch32-only configs of some of the
8154 * AArch64 cores we might need to add a specific feature flag
8155 * to indicate cores with "flavour 2" CBAR.
8157 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8158 /* 32 bit view is [31:18] 0...0 [43:32]. */
8159 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8160 | extract64(cpu->reset_cbar, 32, 12);
8161 ARMCPRegInfo cbar_reginfo[] = {
8162 { .name = "CBAR",
8163 .type = ARM_CP_CONST,
8164 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8165 .access = PL1_R, .resetvalue = cbar32 },
8166 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8167 .type = ARM_CP_CONST,
8168 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8169 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8170 REGINFO_SENTINEL
8172 /* We don't implement a r/w 64 bit CBAR currently */
8173 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8174 define_arm_cp_regs(cpu, cbar_reginfo);
8175 } else {
8176 ARMCPRegInfo cbar = {
8177 .name = "CBAR",
8178 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8179 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8180 .fieldoffset = offsetof(CPUARMState,
8181 cp15.c15_config_base_address)
8183 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8184 cbar.access = PL1_R;
8185 cbar.fieldoffset = 0;
8186 cbar.type = ARM_CP_CONST;
8188 define_one_arm_cp_reg(cpu, &cbar);
8192 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8193 ARMCPRegInfo vbar_cp_reginfo[] = {
8194 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8195 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8196 .access = PL1_RW, .writefn = vbar_write,
8197 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8198 offsetof(CPUARMState, cp15.vbar_ns) },
8199 .resetvalue = 0 },
8200 REGINFO_SENTINEL
8202 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8205 /* Generic registers whose values depend on the implementation */
8207 ARMCPRegInfo sctlr = {
8208 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8209 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8210 .access = PL1_RW, .accessfn = access_tvm_trvm,
8211 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8212 offsetof(CPUARMState, cp15.sctlr_ns) },
8213 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8214 .raw_writefn = raw_write,
8216 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8217 /* Normally we would always end the TB on an SCTLR write, but Linux
8218 * arch/arm/mach-pxa/sleep.S expects two instructions following
8219 * an MMU enable to execute from cache. Imitate this behaviour.
8221 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8223 define_one_arm_cp_reg(cpu, &sctlr);
8226 if (cpu_isar_feature(aa64_lor, cpu)) {
8227 define_arm_cp_regs(cpu, lor_reginfo);
8229 if (cpu_isar_feature(aa64_pan, cpu)) {
8230 define_one_arm_cp_reg(cpu, &pan_reginfo);
8232 #ifndef CONFIG_USER_ONLY
8233 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8234 define_arm_cp_regs(cpu, ats1e1_reginfo);
8236 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8237 define_arm_cp_regs(cpu, ats1cp_reginfo);
8239 #endif
8240 if (cpu_isar_feature(aa64_uao, cpu)) {
8241 define_one_arm_cp_reg(cpu, &uao_reginfo);
8244 if (cpu_isar_feature(aa64_dit, cpu)) {
8245 define_one_arm_cp_reg(cpu, &dit_reginfo);
8248 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8249 define_arm_cp_regs(cpu, vhe_reginfo);
8252 if (cpu_isar_feature(aa64_sve, cpu)) {
8253 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8254 if (arm_feature(env, ARM_FEATURE_EL2)) {
8255 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8256 } else {
8257 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8259 if (arm_feature(env, ARM_FEATURE_EL3)) {
8260 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8264 #ifdef TARGET_AARCH64
8265 if (cpu_isar_feature(aa64_pauth, cpu)) {
8266 define_arm_cp_regs(cpu, pauth_reginfo);
8268 if (cpu_isar_feature(aa64_rndr, cpu)) {
8269 define_arm_cp_regs(cpu, rndr_reginfo);
8271 #ifndef CONFIG_USER_ONLY
8272 /* Data Cache clean instructions up to PoP */
8273 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8274 define_one_arm_cp_reg(cpu, dcpop_reg);
8276 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8277 define_one_arm_cp_reg(cpu, dcpodp_reg);
8280 #endif /*CONFIG_USER_ONLY*/
8283 * If full MTE is enabled, add all of the system registers.
8284 * If only "instructions available at EL0" are enabled,
8285 * then define only a RAZ/WI version of PSTATE.TCO.
8287 if (cpu_isar_feature(aa64_mte, cpu)) {
8288 define_arm_cp_regs(cpu, mte_reginfo);
8289 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8290 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8291 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8292 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8294 #endif
8296 if (cpu_isar_feature(any_predinv, cpu)) {
8297 define_arm_cp_regs(cpu, predinv_reginfo);
8300 if (cpu_isar_feature(any_ccidx, cpu)) {
8301 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8304 #ifndef CONFIG_USER_ONLY
8306 * Register redirections and aliases must be done last,
8307 * after the registers from the other extensions have been defined.
8309 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8310 define_arm_vh_e2h_redirects_aliases(cpu);
8312 #endif
8315 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8317 CPUState *cs = CPU(cpu);
8318 CPUARMState *env = &cpu->env;
8320 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8322 * The lower part of each SVE register aliases to the FPU
8323 * registers so we don't need to include both.
8325 #ifdef TARGET_AARCH64
8326 if (isar_feature_aa64_sve(&cpu->isar)) {
8327 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8328 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8329 "sve-registers.xml", 0);
8330 } else
8331 #endif
8333 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8334 aarch64_fpu_gdb_set_reg,
8335 34, "aarch64-fpu.xml", 0);
8337 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8338 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8339 51, "arm-neon.xml", 0);
8340 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8341 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8342 35, "arm-vfp3.xml", 0);
8343 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8344 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8345 19, "arm-vfp.xml", 0);
8347 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8348 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8349 "system-registers.xml", 0);
8353 /* Sort alphabetically by type name, except for "any". */
8354 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8356 ObjectClass *class_a = (ObjectClass *)a;
8357 ObjectClass *class_b = (ObjectClass *)b;
8358 const char *name_a, *name_b;
8360 name_a = object_class_get_name(class_a);
8361 name_b = object_class_get_name(class_b);
8362 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8363 return 1;
8364 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8365 return -1;
8366 } else {
8367 return strcmp(name_a, name_b);
8371 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8373 ObjectClass *oc = data;
8374 const char *typename;
8375 char *name;
8377 typename = object_class_get_name(oc);
8378 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8379 qemu_printf(" %s\n", name);
8380 g_free(name);
8383 void arm_cpu_list(void)
8385 GSList *list;
8387 list = object_class_get_list(TYPE_ARM_CPU, false);
8388 list = g_slist_sort(list, arm_cpu_list_compare);
8389 qemu_printf("Available CPUs:\n");
8390 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8391 g_slist_free(list);
8394 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8396 ObjectClass *oc = data;
8397 CpuDefinitionInfoList **cpu_list = user_data;
8398 CpuDefinitionInfo *info;
8399 const char *typename;
8401 typename = object_class_get_name(oc);
8402 info = g_malloc0(sizeof(*info));
8403 info->name = g_strndup(typename,
8404 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8405 info->q_typename = g_strdup(typename);
8407 QAPI_LIST_PREPEND(*cpu_list, info);
8410 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8412 CpuDefinitionInfoList *cpu_list = NULL;
8413 GSList *list;
8415 list = object_class_get_list(TYPE_ARM_CPU, false);
8416 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8417 g_slist_free(list);
8419 return cpu_list;
8422 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8423 void *opaque, int state, int secstate,
8424 int crm, int opc1, int opc2,
8425 const char *name)
8427 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8428 * add a single reginfo struct to the hash table.
8430 uint32_t *key = g_new(uint32_t, 1);
8431 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8432 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8433 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8435 r2->name = g_strdup(name);
8436 /* Reset the secure state to the specific incoming state. This is
8437 * necessary as the register may have been defined with both states.
8439 r2->secure = secstate;
8441 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8442 /* Register is banked (using both entries in array).
8443 * Overwriting fieldoffset as the array is only used to define
8444 * banked registers but later only fieldoffset is used.
8446 r2->fieldoffset = r->bank_fieldoffsets[ns];
8449 if (state == ARM_CP_STATE_AA32) {
8450 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8451 /* If the register is banked then we don't need to migrate or
8452 * reset the 32-bit instance in certain cases:
8454 * 1) If the register has both 32-bit and 64-bit instances then we
8455 * can count on the 64-bit instance taking care of the
8456 * non-secure bank.
8457 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8458 * taking care of the secure bank. This requires that separate
8459 * 32 and 64-bit definitions are provided.
8461 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8462 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8463 r2->type |= ARM_CP_ALIAS;
8465 } else if ((secstate != r->secure) && !ns) {
8466 /* The register is not banked so we only want to allow migration of
8467 * the non-secure instance.
8469 r2->type |= ARM_CP_ALIAS;
8472 if (r->state == ARM_CP_STATE_BOTH) {
8473 /* We assume it is a cp15 register if the .cp field is left unset.
8475 if (r2->cp == 0) {
8476 r2->cp = 15;
8479 #ifdef HOST_WORDS_BIGENDIAN
8480 if (r2->fieldoffset) {
8481 r2->fieldoffset += sizeof(uint32_t);
8483 #endif
8486 if (state == ARM_CP_STATE_AA64) {
8487 /* To allow abbreviation of ARMCPRegInfo
8488 * definitions, we treat cp == 0 as equivalent to
8489 * the value for "standard guest-visible sysreg".
8490 * STATE_BOTH definitions are also always "standard
8491 * sysreg" in their AArch64 view (the .cp value may
8492 * be non-zero for the benefit of the AArch32 view).
8494 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8495 r2->cp = CP_REG_ARM64_SYSREG_CP;
8497 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8498 r2->opc0, opc1, opc2);
8499 } else {
8500 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8502 if (opaque) {
8503 r2->opaque = opaque;
8505 /* reginfo passed to helpers is correct for the actual access,
8506 * and is never ARM_CP_STATE_BOTH:
8508 r2->state = state;
8509 /* Make sure reginfo passed to helpers for wildcarded regs
8510 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8512 r2->crm = crm;
8513 r2->opc1 = opc1;
8514 r2->opc2 = opc2;
8515 /* By convention, for wildcarded registers only the first
8516 * entry is used for migration; the others are marked as
8517 * ALIAS so we don't try to transfer the register
8518 * multiple times. Special registers (ie NOP/WFI) are
8519 * never migratable and not even raw-accessible.
8521 if ((r->type & ARM_CP_SPECIAL)) {
8522 r2->type |= ARM_CP_NO_RAW;
8524 if (((r->crm == CP_ANY) && crm != 0) ||
8525 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8526 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8527 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8530 /* Check that raw accesses are either forbidden or handled. Note that
8531 * we can't assert this earlier because the setup of fieldoffset for
8532 * banked registers has to be done first.
8534 if (!(r2->type & ARM_CP_NO_RAW)) {
8535 assert(!raw_accessors_invalid(r2));
8538 /* Overriding of an existing definition must be explicitly
8539 * requested.
8541 if (!(r->type & ARM_CP_OVERRIDE)) {
8542 ARMCPRegInfo *oldreg;
8543 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8544 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8545 fprintf(stderr, "Register redefined: cp=%d %d bit "
8546 "crn=%d crm=%d opc1=%d opc2=%d, "
8547 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8548 r2->crn, r2->crm, r2->opc1, r2->opc2,
8549 oldreg->name, r2->name);
8550 g_assert_not_reached();
8553 g_hash_table_insert(cpu->cp_regs, key, r2);
8557 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8558 const ARMCPRegInfo *r, void *opaque)
8560 /* Define implementations of coprocessor registers.
8561 * We store these in a hashtable because typically
8562 * there are less than 150 registers in a space which
8563 * is 16*16*16*8*8 = 262144 in size.
8564 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8565 * If a register is defined twice then the second definition is
8566 * used, so this can be used to define some generic registers and
8567 * then override them with implementation specific variations.
8568 * At least one of the original and the second definition should
8569 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8570 * against accidental use.
8572 * The state field defines whether the register is to be
8573 * visible in the AArch32 or AArch64 execution state. If the
8574 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8575 * reginfo structure for the AArch32 view, which sees the lower
8576 * 32 bits of the 64 bit register.
8578 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8579 * be wildcarded. AArch64 registers are always considered to be 64
8580 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8581 * the register, if any.
8583 int crm, opc1, opc2, state;
8584 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8585 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8586 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8587 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8588 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8589 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8590 /* 64 bit registers have only CRm and Opc1 fields */
8591 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8592 /* op0 only exists in the AArch64 encodings */
8593 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8594 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8595 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8597 * This API is only for Arm's system coprocessors (14 and 15) or
8598 * (M-profile or v7A-and-earlier only) for implementation defined
8599 * coprocessors in the range 0..7. Our decode assumes this, since
8600 * 8..13 can be used for other insns including VFP and Neon. See
8601 * valid_cp() in translate.c. Assert here that we haven't tried
8602 * to use an invalid coprocessor number.
8604 switch (r->state) {
8605 case ARM_CP_STATE_BOTH:
8606 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8607 if (r->cp == 0) {
8608 break;
8610 /* fall through */
8611 case ARM_CP_STATE_AA32:
8612 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8613 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8614 assert(r->cp >= 14 && r->cp <= 15);
8615 } else {
8616 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8618 break;
8619 case ARM_CP_STATE_AA64:
8620 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8621 break;
8622 default:
8623 g_assert_not_reached();
8625 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8626 * encodes a minimum access level for the register. We roll this
8627 * runtime check into our general permission check code, so check
8628 * here that the reginfo's specified permissions are strict enough
8629 * to encompass the generic architectural permission check.
8631 if (r->state != ARM_CP_STATE_AA32) {
8632 int mask = 0;
8633 switch (r->opc1) {
8634 case 0:
8635 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8636 mask = PL0U_R | PL1_RW;
8637 break;
8638 case 1: case 2:
8639 /* min_EL EL1 */
8640 mask = PL1_RW;
8641 break;
8642 case 3:
8643 /* min_EL EL0 */
8644 mask = PL0_RW;
8645 break;
8646 case 4:
8647 case 5:
8648 /* min_EL EL2 */
8649 mask = PL2_RW;
8650 break;
8651 case 6:
8652 /* min_EL EL3 */
8653 mask = PL3_RW;
8654 break;
8655 case 7:
8656 /* min_EL EL1, secure mode only (we don't check the latter) */
8657 mask = PL1_RW;
8658 break;
8659 default:
8660 /* broken reginfo with out-of-range opc1 */
8661 assert(false);
8662 break;
8664 /* assert our permissions are not too lax (stricter is fine) */
8665 assert((r->access & ~mask) == 0);
8668 /* Check that the register definition has enough info to handle
8669 * reads and writes if they are permitted.
8671 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8672 if (r->access & PL3_R) {
8673 assert((r->fieldoffset ||
8674 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8675 r->readfn);
8677 if (r->access & PL3_W) {
8678 assert((r->fieldoffset ||
8679 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8680 r->writefn);
8683 /* Bad type field probably means missing sentinel at end of reg list */
8684 assert(cptype_valid(r->type));
8685 for (crm = crmmin; crm <= crmmax; crm++) {
8686 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8687 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8688 for (state = ARM_CP_STATE_AA32;
8689 state <= ARM_CP_STATE_AA64; state++) {
8690 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8691 continue;
8693 if (state == ARM_CP_STATE_AA32) {
8694 /* Under AArch32 CP registers can be common
8695 * (same for secure and non-secure world) or banked.
8697 char *name;
8699 switch (r->secure) {
8700 case ARM_CP_SECSTATE_S:
8701 case ARM_CP_SECSTATE_NS:
8702 add_cpreg_to_hashtable(cpu, r, opaque, state,
8703 r->secure, crm, opc1, opc2,
8704 r->name);
8705 break;
8706 default:
8707 name = g_strdup_printf("%s_S", r->name);
8708 add_cpreg_to_hashtable(cpu, r, opaque, state,
8709 ARM_CP_SECSTATE_S,
8710 crm, opc1, opc2, name);
8711 g_free(name);
8712 add_cpreg_to_hashtable(cpu, r, opaque, state,
8713 ARM_CP_SECSTATE_NS,
8714 crm, opc1, opc2, r->name);
8715 break;
8717 } else {
8718 /* AArch64 registers get mapped to non-secure instance
8719 * of AArch32 */
8720 add_cpreg_to_hashtable(cpu, r, opaque, state,
8721 ARM_CP_SECSTATE_NS,
8722 crm, opc1, opc2, r->name);
8730 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8731 const ARMCPRegInfo *regs, void *opaque)
8733 /* Define a whole list of registers */
8734 const ARMCPRegInfo *r;
8735 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8736 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8741 * Modify ARMCPRegInfo for access from userspace.
8743 * This is a data driven modification directed by
8744 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8745 * user-space cannot alter any values and dynamic values pertaining to
8746 * execution state are hidden from user space view anyway.
8748 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8750 const ARMCPRegUserSpaceInfo *m;
8751 ARMCPRegInfo *r;
8753 for (m = mods; m->name; m++) {
8754 GPatternSpec *pat = NULL;
8755 if (m->is_glob) {
8756 pat = g_pattern_spec_new(m->name);
8758 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8759 if (pat && g_pattern_match_string(pat, r->name)) {
8760 r->type = ARM_CP_CONST;
8761 r->access = PL0U_R;
8762 r->resetvalue = 0;
8763 /* continue */
8764 } else if (strcmp(r->name, m->name) == 0) {
8765 r->type = ARM_CP_CONST;
8766 r->access = PL0U_R;
8767 r->resetvalue &= m->exported_bits;
8768 r->resetvalue |= m->fixed_bits;
8769 break;
8772 if (pat) {
8773 g_pattern_spec_free(pat);
8778 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8780 return g_hash_table_lookup(cpregs, &encoded_cp);
8783 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8784 uint64_t value)
8786 /* Helper coprocessor write function for write-ignore registers */
8789 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8791 /* Helper coprocessor write function for read-as-zero registers */
8792 return 0;
8795 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8797 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8800 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8802 /* Return true if it is not valid for us to switch to
8803 * this CPU mode (ie all the UNPREDICTABLE cases in
8804 * the ARM ARM CPSRWriteByInstr pseudocode).
8807 /* Changes to or from Hyp via MSR and CPS are illegal. */
8808 if (write_type == CPSRWriteByInstr &&
8809 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8810 mode == ARM_CPU_MODE_HYP)) {
8811 return 1;
8814 switch (mode) {
8815 case ARM_CPU_MODE_USR:
8816 return 0;
8817 case ARM_CPU_MODE_SYS:
8818 case ARM_CPU_MODE_SVC:
8819 case ARM_CPU_MODE_ABT:
8820 case ARM_CPU_MODE_UND:
8821 case ARM_CPU_MODE_IRQ:
8822 case ARM_CPU_MODE_FIQ:
8823 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8824 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8826 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8827 * and CPS are treated as illegal mode changes.
8829 if (write_type == CPSRWriteByInstr &&
8830 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8831 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8832 return 1;
8834 return 0;
8835 case ARM_CPU_MODE_HYP:
8836 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8837 case ARM_CPU_MODE_MON:
8838 return arm_current_el(env) < 3;
8839 default:
8840 return 1;
8844 uint32_t cpsr_read(CPUARMState *env)
8846 int ZF;
8847 ZF = (env->ZF == 0);
8848 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8849 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8850 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8851 | ((env->condexec_bits & 0xfc) << 8)
8852 | (env->GE << 16) | (env->daif & CPSR_AIF);
8855 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8856 CPSRWriteType write_type)
8858 uint32_t changed_daif;
8860 if (mask & CPSR_NZCV) {
8861 env->ZF = (~val) & CPSR_Z;
8862 env->NF = val;
8863 env->CF = (val >> 29) & 1;
8864 env->VF = (val << 3) & 0x80000000;
8866 if (mask & CPSR_Q)
8867 env->QF = ((val & CPSR_Q) != 0);
8868 if (mask & CPSR_T)
8869 env->thumb = ((val & CPSR_T) != 0);
8870 if (mask & CPSR_IT_0_1) {
8871 env->condexec_bits &= ~3;
8872 env->condexec_bits |= (val >> 25) & 3;
8874 if (mask & CPSR_IT_2_7) {
8875 env->condexec_bits &= 3;
8876 env->condexec_bits |= (val >> 8) & 0xfc;
8878 if (mask & CPSR_GE) {
8879 env->GE = (val >> 16) & 0xf;
8882 /* In a V7 implementation that includes the security extensions but does
8883 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8884 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8885 * bits respectively.
8887 * In a V8 implementation, it is permitted for privileged software to
8888 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8890 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8891 arm_feature(env, ARM_FEATURE_EL3) &&
8892 !arm_feature(env, ARM_FEATURE_EL2) &&
8893 !arm_is_secure(env)) {
8895 changed_daif = (env->daif ^ val) & mask;
8897 if (changed_daif & CPSR_A) {
8898 /* Check to see if we are allowed to change the masking of async
8899 * abort exceptions from a non-secure state.
8901 if (!(env->cp15.scr_el3 & SCR_AW)) {
8902 qemu_log_mask(LOG_GUEST_ERROR,
8903 "Ignoring attempt to switch CPSR_A flag from "
8904 "non-secure world with SCR.AW bit clear\n");
8905 mask &= ~CPSR_A;
8909 if (changed_daif & CPSR_F) {
8910 /* Check to see if we are allowed to change the masking of FIQ
8911 * exceptions from a non-secure state.
8913 if (!(env->cp15.scr_el3 & SCR_FW)) {
8914 qemu_log_mask(LOG_GUEST_ERROR,
8915 "Ignoring attempt to switch CPSR_F flag from "
8916 "non-secure world with SCR.FW bit clear\n");
8917 mask &= ~CPSR_F;
8920 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8921 * If this bit is set software is not allowed to mask
8922 * FIQs, but is allowed to set CPSR_F to 0.
8924 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8925 (val & CPSR_F)) {
8926 qemu_log_mask(LOG_GUEST_ERROR,
8927 "Ignoring attempt to enable CPSR_F flag "
8928 "(non-maskable FIQ [NMFI] support enabled)\n");
8929 mask &= ~CPSR_F;
8934 env->daif &= ~(CPSR_AIF & mask);
8935 env->daif |= val & CPSR_AIF & mask;
8937 if (write_type != CPSRWriteRaw &&
8938 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8939 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8940 /* Note that we can only get here in USR mode if this is a
8941 * gdb stub write; for this case we follow the architectural
8942 * behaviour for guest writes in USR mode of ignoring an attempt
8943 * to switch mode. (Those are caught by translate.c for writes
8944 * triggered by guest instructions.)
8946 mask &= ~CPSR_M;
8947 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8948 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8949 * v7, and has defined behaviour in v8:
8950 * + leave CPSR.M untouched
8951 * + allow changes to the other CPSR fields
8952 * + set PSTATE.IL
8953 * For user changes via the GDB stub, we don't set PSTATE.IL,
8954 * as this would be unnecessarily harsh for a user error.
8956 mask &= ~CPSR_M;
8957 if (write_type != CPSRWriteByGDBStub &&
8958 arm_feature(env, ARM_FEATURE_V8)) {
8959 mask |= CPSR_IL;
8960 val |= CPSR_IL;
8962 qemu_log_mask(LOG_GUEST_ERROR,
8963 "Illegal AArch32 mode switch attempt from %s to %s\n",
8964 aarch32_mode_name(env->uncached_cpsr),
8965 aarch32_mode_name(val));
8966 } else {
8967 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8968 write_type == CPSRWriteExceptionReturn ?
8969 "Exception return from AArch32" :
8970 "AArch32 mode switch from",
8971 aarch32_mode_name(env->uncached_cpsr),
8972 aarch32_mode_name(val), env->regs[15]);
8973 switch_mode(env, val & CPSR_M);
8976 mask &= ~CACHED_CPSR_BITS;
8977 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8980 /* Sign/zero extend */
8981 uint32_t HELPER(sxtb16)(uint32_t x)
8983 uint32_t res;
8984 res = (uint16_t)(int8_t)x;
8985 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8986 return res;
8989 uint32_t HELPER(uxtb16)(uint32_t x)
8991 uint32_t res;
8992 res = (uint16_t)(uint8_t)x;
8993 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8994 return res;
8997 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8999 if (den == 0)
9000 return 0;
9001 if (num == INT_MIN && den == -1)
9002 return INT_MIN;
9003 return num / den;
9006 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9008 if (den == 0)
9009 return 0;
9010 return num / den;
9013 uint32_t HELPER(rbit)(uint32_t x)
9015 return revbit32(x);
9018 #ifdef CONFIG_USER_ONLY
9020 static void switch_mode(CPUARMState *env, int mode)
9022 ARMCPU *cpu = env_archcpu(env);
9024 if (mode != ARM_CPU_MODE_USR) {
9025 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9029 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9030 uint32_t cur_el, bool secure)
9032 return 1;
9035 void aarch64_sync_64_to_32(CPUARMState *env)
9037 g_assert_not_reached();
9040 #else
9042 static void switch_mode(CPUARMState *env, int mode)
9044 int old_mode;
9045 int i;
9047 old_mode = env->uncached_cpsr & CPSR_M;
9048 if (mode == old_mode)
9049 return;
9051 if (old_mode == ARM_CPU_MODE_FIQ) {
9052 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9053 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9054 } else if (mode == ARM_CPU_MODE_FIQ) {
9055 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9056 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9059 i = bank_number(old_mode);
9060 env->banked_r13[i] = env->regs[13];
9061 env->banked_spsr[i] = env->spsr;
9063 i = bank_number(mode);
9064 env->regs[13] = env->banked_r13[i];
9065 env->spsr = env->banked_spsr[i];
9067 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9068 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9071 /* Physical Interrupt Target EL Lookup Table
9073 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9075 * The below multi-dimensional table is used for looking up the target
9076 * exception level given numerous condition criteria. Specifically, the
9077 * target EL is based on SCR and HCR routing controls as well as the
9078 * currently executing EL and secure state.
9080 * Dimensions:
9081 * target_el_table[2][2][2][2][2][4]
9082 * | | | | | +--- Current EL
9083 * | | | | +------ Non-secure(0)/Secure(1)
9084 * | | | +--------- HCR mask override
9085 * | | +------------ SCR exec state control
9086 * | +--------------- SCR mask override
9087 * +------------------ 32-bit(0)/64-bit(1) EL3
9089 * The table values are as such:
9090 * 0-3 = EL0-EL3
9091 * -1 = Cannot occur
9093 * The ARM ARM target EL table includes entries indicating that an "exception
9094 * is not taken". The two cases where this is applicable are:
9095 * 1) An exception is taken from EL3 but the SCR does not have the exception
9096 * routed to EL3.
9097 * 2) An exception is taken from EL2 but the HCR does not have the exception
9098 * routed to EL2.
9099 * In these two cases, the below table contain a target of EL1. This value is
9100 * returned as it is expected that the consumer of the table data will check
9101 * for "target EL >= current EL" to ensure the exception is not taken.
9103 * SCR HCR
9104 * 64 EA AMO From
9105 * BIT IRQ IMO Non-secure Secure
9106 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9108 static const int8_t target_el_table[2][2][2][2][2][4] = {
9109 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9110 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9111 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9112 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9113 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9114 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9115 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9116 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9117 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9118 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9119 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9120 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9121 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9122 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9123 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9124 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9128 * Determine the target EL for physical exceptions
9130 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9131 uint32_t cur_el, bool secure)
9133 CPUARMState *env = cs->env_ptr;
9134 bool rw;
9135 bool scr;
9136 bool hcr;
9137 int target_el;
9138 /* Is the highest EL AArch64? */
9139 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9140 uint64_t hcr_el2;
9142 if (arm_feature(env, ARM_FEATURE_EL3)) {
9143 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9144 } else {
9145 /* Either EL2 is the highest EL (and so the EL2 register width
9146 * is given by is64); or there is no EL2 or EL3, in which case
9147 * the value of 'rw' does not affect the table lookup anyway.
9149 rw = is64;
9152 hcr_el2 = arm_hcr_el2_eff(env);
9153 switch (excp_idx) {
9154 case EXCP_IRQ:
9155 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9156 hcr = hcr_el2 & HCR_IMO;
9157 break;
9158 case EXCP_FIQ:
9159 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9160 hcr = hcr_el2 & HCR_FMO;
9161 break;
9162 default:
9163 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9164 hcr = hcr_el2 & HCR_AMO;
9165 break;
9169 * For these purposes, TGE and AMO/IMO/FMO both force the
9170 * interrupt to EL2. Fold TGE into the bit extracted above.
9172 hcr |= (hcr_el2 & HCR_TGE) != 0;
9174 /* Perform a table-lookup for the target EL given the current state */
9175 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9177 assert(target_el > 0);
9179 return target_el;
9182 void arm_log_exception(int idx)
9184 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9185 const char *exc = NULL;
9186 static const char * const excnames[] = {
9187 [EXCP_UDEF] = "Undefined Instruction",
9188 [EXCP_SWI] = "SVC",
9189 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9190 [EXCP_DATA_ABORT] = "Data Abort",
9191 [EXCP_IRQ] = "IRQ",
9192 [EXCP_FIQ] = "FIQ",
9193 [EXCP_BKPT] = "Breakpoint",
9194 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9195 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9196 [EXCP_HVC] = "Hypervisor Call",
9197 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9198 [EXCP_SMC] = "Secure Monitor Call",
9199 [EXCP_VIRQ] = "Virtual IRQ",
9200 [EXCP_VFIQ] = "Virtual FIQ",
9201 [EXCP_SEMIHOST] = "Semihosting call",
9202 [EXCP_NOCP] = "v7M NOCP UsageFault",
9203 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9204 [EXCP_STKOF] = "v8M STKOF UsageFault",
9205 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9206 [EXCP_LSERR] = "v8M LSERR UsageFault",
9207 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9210 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9211 exc = excnames[idx];
9213 if (!exc) {
9214 exc = "unknown";
9216 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9221 * Function used to synchronize QEMU's AArch64 register set with AArch32
9222 * register set. This is necessary when switching between AArch32 and AArch64
9223 * execution state.
9225 void aarch64_sync_32_to_64(CPUARMState *env)
9227 int i;
9228 uint32_t mode = env->uncached_cpsr & CPSR_M;
9230 /* We can blanket copy R[0:7] to X[0:7] */
9231 for (i = 0; i < 8; i++) {
9232 env->xregs[i] = env->regs[i];
9236 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9237 * Otherwise, they come from the banked user regs.
9239 if (mode == ARM_CPU_MODE_FIQ) {
9240 for (i = 8; i < 13; i++) {
9241 env->xregs[i] = env->usr_regs[i - 8];
9243 } else {
9244 for (i = 8; i < 13; i++) {
9245 env->xregs[i] = env->regs[i];
9250 * Registers x13-x23 are the various mode SP and FP registers. Registers
9251 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9252 * from the mode banked register.
9254 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9255 env->xregs[13] = env->regs[13];
9256 env->xregs[14] = env->regs[14];
9257 } else {
9258 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9259 /* HYP is an exception in that it is copied from r14 */
9260 if (mode == ARM_CPU_MODE_HYP) {
9261 env->xregs[14] = env->regs[14];
9262 } else {
9263 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9267 if (mode == ARM_CPU_MODE_HYP) {
9268 env->xregs[15] = env->regs[13];
9269 } else {
9270 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9273 if (mode == ARM_CPU_MODE_IRQ) {
9274 env->xregs[16] = env->regs[14];
9275 env->xregs[17] = env->regs[13];
9276 } else {
9277 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9278 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9281 if (mode == ARM_CPU_MODE_SVC) {
9282 env->xregs[18] = env->regs[14];
9283 env->xregs[19] = env->regs[13];
9284 } else {
9285 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9286 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9289 if (mode == ARM_CPU_MODE_ABT) {
9290 env->xregs[20] = env->regs[14];
9291 env->xregs[21] = env->regs[13];
9292 } else {
9293 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9294 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9297 if (mode == ARM_CPU_MODE_UND) {
9298 env->xregs[22] = env->regs[14];
9299 env->xregs[23] = env->regs[13];
9300 } else {
9301 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9302 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9306 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9307 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9308 * FIQ bank for r8-r14.
9310 if (mode == ARM_CPU_MODE_FIQ) {
9311 for (i = 24; i < 31; i++) {
9312 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9314 } else {
9315 for (i = 24; i < 29; i++) {
9316 env->xregs[i] = env->fiq_regs[i - 24];
9318 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9319 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9322 env->pc = env->regs[15];
9326 * Function used to synchronize QEMU's AArch32 register set with AArch64
9327 * register set. This is necessary when switching between AArch32 and AArch64
9328 * execution state.
9330 void aarch64_sync_64_to_32(CPUARMState *env)
9332 int i;
9333 uint32_t mode = env->uncached_cpsr & CPSR_M;
9335 /* We can blanket copy X[0:7] to R[0:7] */
9336 for (i = 0; i < 8; i++) {
9337 env->regs[i] = env->xregs[i];
9341 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9342 * Otherwise, we copy x8-x12 into the banked user regs.
9344 if (mode == ARM_CPU_MODE_FIQ) {
9345 for (i = 8; i < 13; i++) {
9346 env->usr_regs[i - 8] = env->xregs[i];
9348 } else {
9349 for (i = 8; i < 13; i++) {
9350 env->regs[i] = env->xregs[i];
9355 * Registers r13 & r14 depend on the current mode.
9356 * If we are in a given mode, we copy the corresponding x registers to r13
9357 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9358 * for the mode.
9360 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9361 env->regs[13] = env->xregs[13];
9362 env->regs[14] = env->xregs[14];
9363 } else {
9364 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9367 * HYP is an exception in that it does not have its own banked r14 but
9368 * shares the USR r14
9370 if (mode == ARM_CPU_MODE_HYP) {
9371 env->regs[14] = env->xregs[14];
9372 } else {
9373 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9377 if (mode == ARM_CPU_MODE_HYP) {
9378 env->regs[13] = env->xregs[15];
9379 } else {
9380 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9383 if (mode == ARM_CPU_MODE_IRQ) {
9384 env->regs[14] = env->xregs[16];
9385 env->regs[13] = env->xregs[17];
9386 } else {
9387 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9388 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9391 if (mode == ARM_CPU_MODE_SVC) {
9392 env->regs[14] = env->xregs[18];
9393 env->regs[13] = env->xregs[19];
9394 } else {
9395 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9396 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9399 if (mode == ARM_CPU_MODE_ABT) {
9400 env->regs[14] = env->xregs[20];
9401 env->regs[13] = env->xregs[21];
9402 } else {
9403 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9404 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9407 if (mode == ARM_CPU_MODE_UND) {
9408 env->regs[14] = env->xregs[22];
9409 env->regs[13] = env->xregs[23];
9410 } else {
9411 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9412 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9415 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9416 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9417 * FIQ bank for r8-r14.
9419 if (mode == ARM_CPU_MODE_FIQ) {
9420 for (i = 24; i < 31; i++) {
9421 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9423 } else {
9424 for (i = 24; i < 29; i++) {
9425 env->fiq_regs[i - 24] = env->xregs[i];
9427 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9428 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9431 env->regs[15] = env->pc;
9434 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9435 uint32_t mask, uint32_t offset,
9436 uint32_t newpc)
9438 int new_el;
9440 /* Change the CPU state so as to actually take the exception. */
9441 switch_mode(env, new_mode);
9444 * For exceptions taken to AArch32 we must clear the SS bit in both
9445 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9447 env->pstate &= ~PSTATE_SS;
9448 env->spsr = cpsr_read(env);
9449 /* Clear IT bits. */
9450 env->condexec_bits = 0;
9451 /* Switch to the new mode, and to the correct instruction set. */
9452 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9454 /* This must be after mode switching. */
9455 new_el = arm_current_el(env);
9457 /* Set new mode endianness */
9458 env->uncached_cpsr &= ~CPSR_E;
9459 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9460 env->uncached_cpsr |= CPSR_E;
9462 /* J and IL must always be cleared for exception entry */
9463 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9464 env->daif |= mask;
9466 if (new_mode == ARM_CPU_MODE_HYP) {
9467 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9468 env->elr_el[2] = env->regs[15];
9469 } else {
9470 /* CPSR.PAN is normally preserved preserved unless... */
9471 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9472 switch (new_el) {
9473 case 3:
9474 if (!arm_is_secure_below_el3(env)) {
9475 /* ... the target is EL3, from non-secure state. */
9476 env->uncached_cpsr &= ~CPSR_PAN;
9477 break;
9479 /* ... the target is EL3, from secure state ... */
9480 /* fall through */
9481 case 1:
9482 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9483 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9484 env->uncached_cpsr |= CPSR_PAN;
9486 break;
9490 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9491 * and we should just guard the thumb mode on V4
9493 if (arm_feature(env, ARM_FEATURE_V4T)) {
9494 env->thumb =
9495 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9497 env->regs[14] = env->regs[15] + offset;
9499 env->regs[15] = newpc;
9500 arm_rebuild_hflags(env);
9503 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9506 * Handle exception entry to Hyp mode; this is sufficiently
9507 * different to entry to other AArch32 modes that we handle it
9508 * separately here.
9510 * The vector table entry used is always the 0x14 Hyp mode entry point,
9511 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9512 * The offset applied to the preferred return address is always zero
9513 * (see DDI0487C.a section G1.12.3).
9514 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9516 uint32_t addr, mask;
9517 ARMCPU *cpu = ARM_CPU(cs);
9518 CPUARMState *env = &cpu->env;
9520 switch (cs->exception_index) {
9521 case EXCP_UDEF:
9522 addr = 0x04;
9523 break;
9524 case EXCP_SWI:
9525 addr = 0x14;
9526 break;
9527 case EXCP_BKPT:
9528 /* Fall through to prefetch abort. */
9529 case EXCP_PREFETCH_ABORT:
9530 env->cp15.ifar_s = env->exception.vaddress;
9531 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9532 (uint32_t)env->exception.vaddress);
9533 addr = 0x0c;
9534 break;
9535 case EXCP_DATA_ABORT:
9536 env->cp15.dfar_s = env->exception.vaddress;
9537 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9538 (uint32_t)env->exception.vaddress);
9539 addr = 0x10;
9540 break;
9541 case EXCP_IRQ:
9542 addr = 0x18;
9543 break;
9544 case EXCP_FIQ:
9545 addr = 0x1c;
9546 break;
9547 case EXCP_HVC:
9548 addr = 0x08;
9549 break;
9550 case EXCP_HYP_TRAP:
9551 addr = 0x14;
9552 break;
9553 default:
9554 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9557 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9558 if (!arm_feature(env, ARM_FEATURE_V8)) {
9560 * QEMU syndrome values are v8-style. v7 has the IL bit
9561 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9562 * If this is a v7 CPU, squash the IL bit in those cases.
9564 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9565 (cs->exception_index == EXCP_DATA_ABORT &&
9566 !(env->exception.syndrome & ARM_EL_ISV)) ||
9567 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9568 env->exception.syndrome &= ~ARM_EL_IL;
9571 env->cp15.esr_el[2] = env->exception.syndrome;
9574 if (arm_current_el(env) != 2 && addr < 0x14) {
9575 addr = 0x14;
9578 mask = 0;
9579 if (!(env->cp15.scr_el3 & SCR_EA)) {
9580 mask |= CPSR_A;
9582 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9583 mask |= CPSR_I;
9585 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9586 mask |= CPSR_F;
9589 addr += env->cp15.hvbar;
9591 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9594 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9596 ARMCPU *cpu = ARM_CPU(cs);
9597 CPUARMState *env = &cpu->env;
9598 uint32_t addr;
9599 uint32_t mask;
9600 int new_mode;
9601 uint32_t offset;
9602 uint32_t moe;
9604 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9605 switch (syn_get_ec(env->exception.syndrome)) {
9606 case EC_BREAKPOINT:
9607 case EC_BREAKPOINT_SAME_EL:
9608 moe = 1;
9609 break;
9610 case EC_WATCHPOINT:
9611 case EC_WATCHPOINT_SAME_EL:
9612 moe = 10;
9613 break;
9614 case EC_AA32_BKPT:
9615 moe = 3;
9616 break;
9617 case EC_VECTORCATCH:
9618 moe = 5;
9619 break;
9620 default:
9621 moe = 0;
9622 break;
9625 if (moe) {
9626 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9629 if (env->exception.target_el == 2) {
9630 arm_cpu_do_interrupt_aarch32_hyp(cs);
9631 return;
9634 switch (cs->exception_index) {
9635 case EXCP_UDEF:
9636 new_mode = ARM_CPU_MODE_UND;
9637 addr = 0x04;
9638 mask = CPSR_I;
9639 if (env->thumb)
9640 offset = 2;
9641 else
9642 offset = 4;
9643 break;
9644 case EXCP_SWI:
9645 new_mode = ARM_CPU_MODE_SVC;
9646 addr = 0x08;
9647 mask = CPSR_I;
9648 /* The PC already points to the next instruction. */
9649 offset = 0;
9650 break;
9651 case EXCP_BKPT:
9652 /* Fall through to prefetch abort. */
9653 case EXCP_PREFETCH_ABORT:
9654 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9655 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9656 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9657 env->exception.fsr, (uint32_t)env->exception.vaddress);
9658 new_mode = ARM_CPU_MODE_ABT;
9659 addr = 0x0c;
9660 mask = CPSR_A | CPSR_I;
9661 offset = 4;
9662 break;
9663 case EXCP_DATA_ABORT:
9664 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9665 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9666 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9667 env->exception.fsr,
9668 (uint32_t)env->exception.vaddress);
9669 new_mode = ARM_CPU_MODE_ABT;
9670 addr = 0x10;
9671 mask = CPSR_A | CPSR_I;
9672 offset = 8;
9673 break;
9674 case EXCP_IRQ:
9675 new_mode = ARM_CPU_MODE_IRQ;
9676 addr = 0x18;
9677 /* Disable IRQ and imprecise data aborts. */
9678 mask = CPSR_A | CPSR_I;
9679 offset = 4;
9680 if (env->cp15.scr_el3 & SCR_IRQ) {
9681 /* IRQ routed to monitor mode */
9682 new_mode = ARM_CPU_MODE_MON;
9683 mask |= CPSR_F;
9685 break;
9686 case EXCP_FIQ:
9687 new_mode = ARM_CPU_MODE_FIQ;
9688 addr = 0x1c;
9689 /* Disable FIQ, IRQ and imprecise data aborts. */
9690 mask = CPSR_A | CPSR_I | CPSR_F;
9691 if (env->cp15.scr_el3 & SCR_FIQ) {
9692 /* FIQ routed to monitor mode */
9693 new_mode = ARM_CPU_MODE_MON;
9695 offset = 4;
9696 break;
9697 case EXCP_VIRQ:
9698 new_mode = ARM_CPU_MODE_IRQ;
9699 addr = 0x18;
9700 /* Disable IRQ and imprecise data aborts. */
9701 mask = CPSR_A | CPSR_I;
9702 offset = 4;
9703 break;
9704 case EXCP_VFIQ:
9705 new_mode = ARM_CPU_MODE_FIQ;
9706 addr = 0x1c;
9707 /* Disable FIQ, IRQ and imprecise data aborts. */
9708 mask = CPSR_A | CPSR_I | CPSR_F;
9709 offset = 4;
9710 break;
9711 case EXCP_SMC:
9712 new_mode = ARM_CPU_MODE_MON;
9713 addr = 0x08;
9714 mask = CPSR_A | CPSR_I | CPSR_F;
9715 offset = 0;
9716 break;
9717 default:
9718 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9719 return; /* Never happens. Keep compiler happy. */
9722 if (new_mode == ARM_CPU_MODE_MON) {
9723 addr += env->cp15.mvbar;
9724 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9725 /* High vectors. When enabled, base address cannot be remapped. */
9726 addr += 0xffff0000;
9727 } else {
9728 /* ARM v7 architectures provide a vector base address register to remap
9729 * the interrupt vector table.
9730 * This register is only followed in non-monitor mode, and is banked.
9731 * Note: only bits 31:5 are valid.
9733 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9736 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9737 env->cp15.scr_el3 &= ~SCR_NS;
9740 take_aarch32_exception(env, new_mode, mask, offset, addr);
9743 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9746 * Return the register number of the AArch64 view of the AArch32
9747 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9748 * be that of the AArch32 mode the exception came from.
9750 int mode = env->uncached_cpsr & CPSR_M;
9752 switch (aarch32_reg) {
9753 case 0 ... 7:
9754 return aarch32_reg;
9755 case 8 ... 12:
9756 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9757 case 13:
9758 switch (mode) {
9759 case ARM_CPU_MODE_USR:
9760 case ARM_CPU_MODE_SYS:
9761 return 13;
9762 case ARM_CPU_MODE_HYP:
9763 return 15;
9764 case ARM_CPU_MODE_IRQ:
9765 return 17;
9766 case ARM_CPU_MODE_SVC:
9767 return 19;
9768 case ARM_CPU_MODE_ABT:
9769 return 21;
9770 case ARM_CPU_MODE_UND:
9771 return 23;
9772 case ARM_CPU_MODE_FIQ:
9773 return 29;
9774 default:
9775 g_assert_not_reached();
9777 case 14:
9778 switch (mode) {
9779 case ARM_CPU_MODE_USR:
9780 case ARM_CPU_MODE_SYS:
9781 case ARM_CPU_MODE_HYP:
9782 return 14;
9783 case ARM_CPU_MODE_IRQ:
9784 return 16;
9785 case ARM_CPU_MODE_SVC:
9786 return 18;
9787 case ARM_CPU_MODE_ABT:
9788 return 20;
9789 case ARM_CPU_MODE_UND:
9790 return 22;
9791 case ARM_CPU_MODE_FIQ:
9792 return 30;
9793 default:
9794 g_assert_not_reached();
9796 case 15:
9797 return 31;
9798 default:
9799 g_assert_not_reached();
9803 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9805 uint32_t ret = cpsr_read(env);
9807 /* Move DIT to the correct location for SPSR_ELx */
9808 if (ret & CPSR_DIT) {
9809 ret &= ~CPSR_DIT;
9810 ret |= PSTATE_DIT;
9812 /* Merge PSTATE.SS into SPSR_ELx */
9813 ret |= env->pstate & PSTATE_SS;
9815 return ret;
9818 /* Handle exception entry to a target EL which is using AArch64 */
9819 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9821 ARMCPU *cpu = ARM_CPU(cs);
9822 CPUARMState *env = &cpu->env;
9823 unsigned int new_el = env->exception.target_el;
9824 target_ulong addr = env->cp15.vbar_el[new_el];
9825 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9826 unsigned int old_mode;
9827 unsigned int cur_el = arm_current_el(env);
9828 int rt;
9831 * Note that new_el can never be 0. If cur_el is 0, then
9832 * el0_a64 is is_a64(), else el0_a64 is ignored.
9834 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9836 if (cur_el < new_el) {
9837 /* Entry vector offset depends on whether the implemented EL
9838 * immediately lower than the target level is using AArch32 or AArch64
9840 bool is_aa64;
9841 uint64_t hcr;
9843 switch (new_el) {
9844 case 3:
9845 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9846 break;
9847 case 2:
9848 hcr = arm_hcr_el2_eff(env);
9849 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9850 is_aa64 = (hcr & HCR_RW) != 0;
9851 break;
9853 /* fall through */
9854 case 1:
9855 is_aa64 = is_a64(env);
9856 break;
9857 default:
9858 g_assert_not_reached();
9861 if (is_aa64) {
9862 addr += 0x400;
9863 } else {
9864 addr += 0x600;
9866 } else if (pstate_read(env) & PSTATE_SP) {
9867 addr += 0x200;
9870 switch (cs->exception_index) {
9871 case EXCP_PREFETCH_ABORT:
9872 case EXCP_DATA_ABORT:
9873 env->cp15.far_el[new_el] = env->exception.vaddress;
9874 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9875 env->cp15.far_el[new_el]);
9876 /* fall through */
9877 case EXCP_BKPT:
9878 case EXCP_UDEF:
9879 case EXCP_SWI:
9880 case EXCP_HVC:
9881 case EXCP_HYP_TRAP:
9882 case EXCP_SMC:
9883 switch (syn_get_ec(env->exception.syndrome)) {
9884 case EC_ADVSIMDFPACCESSTRAP:
9886 * QEMU internal FP/SIMD syndromes from AArch32 include the
9887 * TA and coproc fields which are only exposed if the exception
9888 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9889 * AArch64 format syndrome.
9891 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9892 break;
9893 case EC_CP14RTTRAP:
9894 case EC_CP15RTTRAP:
9895 case EC_CP14DTTRAP:
9897 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9898 * the raw register field from the insn; when taking this to
9899 * AArch64 we must convert it to the AArch64 view of the register
9900 * number. Notice that we read a 4-bit AArch32 register number and
9901 * write back a 5-bit AArch64 one.
9903 rt = extract32(env->exception.syndrome, 5, 4);
9904 rt = aarch64_regnum(env, rt);
9905 env->exception.syndrome = deposit32(env->exception.syndrome,
9906 5, 5, rt);
9907 break;
9908 case EC_CP15RRTTRAP:
9909 case EC_CP14RRTTRAP:
9910 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9911 rt = extract32(env->exception.syndrome, 5, 4);
9912 rt = aarch64_regnum(env, rt);
9913 env->exception.syndrome = deposit32(env->exception.syndrome,
9914 5, 5, rt);
9915 rt = extract32(env->exception.syndrome, 10, 4);
9916 rt = aarch64_regnum(env, rt);
9917 env->exception.syndrome = deposit32(env->exception.syndrome,
9918 10, 5, rt);
9919 break;
9921 env->cp15.esr_el[new_el] = env->exception.syndrome;
9922 break;
9923 case EXCP_IRQ:
9924 case EXCP_VIRQ:
9925 addr += 0x80;
9926 break;
9927 case EXCP_FIQ:
9928 case EXCP_VFIQ:
9929 addr += 0x100;
9930 break;
9931 default:
9932 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9935 if (is_a64(env)) {
9936 old_mode = pstate_read(env);
9937 aarch64_save_sp(env, arm_current_el(env));
9938 env->elr_el[new_el] = env->pc;
9939 } else {
9940 old_mode = cpsr_read_for_spsr_elx(env);
9941 env->elr_el[new_el] = env->regs[15];
9943 aarch64_sync_32_to_64(env);
9945 env->condexec_bits = 0;
9947 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9949 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9950 env->elr_el[new_el]);
9952 if (cpu_isar_feature(aa64_pan, cpu)) {
9953 /* The value of PSTATE.PAN is normally preserved, except when ... */
9954 new_mode |= old_mode & PSTATE_PAN;
9955 switch (new_el) {
9956 case 2:
9957 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9958 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9959 != (HCR_E2H | HCR_TGE)) {
9960 break;
9962 /* fall through */
9963 case 1:
9964 /* ... the target is EL1 ... */
9965 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9966 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9967 new_mode |= PSTATE_PAN;
9969 break;
9972 if (cpu_isar_feature(aa64_mte, cpu)) {
9973 new_mode |= PSTATE_TCO;
9976 pstate_write(env, PSTATE_DAIF | new_mode);
9977 env->aarch64 = 1;
9978 aarch64_restore_sp(env, new_el);
9979 helper_rebuild_hflags_a64(env, new_el);
9981 env->pc = addr;
9983 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9984 new_el, env->pc, pstate_read(env));
9988 * Do semihosting call and set the appropriate return value. All the
9989 * permission and validity checks have been done at translate time.
9991 * We only see semihosting exceptions in TCG only as they are not
9992 * trapped to the hypervisor in KVM.
9994 #ifdef CONFIG_TCG
9995 static void handle_semihosting(CPUState *cs)
9997 ARMCPU *cpu = ARM_CPU(cs);
9998 CPUARMState *env = &cpu->env;
10000 if (is_a64(env)) {
10001 qemu_log_mask(CPU_LOG_INT,
10002 "...handling as semihosting call 0x%" PRIx64 "\n",
10003 env->xregs[0]);
10004 env->xregs[0] = do_common_semihosting(cs);
10005 env->pc += 4;
10006 } else {
10007 qemu_log_mask(CPU_LOG_INT,
10008 "...handling as semihosting call 0x%x\n",
10009 env->regs[0]);
10010 env->regs[0] = do_common_semihosting(cs);
10011 env->regs[15] += env->thumb ? 2 : 4;
10014 #endif
10016 /* Handle a CPU exception for A and R profile CPUs.
10017 * Do any appropriate logging, handle PSCI calls, and then hand off
10018 * to the AArch64-entry or AArch32-entry function depending on the
10019 * target exception level's register width.
10021 * Note: this is used for both TCG (as the do_interrupt tcg op),
10022 * and KVM to re-inject guest debug exceptions, and to
10023 * inject a Synchronous-External-Abort.
10025 void arm_cpu_do_interrupt(CPUState *cs)
10027 ARMCPU *cpu = ARM_CPU(cs);
10028 CPUARMState *env = &cpu->env;
10029 unsigned int new_el = env->exception.target_el;
10031 assert(!arm_feature(env, ARM_FEATURE_M));
10033 arm_log_exception(cs->exception_index);
10034 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10035 new_el);
10036 if (qemu_loglevel_mask(CPU_LOG_INT)
10037 && !excp_is_internal(cs->exception_index)) {
10038 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10039 syn_get_ec(env->exception.syndrome),
10040 env->exception.syndrome);
10043 if (arm_is_psci_call(cpu, cs->exception_index)) {
10044 arm_handle_psci_call(cpu);
10045 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10046 return;
10050 * Semihosting semantics depend on the register width of the code
10051 * that caused the exception, not the target exception level, so
10052 * must be handled here.
10054 #ifdef CONFIG_TCG
10055 if (cs->exception_index == EXCP_SEMIHOST) {
10056 handle_semihosting(cs);
10057 return;
10059 #endif
10061 /* Hooks may change global state so BQL should be held, also the
10062 * BQL needs to be held for any modification of
10063 * cs->interrupt_request.
10065 g_assert(qemu_mutex_iothread_locked());
10067 arm_call_pre_el_change_hook(cpu);
10069 assert(!excp_is_internal(cs->exception_index));
10070 if (arm_el_is_aa64(env, new_el)) {
10071 arm_cpu_do_interrupt_aarch64(cs);
10072 } else {
10073 arm_cpu_do_interrupt_aarch32(cs);
10076 arm_call_el_change_hook(cpu);
10078 if (!kvm_enabled()) {
10079 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10082 #endif /* !CONFIG_USER_ONLY */
10084 uint64_t arm_sctlr(CPUARMState *env, int el)
10086 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10087 if (el == 0) {
10088 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10089 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10090 ? 2 : 1;
10092 return env->cp15.sctlr_el[el];
10095 /* Return the SCTLR value which controls this address translation regime */
10096 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10098 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10101 #ifndef CONFIG_USER_ONLY
10103 /* Return true if the specified stage of address translation is disabled */
10104 static inline bool regime_translation_disabled(CPUARMState *env,
10105 ARMMMUIdx mmu_idx)
10107 uint64_t hcr_el2;
10109 if (arm_feature(env, ARM_FEATURE_M)) {
10110 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10111 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10112 case R_V7M_MPU_CTRL_ENABLE_MASK:
10113 /* Enabled, but not for HardFault and NMI */
10114 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10115 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10116 /* Enabled for all cases */
10117 return false;
10118 case 0:
10119 default:
10120 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10121 * we warned about that in armv7m_nvic.c when the guest set it.
10123 return true;
10127 hcr_el2 = arm_hcr_el2_eff(env);
10129 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10130 /* HCR.DC means HCR.VM behaves as 1 */
10131 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10134 if (hcr_el2 & HCR_TGE) {
10135 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10136 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10137 return true;
10141 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10142 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10143 return true;
10146 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10149 static inline bool regime_translation_big_endian(CPUARMState *env,
10150 ARMMMUIdx mmu_idx)
10152 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10155 /* Return the TTBR associated with this translation regime */
10156 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10157 int ttbrn)
10159 if (mmu_idx == ARMMMUIdx_Stage2) {
10160 return env->cp15.vttbr_el2;
10162 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10163 return env->cp15.vsttbr_el2;
10165 if (ttbrn == 0) {
10166 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10167 } else {
10168 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10172 #endif /* !CONFIG_USER_ONLY */
10174 /* Convert a possible stage1+2 MMU index into the appropriate
10175 * stage 1 MMU index
10177 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10179 switch (mmu_idx) {
10180 case ARMMMUIdx_SE10_0:
10181 return ARMMMUIdx_Stage1_SE0;
10182 case ARMMMUIdx_SE10_1:
10183 return ARMMMUIdx_Stage1_SE1;
10184 case ARMMMUIdx_SE10_1_PAN:
10185 return ARMMMUIdx_Stage1_SE1_PAN;
10186 case ARMMMUIdx_E10_0:
10187 return ARMMMUIdx_Stage1_E0;
10188 case ARMMMUIdx_E10_1:
10189 return ARMMMUIdx_Stage1_E1;
10190 case ARMMMUIdx_E10_1_PAN:
10191 return ARMMMUIdx_Stage1_E1_PAN;
10192 default:
10193 return mmu_idx;
10197 /* Return true if the translation regime is using LPAE format page tables */
10198 static inline bool regime_using_lpae_format(CPUARMState *env,
10199 ARMMMUIdx mmu_idx)
10201 int el = regime_el(env, mmu_idx);
10202 if (el == 2 || arm_el_is_aa64(env, el)) {
10203 return true;
10205 if (arm_feature(env, ARM_FEATURE_LPAE)
10206 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10207 return true;
10209 return false;
10212 /* Returns true if the stage 1 translation regime is using LPAE format page
10213 * tables. Used when raising alignment exceptions, whose FSR changes depending
10214 * on whether the long or short descriptor format is in use. */
10215 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10217 mmu_idx = stage_1_mmu_idx(mmu_idx);
10219 return regime_using_lpae_format(env, mmu_idx);
10222 #ifndef CONFIG_USER_ONLY
10223 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10225 switch (mmu_idx) {
10226 case ARMMMUIdx_SE10_0:
10227 case ARMMMUIdx_E20_0:
10228 case ARMMMUIdx_SE20_0:
10229 case ARMMMUIdx_Stage1_E0:
10230 case ARMMMUIdx_Stage1_SE0:
10231 case ARMMMUIdx_MUser:
10232 case ARMMMUIdx_MSUser:
10233 case ARMMMUIdx_MUserNegPri:
10234 case ARMMMUIdx_MSUserNegPri:
10235 return true;
10236 default:
10237 return false;
10238 case ARMMMUIdx_E10_0:
10239 case ARMMMUIdx_E10_1:
10240 case ARMMMUIdx_E10_1_PAN:
10241 g_assert_not_reached();
10245 /* Translate section/page access permissions to page
10246 * R/W protection flags
10248 * @env: CPUARMState
10249 * @mmu_idx: MMU index indicating required translation regime
10250 * @ap: The 3-bit access permissions (AP[2:0])
10251 * @domain_prot: The 2-bit domain access permissions
10253 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10254 int ap, int domain_prot)
10256 bool is_user = regime_is_user(env, mmu_idx);
10258 if (domain_prot == 3) {
10259 return PAGE_READ | PAGE_WRITE;
10262 switch (ap) {
10263 case 0:
10264 if (arm_feature(env, ARM_FEATURE_V7)) {
10265 return 0;
10267 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10268 case SCTLR_S:
10269 return is_user ? 0 : PAGE_READ;
10270 case SCTLR_R:
10271 return PAGE_READ;
10272 default:
10273 return 0;
10275 case 1:
10276 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10277 case 2:
10278 if (is_user) {
10279 return PAGE_READ;
10280 } else {
10281 return PAGE_READ | PAGE_WRITE;
10283 case 3:
10284 return PAGE_READ | PAGE_WRITE;
10285 case 4: /* Reserved. */
10286 return 0;
10287 case 5:
10288 return is_user ? 0 : PAGE_READ;
10289 case 6:
10290 return PAGE_READ;
10291 case 7:
10292 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10293 return 0;
10295 return PAGE_READ;
10296 default:
10297 g_assert_not_reached();
10301 /* Translate section/page access permissions to page
10302 * R/W protection flags.
10304 * @ap: The 2-bit simple AP (AP[2:1])
10305 * @is_user: TRUE if accessing from PL0
10307 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10309 switch (ap) {
10310 case 0:
10311 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10312 case 1:
10313 return PAGE_READ | PAGE_WRITE;
10314 case 2:
10315 return is_user ? 0 : PAGE_READ;
10316 case 3:
10317 return PAGE_READ;
10318 default:
10319 g_assert_not_reached();
10323 static inline int
10324 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10326 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10329 /* Translate S2 section/page access permissions to protection flags
10331 * @env: CPUARMState
10332 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10333 * @xn: XN (execute-never) bits
10334 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10336 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10338 int prot = 0;
10340 if (s2ap & 1) {
10341 prot |= PAGE_READ;
10343 if (s2ap & 2) {
10344 prot |= PAGE_WRITE;
10347 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10348 switch (xn) {
10349 case 0:
10350 prot |= PAGE_EXEC;
10351 break;
10352 case 1:
10353 if (s1_is_el0) {
10354 prot |= PAGE_EXEC;
10356 break;
10357 case 2:
10358 break;
10359 case 3:
10360 if (!s1_is_el0) {
10361 prot |= PAGE_EXEC;
10363 break;
10364 default:
10365 g_assert_not_reached();
10367 } else {
10368 if (!extract32(xn, 1, 1)) {
10369 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10370 prot |= PAGE_EXEC;
10374 return prot;
10377 /* Translate section/page access permissions to protection flags
10379 * @env: CPUARMState
10380 * @mmu_idx: MMU index indicating required translation regime
10381 * @is_aa64: TRUE if AArch64
10382 * @ap: The 2-bit simple AP (AP[2:1])
10383 * @ns: NS (non-secure) bit
10384 * @xn: XN (execute-never) bit
10385 * @pxn: PXN (privileged execute-never) bit
10387 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10388 int ap, int ns, int xn, int pxn)
10390 bool is_user = regime_is_user(env, mmu_idx);
10391 int prot_rw, user_rw;
10392 bool have_wxn;
10393 int wxn = 0;
10395 assert(mmu_idx != ARMMMUIdx_Stage2);
10396 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10398 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10399 if (is_user) {
10400 prot_rw = user_rw;
10401 } else {
10402 if (user_rw && regime_is_pan(env, mmu_idx)) {
10403 /* PAN forbids data accesses but doesn't affect insn fetch */
10404 prot_rw = 0;
10405 } else {
10406 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10410 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10411 return prot_rw;
10414 /* TODO have_wxn should be replaced with
10415 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10416 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10417 * compatible processors have EL2, which is required for [U]WXN.
10419 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10421 if (have_wxn) {
10422 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10425 if (is_aa64) {
10426 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10427 xn = pxn || (user_rw & PAGE_WRITE);
10429 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10430 switch (regime_el(env, mmu_idx)) {
10431 case 1:
10432 case 3:
10433 if (is_user) {
10434 xn = xn || !(user_rw & PAGE_READ);
10435 } else {
10436 int uwxn = 0;
10437 if (have_wxn) {
10438 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10440 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10441 (uwxn && (user_rw & PAGE_WRITE));
10443 break;
10444 case 2:
10445 break;
10447 } else {
10448 xn = wxn = 0;
10451 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10452 return prot_rw;
10454 return prot_rw | PAGE_EXEC;
10457 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10458 uint32_t *table, uint32_t address)
10460 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10461 TCR *tcr = regime_tcr(env, mmu_idx);
10463 if (address & tcr->mask) {
10464 if (tcr->raw_tcr & TTBCR_PD1) {
10465 /* Translation table walk disabled for TTBR1 */
10466 return false;
10468 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10469 } else {
10470 if (tcr->raw_tcr & TTBCR_PD0) {
10471 /* Translation table walk disabled for TTBR0 */
10472 return false;
10474 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10476 *table |= (address >> 18) & 0x3ffc;
10477 return true;
10480 /* Translate a S1 pagetable walk through S2 if needed. */
10481 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10482 hwaddr addr, bool *is_secure,
10483 ARMMMUFaultInfo *fi)
10485 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10486 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10487 target_ulong s2size;
10488 hwaddr s2pa;
10489 int s2prot;
10490 int ret;
10491 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10492 : ARMMMUIdx_Stage2;
10493 ARMCacheAttrs cacheattrs = {};
10494 MemTxAttrs txattrs = {};
10496 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10497 &s2pa, &txattrs, &s2prot, &s2size, fi,
10498 &cacheattrs);
10499 if (ret) {
10500 assert(fi->type != ARMFault_None);
10501 fi->s2addr = addr;
10502 fi->stage2 = true;
10503 fi->s1ptw = true;
10504 fi->s1ns = !*is_secure;
10505 return ~0;
10507 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10508 (cacheattrs.attrs & 0xf0) == 0) {
10510 * PTW set and S1 walk touched S2 Device memory:
10511 * generate Permission fault.
10513 fi->type = ARMFault_Permission;
10514 fi->s2addr = addr;
10515 fi->stage2 = true;
10516 fi->s1ptw = true;
10517 fi->s1ns = !*is_secure;
10518 return ~0;
10521 if (arm_is_secure_below_el3(env)) {
10522 /* Check if page table walk is to secure or non-secure PA space. */
10523 if (*is_secure) {
10524 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10525 } else {
10526 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10528 } else {
10529 assert(!*is_secure);
10532 addr = s2pa;
10534 return addr;
10537 /* All loads done in the course of a page table walk go through here. */
10538 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10539 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10541 ARMCPU *cpu = ARM_CPU(cs);
10542 CPUARMState *env = &cpu->env;
10543 MemTxAttrs attrs = {};
10544 MemTxResult result = MEMTX_OK;
10545 AddressSpace *as;
10546 uint32_t data;
10548 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10549 attrs.secure = is_secure;
10550 as = arm_addressspace(cs, attrs);
10551 if (fi->s1ptw) {
10552 return 0;
10554 if (regime_translation_big_endian(env, mmu_idx)) {
10555 data = address_space_ldl_be(as, addr, attrs, &result);
10556 } else {
10557 data = address_space_ldl_le(as, addr, attrs, &result);
10559 if (result == MEMTX_OK) {
10560 return data;
10562 fi->type = ARMFault_SyncExternalOnWalk;
10563 fi->ea = arm_extabort_type(result);
10564 return 0;
10567 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10568 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10570 ARMCPU *cpu = ARM_CPU(cs);
10571 CPUARMState *env = &cpu->env;
10572 MemTxAttrs attrs = {};
10573 MemTxResult result = MEMTX_OK;
10574 AddressSpace *as;
10575 uint64_t data;
10577 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10578 attrs.secure = is_secure;
10579 as = arm_addressspace(cs, attrs);
10580 if (fi->s1ptw) {
10581 return 0;
10583 if (regime_translation_big_endian(env, mmu_idx)) {
10584 data = address_space_ldq_be(as, addr, attrs, &result);
10585 } else {
10586 data = address_space_ldq_le(as, addr, attrs, &result);
10588 if (result == MEMTX_OK) {
10589 return data;
10591 fi->type = ARMFault_SyncExternalOnWalk;
10592 fi->ea = arm_extabort_type(result);
10593 return 0;
10596 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10597 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10598 hwaddr *phys_ptr, int *prot,
10599 target_ulong *page_size,
10600 ARMMMUFaultInfo *fi)
10602 CPUState *cs = env_cpu(env);
10603 int level = 1;
10604 uint32_t table;
10605 uint32_t desc;
10606 int type;
10607 int ap;
10608 int domain = 0;
10609 int domain_prot;
10610 hwaddr phys_addr;
10611 uint32_t dacr;
10613 /* Pagetable walk. */
10614 /* Lookup l1 descriptor. */
10615 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10616 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10617 fi->type = ARMFault_Translation;
10618 goto do_fault;
10620 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10621 mmu_idx, fi);
10622 if (fi->type != ARMFault_None) {
10623 goto do_fault;
10625 type = (desc & 3);
10626 domain = (desc >> 5) & 0x0f;
10627 if (regime_el(env, mmu_idx) == 1) {
10628 dacr = env->cp15.dacr_ns;
10629 } else {
10630 dacr = env->cp15.dacr_s;
10632 domain_prot = (dacr >> (domain * 2)) & 3;
10633 if (type == 0) {
10634 /* Section translation fault. */
10635 fi->type = ARMFault_Translation;
10636 goto do_fault;
10638 if (type != 2) {
10639 level = 2;
10641 if (domain_prot == 0 || domain_prot == 2) {
10642 fi->type = ARMFault_Domain;
10643 goto do_fault;
10645 if (type == 2) {
10646 /* 1Mb section. */
10647 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10648 ap = (desc >> 10) & 3;
10649 *page_size = 1024 * 1024;
10650 } else {
10651 /* Lookup l2 entry. */
10652 if (type == 1) {
10653 /* Coarse pagetable. */
10654 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10655 } else {
10656 /* Fine pagetable. */
10657 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10659 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10660 mmu_idx, fi);
10661 if (fi->type != ARMFault_None) {
10662 goto do_fault;
10664 switch (desc & 3) {
10665 case 0: /* Page translation fault. */
10666 fi->type = ARMFault_Translation;
10667 goto do_fault;
10668 case 1: /* 64k page. */
10669 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10670 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10671 *page_size = 0x10000;
10672 break;
10673 case 2: /* 4k page. */
10674 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10675 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10676 *page_size = 0x1000;
10677 break;
10678 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10679 if (type == 1) {
10680 /* ARMv6/XScale extended small page format */
10681 if (arm_feature(env, ARM_FEATURE_XSCALE)
10682 || arm_feature(env, ARM_FEATURE_V6)) {
10683 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10684 *page_size = 0x1000;
10685 } else {
10686 /* UNPREDICTABLE in ARMv5; we choose to take a
10687 * page translation fault.
10689 fi->type = ARMFault_Translation;
10690 goto do_fault;
10692 } else {
10693 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10694 *page_size = 0x400;
10696 ap = (desc >> 4) & 3;
10697 break;
10698 default:
10699 /* Never happens, but compiler isn't smart enough to tell. */
10700 abort();
10703 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10704 *prot |= *prot ? PAGE_EXEC : 0;
10705 if (!(*prot & (1 << access_type))) {
10706 /* Access permission fault. */
10707 fi->type = ARMFault_Permission;
10708 goto do_fault;
10710 *phys_ptr = phys_addr;
10711 return false;
10712 do_fault:
10713 fi->domain = domain;
10714 fi->level = level;
10715 return true;
10718 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10719 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10720 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10721 target_ulong *page_size, ARMMMUFaultInfo *fi)
10723 CPUState *cs = env_cpu(env);
10724 ARMCPU *cpu = env_archcpu(env);
10725 int level = 1;
10726 uint32_t table;
10727 uint32_t desc;
10728 uint32_t xn;
10729 uint32_t pxn = 0;
10730 int type;
10731 int ap;
10732 int domain = 0;
10733 int domain_prot;
10734 hwaddr phys_addr;
10735 uint32_t dacr;
10736 bool ns;
10738 /* Pagetable walk. */
10739 /* Lookup l1 descriptor. */
10740 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10741 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10742 fi->type = ARMFault_Translation;
10743 goto do_fault;
10745 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10746 mmu_idx, fi);
10747 if (fi->type != ARMFault_None) {
10748 goto do_fault;
10750 type = (desc & 3);
10751 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10752 /* Section translation fault, or attempt to use the encoding
10753 * which is Reserved on implementations without PXN.
10755 fi->type = ARMFault_Translation;
10756 goto do_fault;
10758 if ((type == 1) || !(desc & (1 << 18))) {
10759 /* Page or Section. */
10760 domain = (desc >> 5) & 0x0f;
10762 if (regime_el(env, mmu_idx) == 1) {
10763 dacr = env->cp15.dacr_ns;
10764 } else {
10765 dacr = env->cp15.dacr_s;
10767 if (type == 1) {
10768 level = 2;
10770 domain_prot = (dacr >> (domain * 2)) & 3;
10771 if (domain_prot == 0 || domain_prot == 2) {
10772 /* Section or Page domain fault */
10773 fi->type = ARMFault_Domain;
10774 goto do_fault;
10776 if (type != 1) {
10777 if (desc & (1 << 18)) {
10778 /* Supersection. */
10779 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10780 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10781 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10782 *page_size = 0x1000000;
10783 } else {
10784 /* Section. */
10785 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10786 *page_size = 0x100000;
10788 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10789 xn = desc & (1 << 4);
10790 pxn = desc & 1;
10791 ns = extract32(desc, 19, 1);
10792 } else {
10793 if (cpu_isar_feature(aa32_pxn, cpu)) {
10794 pxn = (desc >> 2) & 1;
10796 ns = extract32(desc, 3, 1);
10797 /* Lookup l2 entry. */
10798 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10799 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10800 mmu_idx, fi);
10801 if (fi->type != ARMFault_None) {
10802 goto do_fault;
10804 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10805 switch (desc & 3) {
10806 case 0: /* Page translation fault. */
10807 fi->type = ARMFault_Translation;
10808 goto do_fault;
10809 case 1: /* 64k page. */
10810 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10811 xn = desc & (1 << 15);
10812 *page_size = 0x10000;
10813 break;
10814 case 2: case 3: /* 4k page. */
10815 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10816 xn = desc & 1;
10817 *page_size = 0x1000;
10818 break;
10819 default:
10820 /* Never happens, but compiler isn't smart enough to tell. */
10821 abort();
10824 if (domain_prot == 3) {
10825 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10826 } else {
10827 if (pxn && !regime_is_user(env, mmu_idx)) {
10828 xn = 1;
10830 if (xn && access_type == MMU_INST_FETCH) {
10831 fi->type = ARMFault_Permission;
10832 goto do_fault;
10835 if (arm_feature(env, ARM_FEATURE_V6K) &&
10836 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10837 /* The simplified model uses AP[0] as an access control bit. */
10838 if ((ap & 1) == 0) {
10839 /* Access flag fault. */
10840 fi->type = ARMFault_AccessFlag;
10841 goto do_fault;
10843 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10844 } else {
10845 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10847 if (*prot && !xn) {
10848 *prot |= PAGE_EXEC;
10850 if (!(*prot & (1 << access_type))) {
10851 /* Access permission fault. */
10852 fi->type = ARMFault_Permission;
10853 goto do_fault;
10856 if (ns) {
10857 /* The NS bit will (as required by the architecture) have no effect if
10858 * the CPU doesn't support TZ or this is a non-secure translation
10859 * regime, because the attribute will already be non-secure.
10861 attrs->secure = false;
10863 *phys_ptr = phys_addr;
10864 return false;
10865 do_fault:
10866 fi->domain = domain;
10867 fi->level = level;
10868 return true;
10872 * check_s2_mmu_setup
10873 * @cpu: ARMCPU
10874 * @is_aa64: True if the translation regime is in AArch64 state
10875 * @startlevel: Suggested starting level
10876 * @inputsize: Bitsize of IPAs
10877 * @stride: Page-table stride (See the ARM ARM)
10879 * Returns true if the suggested S2 translation parameters are OK and
10880 * false otherwise.
10882 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10883 int inputsize, int stride)
10885 const int grainsize = stride + 3;
10886 int startsizecheck;
10888 /* Negative levels are never allowed. */
10889 if (level < 0) {
10890 return false;
10893 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10894 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10895 return false;
10898 if (is_aa64) {
10899 CPUARMState *env = &cpu->env;
10900 unsigned int pamax = arm_pamax(cpu);
10902 switch (stride) {
10903 case 13: /* 64KB Pages. */
10904 if (level == 0 || (level == 1 && pamax <= 42)) {
10905 return false;
10907 break;
10908 case 11: /* 16KB Pages. */
10909 if (level == 0 || (level == 1 && pamax <= 40)) {
10910 return false;
10912 break;
10913 case 9: /* 4KB Pages. */
10914 if (level == 0 && pamax <= 42) {
10915 return false;
10917 break;
10918 default:
10919 g_assert_not_reached();
10922 /* Inputsize checks. */
10923 if (inputsize > pamax &&
10924 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10925 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10926 return false;
10928 } else {
10929 /* AArch32 only supports 4KB pages. Assert on that. */
10930 assert(stride == 9);
10932 if (level == 0) {
10933 return false;
10936 return true;
10939 /* Translate from the 4-bit stage 2 representation of
10940 * memory attributes (without cache-allocation hints) to
10941 * the 8-bit representation of the stage 1 MAIR registers
10942 * (which includes allocation hints).
10944 * ref: shared/translation/attrs/S2AttrDecode()
10945 * .../S2ConvertAttrsHints()
10947 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10949 uint8_t hiattr = extract32(s2attrs, 2, 2);
10950 uint8_t loattr = extract32(s2attrs, 0, 2);
10951 uint8_t hihint = 0, lohint = 0;
10953 if (hiattr != 0) { /* normal memory */
10954 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
10955 hiattr = loattr = 1; /* non-cacheable */
10956 } else {
10957 if (hiattr != 1) { /* Write-through or write-back */
10958 hihint = 3; /* RW allocate */
10960 if (loattr != 1) { /* Write-through or write-back */
10961 lohint = 3; /* RW allocate */
10966 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10968 #endif /* !CONFIG_USER_ONLY */
10970 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10972 if (regime_has_2_ranges(mmu_idx)) {
10973 return extract64(tcr, 37, 2);
10974 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10975 return 0; /* VTCR_EL2 */
10976 } else {
10977 /* Replicate the single TBI bit so we always have 2 bits. */
10978 return extract32(tcr, 20, 1) * 3;
10982 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10984 if (regime_has_2_ranges(mmu_idx)) {
10985 return extract64(tcr, 51, 2);
10986 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10987 return 0; /* VTCR_EL2 */
10988 } else {
10989 /* Replicate the single TBID bit so we always have 2 bits. */
10990 return extract32(tcr, 29, 1) * 3;
10994 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10996 if (regime_has_2_ranges(mmu_idx)) {
10997 return extract64(tcr, 57, 2);
10998 } else {
10999 /* Replicate the single TCMA bit so we always have 2 bits. */
11000 return extract32(tcr, 30, 1) * 3;
11004 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11005 ARMMMUIdx mmu_idx, bool data)
11007 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11008 bool epd, hpd, using16k, using64k;
11009 int select, tsz, tbi, max_tsz;
11011 if (!regime_has_2_ranges(mmu_idx)) {
11012 select = 0;
11013 tsz = extract32(tcr, 0, 6);
11014 using64k = extract32(tcr, 14, 1);
11015 using16k = extract32(tcr, 15, 1);
11016 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11017 /* VTCR_EL2 */
11018 hpd = false;
11019 } else {
11020 hpd = extract32(tcr, 24, 1);
11022 epd = false;
11023 } else {
11025 * Bit 55 is always between the two regions, and is canonical for
11026 * determining if address tagging is enabled.
11028 select = extract64(va, 55, 1);
11029 if (!select) {
11030 tsz = extract32(tcr, 0, 6);
11031 epd = extract32(tcr, 7, 1);
11032 using64k = extract32(tcr, 14, 1);
11033 using16k = extract32(tcr, 15, 1);
11034 hpd = extract64(tcr, 41, 1);
11035 } else {
11036 int tg = extract32(tcr, 30, 2);
11037 using16k = tg == 1;
11038 using64k = tg == 3;
11039 tsz = extract32(tcr, 16, 6);
11040 epd = extract32(tcr, 23, 1);
11041 hpd = extract64(tcr, 42, 1);
11045 if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11046 max_tsz = 48 - using64k;
11047 } else {
11048 max_tsz = 39;
11051 tsz = MIN(tsz, max_tsz);
11052 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11054 /* Present TBI as a composite with TBID. */
11055 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11056 if (!data) {
11057 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11059 tbi = (tbi >> select) & 1;
11061 return (ARMVAParameters) {
11062 .tsz = tsz,
11063 .select = select,
11064 .tbi = tbi,
11065 .epd = epd,
11066 .hpd = hpd,
11067 .using16k = using16k,
11068 .using64k = using64k,
11072 #ifndef CONFIG_USER_ONLY
11073 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11074 ARMMMUIdx mmu_idx)
11076 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11077 uint32_t el = regime_el(env, mmu_idx);
11078 int select, tsz;
11079 bool epd, hpd;
11081 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11083 if (mmu_idx == ARMMMUIdx_Stage2) {
11084 /* VTCR */
11085 bool sext = extract32(tcr, 4, 1);
11086 bool sign = extract32(tcr, 3, 1);
11089 * If the sign-extend bit is not the same as t0sz[3], the result
11090 * is unpredictable. Flag this as a guest error.
11092 if (sign != sext) {
11093 qemu_log_mask(LOG_GUEST_ERROR,
11094 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11096 tsz = sextract32(tcr, 0, 4) + 8;
11097 select = 0;
11098 hpd = false;
11099 epd = false;
11100 } else if (el == 2) {
11101 /* HTCR */
11102 tsz = extract32(tcr, 0, 3);
11103 select = 0;
11104 hpd = extract64(tcr, 24, 1);
11105 epd = false;
11106 } else {
11107 int t0sz = extract32(tcr, 0, 3);
11108 int t1sz = extract32(tcr, 16, 3);
11110 if (t1sz == 0) {
11111 select = va > (0xffffffffu >> t0sz);
11112 } else {
11113 /* Note that we will detect errors later. */
11114 select = va >= ~(0xffffffffu >> t1sz);
11116 if (!select) {
11117 tsz = t0sz;
11118 epd = extract32(tcr, 7, 1);
11119 hpd = extract64(tcr, 41, 1);
11120 } else {
11121 tsz = t1sz;
11122 epd = extract32(tcr, 23, 1);
11123 hpd = extract64(tcr, 42, 1);
11125 /* For aarch32, hpd0 is not enabled without t2e as well. */
11126 hpd &= extract32(tcr, 6, 1);
11129 return (ARMVAParameters) {
11130 .tsz = tsz,
11131 .select = select,
11132 .epd = epd,
11133 .hpd = hpd,
11138 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11140 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11141 * prot and page_size may not be filled in, and the populated fsr value provides
11142 * information on why the translation aborted, in the format of a long-format
11143 * DFSR/IFSR fault register, with the following caveats:
11144 * * the WnR bit is never set (the caller must do this).
11146 * @env: CPUARMState
11147 * @address: virtual address to get physical address for
11148 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11149 * @mmu_idx: MMU index indicating required translation regime
11150 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11151 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11152 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11153 * @phys_ptr: set to the physical address corresponding to the virtual address
11154 * @attrs: set to the memory transaction attributes to use
11155 * @prot: set to the permissions for the page containing phys_ptr
11156 * @page_size_ptr: set to the size of the page containing phys_ptr
11157 * @fi: set to fault info if the translation fails
11158 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11160 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11161 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11162 bool s1_is_el0,
11163 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11164 target_ulong *page_size_ptr,
11165 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11167 ARMCPU *cpu = env_archcpu(env);
11168 CPUState *cs = CPU(cpu);
11169 /* Read an LPAE long-descriptor translation table. */
11170 ARMFaultType fault_type = ARMFault_Translation;
11171 uint32_t level;
11172 ARMVAParameters param;
11173 uint64_t ttbr;
11174 hwaddr descaddr, indexmask, indexmask_grainsize;
11175 uint32_t tableattrs;
11176 target_ulong page_size;
11177 uint32_t attrs;
11178 int32_t stride;
11179 int addrsize, inputsize;
11180 TCR *tcr = regime_tcr(env, mmu_idx);
11181 int ap, ns, xn, pxn;
11182 uint32_t el = regime_el(env, mmu_idx);
11183 uint64_t descaddrmask;
11184 bool aarch64 = arm_el_is_aa64(env, el);
11185 bool guarded = false;
11187 /* TODO: This code does not support shareability levels. */
11188 if (aarch64) {
11189 param = aa64_va_parameters(env, address, mmu_idx,
11190 access_type != MMU_INST_FETCH);
11191 level = 0;
11192 addrsize = 64 - 8 * param.tbi;
11193 inputsize = 64 - param.tsz;
11194 } else {
11195 param = aa32_va_parameters(env, address, mmu_idx);
11196 level = 1;
11197 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11198 inputsize = addrsize - param.tsz;
11202 * We determined the region when collecting the parameters, but we
11203 * have not yet validated that the address is valid for the region.
11204 * Extract the top bits and verify that they all match select.
11206 * For aa32, if inputsize == addrsize, then we have selected the
11207 * region by exclusion in aa32_va_parameters and there is no more
11208 * validation to do here.
11210 if (inputsize < addrsize) {
11211 target_ulong top_bits = sextract64(address, inputsize,
11212 addrsize - inputsize);
11213 if (-top_bits != param.select) {
11214 /* The gap between the two regions is a Translation fault */
11215 fault_type = ARMFault_Translation;
11216 goto do_fault;
11220 if (param.using64k) {
11221 stride = 13;
11222 } else if (param.using16k) {
11223 stride = 11;
11224 } else {
11225 stride = 9;
11228 /* Note that QEMU ignores shareability and cacheability attributes,
11229 * so we don't need to do anything with the SH, ORGN, IRGN fields
11230 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11231 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11232 * implement any ASID-like capability so we can ignore it (instead
11233 * we will always flush the TLB any time the ASID is changed).
11235 ttbr = regime_ttbr(env, mmu_idx, param.select);
11237 /* Here we should have set up all the parameters for the translation:
11238 * inputsize, ttbr, epd, stride, tbi
11241 if (param.epd) {
11242 /* Translation table walk disabled => Translation fault on TLB miss
11243 * Note: This is always 0 on 64-bit EL2 and EL3.
11245 goto do_fault;
11248 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11249 /* The starting level depends on the virtual address size (which can
11250 * be up to 48 bits) and the translation granule size. It indicates
11251 * the number of strides (stride bits at a time) needed to
11252 * consume the bits of the input address. In the pseudocode this is:
11253 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11254 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11255 * our 'stride + 3' and 'stride' is our 'stride'.
11256 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11257 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11258 * = 4 - (inputsize - 4) / stride;
11260 level = 4 - (inputsize - 4) / stride;
11261 } else {
11262 /* For stage 2 translations the starting level is specified by the
11263 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11265 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11266 uint32_t startlevel;
11267 bool ok;
11269 if (!aarch64 || stride == 9) {
11270 /* AArch32 or 4KB pages */
11271 startlevel = 2 - sl0;
11273 if (cpu_isar_feature(aa64_st, cpu)) {
11274 startlevel &= 3;
11276 } else {
11277 /* 16KB or 64KB pages */
11278 startlevel = 3 - sl0;
11281 /* Check that the starting level is valid. */
11282 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11283 inputsize, stride);
11284 if (!ok) {
11285 fault_type = ARMFault_Translation;
11286 goto do_fault;
11288 level = startlevel;
11291 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11292 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11294 /* Now we can extract the actual base address from the TTBR */
11295 descaddr = extract64(ttbr, 0, 48);
11297 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11298 * and also to mask out CnP (bit 0) which could validly be non-zero.
11300 descaddr &= ~indexmask;
11302 /* The address field in the descriptor goes up to bit 39 for ARMv7
11303 * but up to bit 47 for ARMv8, but we use the descaddrmask
11304 * up to bit 39 for AArch32, because we don't need other bits in that case
11305 * to construct next descriptor address (anyway they should be all zeroes).
11307 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11308 ~indexmask_grainsize;
11310 /* Secure accesses start with the page table in secure memory and
11311 * can be downgraded to non-secure at any step. Non-secure accesses
11312 * remain non-secure. We implement this by just ORing in the NSTable/NS
11313 * bits at each step.
11315 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11316 for (;;) {
11317 uint64_t descriptor;
11318 bool nstable;
11320 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11321 descaddr &= ~7ULL;
11322 nstable = extract32(tableattrs, 4, 1);
11323 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11324 if (fi->type != ARMFault_None) {
11325 goto do_fault;
11328 if (!(descriptor & 1) ||
11329 (!(descriptor & 2) && (level == 3))) {
11330 /* Invalid, or the Reserved level 3 encoding */
11331 goto do_fault;
11333 descaddr = descriptor & descaddrmask;
11335 if ((descriptor & 2) && (level < 3)) {
11336 /* Table entry. The top five bits are attributes which may
11337 * propagate down through lower levels of the table (and
11338 * which are all arranged so that 0 means "no effect", so
11339 * we can gather them up by ORing in the bits at each level).
11341 tableattrs |= extract64(descriptor, 59, 5);
11342 level++;
11343 indexmask = indexmask_grainsize;
11344 continue;
11346 /* Block entry at level 1 or 2, or page entry at level 3.
11347 * These are basically the same thing, although the number
11348 * of bits we pull in from the vaddr varies.
11350 page_size = (1ULL << ((stride * (4 - level)) + 3));
11351 descaddr |= (address & (page_size - 1));
11352 /* Extract attributes from the descriptor */
11353 attrs = extract64(descriptor, 2, 10)
11354 | (extract64(descriptor, 52, 12) << 10);
11356 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11357 /* Stage 2 table descriptors do not include any attribute fields */
11358 break;
11360 /* Merge in attributes from table descriptors */
11361 attrs |= nstable << 3; /* NS */
11362 guarded = extract64(descriptor, 50, 1); /* GP */
11363 if (param.hpd) {
11364 /* HPD disables all the table attributes except NSTable. */
11365 break;
11367 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11368 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11369 * means "force PL1 access only", which means forcing AP[1] to 0.
11371 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11372 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11373 break;
11375 /* Here descaddr is the final physical address, and attributes
11376 * are all in attrs.
11378 fault_type = ARMFault_AccessFlag;
11379 if ((attrs & (1 << 8)) == 0) {
11380 /* Access flag */
11381 goto do_fault;
11384 ap = extract32(attrs, 4, 2);
11386 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11387 ns = mmu_idx == ARMMMUIdx_Stage2;
11388 xn = extract32(attrs, 11, 2);
11389 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11390 } else {
11391 ns = extract32(attrs, 3, 1);
11392 xn = extract32(attrs, 12, 1);
11393 pxn = extract32(attrs, 11, 1);
11394 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11397 fault_type = ARMFault_Permission;
11398 if (!(*prot & (1 << access_type))) {
11399 goto do_fault;
11402 if (ns) {
11403 /* The NS bit will (as required by the architecture) have no effect if
11404 * the CPU doesn't support TZ or this is a non-secure translation
11405 * regime, because the attribute will already be non-secure.
11407 txattrs->secure = false;
11409 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11410 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11411 arm_tlb_bti_gp(txattrs) = true;
11414 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11415 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11416 } else {
11417 /* Index into MAIR registers for cache attributes */
11418 uint8_t attrindx = extract32(attrs, 0, 3);
11419 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11420 assert(attrindx <= 7);
11421 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11423 cacheattrs->shareability = extract32(attrs, 6, 2);
11425 *phys_ptr = descaddr;
11426 *page_size_ptr = page_size;
11427 return false;
11429 do_fault:
11430 fi->type = fault_type;
11431 fi->level = level;
11432 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11433 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11434 mmu_idx == ARMMMUIdx_Stage2_S);
11435 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11436 return true;
11439 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11440 ARMMMUIdx mmu_idx,
11441 int32_t address, int *prot)
11443 if (!arm_feature(env, ARM_FEATURE_M)) {
11444 *prot = PAGE_READ | PAGE_WRITE;
11445 switch (address) {
11446 case 0xF0000000 ... 0xFFFFFFFF:
11447 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11448 /* hivecs execing is ok */
11449 *prot |= PAGE_EXEC;
11451 break;
11452 case 0x00000000 ... 0x7FFFFFFF:
11453 *prot |= PAGE_EXEC;
11454 break;
11456 } else {
11457 /* Default system address map for M profile cores.
11458 * The architecture specifies which regions are execute-never;
11459 * at the MPU level no other checks are defined.
11461 switch (address) {
11462 case 0x00000000 ... 0x1fffffff: /* ROM */
11463 case 0x20000000 ... 0x3fffffff: /* SRAM */
11464 case 0x60000000 ... 0x7fffffff: /* RAM */
11465 case 0x80000000 ... 0x9fffffff: /* RAM */
11466 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11467 break;
11468 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11469 case 0xa0000000 ... 0xbfffffff: /* Device */
11470 case 0xc0000000 ... 0xdfffffff: /* Device */
11471 case 0xe0000000 ... 0xffffffff: /* System */
11472 *prot = PAGE_READ | PAGE_WRITE;
11473 break;
11474 default:
11475 g_assert_not_reached();
11480 static bool pmsav7_use_background_region(ARMCPU *cpu,
11481 ARMMMUIdx mmu_idx, bool is_user)
11483 /* Return true if we should use the default memory map as a
11484 * "background" region if there are no hits against any MPU regions.
11486 CPUARMState *env = &cpu->env;
11488 if (is_user) {
11489 return false;
11492 if (arm_feature(env, ARM_FEATURE_M)) {
11493 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11494 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11495 } else {
11496 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11500 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11502 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11503 return arm_feature(env, ARM_FEATURE_M) &&
11504 extract32(address, 20, 12) == 0xe00;
11507 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11509 /* True if address is in the M profile system region
11510 * 0xe0000000 - 0xffffffff
11512 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11515 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11516 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11517 hwaddr *phys_ptr, int *prot,
11518 target_ulong *page_size,
11519 ARMMMUFaultInfo *fi)
11521 ARMCPU *cpu = env_archcpu(env);
11522 int n;
11523 bool is_user = regime_is_user(env, mmu_idx);
11525 *phys_ptr = address;
11526 *page_size = TARGET_PAGE_SIZE;
11527 *prot = 0;
11529 if (regime_translation_disabled(env, mmu_idx) ||
11530 m_is_ppb_region(env, address)) {
11531 /* MPU disabled or M profile PPB access: use default memory map.
11532 * The other case which uses the default memory map in the
11533 * v7M ARM ARM pseudocode is exception vector reads from the vector
11534 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11535 * which always does a direct read using address_space_ldl(), rather
11536 * than going via this function, so we don't need to check that here.
11538 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11539 } else { /* MPU enabled */
11540 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11541 /* region search */
11542 uint32_t base = env->pmsav7.drbar[n];
11543 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11544 uint32_t rmask;
11545 bool srdis = false;
11547 if (!(env->pmsav7.drsr[n] & 0x1)) {
11548 continue;
11551 if (!rsize) {
11552 qemu_log_mask(LOG_GUEST_ERROR,
11553 "DRSR[%d]: Rsize field cannot be 0\n", n);
11554 continue;
11556 rsize++;
11557 rmask = (1ull << rsize) - 1;
11559 if (base & rmask) {
11560 qemu_log_mask(LOG_GUEST_ERROR,
11561 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11562 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11563 n, base, rmask);
11564 continue;
11567 if (address < base || address > base + rmask) {
11569 * Address not in this region. We must check whether the
11570 * region covers addresses in the same page as our address.
11571 * In that case we must not report a size that covers the
11572 * whole page for a subsequent hit against a different MPU
11573 * region or the background region, because it would result in
11574 * incorrect TLB hits for subsequent accesses to addresses that
11575 * are in this MPU region.
11577 if (ranges_overlap(base, rmask,
11578 address & TARGET_PAGE_MASK,
11579 TARGET_PAGE_SIZE)) {
11580 *page_size = 1;
11582 continue;
11585 /* Region matched */
11587 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11588 int i, snd;
11589 uint32_t srdis_mask;
11591 rsize -= 3; /* sub region size (power of 2) */
11592 snd = ((address - base) >> rsize) & 0x7;
11593 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11595 srdis_mask = srdis ? 0x3 : 0x0;
11596 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11597 /* This will check in groups of 2, 4 and then 8, whether
11598 * the subregion bits are consistent. rsize is incremented
11599 * back up to give the region size, considering consistent
11600 * adjacent subregions as one region. Stop testing if rsize
11601 * is already big enough for an entire QEMU page.
11603 int snd_rounded = snd & ~(i - 1);
11604 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11605 snd_rounded + 8, i);
11606 if (srdis_mask ^ srdis_multi) {
11607 break;
11609 srdis_mask = (srdis_mask << i) | srdis_mask;
11610 rsize++;
11613 if (srdis) {
11614 continue;
11616 if (rsize < TARGET_PAGE_BITS) {
11617 *page_size = 1 << rsize;
11619 break;
11622 if (n == -1) { /* no hits */
11623 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11624 /* background fault */
11625 fi->type = ARMFault_Background;
11626 return true;
11628 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11629 } else { /* a MPU hit! */
11630 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11631 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11633 if (m_is_system_region(env, address)) {
11634 /* System space is always execute never */
11635 xn = 1;
11638 if (is_user) { /* User mode AP bit decoding */
11639 switch (ap) {
11640 case 0:
11641 case 1:
11642 case 5:
11643 break; /* no access */
11644 case 3:
11645 *prot |= PAGE_WRITE;
11646 /* fall through */
11647 case 2:
11648 case 6:
11649 *prot |= PAGE_READ | PAGE_EXEC;
11650 break;
11651 case 7:
11652 /* for v7M, same as 6; for R profile a reserved value */
11653 if (arm_feature(env, ARM_FEATURE_M)) {
11654 *prot |= PAGE_READ | PAGE_EXEC;
11655 break;
11657 /* fall through */
11658 default:
11659 qemu_log_mask(LOG_GUEST_ERROR,
11660 "DRACR[%d]: Bad value for AP bits: 0x%"
11661 PRIx32 "\n", n, ap);
11663 } else { /* Priv. mode AP bits decoding */
11664 switch (ap) {
11665 case 0:
11666 break; /* no access */
11667 case 1:
11668 case 2:
11669 case 3:
11670 *prot |= PAGE_WRITE;
11671 /* fall through */
11672 case 5:
11673 case 6:
11674 *prot |= PAGE_READ | PAGE_EXEC;
11675 break;
11676 case 7:
11677 /* for v7M, same as 6; for R profile a reserved value */
11678 if (arm_feature(env, ARM_FEATURE_M)) {
11679 *prot |= PAGE_READ | PAGE_EXEC;
11680 break;
11682 /* fall through */
11683 default:
11684 qemu_log_mask(LOG_GUEST_ERROR,
11685 "DRACR[%d]: Bad value for AP bits: 0x%"
11686 PRIx32 "\n", n, ap);
11690 /* execute never */
11691 if (xn) {
11692 *prot &= ~PAGE_EXEC;
11697 fi->type = ARMFault_Permission;
11698 fi->level = 1;
11699 return !(*prot & (1 << access_type));
11702 static bool v8m_is_sau_exempt(CPUARMState *env,
11703 uint32_t address, MMUAccessType access_type)
11705 /* The architecture specifies that certain address ranges are
11706 * exempt from v8M SAU/IDAU checks.
11708 return
11709 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11710 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11711 (address >= 0xe000e000 && address <= 0xe000efff) ||
11712 (address >= 0xe002e000 && address <= 0xe002efff) ||
11713 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11714 (address >= 0xe00ff000 && address <= 0xe00fffff);
11717 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11718 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11719 V8M_SAttributes *sattrs)
11721 /* Look up the security attributes for this address. Compare the
11722 * pseudocode SecurityCheck() function.
11723 * We assume the caller has zero-initialized *sattrs.
11725 ARMCPU *cpu = env_archcpu(env);
11726 int r;
11727 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11728 int idau_region = IREGION_NOTVALID;
11729 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11730 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11732 if (cpu->idau) {
11733 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11734 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11736 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11737 &idau_nsc);
11740 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11741 /* 0xf0000000..0xffffffff is always S for insn fetches */
11742 return;
11745 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11746 sattrs->ns = !regime_is_secure(env, mmu_idx);
11747 return;
11750 if (idau_region != IREGION_NOTVALID) {
11751 sattrs->irvalid = true;
11752 sattrs->iregion = idau_region;
11755 switch (env->sau.ctrl & 3) {
11756 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11757 break;
11758 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11759 sattrs->ns = true;
11760 break;
11761 default: /* SAU.ENABLE == 1 */
11762 for (r = 0; r < cpu->sau_sregion; r++) {
11763 if (env->sau.rlar[r] & 1) {
11764 uint32_t base = env->sau.rbar[r] & ~0x1f;
11765 uint32_t limit = env->sau.rlar[r] | 0x1f;
11767 if (base <= address && limit >= address) {
11768 if (base > addr_page_base || limit < addr_page_limit) {
11769 sattrs->subpage = true;
11771 if (sattrs->srvalid) {
11772 /* If we hit in more than one region then we must report
11773 * as Secure, not NS-Callable, with no valid region
11774 * number info.
11776 sattrs->ns = false;
11777 sattrs->nsc = false;
11778 sattrs->sregion = 0;
11779 sattrs->srvalid = false;
11780 break;
11781 } else {
11782 if (env->sau.rlar[r] & 2) {
11783 sattrs->nsc = true;
11784 } else {
11785 sattrs->ns = true;
11787 sattrs->srvalid = true;
11788 sattrs->sregion = r;
11790 } else {
11792 * Address not in this region. We must check whether the
11793 * region covers addresses in the same page as our address.
11794 * In that case we must not report a size that covers the
11795 * whole page for a subsequent hit against a different MPU
11796 * region or the background region, because it would result
11797 * in incorrect TLB hits for subsequent accesses to
11798 * addresses that are in this MPU region.
11800 if (limit >= base &&
11801 ranges_overlap(base, limit - base + 1,
11802 addr_page_base,
11803 TARGET_PAGE_SIZE)) {
11804 sattrs->subpage = true;
11809 break;
11813 * The IDAU will override the SAU lookup results if it specifies
11814 * higher security than the SAU does.
11816 if (!idau_ns) {
11817 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11818 sattrs->ns = false;
11819 sattrs->nsc = idau_nsc;
11824 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11825 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11826 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11827 int *prot, bool *is_subpage,
11828 ARMMMUFaultInfo *fi, uint32_t *mregion)
11830 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11831 * that a full phys-to-virt translation does).
11832 * mregion is (if not NULL) set to the region number which matched,
11833 * or -1 if no region number is returned (MPU off, address did not
11834 * hit a region, address hit in multiple regions).
11835 * We set is_subpage to true if the region hit doesn't cover the
11836 * entire TARGET_PAGE the address is within.
11838 ARMCPU *cpu = env_archcpu(env);
11839 bool is_user = regime_is_user(env, mmu_idx);
11840 uint32_t secure = regime_is_secure(env, mmu_idx);
11841 int n;
11842 int matchregion = -1;
11843 bool hit = false;
11844 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11845 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11847 *is_subpage = false;
11848 *phys_ptr = address;
11849 *prot = 0;
11850 if (mregion) {
11851 *mregion = -1;
11854 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11855 * was an exception vector read from the vector table (which is always
11856 * done using the default system address map), because those accesses
11857 * are done in arm_v7m_load_vector(), which always does a direct
11858 * read using address_space_ldl(), rather than going via this function.
11860 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11861 hit = true;
11862 } else if (m_is_ppb_region(env, address)) {
11863 hit = true;
11864 } else {
11865 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11866 hit = true;
11869 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11870 /* region search */
11871 /* Note that the base address is bits [31:5] from the register
11872 * with bits [4:0] all zeroes, but the limit address is bits
11873 * [31:5] from the register with bits [4:0] all ones.
11875 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11876 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11878 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11879 /* Region disabled */
11880 continue;
11883 if (address < base || address > limit) {
11885 * Address not in this region. We must check whether the
11886 * region covers addresses in the same page as our address.
11887 * In that case we must not report a size that covers the
11888 * whole page for a subsequent hit against a different MPU
11889 * region or the background region, because it would result in
11890 * incorrect TLB hits for subsequent accesses to addresses that
11891 * are in this MPU region.
11893 if (limit >= base &&
11894 ranges_overlap(base, limit - base + 1,
11895 addr_page_base,
11896 TARGET_PAGE_SIZE)) {
11897 *is_subpage = true;
11899 continue;
11902 if (base > addr_page_base || limit < addr_page_limit) {
11903 *is_subpage = true;
11906 if (matchregion != -1) {
11907 /* Multiple regions match -- always a failure (unlike
11908 * PMSAv7 where highest-numbered-region wins)
11910 fi->type = ARMFault_Permission;
11911 fi->level = 1;
11912 return true;
11915 matchregion = n;
11916 hit = true;
11920 if (!hit) {
11921 /* background fault */
11922 fi->type = ARMFault_Background;
11923 return true;
11926 if (matchregion == -1) {
11927 /* hit using the background region */
11928 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11929 } else {
11930 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11931 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11932 bool pxn = false;
11934 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
11935 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
11938 if (m_is_system_region(env, address)) {
11939 /* System space is always execute never */
11940 xn = 1;
11943 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11944 if (*prot && !xn && !(pxn && !is_user)) {
11945 *prot |= PAGE_EXEC;
11947 /* We don't need to look the attribute up in the MAIR0/MAIR1
11948 * registers because that only tells us about cacheability.
11950 if (mregion) {
11951 *mregion = matchregion;
11955 fi->type = ARMFault_Permission;
11956 fi->level = 1;
11957 return !(*prot & (1 << access_type));
11961 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11962 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11963 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11964 int *prot, target_ulong *page_size,
11965 ARMMMUFaultInfo *fi)
11967 uint32_t secure = regime_is_secure(env, mmu_idx);
11968 V8M_SAttributes sattrs = {};
11969 bool ret;
11970 bool mpu_is_subpage;
11972 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11973 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11974 if (access_type == MMU_INST_FETCH) {
11975 /* Instruction fetches always use the MMU bank and the
11976 * transaction attribute determined by the fetch address,
11977 * regardless of CPU state. This is painful for QEMU
11978 * to handle, because it would mean we need to encode
11979 * into the mmu_idx not just the (user, negpri) information
11980 * for the current security state but also that for the
11981 * other security state, which would balloon the number
11982 * of mmu_idx values needed alarmingly.
11983 * Fortunately we can avoid this because it's not actually
11984 * possible to arbitrarily execute code from memory with
11985 * the wrong security attribute: it will always generate
11986 * an exception of some kind or another, apart from the
11987 * special case of an NS CPU executing an SG instruction
11988 * in S&NSC memory. So we always just fail the translation
11989 * here and sort things out in the exception handler
11990 * (including possibly emulating an SG instruction).
11992 if (sattrs.ns != !secure) {
11993 if (sattrs.nsc) {
11994 fi->type = ARMFault_QEMU_NSCExec;
11995 } else {
11996 fi->type = ARMFault_QEMU_SFault;
11998 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11999 *phys_ptr = address;
12000 *prot = 0;
12001 return true;
12003 } else {
12004 /* For data accesses we always use the MMU bank indicated
12005 * by the current CPU state, but the security attributes
12006 * might downgrade a secure access to nonsecure.
12008 if (sattrs.ns) {
12009 txattrs->secure = false;
12010 } else if (!secure) {
12011 /* NS access to S memory must fault.
12012 * Architecturally we should first check whether the
12013 * MPU information for this address indicates that we
12014 * are doing an unaligned access to Device memory, which
12015 * should generate a UsageFault instead. QEMU does not
12016 * currently check for that kind of unaligned access though.
12017 * If we added it we would need to do so as a special case
12018 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12020 fi->type = ARMFault_QEMU_SFault;
12021 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12022 *phys_ptr = address;
12023 *prot = 0;
12024 return true;
12029 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12030 txattrs, prot, &mpu_is_subpage, fi, NULL);
12031 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12032 return ret;
12035 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12036 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12037 hwaddr *phys_ptr, int *prot,
12038 ARMMMUFaultInfo *fi)
12040 int n;
12041 uint32_t mask;
12042 uint32_t base;
12043 bool is_user = regime_is_user(env, mmu_idx);
12045 if (regime_translation_disabled(env, mmu_idx)) {
12046 /* MPU disabled. */
12047 *phys_ptr = address;
12048 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12049 return false;
12052 *phys_ptr = address;
12053 for (n = 7; n >= 0; n--) {
12054 base = env->cp15.c6_region[n];
12055 if ((base & 1) == 0) {
12056 continue;
12058 mask = 1 << ((base >> 1) & 0x1f);
12059 /* Keep this shift separate from the above to avoid an
12060 (undefined) << 32. */
12061 mask = (mask << 1) - 1;
12062 if (((base ^ address) & ~mask) == 0) {
12063 break;
12066 if (n < 0) {
12067 fi->type = ARMFault_Background;
12068 return true;
12071 if (access_type == MMU_INST_FETCH) {
12072 mask = env->cp15.pmsav5_insn_ap;
12073 } else {
12074 mask = env->cp15.pmsav5_data_ap;
12076 mask = (mask >> (n * 4)) & 0xf;
12077 switch (mask) {
12078 case 0:
12079 fi->type = ARMFault_Permission;
12080 fi->level = 1;
12081 return true;
12082 case 1:
12083 if (is_user) {
12084 fi->type = ARMFault_Permission;
12085 fi->level = 1;
12086 return true;
12088 *prot = PAGE_READ | PAGE_WRITE;
12089 break;
12090 case 2:
12091 *prot = PAGE_READ;
12092 if (!is_user) {
12093 *prot |= PAGE_WRITE;
12095 break;
12096 case 3:
12097 *prot = PAGE_READ | PAGE_WRITE;
12098 break;
12099 case 5:
12100 if (is_user) {
12101 fi->type = ARMFault_Permission;
12102 fi->level = 1;
12103 return true;
12105 *prot = PAGE_READ;
12106 break;
12107 case 6:
12108 *prot = PAGE_READ;
12109 break;
12110 default:
12111 /* Bad permission. */
12112 fi->type = ARMFault_Permission;
12113 fi->level = 1;
12114 return true;
12116 *prot |= PAGE_EXEC;
12117 return false;
12120 /* Combine either inner or outer cacheability attributes for normal
12121 * memory, according to table D4-42 and pseudocode procedure
12122 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12124 * NB: only stage 1 includes allocation hints (RW bits), leading to
12125 * some asymmetry.
12127 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12129 if (s1 == 4 || s2 == 4) {
12130 /* non-cacheable has precedence */
12131 return 4;
12132 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12133 /* stage 1 write-through takes precedence */
12134 return s1;
12135 } else if (extract32(s2, 2, 2) == 2) {
12136 /* stage 2 write-through takes precedence, but the allocation hint
12137 * is still taken from stage 1
12139 return (2 << 2) | extract32(s1, 0, 2);
12140 } else { /* write-back */
12141 return s1;
12145 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12146 * and CombineS1S2Desc()
12148 * @s1: Attributes from stage 1 walk
12149 * @s2: Attributes from stage 2 walk
12151 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12153 uint8_t s1lo, s2lo, s1hi, s2hi;
12154 ARMCacheAttrs ret;
12155 bool tagged = false;
12157 if (s1.attrs == 0xf0) {
12158 tagged = true;
12159 s1.attrs = 0xff;
12162 s1lo = extract32(s1.attrs, 0, 4);
12163 s2lo = extract32(s2.attrs, 0, 4);
12164 s1hi = extract32(s1.attrs, 4, 4);
12165 s2hi = extract32(s2.attrs, 4, 4);
12167 /* Combine shareability attributes (table D4-43) */
12168 if (s1.shareability == 2 || s2.shareability == 2) {
12169 /* if either are outer-shareable, the result is outer-shareable */
12170 ret.shareability = 2;
12171 } else if (s1.shareability == 3 || s2.shareability == 3) {
12172 /* if either are inner-shareable, the result is inner-shareable */
12173 ret.shareability = 3;
12174 } else {
12175 /* both non-shareable */
12176 ret.shareability = 0;
12179 /* Combine memory type and cacheability attributes */
12180 if (s1hi == 0 || s2hi == 0) {
12181 /* Device has precedence over normal */
12182 if (s1lo == 0 || s2lo == 0) {
12183 /* nGnRnE has precedence over anything */
12184 ret.attrs = 0;
12185 } else if (s1lo == 4 || s2lo == 4) {
12186 /* non-Reordering has precedence over Reordering */
12187 ret.attrs = 4; /* nGnRE */
12188 } else if (s1lo == 8 || s2lo == 8) {
12189 /* non-Gathering has precedence over Gathering */
12190 ret.attrs = 8; /* nGRE */
12191 } else {
12192 ret.attrs = 0xc; /* GRE */
12195 /* Any location for which the resultant memory type is any
12196 * type of Device memory is always treated as Outer Shareable.
12198 ret.shareability = 2;
12199 } else { /* Normal memory */
12200 /* Outer/inner cacheability combine independently */
12201 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12202 | combine_cacheattr_nibble(s1lo, s2lo);
12204 if (ret.attrs == 0x44) {
12205 /* Any location for which the resultant memory type is Normal
12206 * Inner Non-cacheable, Outer Non-cacheable is always treated
12207 * as Outer Shareable.
12209 ret.shareability = 2;
12213 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12214 if (tagged && ret.attrs == 0xff) {
12215 ret.attrs = 0xf0;
12218 return ret;
12222 /* get_phys_addr - get the physical address for this virtual address
12224 * Find the physical address corresponding to the given virtual address,
12225 * by doing a translation table walk on MMU based systems or using the
12226 * MPU state on MPU based systems.
12228 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12229 * prot and page_size may not be filled in, and the populated fsr value provides
12230 * information on why the translation aborted, in the format of a
12231 * DFSR/IFSR fault register, with the following caveats:
12232 * * we honour the short vs long DFSR format differences.
12233 * * the WnR bit is never set (the caller must do this).
12234 * * for PSMAv5 based systems we don't bother to return a full FSR format
12235 * value.
12237 * @env: CPUARMState
12238 * @address: virtual address to get physical address for
12239 * @access_type: 0 for read, 1 for write, 2 for execute
12240 * @mmu_idx: MMU index indicating required translation regime
12241 * @phys_ptr: set to the physical address corresponding to the virtual address
12242 * @attrs: set to the memory transaction attributes to use
12243 * @prot: set to the permissions for the page containing phys_ptr
12244 * @page_size: set to the size of the page containing phys_ptr
12245 * @fi: set to fault info if the translation fails
12246 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12248 bool get_phys_addr(CPUARMState *env, target_ulong address,
12249 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12250 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12251 target_ulong *page_size,
12252 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12254 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12256 if (mmu_idx != s1_mmu_idx) {
12257 /* Call ourselves recursively to do the stage 1 and then stage 2
12258 * translations if mmu_idx is a two-stage regime.
12260 if (arm_feature(env, ARM_FEATURE_EL2)) {
12261 hwaddr ipa;
12262 int s2_prot;
12263 int ret;
12264 ARMCacheAttrs cacheattrs2 = {};
12265 ARMMMUIdx s2_mmu_idx;
12266 bool is_el0;
12268 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12269 attrs, prot, page_size, fi, cacheattrs);
12271 /* If S1 fails or S2 is disabled, return early. */
12272 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12273 *phys_ptr = ipa;
12274 return ret;
12277 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12278 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12280 /* S1 is done. Now do S2 translation. */
12281 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12282 phys_ptr, attrs, &s2_prot,
12283 page_size, fi, &cacheattrs2);
12284 fi->s2addr = ipa;
12285 /* Combine the S1 and S2 perms. */
12286 *prot &= s2_prot;
12288 /* If S2 fails, return early. */
12289 if (ret) {
12290 return ret;
12293 /* Combine the S1 and S2 cache attributes. */
12294 if (arm_hcr_el2_eff(env) & HCR_DC) {
12296 * HCR.DC forces the first stage attributes to
12297 * Normal Non-Shareable,
12298 * Inner Write-Back Read-Allocate Write-Allocate,
12299 * Outer Write-Back Read-Allocate Write-Allocate.
12300 * Do not overwrite Tagged within attrs.
12302 if (cacheattrs->attrs != 0xf0) {
12303 cacheattrs->attrs = 0xff;
12305 cacheattrs->shareability = 0;
12307 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12309 /* Check if IPA translates to secure or non-secure PA space. */
12310 if (arm_is_secure_below_el3(env)) {
12311 if (attrs->secure) {
12312 attrs->secure =
12313 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12314 } else {
12315 attrs->secure =
12316 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12317 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12320 return 0;
12321 } else {
12323 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12325 mmu_idx = stage_1_mmu_idx(mmu_idx);
12329 /* The page table entries may downgrade secure to non-secure, but
12330 * cannot upgrade an non-secure translation regime's attributes
12331 * to secure.
12333 attrs->secure = regime_is_secure(env, mmu_idx);
12334 attrs->user = regime_is_user(env, mmu_idx);
12336 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12337 * In v7 and earlier it affects all stage 1 translations.
12339 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12340 && !arm_feature(env, ARM_FEATURE_V8)) {
12341 if (regime_el(env, mmu_idx) == 3) {
12342 address += env->cp15.fcseidr_s;
12343 } else {
12344 address += env->cp15.fcseidr_ns;
12348 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12349 bool ret;
12350 *page_size = TARGET_PAGE_SIZE;
12352 if (arm_feature(env, ARM_FEATURE_V8)) {
12353 /* PMSAv8 */
12354 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12355 phys_ptr, attrs, prot, page_size, fi);
12356 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12357 /* PMSAv7 */
12358 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12359 phys_ptr, prot, page_size, fi);
12360 } else {
12361 /* Pre-v7 MPU */
12362 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12363 phys_ptr, prot, fi);
12365 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12366 " mmu_idx %u -> %s (prot %c%c%c)\n",
12367 access_type == MMU_DATA_LOAD ? "reading" :
12368 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12369 (uint32_t)address, mmu_idx,
12370 ret ? "Miss" : "Hit",
12371 *prot & PAGE_READ ? 'r' : '-',
12372 *prot & PAGE_WRITE ? 'w' : '-',
12373 *prot & PAGE_EXEC ? 'x' : '-');
12375 return ret;
12378 /* Definitely a real MMU, not an MPU */
12380 if (regime_translation_disabled(env, mmu_idx)) {
12381 uint64_t hcr;
12382 uint8_t memattr;
12385 * MMU disabled. S1 addresses within aa64 translation regimes are
12386 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12388 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12389 int r_el = regime_el(env, mmu_idx);
12390 if (arm_el_is_aa64(env, r_el)) {
12391 int pamax = arm_pamax(env_archcpu(env));
12392 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12393 int addrtop, tbi;
12395 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12396 if (access_type == MMU_INST_FETCH) {
12397 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12399 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12400 addrtop = (tbi ? 55 : 63);
12402 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12403 fi->type = ARMFault_AddressSize;
12404 fi->level = 0;
12405 fi->stage2 = false;
12406 return 1;
12410 * When TBI is disabled, we've just validated that all of the
12411 * bits above PAMax are zero, so logically we only need to
12412 * clear the top byte for TBI. But it's clearer to follow
12413 * the pseudocode set of addrdesc.paddress.
12415 address = extract64(address, 0, 52);
12418 *phys_ptr = address;
12419 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12420 *page_size = TARGET_PAGE_SIZE;
12422 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12423 hcr = arm_hcr_el2_eff(env);
12424 cacheattrs->shareability = 0;
12425 if (hcr & HCR_DC) {
12426 if (hcr & HCR_DCT) {
12427 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12428 } else {
12429 memattr = 0xff; /* Normal, WB, RWA */
12431 } else if (access_type == MMU_INST_FETCH) {
12432 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12433 memattr = 0xee; /* Normal, WT, RA, NT */
12434 } else {
12435 memattr = 0x44; /* Normal, NC, No */
12437 cacheattrs->shareability = 2; /* outer sharable */
12438 } else {
12439 memattr = 0x00; /* Device, nGnRnE */
12441 cacheattrs->attrs = memattr;
12442 return 0;
12445 if (regime_using_lpae_format(env, mmu_idx)) {
12446 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12447 phys_ptr, attrs, prot, page_size,
12448 fi, cacheattrs);
12449 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12450 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12451 phys_ptr, attrs, prot, page_size, fi);
12452 } else {
12453 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12454 phys_ptr, prot, page_size, fi);
12458 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12459 MemTxAttrs *attrs)
12461 ARMCPU *cpu = ARM_CPU(cs);
12462 CPUARMState *env = &cpu->env;
12463 hwaddr phys_addr;
12464 target_ulong page_size;
12465 int prot;
12466 bool ret;
12467 ARMMMUFaultInfo fi = {};
12468 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12469 ARMCacheAttrs cacheattrs = {};
12471 *attrs = (MemTxAttrs) {};
12473 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12474 attrs, &prot, &page_size, &fi, &cacheattrs);
12476 if (ret) {
12477 return -1;
12479 return phys_addr;
12482 #endif
12484 /* Note that signed overflow is undefined in C. The following routines are
12485 careful to use unsigned types where modulo arithmetic is required.
12486 Failure to do so _will_ break on newer gcc. */
12488 /* Signed saturating arithmetic. */
12490 /* Perform 16-bit signed saturating addition. */
12491 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12493 uint16_t res;
12495 res = a + b;
12496 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12497 if (a & 0x8000)
12498 res = 0x8000;
12499 else
12500 res = 0x7fff;
12502 return res;
12505 /* Perform 8-bit signed saturating addition. */
12506 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12508 uint8_t res;
12510 res = a + b;
12511 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12512 if (a & 0x80)
12513 res = 0x80;
12514 else
12515 res = 0x7f;
12517 return res;
12520 /* Perform 16-bit signed saturating subtraction. */
12521 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12523 uint16_t res;
12525 res = a - b;
12526 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12527 if (a & 0x8000)
12528 res = 0x8000;
12529 else
12530 res = 0x7fff;
12532 return res;
12535 /* Perform 8-bit signed saturating subtraction. */
12536 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12538 uint8_t res;
12540 res = a - b;
12541 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12542 if (a & 0x80)
12543 res = 0x80;
12544 else
12545 res = 0x7f;
12547 return res;
12550 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12551 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12552 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12553 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12554 #define PFX q
12556 #include "op_addsub.h"
12558 /* Unsigned saturating arithmetic. */
12559 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12561 uint16_t res;
12562 res = a + b;
12563 if (res < a)
12564 res = 0xffff;
12565 return res;
12568 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12570 if (a > b)
12571 return a - b;
12572 else
12573 return 0;
12576 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12578 uint8_t res;
12579 res = a + b;
12580 if (res < a)
12581 res = 0xff;
12582 return res;
12585 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12587 if (a > b)
12588 return a - b;
12589 else
12590 return 0;
12593 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12594 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12595 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12596 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12597 #define PFX uq
12599 #include "op_addsub.h"
12601 /* Signed modulo arithmetic. */
12602 #define SARITH16(a, b, n, op) do { \
12603 int32_t sum; \
12604 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12605 RESULT(sum, n, 16); \
12606 if (sum >= 0) \
12607 ge |= 3 << (n * 2); \
12608 } while(0)
12610 #define SARITH8(a, b, n, op) do { \
12611 int32_t sum; \
12612 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12613 RESULT(sum, n, 8); \
12614 if (sum >= 0) \
12615 ge |= 1 << n; \
12616 } while(0)
12619 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12620 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12621 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12622 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12623 #define PFX s
12624 #define ARITH_GE
12626 #include "op_addsub.h"
12628 /* Unsigned modulo arithmetic. */
12629 #define ADD16(a, b, n) do { \
12630 uint32_t sum; \
12631 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12632 RESULT(sum, n, 16); \
12633 if ((sum >> 16) == 1) \
12634 ge |= 3 << (n * 2); \
12635 } while(0)
12637 #define ADD8(a, b, n) do { \
12638 uint32_t sum; \
12639 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12640 RESULT(sum, n, 8); \
12641 if ((sum >> 8) == 1) \
12642 ge |= 1 << n; \
12643 } while(0)
12645 #define SUB16(a, b, n) do { \
12646 uint32_t sum; \
12647 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12648 RESULT(sum, n, 16); \
12649 if ((sum >> 16) == 0) \
12650 ge |= 3 << (n * 2); \
12651 } while(0)
12653 #define SUB8(a, b, n) do { \
12654 uint32_t sum; \
12655 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12656 RESULT(sum, n, 8); \
12657 if ((sum >> 8) == 0) \
12658 ge |= 1 << n; \
12659 } while(0)
12661 #define PFX u
12662 #define ARITH_GE
12664 #include "op_addsub.h"
12666 /* Halved signed arithmetic. */
12667 #define ADD16(a, b, n) \
12668 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12669 #define SUB16(a, b, n) \
12670 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12671 #define ADD8(a, b, n) \
12672 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12673 #define SUB8(a, b, n) \
12674 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12675 #define PFX sh
12677 #include "op_addsub.h"
12679 /* Halved unsigned arithmetic. */
12680 #define ADD16(a, b, n) \
12681 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12682 #define SUB16(a, b, n) \
12683 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12684 #define ADD8(a, b, n) \
12685 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12686 #define SUB8(a, b, n) \
12687 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12688 #define PFX uh
12690 #include "op_addsub.h"
12692 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12694 if (a > b)
12695 return a - b;
12696 else
12697 return b - a;
12700 /* Unsigned sum of absolute byte differences. */
12701 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12703 uint32_t sum;
12704 sum = do_usad(a, b);
12705 sum += do_usad(a >> 8, b >> 8);
12706 sum += do_usad(a >> 16, b >> 16);
12707 sum += do_usad(a >> 24, b >> 24);
12708 return sum;
12711 /* For ARMv6 SEL instruction. */
12712 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12714 uint32_t mask;
12716 mask = 0;
12717 if (flags & 1)
12718 mask |= 0xff;
12719 if (flags & 2)
12720 mask |= 0xff00;
12721 if (flags & 4)
12722 mask |= 0xff0000;
12723 if (flags & 8)
12724 mask |= 0xff000000;
12725 return (a & mask) | (b & ~mask);
12728 /* CRC helpers.
12729 * The upper bytes of val (above the number specified by 'bytes') must have
12730 * been zeroed out by the caller.
12732 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12734 uint8_t buf[4];
12736 stl_le_p(buf, val);
12738 /* zlib crc32 converts the accumulator and output to one's complement. */
12739 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12742 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12744 uint8_t buf[4];
12746 stl_le_p(buf, val);
12748 /* Linux crc32c converts the output to one's complement. */
12749 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12752 /* Return the exception level to which FP-disabled exceptions should
12753 * be taken, or 0 if FP is enabled.
12755 int fp_exception_el(CPUARMState *env, int cur_el)
12757 #ifndef CONFIG_USER_ONLY
12758 /* CPACR and the CPTR registers don't exist before v6, so FP is
12759 * always accessible
12761 if (!arm_feature(env, ARM_FEATURE_V6)) {
12762 return 0;
12765 if (arm_feature(env, ARM_FEATURE_M)) {
12766 /* CPACR can cause a NOCP UsageFault taken to current security state */
12767 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12768 return 1;
12771 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12772 if (!extract32(env->v7m.nsacr, 10, 1)) {
12773 /* FP insns cause a NOCP UsageFault taken to Secure */
12774 return 3;
12778 return 0;
12781 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12782 * 0, 2 : trap EL0 and EL1/PL1 accesses
12783 * 1 : trap only EL0 accesses
12784 * 3 : trap no accesses
12785 * This register is ignored if E2H+TGE are both set.
12787 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12788 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12790 switch (fpen) {
12791 case 0:
12792 case 2:
12793 if (cur_el == 0 || cur_el == 1) {
12794 /* Trap to PL1, which might be EL1 or EL3 */
12795 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12796 return 3;
12798 return 1;
12800 if (cur_el == 3 && !is_a64(env)) {
12801 /* Secure PL1 running at EL3 */
12802 return 3;
12804 break;
12805 case 1:
12806 if (cur_el == 0) {
12807 return 1;
12809 break;
12810 case 3:
12811 break;
12816 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12817 * to control non-secure access to the FPU. It doesn't have any
12818 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12820 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12821 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12822 if (!extract32(env->cp15.nsacr, 10, 1)) {
12823 /* FP insns act as UNDEF */
12824 return cur_el == 2 ? 2 : 1;
12828 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12829 * check because zero bits in the registers mean "don't trap".
12832 /* CPTR_EL2 : present in v7VE or v8 */
12833 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12834 && arm_is_el2_enabled(env)) {
12835 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12836 return 2;
12839 /* CPTR_EL3 : present in v8 */
12840 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12841 /* Trap all FP ops to EL3 */
12842 return 3;
12844 #endif
12845 return 0;
12848 /* Return the exception level we're running at if this is our mmu_idx */
12849 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12851 if (mmu_idx & ARM_MMU_IDX_M) {
12852 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12855 switch (mmu_idx) {
12856 case ARMMMUIdx_E10_0:
12857 case ARMMMUIdx_E20_0:
12858 case ARMMMUIdx_SE10_0:
12859 case ARMMMUIdx_SE20_0:
12860 return 0;
12861 case ARMMMUIdx_E10_1:
12862 case ARMMMUIdx_E10_1_PAN:
12863 case ARMMMUIdx_SE10_1:
12864 case ARMMMUIdx_SE10_1_PAN:
12865 return 1;
12866 case ARMMMUIdx_E2:
12867 case ARMMMUIdx_E20_2:
12868 case ARMMMUIdx_E20_2_PAN:
12869 case ARMMMUIdx_SE2:
12870 case ARMMMUIdx_SE20_2:
12871 case ARMMMUIdx_SE20_2_PAN:
12872 return 2;
12873 case ARMMMUIdx_SE3:
12874 return 3;
12875 default:
12876 g_assert_not_reached();
12880 #ifndef CONFIG_TCG
12881 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12883 g_assert_not_reached();
12885 #endif
12887 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12889 ARMMMUIdx idx;
12890 uint64_t hcr;
12892 if (arm_feature(env, ARM_FEATURE_M)) {
12893 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12896 /* See ARM pseudo-function ELIsInHost. */
12897 switch (el) {
12898 case 0:
12899 hcr = arm_hcr_el2_eff(env);
12900 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12901 idx = ARMMMUIdx_E20_0;
12902 } else {
12903 idx = ARMMMUIdx_E10_0;
12905 break;
12906 case 1:
12907 if (env->pstate & PSTATE_PAN) {
12908 idx = ARMMMUIdx_E10_1_PAN;
12909 } else {
12910 idx = ARMMMUIdx_E10_1;
12912 break;
12913 case 2:
12914 /* Note that TGE does not apply at EL2. */
12915 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12916 if (env->pstate & PSTATE_PAN) {
12917 idx = ARMMMUIdx_E20_2_PAN;
12918 } else {
12919 idx = ARMMMUIdx_E20_2;
12921 } else {
12922 idx = ARMMMUIdx_E2;
12924 break;
12925 case 3:
12926 return ARMMMUIdx_SE3;
12927 default:
12928 g_assert_not_reached();
12931 if (arm_is_secure_below_el3(env)) {
12932 idx &= ~ARM_MMU_IDX_A_NS;
12935 return idx;
12938 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12940 return arm_mmu_idx_el(env, arm_current_el(env));
12943 #ifndef CONFIG_USER_ONLY
12944 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12946 return stage_1_mmu_idx(arm_mmu_idx(env));
12948 #endif
12950 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12951 ARMMMUIdx mmu_idx, uint32_t flags)
12953 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12954 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12955 arm_to_core_mmu_idx(mmu_idx));
12957 if (arm_singlestep_active(env)) {
12958 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12960 return flags;
12963 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12964 ARMMMUIdx mmu_idx, uint32_t flags)
12966 bool sctlr_b = arm_sctlr_b(env);
12968 if (sctlr_b) {
12969 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12971 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12972 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12974 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12976 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12979 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12980 ARMMMUIdx mmu_idx)
12982 uint32_t flags = 0;
12984 if (arm_v7m_is_handler_mode(env)) {
12985 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12989 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12990 * is suppressing them because the requested execution priority
12991 * is less than 0.
12993 if (arm_feature(env, ARM_FEATURE_V8) &&
12994 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12995 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12996 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12999 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13002 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
13004 int flags = 0;
13006 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
13007 arm_debug_target_el(env));
13008 return flags;
13011 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
13012 ARMMMUIdx mmu_idx)
13014 uint32_t flags = rebuild_hflags_aprofile(env);
13016 if (arm_el_is_aa64(env, 1)) {
13017 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13020 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
13021 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13022 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
13025 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13028 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13029 ARMMMUIdx mmu_idx)
13031 uint32_t flags = rebuild_hflags_aprofile(env);
13032 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13033 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13034 uint64_t sctlr;
13035 int tbii, tbid;
13037 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13039 /* Get control bits for tagged addresses. */
13040 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13041 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13043 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13044 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13046 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13047 int sve_el = sve_exception_el(env, el);
13048 uint32_t zcr_len;
13051 * If SVE is disabled, but FP is enabled,
13052 * then the effective len is 0.
13054 if (sve_el != 0 && fp_el == 0) {
13055 zcr_len = 0;
13056 } else {
13057 zcr_len = sve_zcr_len_for_el(env, el);
13059 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13060 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13063 sctlr = regime_sctlr(env, stage1);
13065 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13066 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13069 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13071 * In order to save space in flags, we record only whether
13072 * pauth is "inactive", meaning all insns are implemented as
13073 * a nop, or "active" when some action must be performed.
13074 * The decision of which action to take is left to a helper.
13076 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13077 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13081 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13082 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13083 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13084 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13088 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13089 if (!(env->pstate & PSTATE_UAO)) {
13090 switch (mmu_idx) {
13091 case ARMMMUIdx_E10_1:
13092 case ARMMMUIdx_E10_1_PAN:
13093 case ARMMMUIdx_SE10_1:
13094 case ARMMMUIdx_SE10_1_PAN:
13095 /* TODO: ARMv8.3-NV */
13096 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13097 break;
13098 case ARMMMUIdx_E20_2:
13099 case ARMMMUIdx_E20_2_PAN:
13100 case ARMMMUIdx_SE20_2:
13101 case ARMMMUIdx_SE20_2_PAN:
13103 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13104 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13106 if (env->cp15.hcr_el2 & HCR_TGE) {
13107 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13109 break;
13110 default:
13111 break;
13115 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13117 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13118 * if all accesses must be Unchecked:
13119 * 1) If no TBI, then there are no tags in the address to check,
13120 * 2) If Tag Check Override, then all accesses are Unchecked,
13121 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13122 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13124 if (allocation_tag_access_enabled(env, el, sctlr)) {
13125 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
13126 if (tbid
13127 && !(env->pstate & PSTATE_TCO)
13128 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13129 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
13132 /* And again for unprivileged accesses, if required. */
13133 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
13134 && tbid
13135 && !(env->pstate & PSTATE_TCO)
13136 && (sctlr & SCTLR_TCF)
13137 && allocation_tag_access_enabled(env, 0, sctlr)) {
13138 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
13140 /* Cache TCMA as well as TBI. */
13141 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
13142 aa64_va_parameter_tcma(tcr, mmu_idx));
13145 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13148 static uint32_t rebuild_hflags_internal(CPUARMState *env)
13150 int el = arm_current_el(env);
13151 int fp_el = fp_exception_el(env, el);
13152 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13154 if (is_a64(env)) {
13155 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13156 } else if (arm_feature(env, ARM_FEATURE_M)) {
13157 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13158 } else {
13159 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13163 void arm_rebuild_hflags(CPUARMState *env)
13165 env->hflags = rebuild_hflags_internal(env);
13169 * If we have triggered a EL state change we can't rely on the
13170 * translator having passed it to us, we need to recompute.
13172 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13174 int el = arm_current_el(env);
13175 int fp_el = fp_exception_el(env, el);
13176 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13177 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13180 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13182 int fp_el = fp_exception_el(env, el);
13183 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13185 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13189 * If we have triggered a EL state change we can't rely on the
13190 * translator having passed it to us, we need to recompute.
13192 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13194 int el = arm_current_el(env);
13195 int fp_el = fp_exception_el(env, el);
13196 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13197 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13200 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13202 int fp_el = fp_exception_el(env, el);
13203 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13205 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13208 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13210 int fp_el = fp_exception_el(env, el);
13211 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13213 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13216 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13218 #ifdef CONFIG_DEBUG_TCG
13219 uint32_t env_flags_current = env->hflags;
13220 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13222 if (unlikely(env_flags_current != env_flags_rebuilt)) {
13223 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13224 env_flags_current, env_flags_rebuilt);
13225 abort();
13227 #endif
13230 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13231 target_ulong *cs_base, uint32_t *pflags)
13233 uint32_t flags = env->hflags;
13235 *cs_base = 0;
13236 assert_hflags_rebuild_correctly(env);
13238 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13239 *pc = env->pc;
13240 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13241 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13243 } else {
13244 *pc = env->regs[15];
13246 if (arm_feature(env, ARM_FEATURE_M)) {
13247 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13248 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13249 != env->v7m.secure) {
13250 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13253 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13254 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13255 (env->v7m.secure &&
13256 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13258 * ASPEN is set, but FPCA/SFPA indicate that there is no
13259 * active FP context; we must create a new FP context before
13260 * executing any FP insn.
13262 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13265 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13266 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13267 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13269 } else {
13271 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13272 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13274 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13275 flags = FIELD_DP32(flags, TBFLAG_A32,
13276 XSCALE_CPAR, env->cp15.c15_cpar);
13277 } else {
13278 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13279 env->vfp.vec_len);
13280 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13281 env->vfp.vec_stride);
13283 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13284 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13288 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13289 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13293 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13294 * states defined in the ARM ARM for software singlestep:
13295 * SS_ACTIVE PSTATE.SS State
13296 * 0 x Inactive (the TB flag for SS is always 0)
13297 * 1 0 Active-pending
13298 * 1 1 Active-not-pending
13299 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13301 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13302 (env->pstate & PSTATE_SS)) {
13303 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13306 *pflags = flags;
13309 #ifdef TARGET_AARCH64
13311 * The manual says that when SVE is enabled and VQ is widened the
13312 * implementation is allowed to zero the previously inaccessible
13313 * portion of the registers. The corollary to that is that when
13314 * SVE is enabled and VQ is narrowed we are also allowed to zero
13315 * the now inaccessible portion of the registers.
13317 * The intent of this is that no predicate bit beyond VQ is ever set.
13318 * Which means that some operations on predicate registers themselves
13319 * may operate on full uint64_t or even unrolled across the maximum
13320 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13321 * may well be cheaper than conditionals to restrict the operation
13322 * to the relevant portion of a uint16_t[16].
13324 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13326 int i, j;
13327 uint64_t pmask;
13329 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13330 assert(vq <= env_archcpu(env)->sve_max_vq);
13332 /* Zap the high bits of the zregs. */
13333 for (i = 0; i < 32; i++) {
13334 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13337 /* Zap the high bits of the pregs and ffr. */
13338 pmask = 0;
13339 if (vq & 3) {
13340 pmask = ~(-1ULL << (16 * (vq & 3)));
13342 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13343 for (i = 0; i < 17; ++i) {
13344 env->vfp.pregs[i].p[j] &= pmask;
13346 pmask = 0;
13351 * Notice a change in SVE vector size when changing EL.
13353 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13354 int new_el, bool el0_a64)
13356 ARMCPU *cpu = env_archcpu(env);
13357 int old_len, new_len;
13358 bool old_a64, new_a64;
13360 /* Nothing to do if no SVE. */
13361 if (!cpu_isar_feature(aa64_sve, cpu)) {
13362 return;
13365 /* Nothing to do if FP is disabled in either EL. */
13366 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13367 return;
13371 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13372 * at ELx, or not available because the EL is in AArch32 state, then
13373 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13374 * has an effective value of 0".
13376 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13377 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13378 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13379 * we already have the correct register contents when encountering the
13380 * vq0->vq0 transition between EL0->EL1.
13382 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13383 old_len = (old_a64 && !sve_exception_el(env, old_el)
13384 ? sve_zcr_len_for_el(env, old_el) : 0);
13385 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13386 new_len = (new_a64 && !sve_exception_el(env, new_el)
13387 ? sve_zcr_len_for_el(env, new_el) : 0);
13389 /* When changing vector length, clear inaccessible state. */
13390 if (new_len < old_len) {
13391 aarch64_sve_narrow_vq(env, new_len + 1);
13394 #endif