4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
27 /* Sparc MMU emulation */
29 #ifndef TARGET_SPARC64
31 * Sparc V8 Reference MMU (SRMMU)
33 static const int access_table
[8][8] = {
34 { 0, 0, 0, 0, 8, 0, 12, 12 },
35 { 0, 0, 0, 0, 8, 0, 0, 0 },
36 { 8, 8, 0, 0, 0, 8, 12, 12 },
37 { 8, 8, 0, 0, 0, 8, 0, 0 },
38 { 8, 0, 8, 0, 8, 8, 12, 12 },
39 { 8, 0, 8, 0, 8, 0, 8, 0 },
40 { 8, 8, 8, 0, 8, 8, 12, 12 },
41 { 8, 8, 8, 0, 8, 8, 8, 0 }
44 static const int perm_table
[2][8] = {
47 PAGE_READ
| PAGE_WRITE
,
48 PAGE_READ
| PAGE_EXEC
,
49 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
,
51 PAGE_READ
| PAGE_WRITE
,
52 PAGE_READ
| PAGE_EXEC
,
53 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
57 PAGE_READ
| PAGE_WRITE
,
58 PAGE_READ
| PAGE_EXEC
,
59 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
,
67 static int get_physical_address(CPUSPARCState
*env
, CPUTLBEntryFull
*full
,
68 int *access_index
, target_ulong address
,
74 int error_code
= 0, is_dirty
, is_user
;
75 unsigned long page_offset
;
76 CPUState
*cs
= env_cpu(env
);
79 is_user
= mmu_idx
== MMU_USER_IDX
;
81 if (mmu_idx
== MMU_PHYS_IDX
) {
82 full
->lg_page_size
= TARGET_PAGE_BITS
;
83 /* Boot mode: instruction fetches are taken from PROM */
84 if (rw
== 2 && (env
->mmuregs
[0] & env
->def
.mmu_bm
)) {
85 full
->phys_addr
= env
->prom_addr
| (address
& 0x7ffffULL
);
86 full
->prot
= PAGE_READ
| PAGE_EXEC
;
89 full
->phys_addr
= address
;
90 full
->prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
94 *access_index
= ((rw
& 1) << 2) | (rw
& 2) | (is_user
? 0 : 1);
95 full
->phys_addr
= 0xffffffffffff0000ULL
;
97 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
98 /* Context base + context number */
99 pde_ptr
= (env
->mmuregs
[1] << 4) + (env
->mmuregs
[2] << 2);
100 pde
= address_space_ldl(cs
->as
, pde_ptr
, MEMTXATTRS_UNSPECIFIED
, &result
);
101 if (result
!= MEMTX_OK
) {
102 return 4 << 2; /* Translation fault, L = 0 */
106 switch (pde
& PTE_ENTRYTYPE_MASK
) {
108 case 0: /* Invalid */
110 case 2: /* L0 PTE, maybe should not happen? */
111 case 3: /* Reserved */
114 pde_ptr
= ((address
>> 22) & ~3) + ((pde
& ~3) << 4);
115 pde
= address_space_ldl(cs
->as
, pde_ptr
,
116 MEMTXATTRS_UNSPECIFIED
, &result
);
117 if (result
!= MEMTX_OK
) {
118 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
121 switch (pde
& PTE_ENTRYTYPE_MASK
) {
123 case 0: /* Invalid */
124 return (1 << 8) | (1 << 2);
125 case 3: /* Reserved */
126 return (1 << 8) | (4 << 2);
128 pde_ptr
= ((address
& 0xfc0000) >> 16) + ((pde
& ~3) << 4);
129 pde
= address_space_ldl(cs
->as
, pde_ptr
,
130 MEMTXATTRS_UNSPECIFIED
, &result
);
131 if (result
!= MEMTX_OK
) {
132 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
135 switch (pde
& PTE_ENTRYTYPE_MASK
) {
137 case 0: /* Invalid */
138 return (2 << 8) | (1 << 2);
139 case 3: /* Reserved */
140 return (2 << 8) | (4 << 2);
142 pde_ptr
= ((address
& 0x3f000) >> 10) + ((pde
& ~3) << 4);
143 pde
= address_space_ldl(cs
->as
, pde_ptr
,
144 MEMTXATTRS_UNSPECIFIED
, &result
);
145 if (result
!= MEMTX_OK
) {
146 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
149 switch (pde
& PTE_ENTRYTYPE_MASK
) {
151 case 0: /* Invalid */
152 return (3 << 8) | (1 << 2);
153 case 1: /* PDE, should not happen */
154 case 3: /* Reserved */
155 return (3 << 8) | (4 << 2);
159 full
->lg_page_size
= TARGET_PAGE_BITS
;
162 page_offset
= address
& 0x3f000;
163 full
->lg_page_size
= 18;
167 page_offset
= address
& 0xfff000;
168 full
->lg_page_size
= 24;
174 access_perms
= (pde
& PTE_ACCESS_MASK
) >> PTE_ACCESS_SHIFT
;
175 error_code
= access_table
[*access_index
][access_perms
];
176 if (error_code
&& !((env
->mmuregs
[0] & MMU_NF
) && is_user
)) {
180 /* update page modified and dirty bits */
181 is_dirty
= (rw
& 1) && !(pde
& PG_MODIFIED_MASK
);
182 if (!(pde
& PG_ACCESSED_MASK
) || is_dirty
) {
183 pde
|= PG_ACCESSED_MASK
;
185 pde
|= PG_MODIFIED_MASK
;
187 stl_phys_notdirty(cs
->as
, pde_ptr
, pde
);
190 /* the page can be put in the TLB */
191 full
->prot
= perm_table
[is_user
][access_perms
];
192 if (!(pde
& PG_MODIFIED_MASK
)) {
193 /* only set write access if already dirty... otherwise wait
195 full
->prot
&= ~PAGE_WRITE
;
198 /* Even if large ptes, we map only one 4KB page in the cache to
199 avoid filling it too fast */
200 full
->phys_addr
= ((hwaddr
)(pde
& PTE_ADDR_MASK
) << 4) + page_offset
;
204 /* Perform address translation */
205 bool sparc_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
206 MMUAccessType access_type
, int mmu_idx
,
207 bool probe
, uintptr_t retaddr
)
209 SPARCCPU
*cpu
= SPARC_CPU(cs
);
210 CPUSPARCState
*env
= &cpu
->env
;
211 CPUTLBEntryFull full
= {};
213 int error_code
= 0, access_index
;
216 * TODO: If we ever need tlb_vaddr_to_host for this target,
217 * then we must figure out how to manipulate FSR and FAR
218 * when both MMU_NF and probe are set. In the meantime,
219 * do not support this use case.
223 address
&= TARGET_PAGE_MASK
;
224 error_code
= get_physical_address(env
, &full
, &access_index
,
225 address
, access_type
, mmu_idx
);
227 if (likely(error_code
== 0)) {
228 qemu_log_mask(CPU_LOG_MMU
,
229 "Translate at %" VADDR_PRIx
" -> "
230 HWADDR_FMT_plx
", vaddr " TARGET_FMT_lx
"\n",
231 address
, full
.phys_addr
, vaddr
);
232 tlb_set_page_full(cs
, mmu_idx
, vaddr
, &full
);
236 if (env
->mmuregs
[3]) { /* Fault status register */
237 env
->mmuregs
[3] = 1; /* overflow (not read before another fault) */
239 env
->mmuregs
[3] |= (access_index
<< 5) | error_code
| 2;
240 env
->mmuregs
[4] = address
; /* Fault address register */
242 if ((env
->mmuregs
[0] & MMU_NF
) || env
->psret
== 0) {
243 /* No fault mode: if a mapping is available, just override
244 permissions. If no mapping is available, redirect accesses to
245 neverland. Fake/overridden mappings will be flushed when
246 switching to normal mode. */
247 full
.prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
248 tlb_set_page_full(cs
, mmu_idx
, vaddr
, &full
);
251 if (access_type
== MMU_INST_FETCH
) {
252 cs
->exception_index
= TT_TFAULT
;
254 cs
->exception_index
= TT_DFAULT
;
256 cpu_loop_exit_restore(cs
, retaddr
);
260 target_ulong
mmu_probe(CPUSPARCState
*env
, target_ulong address
, int mmulev
)
262 CPUState
*cs
= env_cpu(env
);
268 * TODO: MMU probe operations are supposed to set the fault
269 * status registers, but we don't do this.
272 /* Context base + context number */
273 pde_ptr
= (hwaddr
)(env
->mmuregs
[1] << 4) +
274 (env
->mmuregs
[2] << 2);
275 pde
= address_space_ldl(cs
->as
, pde_ptr
, MEMTXATTRS_UNSPECIFIED
, &result
);
276 if (result
!= MEMTX_OK
) {
280 switch (pde
& PTE_ENTRYTYPE_MASK
) {
282 case 0: /* Invalid */
283 case 2: /* PTE, maybe should not happen? */
284 case 3: /* Reserved */
290 pde_ptr
= ((address
>> 22) & ~3) + ((pde
& ~3) << 4);
291 pde
= address_space_ldl(cs
->as
, pde_ptr
,
292 MEMTXATTRS_UNSPECIFIED
, &result
);
293 if (result
!= MEMTX_OK
) {
297 switch (pde
& PTE_ENTRYTYPE_MASK
) {
299 case 0: /* Invalid */
300 case 3: /* Reserved */
308 pde_ptr
= ((address
& 0xfc0000) >> 16) + ((pde
& ~3) << 4);
309 pde
= address_space_ldl(cs
->as
, pde_ptr
,
310 MEMTXATTRS_UNSPECIFIED
, &result
);
311 if (result
!= MEMTX_OK
) {
315 switch (pde
& PTE_ENTRYTYPE_MASK
) {
317 case 0: /* Invalid */
318 case 3: /* Reserved */
326 pde_ptr
= ((address
& 0x3f000) >> 10) + ((pde
& ~3) << 4);
327 pde
= address_space_ldl(cs
->as
, pde_ptr
,
328 MEMTXATTRS_UNSPECIFIED
, &result
);
329 if (result
!= MEMTX_OK
) {
333 switch (pde
& PTE_ENTRYTYPE_MASK
) {
335 case 0: /* Invalid */
336 case 1: /* PDE, should not happen */
337 case 3: /* Reserved */
348 void dump_mmu(CPUSPARCState
*env
)
350 CPUState
*cs
= env_cpu(env
);
351 target_ulong va
, va1
, va2
;
352 unsigned int n
, m
, o
;
356 qemu_printf("Root ptr: " HWADDR_FMT_plx
", ctx: %d\n",
357 (hwaddr
)env
->mmuregs
[1] << 4, env
->mmuregs
[2]);
358 for (n
= 0, va
= 0; n
< 256; n
++, va
+= 16 * 1024 * 1024) {
359 pde
= mmu_probe(env
, va
, 2);
361 pa
= cpu_get_phys_page_debug(cs
, va
);
362 qemu_printf("VA: " TARGET_FMT_lx
", PA: " HWADDR_FMT_plx
363 " PDE: " TARGET_FMT_lx
"\n", va
, pa
, pde
);
364 for (m
= 0, va1
= va
; m
< 64; m
++, va1
+= 256 * 1024) {
365 pde
= mmu_probe(env
, va1
, 1);
367 pa
= cpu_get_phys_page_debug(cs
, va1
);
368 qemu_printf(" VA: " TARGET_FMT_lx
", PA: "
369 HWADDR_FMT_plx
" PDE: " TARGET_FMT_lx
"\n",
371 for (o
= 0, va2
= va1
; o
< 64; o
++, va2
+= 4 * 1024) {
372 pde
= mmu_probe(env
, va2
, 0);
374 pa
= cpu_get_phys_page_debug(cs
, va2
);
375 qemu_printf(" VA: " TARGET_FMT_lx
", PA: "
376 HWADDR_FMT_plx
" PTE: "
387 /* Gdb expects all registers windows to be flushed in ram. This function handles
388 * reads (and only reads) in stack frames as if windows were flushed. We assume
389 * that the sparc ABI is followed.
391 int sparc_cpu_memory_rw_debug(CPUState
*cs
, vaddr address
,
392 uint8_t *buf
, int len
, bool is_write
)
394 SPARCCPU
*cpu
= SPARC_CPU(cs
);
395 CPUSPARCState
*env
= &cpu
->env
;
396 target_ulong addr
= address
;
402 for (i
= 0; i
< env
->nwindows
; i
++) {
404 target_ulong fp
= env
->regbase
[cwp
* 16 + 22];
406 /* Assume fp == 0 means end of frame. */
411 cwp
= cpu_cwp_inc(env
, cwp
+ 1);
413 /* Invalid window ? */
414 if (env
->wim
& (1 << cwp
)) {
418 /* According to the ABI, the stack is growing downward. */
419 if (addr
+ len
< fp
) {
423 /* Not in this frame. */
424 if (addr
> fp
+ 64) {
428 /* Handle access before this window. */
431 if (cpu_memory_rw_debug(cs
, addr
, buf
, len1
, is_write
) != 0) {
439 /* Access byte per byte to registers. Not very efficient but speed
449 for (; len1
; len1
--) {
450 int reg
= cwp
* 16 + 8 + (off
>> 2);
455 u
.v
= cpu_to_be32(env
->regbase
[reg
]);
456 *buf
++ = u
.c
[off
& 3];
467 return cpu_memory_rw_debug(cs
, addr
, buf
, len
, is_write
);
470 #else /* !TARGET_SPARC64 */
472 /* 41 bit physical address space */
473 static inline hwaddr
ultrasparc_truncate_physical(uint64_t x
)
475 return x
& 0x1ffffffffffULL
;
479 * UltraSparc IIi I/DMMUs
482 /* Returns true if TTE tag is valid and matches virtual address value
483 in context requires virtual address mask value calculated from TTE
485 static inline int ultrasparc_tag_match(SparcTLBEntry
*tlb
,
486 uint64_t address
, uint64_t context
,
489 uint64_t mask
= -(8192ULL << 3 * TTE_PGSIZE(tlb
->tte
));
491 /* valid, context match, virtual address match? */
492 if (TTE_IS_VALID(tlb
->tte
) &&
493 (TTE_IS_GLOBAL(tlb
->tte
) || tlb_compare_context(tlb
, context
))
494 && compare_masked(address
, tlb
->tag
, mask
)) {
495 /* decode physical address */
496 *physical
= ((tlb
->tte
& mask
) | (address
& ~mask
)) & 0x1ffffffe000ULL
;
503 static uint64_t build_sfsr(CPUSPARCState
*env
, int mmu_idx
, int rw
)
505 uint64_t sfsr
= SFSR_VALID_BIT
;
509 sfsr
|= SFSR_CT_NOTRANS
;
513 sfsr
|= SFSR_CT_PRIMARY
;
515 case MMU_USER_SECONDARY_IDX
:
516 case MMU_KERNEL_SECONDARY_IDX
:
517 sfsr
|= SFSR_CT_SECONDARY
;
519 case MMU_NUCLEUS_IDX
:
520 sfsr
|= SFSR_CT_NUCLEUS
;
523 g_assert_not_reached();
527 sfsr
|= SFSR_WRITE_BIT
;
528 } else if (rw
== 4) {
532 if (env
->pstate
& PS_PRIV
) {
536 if (env
->dmmu
.sfsr
& SFSR_VALID_BIT
) { /* Fault status register */
537 sfsr
|= SFSR_OW_BIT
; /* overflow (not read before another fault) */
540 /* FIXME: ASI field in SFSR must be set */
545 static int get_physical_address_data(CPUSPARCState
*env
, CPUTLBEntryFull
*full
,
546 target_ulong address
, int rw
, int mmu_idx
)
548 CPUState
*cs
= env_cpu(env
);
552 bool is_user
= false;
554 sfsr
= build_sfsr(env
, mmu_idx
, rw
);
558 g_assert_not_reached();
563 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
565 case MMU_USER_SECONDARY_IDX
:
568 case MMU_KERNEL_SECONDARY_IDX
:
569 context
= env
->dmmu
.mmu_secondary_context
& 0x1fff;
576 for (i
= 0; i
< 64; i
++) {
577 /* ctx match, vaddr match, valid? */
578 if (ultrasparc_tag_match(&env
->dtlb
[i
], address
, context
,
582 if (TTE_IS_IE(env
->dtlb
[i
].tte
)) {
583 full
->attrs
.byte_swap
= true;
587 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
588 if (TTE_IS_PRIV(env
->dtlb
[i
].tte
) && is_user
) {
590 sfsr
|= SFSR_FT_PRIV_BIT
; /* privilege violation */
591 trace_mmu_helper_dfault(address
, context
, mmu_idx
, env
->tl
);
594 if (TTE_IS_SIDEEFFECT(env
->dtlb
[i
].tte
)) {
596 sfsr
|= SFSR_FT_NF_E_BIT
;
599 if (TTE_IS_NFO(env
->dtlb
[i
].tte
)) {
601 sfsr
|= SFSR_FT_NFO_BIT
;
606 /* faults above are reported with TT_DFAULT. */
607 cs
->exception_index
= TT_DFAULT
;
608 } else if (!TTE_IS_W_OK(env
->dtlb
[i
].tte
) && (rw
== 1)) {
610 cs
->exception_index
= TT_DPROT
;
612 trace_mmu_helper_dprot(address
, context
, mmu_idx
, env
->tl
);
616 full
->prot
= PAGE_READ
;
617 if (TTE_IS_W_OK(env
->dtlb
[i
].tte
)) {
618 full
->prot
|= PAGE_WRITE
;
621 TTE_SET_USED(env
->dtlb
[i
].tte
);
626 env
->dmmu
.sfsr
= sfsr
;
627 env
->dmmu
.sfar
= address
; /* Fault address register */
628 env
->dmmu
.tag_access
= (address
& ~0x1fffULL
) | context
;
633 trace_mmu_helper_dmiss(address
, context
);
637 * - UltraSPARC IIi: SFSR and SFAR unmodified
638 * - JPS1: SFAR updated and some fields of SFSR updated
640 env
->dmmu
.tag_access
= (address
& ~0x1fffULL
) | context
;
641 cs
->exception_index
= TT_DMISS
;
645 static int get_physical_address_code(CPUSPARCState
*env
, CPUTLBEntryFull
*full
,
646 target_ulong address
, int mmu_idx
)
648 CPUState
*cs
= env_cpu(env
);
651 bool is_user
= false;
655 case MMU_USER_SECONDARY_IDX
:
656 case MMU_KERNEL_SECONDARY_IDX
:
657 g_assert_not_reached();
662 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
670 /* PRIMARY context */
671 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
673 /* NUCLEUS context */
677 for (i
= 0; i
< 64; i
++) {
678 /* ctx match, vaddr match, valid? */
679 if (ultrasparc_tag_match(&env
->itlb
[i
],
680 address
, context
, &full
->phys_addr
)) {
682 if (TTE_IS_PRIV(env
->itlb
[i
].tte
) && is_user
) {
683 /* Fault status register */
684 if (env
->immu
.sfsr
& SFSR_VALID_BIT
) {
685 env
->immu
.sfsr
= SFSR_OW_BIT
; /* overflow (not read before
690 if (env
->pstate
& PS_PRIV
) {
691 env
->immu
.sfsr
|= SFSR_PR_BIT
;
694 env
->immu
.sfsr
|= SFSR_CT_NUCLEUS
;
697 /* FIXME: ASI field in SFSR must be set */
698 env
->immu
.sfsr
|= SFSR_FT_PRIV_BIT
| SFSR_VALID_BIT
;
699 cs
->exception_index
= TT_TFAULT
;
701 env
->immu
.tag_access
= (address
& ~0x1fffULL
) | context
;
703 trace_mmu_helper_tfault(address
, context
);
707 full
->prot
= PAGE_EXEC
;
708 TTE_SET_USED(env
->itlb
[i
].tte
);
713 trace_mmu_helper_tmiss(address
, context
);
715 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
716 env
->immu
.tag_access
= (address
& ~0x1fffULL
) | context
;
717 cs
->exception_index
= TT_TMISS
;
721 static int get_physical_address(CPUSPARCState
*env
, CPUTLBEntryFull
*full
,
722 int *access_index
, target_ulong address
,
725 /* ??? We treat everything as a small page, then explicitly flush
726 everything when an entry is evicted. */
727 full
->lg_page_size
= TARGET_PAGE_BITS
;
729 /* safety net to catch wrong softmmu index use from dynamic code */
730 if (env
->tl
> 0 && mmu_idx
!= MMU_NUCLEUS_IDX
) {
732 trace_mmu_helper_get_phys_addr_code(env
->tl
, mmu_idx
,
733 env
->dmmu
.mmu_primary_context
,
734 env
->dmmu
.mmu_secondary_context
,
737 trace_mmu_helper_get_phys_addr_data(env
->tl
, mmu_idx
,
738 env
->dmmu
.mmu_primary_context
,
739 env
->dmmu
.mmu_secondary_context
,
744 if (mmu_idx
== MMU_PHYS_IDX
) {
745 full
->phys_addr
= ultrasparc_truncate_physical(address
);
746 full
->prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
751 return get_physical_address_code(env
, full
, address
, mmu_idx
);
753 return get_physical_address_data(env
, full
, address
, rw
, mmu_idx
);
757 /* Perform address translation */
758 bool sparc_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
759 MMUAccessType access_type
, int mmu_idx
,
760 bool probe
, uintptr_t retaddr
)
762 SPARCCPU
*cpu
= SPARC_CPU(cs
);
763 CPUSPARCState
*env
= &cpu
->env
;
764 CPUTLBEntryFull full
= {};
765 int error_code
= 0, access_index
;
767 address
&= TARGET_PAGE_MASK
;
768 error_code
= get_physical_address(env
, &full
, &access_index
,
769 address
, access_type
, mmu_idx
);
770 if (likely(error_code
== 0)) {
771 trace_mmu_helper_mmu_fault(address
, full
.phys_addr
, mmu_idx
, env
->tl
,
772 env
->dmmu
.mmu_primary_context
,
773 env
->dmmu
.mmu_secondary_context
);
774 tlb_set_page_full(cs
, mmu_idx
, address
, &full
);
780 cpu_loop_exit_restore(cs
, retaddr
);
783 void dump_mmu(CPUSPARCState
*env
)
788 qemu_printf("MMU contexts: Primary: %" PRId64
", Secondary: %"
790 env
->dmmu
.mmu_primary_context
,
791 env
->dmmu
.mmu_secondary_context
);
792 qemu_printf("DMMU Tag Access: %" PRIx64
", TSB Tag Target: %" PRIx64
793 "\n", env
->dmmu
.tag_access
, env
->dmmu
.tsb_tag_target
);
794 if ((env
->lsu
& DMMU_E
) == 0) {
795 qemu_printf("DMMU disabled\n");
797 qemu_printf("DMMU dump\n");
798 for (i
= 0; i
< 64; i
++) {
799 switch (TTE_PGSIZE(env
->dtlb
[i
].tte
)) {
814 if (TTE_IS_VALID(env
->dtlb
[i
].tte
)) {
815 qemu_printf("[%02u] VA: %" PRIx64
", PA: %llx"
816 ", %s, %s, %s, %s, ie %s, ctx %" PRId64
" %s\n",
818 env
->dtlb
[i
].tag
& (uint64_t)~0x1fffULL
,
819 TTE_PA(env
->dtlb
[i
].tte
),
821 TTE_IS_PRIV(env
->dtlb
[i
].tte
) ? "priv" : "user",
822 TTE_IS_W_OK(env
->dtlb
[i
].tte
) ? "RW" : "RO",
823 TTE_IS_LOCKED(env
->dtlb
[i
].tte
) ?
824 "locked" : "unlocked",
825 TTE_IS_IE(env
->dtlb
[i
].tte
) ?
827 env
->dtlb
[i
].tag
& (uint64_t)0x1fffULL
,
828 TTE_IS_GLOBAL(env
->dtlb
[i
].tte
) ?
833 if ((env
->lsu
& IMMU_E
) == 0) {
834 qemu_printf("IMMU disabled\n");
836 qemu_printf("IMMU dump\n");
837 for (i
= 0; i
< 64; i
++) {
838 switch (TTE_PGSIZE(env
->itlb
[i
].tte
)) {
853 if (TTE_IS_VALID(env
->itlb
[i
].tte
)) {
854 qemu_printf("[%02u] VA: %" PRIx64
", PA: %llx"
855 ", %s, %s, %s, ctx %" PRId64
" %s\n",
857 env
->itlb
[i
].tag
& (uint64_t)~0x1fffULL
,
858 TTE_PA(env
->itlb
[i
].tte
),
860 TTE_IS_PRIV(env
->itlb
[i
].tte
) ? "priv" : "user",
861 TTE_IS_LOCKED(env
->itlb
[i
].tte
) ?
862 "locked" : "unlocked",
863 env
->itlb
[i
].tag
& (uint64_t)0x1fffULL
,
864 TTE_IS_GLOBAL(env
->itlb
[i
].tte
) ?
871 #endif /* TARGET_SPARC64 */
873 static int cpu_sparc_get_phys_page(CPUSPARCState
*env
, hwaddr
*phys
,
874 target_ulong addr
, int rw
, int mmu_idx
)
876 CPUTLBEntryFull full
= {};
877 int access_index
, ret
;
879 ret
= get_physical_address(env
, &full
, &access_index
, addr
, rw
, mmu_idx
);
881 *phys
= full
.phys_addr
;
886 #if defined(TARGET_SPARC64)
887 hwaddr
cpu_get_phys_page_nofault(CPUSPARCState
*env
, target_ulong addr
,
892 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 4, mmu_idx
) != 0) {
899 hwaddr
sparc_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
901 SPARCCPU
*cpu
= SPARC_CPU(cs
);
902 CPUSPARCState
*env
= &cpu
->env
;
904 int mmu_idx
= cpu_mmu_index(env
, false);
906 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 2, mmu_idx
) != 0) {
907 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 0, mmu_idx
) != 0) {
914 G_NORETURN
void sparc_cpu_do_unaligned_access(CPUState
*cs
, vaddr addr
,
915 MMUAccessType access_type
,
919 SPARCCPU
*cpu
= SPARC_CPU(cs
);
920 CPUSPARCState
*env
= &cpu
->env
;
922 #ifdef TARGET_SPARC64
923 env
->dmmu
.sfsr
= build_sfsr(env
, mmu_idx
, access_type
);
924 env
->dmmu
.sfar
= addr
;
926 env
->mmuregs
[4] = addr
;
929 cpu_raise_exception_ra(env
, TT_UNALIGNED
, retaddr
);