monitor: deprecate acl_show, acl_reset, acl_policy, acl_add, acl_remove
[qemu/ar7.git] / migration / ram.c
blob35bd6213e91757f9c3b4ba936d8fae1b01775abc
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
131 int64_t ret = 0;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
145 XBZRLE_cache_lock();
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
181 RAMBlock *block;
182 int ret = 0;
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
191 rcu_read_unlock();
192 return ret;
195 static void ramblock_recv_map_init(void)
197 RAMBlock *rb;
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
284 g_free(le_bitmap);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
295 * and queued
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
387 if (!ram_state) {
388 return;
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
492 qemu_mutex_unlock(&param->mutex);
494 return NULL;
497 static void compress_threads_save_cleanup(void)
499 int i, thread_count;
501 if (!migrate_use_compression() || !comp_param) {
502 return;
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
512 break;
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
536 static int compress_threads_save_setup(void)
538 int i, thread_count;
540 if (!migrate_use_compression()) {
541 return 0;
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
572 return 0;
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
579 /* Multiple fd's */
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 typedef struct {
587 uint32_t magic;
588 uint32_t version;
589 unsigned char uuid[16]; /* QemuUUID */
590 uint8_t id;
591 } __attribute__((packed)) MultiFDInit_t;
593 typedef struct {
594 uint32_t magic;
595 uint32_t version;
596 uint32_t flags;
597 uint32_t size;
598 uint32_t used;
599 uint64_t packet_num;
600 char ramblock[256];
601 uint64_t offset[];
602 } __attribute__((packed)) MultiFDPacket_t;
604 typedef struct {
605 /* number of used pages */
606 uint32_t used;
607 /* number of allocated pages */
608 uint32_t allocated;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
611 /* offset of each page */
612 ram_addr_t *offset;
613 /* pointer to each page */
614 struct iovec *iov;
615 RAMBlock *block;
616 } MultiFDPages_t;
618 typedef struct {
619 /* this fields are not changed once the thread is created */
620 /* channel number */
621 uint8_t id;
622 /* channel thread name */
623 char *name;
624 /* channel thread id */
625 QemuThread thread;
626 /* communication channel */
627 QIOChannel *c;
628 /* sem where to wait for more work */
629 QemuSemaphore sem;
630 /* this mutex protects the following parameters */
631 QemuMutex mutex;
632 /* is this channel thread running */
633 bool running;
634 /* should this thread finish */
635 bool quit;
636 /* thread has work to do */
637 int pending_job;
638 /* array of pages to sent */
639 MultiFDPages_t *pages;
640 /* packet allocated len */
641 uint32_t packet_len;
642 /* pointer to the packet */
643 MultiFDPacket_t *packet;
644 /* multifd flags for each packet */
645 uint32_t flags;
646 /* global number of generated multifd packets */
647 uint64_t packet_num;
648 /* thread local variables */
649 /* packets sent through this channel */
650 uint64_t num_packets;
651 /* pages sent through this channel */
652 uint64_t num_pages;
653 /* syncs main thread and channels */
654 QemuSemaphore sem_sync;
655 } MultiFDSendParams;
657 typedef struct {
658 /* this fields are not changed once the thread is created */
659 /* channel number */
660 uint8_t id;
661 /* channel thread name */
662 char *name;
663 /* channel thread id */
664 QemuThread thread;
665 /* communication channel */
666 QIOChannel *c;
667 /* this mutex protects the following parameters */
668 QemuMutex mutex;
669 /* is this channel thread running */
670 bool running;
671 /* array of pages to receive */
672 MultiFDPages_t *pages;
673 /* packet allocated len */
674 uint32_t packet_len;
675 /* pointer to the packet */
676 MultiFDPacket_t *packet;
677 /* multifd flags for each packet */
678 uint32_t flags;
679 /* global number of generated multifd packets */
680 uint64_t packet_num;
681 /* thread local variables */
682 /* packets sent through this channel */
683 uint64_t num_packets;
684 /* pages sent through this channel */
685 uint64_t num_pages;
686 /* syncs main thread and channels */
687 QemuSemaphore sem_sync;
688 } MultiFDRecvParams;
690 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
692 MultiFDInit_t msg;
693 int ret;
695 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
696 msg.version = cpu_to_be32(MULTIFD_VERSION);
697 msg.id = p->id;
698 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
700 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
701 if (ret != 0) {
702 return -1;
704 return 0;
707 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
709 MultiFDInit_t msg;
710 int ret;
712 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
713 if (ret != 0) {
714 return -1;
717 msg.magic = be32_to_cpu(msg.magic);
718 msg.version = be32_to_cpu(msg.version);
720 if (msg.magic != MULTIFD_MAGIC) {
721 error_setg(errp, "multifd: received packet magic %x "
722 "expected %x", msg.magic, MULTIFD_MAGIC);
723 return -1;
726 if (msg.version != MULTIFD_VERSION) {
727 error_setg(errp, "multifd: received packet version %d "
728 "expected %d", msg.version, MULTIFD_VERSION);
729 return -1;
732 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
733 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
734 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
736 error_setg(errp, "multifd: received uuid '%s' and expected "
737 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
738 g_free(uuid);
739 g_free(msg_uuid);
740 return -1;
743 if (msg.id > migrate_multifd_channels()) {
744 error_setg(errp, "multifd: received channel version %d "
745 "expected %d", msg.version, MULTIFD_VERSION);
746 return -1;
749 return msg.id;
752 static MultiFDPages_t *multifd_pages_init(size_t size)
754 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
756 pages->allocated = size;
757 pages->iov = g_new0(struct iovec, size);
758 pages->offset = g_new0(ram_addr_t, size);
760 return pages;
763 static void multifd_pages_clear(MultiFDPages_t *pages)
765 pages->used = 0;
766 pages->allocated = 0;
767 pages->packet_num = 0;
768 pages->block = NULL;
769 g_free(pages->iov);
770 pages->iov = NULL;
771 g_free(pages->offset);
772 pages->offset = NULL;
773 g_free(pages);
776 static void multifd_send_fill_packet(MultiFDSendParams *p)
778 MultiFDPacket_t *packet = p->packet;
779 int i;
781 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
782 packet->version = cpu_to_be32(MULTIFD_VERSION);
783 packet->flags = cpu_to_be32(p->flags);
784 packet->size = cpu_to_be32(migrate_multifd_page_count());
785 packet->used = cpu_to_be32(p->pages->used);
786 packet->packet_num = cpu_to_be64(p->packet_num);
788 if (p->pages->block) {
789 strncpy(packet->ramblock, p->pages->block->idstr, 256);
792 for (i = 0; i < p->pages->used; i++) {
793 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
797 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
799 MultiFDPacket_t *packet = p->packet;
800 RAMBlock *block;
801 int i;
803 packet->magic = be32_to_cpu(packet->magic);
804 if (packet->magic != MULTIFD_MAGIC) {
805 error_setg(errp, "multifd: received packet "
806 "magic %x and expected magic %x",
807 packet->magic, MULTIFD_MAGIC);
808 return -1;
811 packet->version = be32_to_cpu(packet->version);
812 if (packet->version != MULTIFD_VERSION) {
813 error_setg(errp, "multifd: received packet "
814 "version %d and expected version %d",
815 packet->version, MULTIFD_VERSION);
816 return -1;
819 p->flags = be32_to_cpu(packet->flags);
821 packet->size = be32_to_cpu(packet->size);
822 if (packet->size > migrate_multifd_page_count()) {
823 error_setg(errp, "multifd: received packet "
824 "with size %d and expected maximum size %d",
825 packet->size, migrate_multifd_page_count()) ;
826 return -1;
829 p->pages->used = be32_to_cpu(packet->used);
830 if (p->pages->used > packet->size) {
831 error_setg(errp, "multifd: received packet "
832 "with size %d and expected maximum size %d",
833 p->pages->used, packet->size) ;
834 return -1;
837 p->packet_num = be64_to_cpu(packet->packet_num);
839 if (p->pages->used) {
840 /* make sure that ramblock is 0 terminated */
841 packet->ramblock[255] = 0;
842 block = qemu_ram_block_by_name(packet->ramblock);
843 if (!block) {
844 error_setg(errp, "multifd: unknown ram block %s",
845 packet->ramblock);
846 return -1;
850 for (i = 0; i < p->pages->used; i++) {
851 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
853 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
854 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
855 " (max " RAM_ADDR_FMT ")",
856 offset, block->max_length);
857 return -1;
859 p->pages->iov[i].iov_base = block->host + offset;
860 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
863 return 0;
866 struct {
867 MultiFDSendParams *params;
868 /* number of created threads */
869 int count;
870 /* array of pages to sent */
871 MultiFDPages_t *pages;
872 /* syncs main thread and channels */
873 QemuSemaphore sem_sync;
874 /* global number of generated multifd packets */
875 uint64_t packet_num;
876 /* send channels ready */
877 QemuSemaphore channels_ready;
878 } *multifd_send_state;
881 * How we use multifd_send_state->pages and channel->pages?
883 * We create a pages for each channel, and a main one. Each time that
884 * we need to send a batch of pages we interchange the ones between
885 * multifd_send_state and the channel that is sending it. There are
886 * two reasons for that:
887 * - to not have to do so many mallocs during migration
888 * - to make easier to know what to free at the end of migration
890 * This way we always know who is the owner of each "pages" struct,
891 * and we don't need any loocking. It belongs to the migration thread
892 * or to the channel thread. Switching is safe because the migration
893 * thread is using the channel mutex when changing it, and the channel
894 * have to had finish with its own, otherwise pending_job can't be
895 * false.
898 static void multifd_send_pages(void)
900 int i;
901 static int next_channel;
902 MultiFDSendParams *p = NULL; /* make happy gcc */
903 MultiFDPages_t *pages = multifd_send_state->pages;
904 uint64_t transferred;
906 qemu_sem_wait(&multifd_send_state->channels_ready);
907 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
908 p = &multifd_send_state->params[i];
910 qemu_mutex_lock(&p->mutex);
911 if (!p->pending_job) {
912 p->pending_job++;
913 next_channel = (i + 1) % migrate_multifd_channels();
914 break;
916 qemu_mutex_unlock(&p->mutex);
918 p->pages->used = 0;
920 p->packet_num = multifd_send_state->packet_num++;
921 p->pages->block = NULL;
922 multifd_send_state->pages = p->pages;
923 p->pages = pages;
924 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
925 ram_counters.multifd_bytes += transferred;
926 ram_counters.transferred += transferred;;
927 qemu_mutex_unlock(&p->mutex);
928 qemu_sem_post(&p->sem);
931 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
933 MultiFDPages_t *pages = multifd_send_state->pages;
935 if (!pages->block) {
936 pages->block = block;
939 if (pages->block == block) {
940 pages->offset[pages->used] = offset;
941 pages->iov[pages->used].iov_base = block->host + offset;
942 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
943 pages->used++;
945 if (pages->used < pages->allocated) {
946 return;
950 multifd_send_pages();
952 if (pages->block != block) {
953 multifd_queue_page(block, offset);
957 static void multifd_send_terminate_threads(Error *err)
959 int i;
961 if (err) {
962 MigrationState *s = migrate_get_current();
963 migrate_set_error(s, err);
964 if (s->state == MIGRATION_STATUS_SETUP ||
965 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
966 s->state == MIGRATION_STATUS_DEVICE ||
967 s->state == MIGRATION_STATUS_ACTIVE) {
968 migrate_set_state(&s->state, s->state,
969 MIGRATION_STATUS_FAILED);
973 for (i = 0; i < migrate_multifd_channels(); i++) {
974 MultiFDSendParams *p = &multifd_send_state->params[i];
976 qemu_mutex_lock(&p->mutex);
977 p->quit = true;
978 qemu_sem_post(&p->sem);
979 qemu_mutex_unlock(&p->mutex);
983 void multifd_save_cleanup(void)
985 int i;
987 if (!migrate_use_multifd()) {
988 return;
990 multifd_send_terminate_threads(NULL);
991 for (i = 0; i < migrate_multifd_channels(); i++) {
992 MultiFDSendParams *p = &multifd_send_state->params[i];
994 if (p->running) {
995 qemu_thread_join(&p->thread);
997 socket_send_channel_destroy(p->c);
998 p->c = NULL;
999 qemu_mutex_destroy(&p->mutex);
1000 qemu_sem_destroy(&p->sem);
1001 qemu_sem_destroy(&p->sem_sync);
1002 g_free(p->name);
1003 p->name = NULL;
1004 multifd_pages_clear(p->pages);
1005 p->pages = NULL;
1006 p->packet_len = 0;
1007 g_free(p->packet);
1008 p->packet = NULL;
1010 qemu_sem_destroy(&multifd_send_state->channels_ready);
1011 qemu_sem_destroy(&multifd_send_state->sem_sync);
1012 g_free(multifd_send_state->params);
1013 multifd_send_state->params = NULL;
1014 multifd_pages_clear(multifd_send_state->pages);
1015 multifd_send_state->pages = NULL;
1016 g_free(multifd_send_state);
1017 multifd_send_state = NULL;
1020 static void multifd_send_sync_main(void)
1022 int i;
1024 if (!migrate_use_multifd()) {
1025 return;
1027 if (multifd_send_state->pages->used) {
1028 multifd_send_pages();
1030 for (i = 0; i < migrate_multifd_channels(); i++) {
1031 MultiFDSendParams *p = &multifd_send_state->params[i];
1033 trace_multifd_send_sync_main_signal(p->id);
1035 qemu_mutex_lock(&p->mutex);
1037 p->packet_num = multifd_send_state->packet_num++;
1038 p->flags |= MULTIFD_FLAG_SYNC;
1039 p->pending_job++;
1040 qemu_mutex_unlock(&p->mutex);
1041 qemu_sem_post(&p->sem);
1043 for (i = 0; i < migrate_multifd_channels(); i++) {
1044 MultiFDSendParams *p = &multifd_send_state->params[i];
1046 trace_multifd_send_sync_main_wait(p->id);
1047 qemu_sem_wait(&multifd_send_state->sem_sync);
1049 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1052 static void *multifd_send_thread(void *opaque)
1054 MultiFDSendParams *p = opaque;
1055 Error *local_err = NULL;
1056 int ret;
1058 trace_multifd_send_thread_start(p->id);
1059 rcu_register_thread();
1061 if (multifd_send_initial_packet(p, &local_err) < 0) {
1062 goto out;
1064 /* initial packet */
1065 p->num_packets = 1;
1067 while (true) {
1068 qemu_sem_wait(&p->sem);
1069 qemu_mutex_lock(&p->mutex);
1071 if (p->pending_job) {
1072 uint32_t used = p->pages->used;
1073 uint64_t packet_num = p->packet_num;
1074 uint32_t flags = p->flags;
1076 multifd_send_fill_packet(p);
1077 p->flags = 0;
1078 p->num_packets++;
1079 p->num_pages += used;
1080 p->pages->used = 0;
1081 qemu_mutex_unlock(&p->mutex);
1083 trace_multifd_send(p->id, packet_num, used, flags);
1085 ret = qio_channel_write_all(p->c, (void *)p->packet,
1086 p->packet_len, &local_err);
1087 if (ret != 0) {
1088 break;
1091 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1092 if (ret != 0) {
1093 break;
1096 qemu_mutex_lock(&p->mutex);
1097 p->pending_job--;
1098 qemu_mutex_unlock(&p->mutex);
1100 if (flags & MULTIFD_FLAG_SYNC) {
1101 qemu_sem_post(&multifd_send_state->sem_sync);
1103 qemu_sem_post(&multifd_send_state->channels_ready);
1104 } else if (p->quit) {
1105 qemu_mutex_unlock(&p->mutex);
1106 break;
1107 } else {
1108 qemu_mutex_unlock(&p->mutex);
1109 /* sometimes there are spurious wakeups */
1113 out:
1114 if (local_err) {
1115 multifd_send_terminate_threads(local_err);
1118 qemu_mutex_lock(&p->mutex);
1119 p->running = false;
1120 qemu_mutex_unlock(&p->mutex);
1122 rcu_unregister_thread();
1123 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1125 return NULL;
1128 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1130 MultiFDSendParams *p = opaque;
1131 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1132 Error *local_err = NULL;
1134 if (qio_task_propagate_error(task, &local_err)) {
1135 migrate_set_error(migrate_get_current(), local_err);
1136 multifd_save_cleanup();
1137 } else {
1138 p->c = QIO_CHANNEL(sioc);
1139 qio_channel_set_delay(p->c, false);
1140 p->running = true;
1141 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1142 QEMU_THREAD_JOINABLE);
1144 atomic_inc(&multifd_send_state->count);
1148 int multifd_save_setup(void)
1150 int thread_count;
1151 uint32_t page_count = migrate_multifd_page_count();
1152 uint8_t i;
1154 if (!migrate_use_multifd()) {
1155 return 0;
1157 thread_count = migrate_multifd_channels();
1158 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1159 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1160 atomic_set(&multifd_send_state->count, 0);
1161 multifd_send_state->pages = multifd_pages_init(page_count);
1162 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1163 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1165 for (i = 0; i < thread_count; i++) {
1166 MultiFDSendParams *p = &multifd_send_state->params[i];
1168 qemu_mutex_init(&p->mutex);
1169 qemu_sem_init(&p->sem, 0);
1170 qemu_sem_init(&p->sem_sync, 0);
1171 p->quit = false;
1172 p->pending_job = 0;
1173 p->id = i;
1174 p->pages = multifd_pages_init(page_count);
1175 p->packet_len = sizeof(MultiFDPacket_t)
1176 + sizeof(ram_addr_t) * page_count;
1177 p->packet = g_malloc0(p->packet_len);
1178 p->name = g_strdup_printf("multifdsend_%d", i);
1179 socket_send_channel_create(multifd_new_send_channel_async, p);
1181 return 0;
1184 struct {
1185 MultiFDRecvParams *params;
1186 /* number of created threads */
1187 int count;
1188 /* syncs main thread and channels */
1189 QemuSemaphore sem_sync;
1190 /* global number of generated multifd packets */
1191 uint64_t packet_num;
1192 } *multifd_recv_state;
1194 static void multifd_recv_terminate_threads(Error *err)
1196 int i;
1198 if (err) {
1199 MigrationState *s = migrate_get_current();
1200 migrate_set_error(s, err);
1201 if (s->state == MIGRATION_STATUS_SETUP ||
1202 s->state == MIGRATION_STATUS_ACTIVE) {
1203 migrate_set_state(&s->state, s->state,
1204 MIGRATION_STATUS_FAILED);
1208 for (i = 0; i < migrate_multifd_channels(); i++) {
1209 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1211 qemu_mutex_lock(&p->mutex);
1212 /* We could arrive here for two reasons:
1213 - normal quit, i.e. everything went fine, just finished
1214 - error quit: We close the channels so the channel threads
1215 finish the qio_channel_read_all_eof() */
1216 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1217 qemu_mutex_unlock(&p->mutex);
1221 int multifd_load_cleanup(Error **errp)
1223 int i;
1224 int ret = 0;
1226 if (!migrate_use_multifd()) {
1227 return 0;
1229 multifd_recv_terminate_threads(NULL);
1230 for (i = 0; i < migrate_multifd_channels(); i++) {
1231 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1233 if (p->running) {
1234 qemu_thread_join(&p->thread);
1236 object_unref(OBJECT(p->c));
1237 p->c = NULL;
1238 qemu_mutex_destroy(&p->mutex);
1239 qemu_sem_destroy(&p->sem_sync);
1240 g_free(p->name);
1241 p->name = NULL;
1242 multifd_pages_clear(p->pages);
1243 p->pages = NULL;
1244 p->packet_len = 0;
1245 g_free(p->packet);
1246 p->packet = NULL;
1248 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1249 g_free(multifd_recv_state->params);
1250 multifd_recv_state->params = NULL;
1251 g_free(multifd_recv_state);
1252 multifd_recv_state = NULL;
1254 return ret;
1257 static void multifd_recv_sync_main(void)
1259 int i;
1261 if (!migrate_use_multifd()) {
1262 return;
1264 for (i = 0; i < migrate_multifd_channels(); i++) {
1265 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1267 trace_multifd_recv_sync_main_wait(p->id);
1268 qemu_sem_wait(&multifd_recv_state->sem_sync);
1269 qemu_mutex_lock(&p->mutex);
1270 if (multifd_recv_state->packet_num < p->packet_num) {
1271 multifd_recv_state->packet_num = p->packet_num;
1273 qemu_mutex_unlock(&p->mutex);
1275 for (i = 0; i < migrate_multifd_channels(); i++) {
1276 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1278 trace_multifd_recv_sync_main_signal(p->id);
1279 qemu_sem_post(&p->sem_sync);
1281 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1284 static void *multifd_recv_thread(void *opaque)
1286 MultiFDRecvParams *p = opaque;
1287 Error *local_err = NULL;
1288 int ret;
1290 trace_multifd_recv_thread_start(p->id);
1291 rcu_register_thread();
1293 while (true) {
1294 uint32_t used;
1295 uint32_t flags;
1297 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1298 p->packet_len, &local_err);
1299 if (ret == 0) { /* EOF */
1300 break;
1302 if (ret == -1) { /* Error */
1303 break;
1306 qemu_mutex_lock(&p->mutex);
1307 ret = multifd_recv_unfill_packet(p, &local_err);
1308 if (ret) {
1309 qemu_mutex_unlock(&p->mutex);
1310 break;
1313 used = p->pages->used;
1314 flags = p->flags;
1315 trace_multifd_recv(p->id, p->packet_num, used, flags);
1316 p->num_packets++;
1317 p->num_pages += used;
1318 qemu_mutex_unlock(&p->mutex);
1320 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1321 if (ret != 0) {
1322 break;
1325 if (flags & MULTIFD_FLAG_SYNC) {
1326 qemu_sem_post(&multifd_recv_state->sem_sync);
1327 qemu_sem_wait(&p->sem_sync);
1331 if (local_err) {
1332 multifd_recv_terminate_threads(local_err);
1334 qemu_mutex_lock(&p->mutex);
1335 p->running = false;
1336 qemu_mutex_unlock(&p->mutex);
1338 rcu_unregister_thread();
1339 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1341 return NULL;
1344 int multifd_load_setup(void)
1346 int thread_count;
1347 uint32_t page_count = migrate_multifd_page_count();
1348 uint8_t i;
1350 if (!migrate_use_multifd()) {
1351 return 0;
1353 thread_count = migrate_multifd_channels();
1354 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1355 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1356 atomic_set(&multifd_recv_state->count, 0);
1357 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1359 for (i = 0; i < thread_count; i++) {
1360 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1362 qemu_mutex_init(&p->mutex);
1363 qemu_sem_init(&p->sem_sync, 0);
1364 p->id = i;
1365 p->pages = multifd_pages_init(page_count);
1366 p->packet_len = sizeof(MultiFDPacket_t)
1367 + sizeof(ram_addr_t) * page_count;
1368 p->packet = g_malloc0(p->packet_len);
1369 p->name = g_strdup_printf("multifdrecv_%d", i);
1371 return 0;
1374 bool multifd_recv_all_channels_created(void)
1376 int thread_count = migrate_multifd_channels();
1378 if (!migrate_use_multifd()) {
1379 return true;
1382 return thread_count == atomic_read(&multifd_recv_state->count);
1386 * Try to receive all multifd channels to get ready for the migration.
1387 * - Return true and do not set @errp when correctly receving all channels;
1388 * - Return false and do not set @errp when correctly receiving the current one;
1389 * - Return false and set @errp when failing to receive the current channel.
1391 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1393 MultiFDRecvParams *p;
1394 Error *local_err = NULL;
1395 int id;
1397 id = multifd_recv_initial_packet(ioc, &local_err);
1398 if (id < 0) {
1399 multifd_recv_terminate_threads(local_err);
1400 error_propagate_prepend(errp, local_err,
1401 "failed to receive packet"
1402 " via multifd channel %d: ",
1403 atomic_read(&multifd_recv_state->count));
1404 return false;
1407 p = &multifd_recv_state->params[id];
1408 if (p->c != NULL) {
1409 error_setg(&local_err, "multifd: received id '%d' already setup'",
1410 id);
1411 multifd_recv_terminate_threads(local_err);
1412 error_propagate(errp, local_err);
1413 return false;
1415 p->c = ioc;
1416 object_ref(OBJECT(ioc));
1417 /* initial packet */
1418 p->num_packets = 1;
1420 p->running = true;
1421 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1422 QEMU_THREAD_JOINABLE);
1423 atomic_inc(&multifd_recv_state->count);
1424 return atomic_read(&multifd_recv_state->count) ==
1425 migrate_multifd_channels();
1429 * save_page_header: write page header to wire
1431 * If this is the 1st block, it also writes the block identification
1433 * Returns the number of bytes written
1435 * @f: QEMUFile where to send the data
1436 * @block: block that contains the page we want to send
1437 * @offset: offset inside the block for the page
1438 * in the lower bits, it contains flags
1440 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1441 ram_addr_t offset)
1443 size_t size, len;
1445 if (block == rs->last_sent_block) {
1446 offset |= RAM_SAVE_FLAG_CONTINUE;
1448 qemu_put_be64(f, offset);
1449 size = 8;
1451 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1452 len = strlen(block->idstr);
1453 qemu_put_byte(f, len);
1454 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1455 size += 1 + len;
1456 rs->last_sent_block = block;
1458 return size;
1462 * mig_throttle_guest_down: throotle down the guest
1464 * Reduce amount of guest cpu execution to hopefully slow down memory
1465 * writes. If guest dirty memory rate is reduced below the rate at
1466 * which we can transfer pages to the destination then we should be
1467 * able to complete migration. Some workloads dirty memory way too
1468 * fast and will not effectively converge, even with auto-converge.
1470 static void mig_throttle_guest_down(void)
1472 MigrationState *s = migrate_get_current();
1473 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1474 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1475 int pct_max = s->parameters.max_cpu_throttle;
1477 /* We have not started throttling yet. Let's start it. */
1478 if (!cpu_throttle_active()) {
1479 cpu_throttle_set(pct_initial);
1480 } else {
1481 /* Throttling already on, just increase the rate */
1482 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1483 pct_max));
1488 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1490 * @rs: current RAM state
1491 * @current_addr: address for the zero page
1493 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1494 * The important thing is that a stale (not-yet-0'd) page be replaced
1495 * by the new data.
1496 * As a bonus, if the page wasn't in the cache it gets added so that
1497 * when a small write is made into the 0'd page it gets XBZRLE sent.
1499 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1501 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1502 return;
1505 /* We don't care if this fails to allocate a new cache page
1506 * as long as it updated an old one */
1507 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1508 ram_counters.dirty_sync_count);
1511 #define ENCODING_FLAG_XBZRLE 0x1
1514 * save_xbzrle_page: compress and send current page
1516 * Returns: 1 means that we wrote the page
1517 * 0 means that page is identical to the one already sent
1518 * -1 means that xbzrle would be longer than normal
1520 * @rs: current RAM state
1521 * @current_data: pointer to the address of the page contents
1522 * @current_addr: addr of the page
1523 * @block: block that contains the page we want to send
1524 * @offset: offset inside the block for the page
1525 * @last_stage: if we are at the completion stage
1527 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1528 ram_addr_t current_addr, RAMBlock *block,
1529 ram_addr_t offset, bool last_stage)
1531 int encoded_len = 0, bytes_xbzrle;
1532 uint8_t *prev_cached_page;
1534 if (!cache_is_cached(XBZRLE.cache, current_addr,
1535 ram_counters.dirty_sync_count)) {
1536 xbzrle_counters.cache_miss++;
1537 if (!last_stage) {
1538 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1539 ram_counters.dirty_sync_count) == -1) {
1540 return -1;
1541 } else {
1542 /* update *current_data when the page has been
1543 inserted into cache */
1544 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1547 return -1;
1550 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1552 /* save current buffer into memory */
1553 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1555 /* XBZRLE encoding (if there is no overflow) */
1556 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1557 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1558 TARGET_PAGE_SIZE);
1559 if (encoded_len == 0) {
1560 trace_save_xbzrle_page_skipping();
1561 return 0;
1562 } else if (encoded_len == -1) {
1563 trace_save_xbzrle_page_overflow();
1564 xbzrle_counters.overflow++;
1565 /* update data in the cache */
1566 if (!last_stage) {
1567 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1568 *current_data = prev_cached_page;
1570 return -1;
1573 /* we need to update the data in the cache, in order to get the same data */
1574 if (!last_stage) {
1575 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1578 /* Send XBZRLE based compressed page */
1579 bytes_xbzrle = save_page_header(rs, rs->f, block,
1580 offset | RAM_SAVE_FLAG_XBZRLE);
1581 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1582 qemu_put_be16(rs->f, encoded_len);
1583 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1584 bytes_xbzrle += encoded_len + 1 + 2;
1585 xbzrle_counters.pages++;
1586 xbzrle_counters.bytes += bytes_xbzrle;
1587 ram_counters.transferred += bytes_xbzrle;
1589 return 1;
1593 * migration_bitmap_find_dirty: find the next dirty page from start
1595 * Called with rcu_read_lock() to protect migration_bitmap
1597 * Returns the byte offset within memory region of the start of a dirty page
1599 * @rs: current RAM state
1600 * @rb: RAMBlock where to search for dirty pages
1601 * @start: page where we start the search
1603 static inline
1604 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1605 unsigned long start)
1607 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1608 unsigned long *bitmap = rb->bmap;
1609 unsigned long next;
1611 if (ramblock_is_ignored(rb)) {
1612 return size;
1616 * When the free page optimization is enabled, we need to check the bitmap
1617 * to send the non-free pages rather than all the pages in the bulk stage.
1619 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1620 next = start + 1;
1621 } else {
1622 next = find_next_bit(bitmap, size, start);
1625 return next;
1628 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1629 RAMBlock *rb,
1630 unsigned long page)
1632 bool ret;
1634 qemu_mutex_lock(&rs->bitmap_mutex);
1635 ret = test_and_clear_bit(page, rb->bmap);
1637 if (ret) {
1638 rs->migration_dirty_pages--;
1640 qemu_mutex_unlock(&rs->bitmap_mutex);
1642 return ret;
1645 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1646 ram_addr_t start, ram_addr_t length)
1648 rs->migration_dirty_pages +=
1649 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1650 &rs->num_dirty_pages_period);
1654 * ram_pagesize_summary: calculate all the pagesizes of a VM
1656 * Returns a summary bitmap of the page sizes of all RAMBlocks
1658 * For VMs with just normal pages this is equivalent to the host page
1659 * size. If it's got some huge pages then it's the OR of all the
1660 * different page sizes.
1662 uint64_t ram_pagesize_summary(void)
1664 RAMBlock *block;
1665 uint64_t summary = 0;
1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1668 summary |= block->page_size;
1671 return summary;
1674 uint64_t ram_get_total_transferred_pages(void)
1676 return ram_counters.normal + ram_counters.duplicate +
1677 compression_counters.pages + xbzrle_counters.pages;
1680 static void migration_update_rates(RAMState *rs, int64_t end_time)
1682 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1683 double compressed_size;
1685 /* calculate period counters */
1686 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1687 / (end_time - rs->time_last_bitmap_sync);
1689 if (!page_count) {
1690 return;
1693 if (migrate_use_xbzrle()) {
1694 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1695 rs->xbzrle_cache_miss_prev) / page_count;
1696 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1699 if (migrate_use_compression()) {
1700 compression_counters.busy_rate = (double)(compression_counters.busy -
1701 rs->compress_thread_busy_prev) / page_count;
1702 rs->compress_thread_busy_prev = compression_counters.busy;
1704 compressed_size = compression_counters.compressed_size -
1705 rs->compressed_size_prev;
1706 if (compressed_size) {
1707 double uncompressed_size = (compression_counters.pages -
1708 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1710 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1711 compression_counters.compression_rate =
1712 uncompressed_size / compressed_size;
1714 rs->compress_pages_prev = compression_counters.pages;
1715 rs->compressed_size_prev = compression_counters.compressed_size;
1720 static void migration_bitmap_sync(RAMState *rs)
1722 RAMBlock *block;
1723 int64_t end_time;
1724 uint64_t bytes_xfer_now;
1726 ram_counters.dirty_sync_count++;
1728 if (!rs->time_last_bitmap_sync) {
1729 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1732 trace_migration_bitmap_sync_start();
1733 memory_global_dirty_log_sync();
1735 qemu_mutex_lock(&rs->bitmap_mutex);
1736 rcu_read_lock();
1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1738 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1740 ram_counters.remaining = ram_bytes_remaining();
1741 rcu_read_unlock();
1742 qemu_mutex_unlock(&rs->bitmap_mutex);
1744 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1746 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1748 /* more than 1 second = 1000 millisecons */
1749 if (end_time > rs->time_last_bitmap_sync + 1000) {
1750 bytes_xfer_now = ram_counters.transferred;
1752 /* During block migration the auto-converge logic incorrectly detects
1753 * that ram migration makes no progress. Avoid this by disabling the
1754 * throttling logic during the bulk phase of block migration. */
1755 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1756 /* The following detection logic can be refined later. For now:
1757 Check to see if the dirtied bytes is 50% more than the approx.
1758 amount of bytes that just got transferred since the last time we
1759 were in this routine. If that happens twice, start or increase
1760 throttling */
1762 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1763 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1764 (++rs->dirty_rate_high_cnt >= 2)) {
1765 trace_migration_throttle();
1766 rs->dirty_rate_high_cnt = 0;
1767 mig_throttle_guest_down();
1771 migration_update_rates(rs, end_time);
1773 rs->target_page_count_prev = rs->target_page_count;
1775 /* reset period counters */
1776 rs->time_last_bitmap_sync = end_time;
1777 rs->num_dirty_pages_period = 0;
1778 rs->bytes_xfer_prev = bytes_xfer_now;
1780 if (migrate_use_events()) {
1781 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1785 static void migration_bitmap_sync_precopy(RAMState *rs)
1787 Error *local_err = NULL;
1790 * The current notifier usage is just an optimization to migration, so we
1791 * don't stop the normal migration process in the error case.
1793 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1794 error_report_err(local_err);
1797 migration_bitmap_sync(rs);
1799 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1800 error_report_err(local_err);
1805 * save_zero_page_to_file: send the zero page to the file
1807 * Returns the size of data written to the file, 0 means the page is not
1808 * a zero page
1810 * @rs: current RAM state
1811 * @file: the file where the data is saved
1812 * @block: block that contains the page we want to send
1813 * @offset: offset inside the block for the page
1815 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1816 RAMBlock *block, ram_addr_t offset)
1818 uint8_t *p = block->host + offset;
1819 int len = 0;
1821 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1822 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1823 qemu_put_byte(file, 0);
1824 len += 1;
1826 return len;
1830 * save_zero_page: send the zero page to the stream
1832 * Returns the number of pages written.
1834 * @rs: current RAM state
1835 * @block: block that contains the page we want to send
1836 * @offset: offset inside the block for the page
1838 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1840 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1842 if (len) {
1843 ram_counters.duplicate++;
1844 ram_counters.transferred += len;
1845 return 1;
1847 return -1;
1850 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1852 if (!migrate_release_ram() || !migration_in_postcopy()) {
1853 return;
1856 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1860 * @pages: the number of pages written by the control path,
1861 * < 0 - error
1862 * > 0 - number of pages written
1864 * Return true if the pages has been saved, otherwise false is returned.
1866 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1867 int *pages)
1869 uint64_t bytes_xmit = 0;
1870 int ret;
1872 *pages = -1;
1873 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1874 &bytes_xmit);
1875 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1876 return false;
1879 if (bytes_xmit) {
1880 ram_counters.transferred += bytes_xmit;
1881 *pages = 1;
1884 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1885 return true;
1888 if (bytes_xmit > 0) {
1889 ram_counters.normal++;
1890 } else if (bytes_xmit == 0) {
1891 ram_counters.duplicate++;
1894 return true;
1898 * directly send the page to the stream
1900 * Returns the number of pages written.
1902 * @rs: current RAM state
1903 * @block: block that contains the page we want to send
1904 * @offset: offset inside the block for the page
1905 * @buf: the page to be sent
1906 * @async: send to page asyncly
1908 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1909 uint8_t *buf, bool async)
1911 ram_counters.transferred += save_page_header(rs, rs->f, block,
1912 offset | RAM_SAVE_FLAG_PAGE);
1913 if (async) {
1914 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1915 migrate_release_ram() &
1916 migration_in_postcopy());
1917 } else {
1918 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1920 ram_counters.transferred += TARGET_PAGE_SIZE;
1921 ram_counters.normal++;
1922 return 1;
1926 * ram_save_page: send the given page to the stream
1928 * Returns the number of pages written.
1929 * < 0 - error
1930 * >=0 - Number of pages written - this might legally be 0
1931 * if xbzrle noticed the page was the same.
1933 * @rs: current RAM state
1934 * @block: block that contains the page we want to send
1935 * @offset: offset inside the block for the page
1936 * @last_stage: if we are at the completion stage
1938 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1940 int pages = -1;
1941 uint8_t *p;
1942 bool send_async = true;
1943 RAMBlock *block = pss->block;
1944 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1945 ram_addr_t current_addr = block->offset + offset;
1947 p = block->host + offset;
1948 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1950 XBZRLE_cache_lock();
1951 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1952 migrate_use_xbzrle()) {
1953 pages = save_xbzrle_page(rs, &p, current_addr, block,
1954 offset, last_stage);
1955 if (!last_stage) {
1956 /* Can't send this cached data async, since the cache page
1957 * might get updated before it gets to the wire
1959 send_async = false;
1963 /* XBZRLE overflow or normal page */
1964 if (pages == -1) {
1965 pages = save_normal_page(rs, block, offset, p, send_async);
1968 XBZRLE_cache_unlock();
1970 return pages;
1973 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1974 ram_addr_t offset)
1976 multifd_queue_page(block, offset);
1977 ram_counters.normal++;
1979 return 1;
1982 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1983 ram_addr_t offset, uint8_t *source_buf)
1985 RAMState *rs = ram_state;
1986 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1987 bool zero_page = false;
1988 int ret;
1990 if (save_zero_page_to_file(rs, f, block, offset)) {
1991 zero_page = true;
1992 goto exit;
1995 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1998 * copy it to a internal buffer to avoid it being modified by VM
1999 * so that we can catch up the error during compression and
2000 * decompression
2002 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2003 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2004 if (ret < 0) {
2005 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2006 error_report("compressed data failed!");
2007 return false;
2010 exit:
2011 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2012 return zero_page;
2015 static void
2016 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2018 ram_counters.transferred += bytes_xmit;
2020 if (param->zero_page) {
2021 ram_counters.duplicate++;
2022 return;
2025 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2026 compression_counters.compressed_size += bytes_xmit - 8;
2027 compression_counters.pages++;
2030 static bool save_page_use_compression(RAMState *rs);
2032 static void flush_compressed_data(RAMState *rs)
2034 int idx, len, thread_count;
2036 if (!save_page_use_compression(rs)) {
2037 return;
2039 thread_count = migrate_compress_threads();
2041 qemu_mutex_lock(&comp_done_lock);
2042 for (idx = 0; idx < thread_count; idx++) {
2043 while (!comp_param[idx].done) {
2044 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2047 qemu_mutex_unlock(&comp_done_lock);
2049 for (idx = 0; idx < thread_count; idx++) {
2050 qemu_mutex_lock(&comp_param[idx].mutex);
2051 if (!comp_param[idx].quit) {
2052 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2054 * it's safe to fetch zero_page without holding comp_done_lock
2055 * as there is no further request submitted to the thread,
2056 * i.e, the thread should be waiting for a request at this point.
2058 update_compress_thread_counts(&comp_param[idx], len);
2060 qemu_mutex_unlock(&comp_param[idx].mutex);
2064 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2065 ram_addr_t offset)
2067 param->block = block;
2068 param->offset = offset;
2071 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2072 ram_addr_t offset)
2074 int idx, thread_count, bytes_xmit = -1, pages = -1;
2075 bool wait = migrate_compress_wait_thread();
2077 thread_count = migrate_compress_threads();
2078 qemu_mutex_lock(&comp_done_lock);
2079 retry:
2080 for (idx = 0; idx < thread_count; idx++) {
2081 if (comp_param[idx].done) {
2082 comp_param[idx].done = false;
2083 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2084 qemu_mutex_lock(&comp_param[idx].mutex);
2085 set_compress_params(&comp_param[idx], block, offset);
2086 qemu_cond_signal(&comp_param[idx].cond);
2087 qemu_mutex_unlock(&comp_param[idx].mutex);
2088 pages = 1;
2089 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2090 break;
2095 * wait for the free thread if the user specifies 'compress-wait-thread',
2096 * otherwise we will post the page out in the main thread as normal page.
2098 if (pages < 0 && wait) {
2099 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2100 goto retry;
2102 qemu_mutex_unlock(&comp_done_lock);
2104 return pages;
2108 * find_dirty_block: find the next dirty page and update any state
2109 * associated with the search process.
2111 * Returns if a page is found
2113 * @rs: current RAM state
2114 * @pss: data about the state of the current dirty page scan
2115 * @again: set to false if the search has scanned the whole of RAM
2117 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2119 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2120 if (pss->complete_round && pss->block == rs->last_seen_block &&
2121 pss->page >= rs->last_page) {
2123 * We've been once around the RAM and haven't found anything.
2124 * Give up.
2126 *again = false;
2127 return false;
2129 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2130 /* Didn't find anything in this RAM Block */
2131 pss->page = 0;
2132 pss->block = QLIST_NEXT_RCU(pss->block, next);
2133 if (!pss->block) {
2135 * If memory migration starts over, we will meet a dirtied page
2136 * which may still exists in compression threads's ring, so we
2137 * should flush the compressed data to make sure the new page
2138 * is not overwritten by the old one in the destination.
2140 * Also If xbzrle is on, stop using the data compression at this
2141 * point. In theory, xbzrle can do better than compression.
2143 flush_compressed_data(rs);
2145 /* Hit the end of the list */
2146 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2147 /* Flag that we've looped */
2148 pss->complete_round = true;
2149 rs->ram_bulk_stage = false;
2151 /* Didn't find anything this time, but try again on the new block */
2152 *again = true;
2153 return false;
2154 } else {
2155 /* Can go around again, but... */
2156 *again = true;
2157 /* We've found something so probably don't need to */
2158 return true;
2163 * unqueue_page: gets a page of the queue
2165 * Helper for 'get_queued_page' - gets a page off the queue
2167 * Returns the block of the page (or NULL if none available)
2169 * @rs: current RAM state
2170 * @offset: used to return the offset within the RAMBlock
2172 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2174 RAMBlock *block = NULL;
2176 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2177 return NULL;
2180 qemu_mutex_lock(&rs->src_page_req_mutex);
2181 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2182 struct RAMSrcPageRequest *entry =
2183 QSIMPLEQ_FIRST(&rs->src_page_requests);
2184 block = entry->rb;
2185 *offset = entry->offset;
2187 if (entry->len > TARGET_PAGE_SIZE) {
2188 entry->len -= TARGET_PAGE_SIZE;
2189 entry->offset += TARGET_PAGE_SIZE;
2190 } else {
2191 memory_region_unref(block->mr);
2192 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2193 g_free(entry);
2194 migration_consume_urgent_request();
2197 qemu_mutex_unlock(&rs->src_page_req_mutex);
2199 return block;
2203 * get_queued_page: unqueue a page from the postocpy requests
2205 * Skips pages that are already sent (!dirty)
2207 * Returns if a queued page is found
2209 * @rs: current RAM state
2210 * @pss: data about the state of the current dirty page scan
2212 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2214 RAMBlock *block;
2215 ram_addr_t offset;
2216 bool dirty;
2218 do {
2219 block = unqueue_page(rs, &offset);
2221 * We're sending this page, and since it's postcopy nothing else
2222 * will dirty it, and we must make sure it doesn't get sent again
2223 * even if this queue request was received after the background
2224 * search already sent it.
2226 if (block) {
2227 unsigned long page;
2229 page = offset >> TARGET_PAGE_BITS;
2230 dirty = test_bit(page, block->bmap);
2231 if (!dirty) {
2232 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2233 page, test_bit(page, block->unsentmap));
2234 } else {
2235 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2239 } while (block && !dirty);
2241 if (block) {
2243 * As soon as we start servicing pages out of order, then we have
2244 * to kill the bulk stage, since the bulk stage assumes
2245 * in (migration_bitmap_find_and_reset_dirty) that every page is
2246 * dirty, that's no longer true.
2248 rs->ram_bulk_stage = false;
2251 * We want the background search to continue from the queued page
2252 * since the guest is likely to want other pages near to the page
2253 * it just requested.
2255 pss->block = block;
2256 pss->page = offset >> TARGET_PAGE_BITS;
2259 return !!block;
2263 * migration_page_queue_free: drop any remaining pages in the ram
2264 * request queue
2266 * It should be empty at the end anyway, but in error cases there may
2267 * be some left. in case that there is any page left, we drop it.
2270 static void migration_page_queue_free(RAMState *rs)
2272 struct RAMSrcPageRequest *mspr, *next_mspr;
2273 /* This queue generally should be empty - but in the case of a failed
2274 * migration might have some droppings in.
2276 rcu_read_lock();
2277 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2278 memory_region_unref(mspr->rb->mr);
2279 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2280 g_free(mspr);
2282 rcu_read_unlock();
2286 * ram_save_queue_pages: queue the page for transmission
2288 * A request from postcopy destination for example.
2290 * Returns zero on success or negative on error
2292 * @rbname: Name of the RAMBLock of the request. NULL means the
2293 * same that last one.
2294 * @start: starting address from the start of the RAMBlock
2295 * @len: length (in bytes) to send
2297 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2299 RAMBlock *ramblock;
2300 RAMState *rs = ram_state;
2302 ram_counters.postcopy_requests++;
2303 rcu_read_lock();
2304 if (!rbname) {
2305 /* Reuse last RAMBlock */
2306 ramblock = rs->last_req_rb;
2308 if (!ramblock) {
2310 * Shouldn't happen, we can't reuse the last RAMBlock if
2311 * it's the 1st request.
2313 error_report("ram_save_queue_pages no previous block");
2314 goto err;
2316 } else {
2317 ramblock = qemu_ram_block_by_name(rbname);
2319 if (!ramblock) {
2320 /* We shouldn't be asked for a non-existent RAMBlock */
2321 error_report("ram_save_queue_pages no block '%s'", rbname);
2322 goto err;
2324 rs->last_req_rb = ramblock;
2326 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2327 if (start+len > ramblock->used_length) {
2328 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2329 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2330 __func__, start, len, ramblock->used_length);
2331 goto err;
2334 struct RAMSrcPageRequest *new_entry =
2335 g_malloc0(sizeof(struct RAMSrcPageRequest));
2336 new_entry->rb = ramblock;
2337 new_entry->offset = start;
2338 new_entry->len = len;
2340 memory_region_ref(ramblock->mr);
2341 qemu_mutex_lock(&rs->src_page_req_mutex);
2342 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2343 migration_make_urgent_request();
2344 qemu_mutex_unlock(&rs->src_page_req_mutex);
2345 rcu_read_unlock();
2347 return 0;
2349 err:
2350 rcu_read_unlock();
2351 return -1;
2354 static bool save_page_use_compression(RAMState *rs)
2356 if (!migrate_use_compression()) {
2357 return false;
2361 * If xbzrle is on, stop using the data compression after first
2362 * round of migration even if compression is enabled. In theory,
2363 * xbzrle can do better than compression.
2365 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2366 return true;
2369 return false;
2373 * try to compress the page before posting it out, return true if the page
2374 * has been properly handled by compression, otherwise needs other
2375 * paths to handle it
2377 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2379 if (!save_page_use_compression(rs)) {
2380 return false;
2384 * When starting the process of a new block, the first page of
2385 * the block should be sent out before other pages in the same
2386 * block, and all the pages in last block should have been sent
2387 * out, keeping this order is important, because the 'cont' flag
2388 * is used to avoid resending the block name.
2390 * We post the fist page as normal page as compression will take
2391 * much CPU resource.
2393 if (block != rs->last_sent_block) {
2394 flush_compressed_data(rs);
2395 return false;
2398 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2399 return true;
2402 compression_counters.busy++;
2403 return false;
2407 * ram_save_target_page: save one target page
2409 * Returns the number of pages written
2411 * @rs: current RAM state
2412 * @pss: data about the page we want to send
2413 * @last_stage: if we are at the completion stage
2415 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2416 bool last_stage)
2418 RAMBlock *block = pss->block;
2419 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2420 int res;
2422 if (control_save_page(rs, block, offset, &res)) {
2423 return res;
2426 if (save_compress_page(rs, block, offset)) {
2427 return 1;
2430 res = save_zero_page(rs, block, offset);
2431 if (res > 0) {
2432 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2433 * page would be stale
2435 if (!save_page_use_compression(rs)) {
2436 XBZRLE_cache_lock();
2437 xbzrle_cache_zero_page(rs, block->offset + offset);
2438 XBZRLE_cache_unlock();
2440 ram_release_pages(block->idstr, offset, res);
2441 return res;
2445 * do not use multifd for compression as the first page in the new
2446 * block should be posted out before sending the compressed page
2448 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2449 return ram_save_multifd_page(rs, block, offset);
2452 return ram_save_page(rs, pss, last_stage);
2456 * ram_save_host_page: save a whole host page
2458 * Starting at *offset send pages up to the end of the current host
2459 * page. It's valid for the initial offset to point into the middle of
2460 * a host page in which case the remainder of the hostpage is sent.
2461 * Only dirty target pages are sent. Note that the host page size may
2462 * be a huge page for this block.
2463 * The saving stops at the boundary of the used_length of the block
2464 * if the RAMBlock isn't a multiple of the host page size.
2466 * Returns the number of pages written or negative on error
2468 * @rs: current RAM state
2469 * @ms: current migration state
2470 * @pss: data about the page we want to send
2471 * @last_stage: if we are at the completion stage
2473 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2474 bool last_stage)
2476 int tmppages, pages = 0;
2477 size_t pagesize_bits =
2478 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2480 if (ramblock_is_ignored(pss->block)) {
2481 error_report("block %s should not be migrated !", pss->block->idstr);
2482 return 0;
2485 do {
2486 /* Check the pages is dirty and if it is send it */
2487 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2488 pss->page++;
2489 continue;
2492 tmppages = ram_save_target_page(rs, pss, last_stage);
2493 if (tmppages < 0) {
2494 return tmppages;
2497 pages += tmppages;
2498 if (pss->block->unsentmap) {
2499 clear_bit(pss->page, pss->block->unsentmap);
2502 pss->page++;
2503 } while ((pss->page & (pagesize_bits - 1)) &&
2504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2506 /* The offset we leave with is the last one we looked at */
2507 pss->page--;
2508 return pages;
2512 * ram_find_and_save_block: finds a dirty page and sends it to f
2514 * Called within an RCU critical section.
2516 * Returns the number of pages written where zero means no dirty pages,
2517 * or negative on error
2519 * @rs: current RAM state
2520 * @last_stage: if we are at the completion stage
2522 * On systems where host-page-size > target-page-size it will send all the
2523 * pages in a host page that are dirty.
2526 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2528 PageSearchStatus pss;
2529 int pages = 0;
2530 bool again, found;
2532 /* No dirty page as there is zero RAM */
2533 if (!ram_bytes_total()) {
2534 return pages;
2537 pss.block = rs->last_seen_block;
2538 pss.page = rs->last_page;
2539 pss.complete_round = false;
2541 if (!pss.block) {
2542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2545 do {
2546 again = true;
2547 found = get_queued_page(rs, &pss);
2549 if (!found) {
2550 /* priority queue empty, so just search for something dirty */
2551 found = find_dirty_block(rs, &pss, &again);
2554 if (found) {
2555 pages = ram_save_host_page(rs, &pss, last_stage);
2557 } while (!pages && again);
2559 rs->last_seen_block = pss.block;
2560 rs->last_page = pss.page;
2562 return pages;
2565 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2567 uint64_t pages = size / TARGET_PAGE_SIZE;
2569 if (zero) {
2570 ram_counters.duplicate += pages;
2571 } else {
2572 ram_counters.normal += pages;
2573 ram_counters.transferred += size;
2574 qemu_update_position(f, size);
2578 static uint64_t ram_bytes_total_common(bool count_ignored)
2580 RAMBlock *block;
2581 uint64_t total = 0;
2583 rcu_read_lock();
2584 if (count_ignored) {
2585 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2586 total += block->used_length;
2588 } else {
2589 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2590 total += block->used_length;
2593 rcu_read_unlock();
2594 return total;
2597 uint64_t ram_bytes_total(void)
2599 return ram_bytes_total_common(false);
2602 static void xbzrle_load_setup(void)
2604 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2607 static void xbzrle_load_cleanup(void)
2609 g_free(XBZRLE.decoded_buf);
2610 XBZRLE.decoded_buf = NULL;
2613 static void ram_state_cleanup(RAMState **rsp)
2615 if (*rsp) {
2616 migration_page_queue_free(*rsp);
2617 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2618 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2619 g_free(*rsp);
2620 *rsp = NULL;
2624 static void xbzrle_cleanup(void)
2626 XBZRLE_cache_lock();
2627 if (XBZRLE.cache) {
2628 cache_fini(XBZRLE.cache);
2629 g_free(XBZRLE.encoded_buf);
2630 g_free(XBZRLE.current_buf);
2631 g_free(XBZRLE.zero_target_page);
2632 XBZRLE.cache = NULL;
2633 XBZRLE.encoded_buf = NULL;
2634 XBZRLE.current_buf = NULL;
2635 XBZRLE.zero_target_page = NULL;
2637 XBZRLE_cache_unlock();
2640 static void ram_save_cleanup(void *opaque)
2642 RAMState **rsp = opaque;
2643 RAMBlock *block;
2645 /* caller have hold iothread lock or is in a bh, so there is
2646 * no writing race against this migration_bitmap
2648 memory_global_dirty_log_stop();
2650 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2651 g_free(block->bmap);
2652 block->bmap = NULL;
2653 g_free(block->unsentmap);
2654 block->unsentmap = NULL;
2657 xbzrle_cleanup();
2658 compress_threads_save_cleanup();
2659 ram_state_cleanup(rsp);
2662 static void ram_state_reset(RAMState *rs)
2664 rs->last_seen_block = NULL;
2665 rs->last_sent_block = NULL;
2666 rs->last_page = 0;
2667 rs->last_version = ram_list.version;
2668 rs->ram_bulk_stage = true;
2669 rs->fpo_enabled = false;
2672 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2675 * 'expected' is the value you expect the bitmap mostly to be full
2676 * of; it won't bother printing lines that are all this value.
2677 * If 'todump' is null the migration bitmap is dumped.
2679 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2680 unsigned long pages)
2682 int64_t cur;
2683 int64_t linelen = 128;
2684 char linebuf[129];
2686 for (cur = 0; cur < pages; cur += linelen) {
2687 int64_t curb;
2688 bool found = false;
2690 * Last line; catch the case where the line length
2691 * is longer than remaining ram
2693 if (cur + linelen > pages) {
2694 linelen = pages - cur;
2696 for (curb = 0; curb < linelen; curb++) {
2697 bool thisbit = test_bit(cur + curb, todump);
2698 linebuf[curb] = thisbit ? '1' : '.';
2699 found = found || (thisbit != expected);
2701 if (found) {
2702 linebuf[curb] = '\0';
2703 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2708 /* **** functions for postcopy ***** */
2710 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2712 struct RAMBlock *block;
2714 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2715 unsigned long *bitmap = block->bmap;
2716 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2717 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2719 while (run_start < range) {
2720 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2721 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2722 (run_end - run_start) << TARGET_PAGE_BITS);
2723 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2729 * postcopy_send_discard_bm_ram: discard a RAMBlock
2731 * Returns zero on success
2733 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2734 * Note: At this point the 'unsentmap' is the processed bitmap combined
2735 * with the dirtymap; so a '1' means it's either dirty or unsent.
2737 * @ms: current migration state
2738 * @pds: state for postcopy
2739 * @start: RAMBlock starting page
2740 * @length: RAMBlock size
2742 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2743 PostcopyDiscardState *pds,
2744 RAMBlock *block)
2746 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2747 unsigned long current;
2748 unsigned long *unsentmap = block->unsentmap;
2750 for (current = 0; current < end; ) {
2751 unsigned long one = find_next_bit(unsentmap, end, current);
2753 if (one <= end) {
2754 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2755 unsigned long discard_length;
2757 if (zero >= end) {
2758 discard_length = end - one;
2759 } else {
2760 discard_length = zero - one;
2762 if (discard_length) {
2763 postcopy_discard_send_range(ms, pds, one, discard_length);
2765 current = one + discard_length;
2766 } else {
2767 current = one;
2771 return 0;
2775 * postcopy_each_ram_send_discard: discard all RAMBlocks
2777 * Returns 0 for success or negative for error
2779 * Utility for the outgoing postcopy code.
2780 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2781 * passing it bitmap indexes and name.
2782 * (qemu_ram_foreach_block ends up passing unscaled lengths
2783 * which would mean postcopy code would have to deal with target page)
2785 * @ms: current migration state
2787 static int postcopy_each_ram_send_discard(MigrationState *ms)
2789 struct RAMBlock *block;
2790 int ret;
2792 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2793 PostcopyDiscardState *pds =
2794 postcopy_discard_send_init(ms, block->idstr);
2797 * Postcopy sends chunks of bitmap over the wire, but it
2798 * just needs indexes at this point, avoids it having
2799 * target page specific code.
2801 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2802 postcopy_discard_send_finish(ms, pds);
2803 if (ret) {
2804 return ret;
2808 return 0;
2812 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2814 * Helper for postcopy_chunk_hostpages; it's called twice to
2815 * canonicalize the two bitmaps, that are similar, but one is
2816 * inverted.
2818 * Postcopy requires that all target pages in a hostpage are dirty or
2819 * clean, not a mix. This function canonicalizes the bitmaps.
2821 * @ms: current migration state
2822 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2823 * otherwise we need to canonicalize partially dirty host pages
2824 * @block: block that contains the page we want to canonicalize
2825 * @pds: state for postcopy
2827 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2828 RAMBlock *block,
2829 PostcopyDiscardState *pds)
2831 RAMState *rs = ram_state;
2832 unsigned long *bitmap = block->bmap;
2833 unsigned long *unsentmap = block->unsentmap;
2834 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2835 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2836 unsigned long run_start;
2838 if (block->page_size == TARGET_PAGE_SIZE) {
2839 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2840 return;
2843 if (unsent_pass) {
2844 /* Find a sent page */
2845 run_start = find_next_zero_bit(unsentmap, pages, 0);
2846 } else {
2847 /* Find a dirty page */
2848 run_start = find_next_bit(bitmap, pages, 0);
2851 while (run_start < pages) {
2852 bool do_fixup = false;
2853 unsigned long fixup_start_addr;
2854 unsigned long host_offset;
2857 * If the start of this run of pages is in the middle of a host
2858 * page, then we need to fixup this host page.
2860 host_offset = run_start % host_ratio;
2861 if (host_offset) {
2862 do_fixup = true;
2863 run_start -= host_offset;
2864 fixup_start_addr = run_start;
2865 /* For the next pass */
2866 run_start = run_start + host_ratio;
2867 } else {
2868 /* Find the end of this run */
2869 unsigned long run_end;
2870 if (unsent_pass) {
2871 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2872 } else {
2873 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2876 * If the end isn't at the start of a host page, then the
2877 * run doesn't finish at the end of a host page
2878 * and we need to discard.
2880 host_offset = run_end % host_ratio;
2881 if (host_offset) {
2882 do_fixup = true;
2883 fixup_start_addr = run_end - host_offset;
2885 * This host page has gone, the next loop iteration starts
2886 * from after the fixup
2888 run_start = fixup_start_addr + host_ratio;
2889 } else {
2891 * No discards on this iteration, next loop starts from
2892 * next sent/dirty page
2894 run_start = run_end + 1;
2898 if (do_fixup) {
2899 unsigned long page;
2901 /* Tell the destination to discard this page */
2902 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2903 /* For the unsent_pass we:
2904 * discard partially sent pages
2905 * For the !unsent_pass (dirty) we:
2906 * discard partially dirty pages that were sent
2907 * (any partially sent pages were already discarded
2908 * by the previous unsent_pass)
2910 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2911 host_ratio);
2914 /* Clean up the bitmap */
2915 for (page = fixup_start_addr;
2916 page < fixup_start_addr + host_ratio; page++) {
2917 /* All pages in this host page are now not sent */
2918 set_bit(page, unsentmap);
2921 * Remark them as dirty, updating the count for any pages
2922 * that weren't previously dirty.
2924 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2928 if (unsent_pass) {
2929 /* Find the next sent page for the next iteration */
2930 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2931 } else {
2932 /* Find the next dirty page for the next iteration */
2933 run_start = find_next_bit(bitmap, pages, run_start);
2939 * postcopy_chuck_hostpages: discrad any partially sent host page
2941 * Utility for the outgoing postcopy code.
2943 * Discard any partially sent host-page size chunks, mark any partially
2944 * dirty host-page size chunks as all dirty. In this case the host-page
2945 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2947 * Returns zero on success
2949 * @ms: current migration state
2950 * @block: block we want to work with
2952 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2954 PostcopyDiscardState *pds =
2955 postcopy_discard_send_init(ms, block->idstr);
2957 /* First pass: Discard all partially sent host pages */
2958 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2960 * Second pass: Ensure that all partially dirty host pages are made
2961 * fully dirty.
2963 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2965 postcopy_discard_send_finish(ms, pds);
2966 return 0;
2970 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2972 * Returns zero on success
2974 * Transmit the set of pages to be discarded after precopy to the target
2975 * these are pages that:
2976 * a) Have been previously transmitted but are now dirty again
2977 * b) Pages that have never been transmitted, this ensures that
2978 * any pages on the destination that have been mapped by background
2979 * tasks get discarded (transparent huge pages is the specific concern)
2980 * Hopefully this is pretty sparse
2982 * @ms: current migration state
2984 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2986 RAMState *rs = ram_state;
2987 RAMBlock *block;
2988 int ret;
2990 rcu_read_lock();
2992 /* This should be our last sync, the src is now paused */
2993 migration_bitmap_sync(rs);
2995 /* Easiest way to make sure we don't resume in the middle of a host-page */
2996 rs->last_seen_block = NULL;
2997 rs->last_sent_block = NULL;
2998 rs->last_page = 0;
3000 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3001 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3002 unsigned long *bitmap = block->bmap;
3003 unsigned long *unsentmap = block->unsentmap;
3005 if (!unsentmap) {
3006 /* We don't have a safe way to resize the sentmap, so
3007 * if the bitmap was resized it will be NULL at this
3008 * point.
3010 error_report("migration ram resized during precopy phase");
3011 rcu_read_unlock();
3012 return -EINVAL;
3014 /* Deal with TPS != HPS and huge pages */
3015 ret = postcopy_chunk_hostpages(ms, block);
3016 if (ret) {
3017 rcu_read_unlock();
3018 return ret;
3022 * Update the unsentmap to be unsentmap = unsentmap | dirty
3024 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3025 #ifdef DEBUG_POSTCOPY
3026 ram_debug_dump_bitmap(unsentmap, true, pages);
3027 #endif
3029 trace_ram_postcopy_send_discard_bitmap();
3031 ret = postcopy_each_ram_send_discard(ms);
3032 rcu_read_unlock();
3034 return ret;
3038 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3040 * Returns zero on success
3042 * @rbname: name of the RAMBlock of the request. NULL means the
3043 * same that last one.
3044 * @start: RAMBlock starting page
3045 * @length: RAMBlock size
3047 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3049 int ret = -1;
3051 trace_ram_discard_range(rbname, start, length);
3053 rcu_read_lock();
3054 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3056 if (!rb) {
3057 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3058 goto err;
3062 * On source VM, we don't need to update the received bitmap since
3063 * we don't even have one.
3065 if (rb->receivedmap) {
3066 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3067 length >> qemu_target_page_bits());
3070 ret = ram_block_discard_range(rb, start, length);
3072 err:
3073 rcu_read_unlock();
3075 return ret;
3079 * For every allocation, we will try not to crash the VM if the
3080 * allocation failed.
3082 static int xbzrle_init(void)
3084 Error *local_err = NULL;
3086 if (!migrate_use_xbzrle()) {
3087 return 0;
3090 XBZRLE_cache_lock();
3092 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3093 if (!XBZRLE.zero_target_page) {
3094 error_report("%s: Error allocating zero page", __func__);
3095 goto err_out;
3098 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3099 TARGET_PAGE_SIZE, &local_err);
3100 if (!XBZRLE.cache) {
3101 error_report_err(local_err);
3102 goto free_zero_page;
3105 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3106 if (!XBZRLE.encoded_buf) {
3107 error_report("%s: Error allocating encoded_buf", __func__);
3108 goto free_cache;
3111 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3112 if (!XBZRLE.current_buf) {
3113 error_report("%s: Error allocating current_buf", __func__);
3114 goto free_encoded_buf;
3117 /* We are all good */
3118 XBZRLE_cache_unlock();
3119 return 0;
3121 free_encoded_buf:
3122 g_free(XBZRLE.encoded_buf);
3123 XBZRLE.encoded_buf = NULL;
3124 free_cache:
3125 cache_fini(XBZRLE.cache);
3126 XBZRLE.cache = NULL;
3127 free_zero_page:
3128 g_free(XBZRLE.zero_target_page);
3129 XBZRLE.zero_target_page = NULL;
3130 err_out:
3131 XBZRLE_cache_unlock();
3132 return -ENOMEM;
3135 static int ram_state_init(RAMState **rsp)
3137 *rsp = g_try_new0(RAMState, 1);
3139 if (!*rsp) {
3140 error_report("%s: Init ramstate fail", __func__);
3141 return -1;
3144 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3145 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3146 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3149 * Count the total number of pages used by ram blocks not including any
3150 * gaps due to alignment or unplugs.
3152 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3154 ram_state_reset(*rsp);
3156 return 0;
3159 static void ram_list_init_bitmaps(void)
3161 RAMBlock *block;
3162 unsigned long pages;
3164 /* Skip setting bitmap if there is no RAM */
3165 if (ram_bytes_total()) {
3166 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3167 pages = block->max_length >> TARGET_PAGE_BITS;
3168 block->bmap = bitmap_new(pages);
3169 bitmap_set(block->bmap, 0, pages);
3170 if (migrate_postcopy_ram()) {
3171 block->unsentmap = bitmap_new(pages);
3172 bitmap_set(block->unsentmap, 0, pages);
3178 static void ram_init_bitmaps(RAMState *rs)
3180 /* For memory_global_dirty_log_start below. */
3181 qemu_mutex_lock_iothread();
3182 qemu_mutex_lock_ramlist();
3183 rcu_read_lock();
3185 ram_list_init_bitmaps();
3186 memory_global_dirty_log_start();
3187 migration_bitmap_sync_precopy(rs);
3189 rcu_read_unlock();
3190 qemu_mutex_unlock_ramlist();
3191 qemu_mutex_unlock_iothread();
3194 static int ram_init_all(RAMState **rsp)
3196 if (ram_state_init(rsp)) {
3197 return -1;
3200 if (xbzrle_init()) {
3201 ram_state_cleanup(rsp);
3202 return -1;
3205 ram_init_bitmaps(*rsp);
3207 return 0;
3210 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3212 RAMBlock *block;
3213 uint64_t pages = 0;
3216 * Postcopy is not using xbzrle/compression, so no need for that.
3217 * Also, since source are already halted, we don't need to care
3218 * about dirty page logging as well.
3221 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3222 pages += bitmap_count_one(block->bmap,
3223 block->used_length >> TARGET_PAGE_BITS);
3226 /* This may not be aligned with current bitmaps. Recalculate. */
3227 rs->migration_dirty_pages = pages;
3229 rs->last_seen_block = NULL;
3230 rs->last_sent_block = NULL;
3231 rs->last_page = 0;
3232 rs->last_version = ram_list.version;
3234 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3235 * matter what we have sent.
3237 rs->ram_bulk_stage = false;
3239 /* Update RAMState cache of output QEMUFile */
3240 rs->f = out;
3242 trace_ram_state_resume_prepare(pages);
3246 * This function clears bits of the free pages reported by the caller from the
3247 * migration dirty bitmap. @addr is the host address corresponding to the
3248 * start of the continuous guest free pages, and @len is the total bytes of
3249 * those pages.
3251 void qemu_guest_free_page_hint(void *addr, size_t len)
3253 RAMBlock *block;
3254 ram_addr_t offset;
3255 size_t used_len, start, npages;
3256 MigrationState *s = migrate_get_current();
3258 /* This function is currently expected to be used during live migration */
3259 if (!migration_is_setup_or_active(s->state)) {
3260 return;
3263 for (; len > 0; len -= used_len, addr += used_len) {
3264 block = qemu_ram_block_from_host(addr, false, &offset);
3265 if (unlikely(!block || offset >= block->used_length)) {
3267 * The implementation might not support RAMBlock resize during
3268 * live migration, but it could happen in theory with future
3269 * updates. So we add a check here to capture that case.
3271 error_report_once("%s unexpected error", __func__);
3272 return;
3275 if (len <= block->used_length - offset) {
3276 used_len = len;
3277 } else {
3278 used_len = block->used_length - offset;
3281 start = offset >> TARGET_PAGE_BITS;
3282 npages = used_len >> TARGET_PAGE_BITS;
3284 qemu_mutex_lock(&ram_state->bitmap_mutex);
3285 ram_state->migration_dirty_pages -=
3286 bitmap_count_one_with_offset(block->bmap, start, npages);
3287 bitmap_clear(block->bmap, start, npages);
3288 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3293 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3294 * long-running RCU critical section. When rcu-reclaims in the code
3295 * start to become numerous it will be necessary to reduce the
3296 * granularity of these critical sections.
3300 * ram_save_setup: Setup RAM for migration
3302 * Returns zero to indicate success and negative for error
3304 * @f: QEMUFile where to send the data
3305 * @opaque: RAMState pointer
3307 static int ram_save_setup(QEMUFile *f, void *opaque)
3309 RAMState **rsp = opaque;
3310 RAMBlock *block;
3312 if (compress_threads_save_setup()) {
3313 return -1;
3316 /* migration has already setup the bitmap, reuse it. */
3317 if (!migration_in_colo_state()) {
3318 if (ram_init_all(rsp) != 0) {
3319 compress_threads_save_cleanup();
3320 return -1;
3323 (*rsp)->f = f;
3325 rcu_read_lock();
3327 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3329 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3330 qemu_put_byte(f, strlen(block->idstr));
3331 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3332 qemu_put_be64(f, block->used_length);
3333 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3334 qemu_put_be64(f, block->page_size);
3336 if (migrate_ignore_shared()) {
3337 qemu_put_be64(f, block->mr->addr);
3338 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3342 rcu_read_unlock();
3344 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3345 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3347 multifd_send_sync_main();
3348 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3349 qemu_fflush(f);
3351 return 0;
3355 * ram_save_iterate: iterative stage for migration
3357 * Returns zero to indicate success and negative for error
3359 * @f: QEMUFile where to send the data
3360 * @opaque: RAMState pointer
3362 static int ram_save_iterate(QEMUFile *f, void *opaque)
3364 RAMState **temp = opaque;
3365 RAMState *rs = *temp;
3366 int ret;
3367 int i;
3368 int64_t t0;
3369 int done = 0;
3371 if (blk_mig_bulk_active()) {
3372 /* Avoid transferring ram during bulk phase of block migration as
3373 * the bulk phase will usually take a long time and transferring
3374 * ram updates during that time is pointless. */
3375 goto out;
3378 rcu_read_lock();
3379 if (ram_list.version != rs->last_version) {
3380 ram_state_reset(rs);
3383 /* Read version before ram_list.blocks */
3384 smp_rmb();
3386 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3388 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3389 i = 0;
3390 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3391 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3392 int pages;
3394 if (qemu_file_get_error(f)) {
3395 break;
3398 pages = ram_find_and_save_block(rs, false);
3399 /* no more pages to sent */
3400 if (pages == 0) {
3401 done = 1;
3402 break;
3405 if (pages < 0) {
3406 qemu_file_set_error(f, pages);
3407 break;
3410 rs->target_page_count += pages;
3412 /* we want to check in the 1st loop, just in case it was the 1st time
3413 and we had to sync the dirty bitmap.
3414 qemu_get_clock_ns() is a bit expensive, so we only check each some
3415 iterations
3417 if ((i & 63) == 0) {
3418 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3419 if (t1 > MAX_WAIT) {
3420 trace_ram_save_iterate_big_wait(t1, i);
3421 break;
3424 i++;
3426 rcu_read_unlock();
3429 * Must occur before EOS (or any QEMUFile operation)
3430 * because of RDMA protocol.
3432 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3434 multifd_send_sync_main();
3435 out:
3436 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3437 qemu_fflush(f);
3438 ram_counters.transferred += 8;
3440 ret = qemu_file_get_error(f);
3441 if (ret < 0) {
3442 return ret;
3445 return done;
3449 * ram_save_complete: function called to send the remaining amount of ram
3451 * Returns zero to indicate success or negative on error
3453 * Called with iothread lock
3455 * @f: QEMUFile where to send the data
3456 * @opaque: RAMState pointer
3458 static int ram_save_complete(QEMUFile *f, void *opaque)
3460 RAMState **temp = opaque;
3461 RAMState *rs = *temp;
3462 int ret = 0;
3464 rcu_read_lock();
3466 if (!migration_in_postcopy()) {
3467 migration_bitmap_sync_precopy(rs);
3470 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3472 /* try transferring iterative blocks of memory */
3474 /* flush all remaining blocks regardless of rate limiting */
3475 while (true) {
3476 int pages;
3478 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3479 /* no more blocks to sent */
3480 if (pages == 0) {
3481 break;
3483 if (pages < 0) {
3484 ret = pages;
3485 break;
3489 flush_compressed_data(rs);
3490 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3492 rcu_read_unlock();
3494 multifd_send_sync_main();
3495 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3496 qemu_fflush(f);
3498 return ret;
3501 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3502 uint64_t *res_precopy_only,
3503 uint64_t *res_compatible,
3504 uint64_t *res_postcopy_only)
3506 RAMState **temp = opaque;
3507 RAMState *rs = *temp;
3508 uint64_t remaining_size;
3510 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3512 if (!migration_in_postcopy() &&
3513 remaining_size < max_size) {
3514 qemu_mutex_lock_iothread();
3515 rcu_read_lock();
3516 migration_bitmap_sync_precopy(rs);
3517 rcu_read_unlock();
3518 qemu_mutex_unlock_iothread();
3519 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3522 if (migrate_postcopy_ram()) {
3523 /* We can do postcopy, and all the data is postcopiable */
3524 *res_compatible += remaining_size;
3525 } else {
3526 *res_precopy_only += remaining_size;
3530 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3532 unsigned int xh_len;
3533 int xh_flags;
3534 uint8_t *loaded_data;
3536 /* extract RLE header */
3537 xh_flags = qemu_get_byte(f);
3538 xh_len = qemu_get_be16(f);
3540 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3541 error_report("Failed to load XBZRLE page - wrong compression!");
3542 return -1;
3545 if (xh_len > TARGET_PAGE_SIZE) {
3546 error_report("Failed to load XBZRLE page - len overflow!");
3547 return -1;
3549 loaded_data = XBZRLE.decoded_buf;
3550 /* load data and decode */
3551 /* it can change loaded_data to point to an internal buffer */
3552 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3554 /* decode RLE */
3555 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3556 TARGET_PAGE_SIZE) == -1) {
3557 error_report("Failed to load XBZRLE page - decode error!");
3558 return -1;
3561 return 0;
3565 * ram_block_from_stream: read a RAMBlock id from the migration stream
3567 * Must be called from within a rcu critical section.
3569 * Returns a pointer from within the RCU-protected ram_list.
3571 * @f: QEMUFile where to read the data from
3572 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3574 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3576 static RAMBlock *block = NULL;
3577 char id[256];
3578 uint8_t len;
3580 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3581 if (!block) {
3582 error_report("Ack, bad migration stream!");
3583 return NULL;
3585 return block;
3588 len = qemu_get_byte(f);
3589 qemu_get_buffer(f, (uint8_t *)id, len);
3590 id[len] = 0;
3592 block = qemu_ram_block_by_name(id);
3593 if (!block) {
3594 error_report("Can't find block %s", id);
3595 return NULL;
3598 if (ramblock_is_ignored(block)) {
3599 error_report("block %s should not be migrated !", id);
3600 return NULL;
3603 return block;
3606 static inline void *host_from_ram_block_offset(RAMBlock *block,
3607 ram_addr_t offset)
3609 if (!offset_in_ramblock(block, offset)) {
3610 return NULL;
3613 return block->host + offset;
3616 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3617 ram_addr_t offset)
3619 if (!offset_in_ramblock(block, offset)) {
3620 return NULL;
3622 if (!block->colo_cache) {
3623 error_report("%s: colo_cache is NULL in block :%s",
3624 __func__, block->idstr);
3625 return NULL;
3629 * During colo checkpoint, we need bitmap of these migrated pages.
3630 * It help us to decide which pages in ram cache should be flushed
3631 * into VM's RAM later.
3633 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3634 ram_state->migration_dirty_pages++;
3636 return block->colo_cache + offset;
3640 * ram_handle_compressed: handle the zero page case
3642 * If a page (or a whole RDMA chunk) has been
3643 * determined to be zero, then zap it.
3645 * @host: host address for the zero page
3646 * @ch: what the page is filled from. We only support zero
3647 * @size: size of the zero page
3649 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3651 if (ch != 0 || !is_zero_range(host, size)) {
3652 memset(host, ch, size);
3656 /* return the size after decompression, or negative value on error */
3657 static int
3658 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3659 const uint8_t *source, size_t source_len)
3661 int err;
3663 err = inflateReset(stream);
3664 if (err != Z_OK) {
3665 return -1;
3668 stream->avail_in = source_len;
3669 stream->next_in = (uint8_t *)source;
3670 stream->avail_out = dest_len;
3671 stream->next_out = dest;
3673 err = inflate(stream, Z_NO_FLUSH);
3674 if (err != Z_STREAM_END) {
3675 return -1;
3678 return stream->total_out;
3681 static void *do_data_decompress(void *opaque)
3683 DecompressParam *param = opaque;
3684 unsigned long pagesize;
3685 uint8_t *des;
3686 int len, ret;
3688 qemu_mutex_lock(&param->mutex);
3689 while (!param->quit) {
3690 if (param->des) {
3691 des = param->des;
3692 len = param->len;
3693 param->des = 0;
3694 qemu_mutex_unlock(&param->mutex);
3696 pagesize = TARGET_PAGE_SIZE;
3698 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3699 param->compbuf, len);
3700 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3701 error_report("decompress data failed");
3702 qemu_file_set_error(decomp_file, ret);
3705 qemu_mutex_lock(&decomp_done_lock);
3706 param->done = true;
3707 qemu_cond_signal(&decomp_done_cond);
3708 qemu_mutex_unlock(&decomp_done_lock);
3710 qemu_mutex_lock(&param->mutex);
3711 } else {
3712 qemu_cond_wait(&param->cond, &param->mutex);
3715 qemu_mutex_unlock(&param->mutex);
3717 return NULL;
3720 static int wait_for_decompress_done(void)
3722 int idx, thread_count;
3724 if (!migrate_use_compression()) {
3725 return 0;
3728 thread_count = migrate_decompress_threads();
3729 qemu_mutex_lock(&decomp_done_lock);
3730 for (idx = 0; idx < thread_count; idx++) {
3731 while (!decomp_param[idx].done) {
3732 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3735 qemu_mutex_unlock(&decomp_done_lock);
3736 return qemu_file_get_error(decomp_file);
3739 static void compress_threads_load_cleanup(void)
3741 int i, thread_count;
3743 if (!migrate_use_compression()) {
3744 return;
3746 thread_count = migrate_decompress_threads();
3747 for (i = 0; i < thread_count; i++) {
3749 * we use it as a indicator which shows if the thread is
3750 * properly init'd or not
3752 if (!decomp_param[i].compbuf) {
3753 break;
3756 qemu_mutex_lock(&decomp_param[i].mutex);
3757 decomp_param[i].quit = true;
3758 qemu_cond_signal(&decomp_param[i].cond);
3759 qemu_mutex_unlock(&decomp_param[i].mutex);
3761 for (i = 0; i < thread_count; i++) {
3762 if (!decomp_param[i].compbuf) {
3763 break;
3766 qemu_thread_join(decompress_threads + i);
3767 qemu_mutex_destroy(&decomp_param[i].mutex);
3768 qemu_cond_destroy(&decomp_param[i].cond);
3769 inflateEnd(&decomp_param[i].stream);
3770 g_free(decomp_param[i].compbuf);
3771 decomp_param[i].compbuf = NULL;
3773 g_free(decompress_threads);
3774 g_free(decomp_param);
3775 decompress_threads = NULL;
3776 decomp_param = NULL;
3777 decomp_file = NULL;
3780 static int compress_threads_load_setup(QEMUFile *f)
3782 int i, thread_count;
3784 if (!migrate_use_compression()) {
3785 return 0;
3788 thread_count = migrate_decompress_threads();
3789 decompress_threads = g_new0(QemuThread, thread_count);
3790 decomp_param = g_new0(DecompressParam, thread_count);
3791 qemu_mutex_init(&decomp_done_lock);
3792 qemu_cond_init(&decomp_done_cond);
3793 decomp_file = f;
3794 for (i = 0; i < thread_count; i++) {
3795 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3796 goto exit;
3799 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3800 qemu_mutex_init(&decomp_param[i].mutex);
3801 qemu_cond_init(&decomp_param[i].cond);
3802 decomp_param[i].done = true;
3803 decomp_param[i].quit = false;
3804 qemu_thread_create(decompress_threads + i, "decompress",
3805 do_data_decompress, decomp_param + i,
3806 QEMU_THREAD_JOINABLE);
3808 return 0;
3809 exit:
3810 compress_threads_load_cleanup();
3811 return -1;
3814 static void decompress_data_with_multi_threads(QEMUFile *f,
3815 void *host, int len)
3817 int idx, thread_count;
3819 thread_count = migrate_decompress_threads();
3820 qemu_mutex_lock(&decomp_done_lock);
3821 while (true) {
3822 for (idx = 0; idx < thread_count; idx++) {
3823 if (decomp_param[idx].done) {
3824 decomp_param[idx].done = false;
3825 qemu_mutex_lock(&decomp_param[idx].mutex);
3826 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3827 decomp_param[idx].des = host;
3828 decomp_param[idx].len = len;
3829 qemu_cond_signal(&decomp_param[idx].cond);
3830 qemu_mutex_unlock(&decomp_param[idx].mutex);
3831 break;
3834 if (idx < thread_count) {
3835 break;
3836 } else {
3837 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3840 qemu_mutex_unlock(&decomp_done_lock);
3844 * colo cache: this is for secondary VM, we cache the whole
3845 * memory of the secondary VM, it is need to hold the global lock
3846 * to call this helper.
3848 int colo_init_ram_cache(void)
3850 RAMBlock *block;
3852 rcu_read_lock();
3853 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3854 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3855 NULL,
3856 false);
3857 if (!block->colo_cache) {
3858 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3859 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3860 block->used_length);
3861 goto out_locked;
3863 memcpy(block->colo_cache, block->host, block->used_length);
3865 rcu_read_unlock();
3867 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3868 * with to decide which page in cache should be flushed into SVM's RAM. Here
3869 * we use the same name 'ram_bitmap' as for migration.
3871 if (ram_bytes_total()) {
3872 RAMBlock *block;
3874 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3875 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3877 block->bmap = bitmap_new(pages);
3878 bitmap_set(block->bmap, 0, pages);
3881 ram_state = g_new0(RAMState, 1);
3882 ram_state->migration_dirty_pages = 0;
3883 memory_global_dirty_log_start();
3885 return 0;
3887 out_locked:
3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3890 if (block->colo_cache) {
3891 qemu_anon_ram_free(block->colo_cache, block->used_length);
3892 block->colo_cache = NULL;
3896 rcu_read_unlock();
3897 return -errno;
3900 /* It is need to hold the global lock to call this helper */
3901 void colo_release_ram_cache(void)
3903 RAMBlock *block;
3905 memory_global_dirty_log_stop();
3906 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3907 g_free(block->bmap);
3908 block->bmap = NULL;
3911 rcu_read_lock();
3913 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3914 if (block->colo_cache) {
3915 qemu_anon_ram_free(block->colo_cache, block->used_length);
3916 block->colo_cache = NULL;
3920 rcu_read_unlock();
3921 g_free(ram_state);
3922 ram_state = NULL;
3926 * ram_load_setup: Setup RAM for migration incoming side
3928 * Returns zero to indicate success and negative for error
3930 * @f: QEMUFile where to receive the data
3931 * @opaque: RAMState pointer
3933 static int ram_load_setup(QEMUFile *f, void *opaque)
3935 if (compress_threads_load_setup(f)) {
3936 return -1;
3939 xbzrle_load_setup();
3940 ramblock_recv_map_init();
3942 return 0;
3945 static int ram_load_cleanup(void *opaque)
3947 RAMBlock *rb;
3949 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3950 if (ramblock_is_pmem(rb)) {
3951 pmem_persist(rb->host, rb->used_length);
3955 xbzrle_load_cleanup();
3956 compress_threads_load_cleanup();
3958 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3959 g_free(rb->receivedmap);
3960 rb->receivedmap = NULL;
3963 return 0;
3967 * ram_postcopy_incoming_init: allocate postcopy data structures
3969 * Returns 0 for success and negative if there was one error
3971 * @mis: current migration incoming state
3973 * Allocate data structures etc needed by incoming migration with
3974 * postcopy-ram. postcopy-ram's similarly names
3975 * postcopy_ram_incoming_init does the work.
3977 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3979 return postcopy_ram_incoming_init(mis);
3983 * ram_load_postcopy: load a page in postcopy case
3985 * Returns 0 for success or -errno in case of error
3987 * Called in postcopy mode by ram_load().
3988 * rcu_read_lock is taken prior to this being called.
3990 * @f: QEMUFile where to send the data
3992 static int ram_load_postcopy(QEMUFile *f)
3994 int flags = 0, ret = 0;
3995 bool place_needed = false;
3996 bool matches_target_page_size = false;
3997 MigrationIncomingState *mis = migration_incoming_get_current();
3998 /* Temporary page that is later 'placed' */
3999 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4000 void *last_host = NULL;
4001 bool all_zero = false;
4003 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4004 ram_addr_t addr;
4005 void *host = NULL;
4006 void *page_buffer = NULL;
4007 void *place_source = NULL;
4008 RAMBlock *block = NULL;
4009 uint8_t ch;
4011 addr = qemu_get_be64(f);
4014 * If qemu file error, we should stop here, and then "addr"
4015 * may be invalid
4017 ret = qemu_file_get_error(f);
4018 if (ret) {
4019 break;
4022 flags = addr & ~TARGET_PAGE_MASK;
4023 addr &= TARGET_PAGE_MASK;
4025 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4026 place_needed = false;
4027 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4028 block = ram_block_from_stream(f, flags);
4030 host = host_from_ram_block_offset(block, addr);
4031 if (!host) {
4032 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4033 ret = -EINVAL;
4034 break;
4036 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4038 * Postcopy requires that we place whole host pages atomically;
4039 * these may be huge pages for RAMBlocks that are backed by
4040 * hugetlbfs.
4041 * To make it atomic, the data is read into a temporary page
4042 * that's moved into place later.
4043 * The migration protocol uses, possibly smaller, target-pages
4044 * however the source ensures it always sends all the components
4045 * of a host page in order.
4047 page_buffer = postcopy_host_page +
4048 ((uintptr_t)host & (block->page_size - 1));
4049 /* If all TP are zero then we can optimise the place */
4050 if (!((uintptr_t)host & (block->page_size - 1))) {
4051 all_zero = true;
4052 } else {
4053 /* not the 1st TP within the HP */
4054 if (host != (last_host + TARGET_PAGE_SIZE)) {
4055 error_report("Non-sequential target page %p/%p",
4056 host, last_host);
4057 ret = -EINVAL;
4058 break;
4064 * If it's the last part of a host page then we place the host
4065 * page
4067 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4068 (block->page_size - 1)) == 0;
4069 place_source = postcopy_host_page;
4071 last_host = host;
4073 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4074 case RAM_SAVE_FLAG_ZERO:
4075 ch = qemu_get_byte(f);
4076 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4077 if (ch) {
4078 all_zero = false;
4080 break;
4082 case RAM_SAVE_FLAG_PAGE:
4083 all_zero = false;
4084 if (!matches_target_page_size) {
4085 /* For huge pages, we always use temporary buffer */
4086 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4087 } else {
4089 * For small pages that matches target page size, we
4090 * avoid the qemu_file copy. Instead we directly use
4091 * the buffer of QEMUFile to place the page. Note: we
4092 * cannot do any QEMUFile operation before using that
4093 * buffer to make sure the buffer is valid when
4094 * placing the page.
4096 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4097 TARGET_PAGE_SIZE);
4099 break;
4100 case RAM_SAVE_FLAG_EOS:
4101 /* normal exit */
4102 multifd_recv_sync_main();
4103 break;
4104 default:
4105 error_report("Unknown combination of migration flags: %#x"
4106 " (postcopy mode)", flags);
4107 ret = -EINVAL;
4108 break;
4111 /* Detect for any possible file errors */
4112 if (!ret && qemu_file_get_error(f)) {
4113 ret = qemu_file_get_error(f);
4116 if (!ret && place_needed) {
4117 /* This gets called at the last target page in the host page */
4118 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4120 if (all_zero) {
4121 ret = postcopy_place_page_zero(mis, place_dest,
4122 block);
4123 } else {
4124 ret = postcopy_place_page(mis, place_dest,
4125 place_source, block);
4130 return ret;
4133 static bool postcopy_is_advised(void)
4135 PostcopyState ps = postcopy_state_get();
4136 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4139 static bool postcopy_is_running(void)
4141 PostcopyState ps = postcopy_state_get();
4142 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4146 * Flush content of RAM cache into SVM's memory.
4147 * Only flush the pages that be dirtied by PVM or SVM or both.
4149 static void colo_flush_ram_cache(void)
4151 RAMBlock *block = NULL;
4152 void *dst_host;
4153 void *src_host;
4154 unsigned long offset = 0;
4156 memory_global_dirty_log_sync();
4157 rcu_read_lock();
4158 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4159 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4161 rcu_read_unlock();
4163 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4164 rcu_read_lock();
4165 block = QLIST_FIRST_RCU(&ram_list.blocks);
4167 while (block) {
4168 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4170 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4171 offset = 0;
4172 block = QLIST_NEXT_RCU(block, next);
4173 } else {
4174 migration_bitmap_clear_dirty(ram_state, block, offset);
4175 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4176 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4177 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4181 rcu_read_unlock();
4182 trace_colo_flush_ram_cache_end();
4185 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4187 int flags = 0, ret = 0, invalid_flags = 0;
4188 static uint64_t seq_iter;
4189 int len = 0;
4191 * If system is running in postcopy mode, page inserts to host memory must
4192 * be atomic
4194 bool postcopy_running = postcopy_is_running();
4195 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4196 bool postcopy_advised = postcopy_is_advised();
4198 seq_iter++;
4200 if (version_id != 4) {
4201 ret = -EINVAL;
4204 if (!migrate_use_compression()) {
4205 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4207 /* This RCU critical section can be very long running.
4208 * When RCU reclaims in the code start to become numerous,
4209 * it will be necessary to reduce the granularity of this
4210 * critical section.
4212 rcu_read_lock();
4214 if (postcopy_running) {
4215 ret = ram_load_postcopy(f);
4218 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4219 ram_addr_t addr, total_ram_bytes;
4220 void *host = NULL;
4221 uint8_t ch;
4223 addr = qemu_get_be64(f);
4224 flags = addr & ~TARGET_PAGE_MASK;
4225 addr &= TARGET_PAGE_MASK;
4227 if (flags & invalid_flags) {
4228 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4229 error_report("Received an unexpected compressed page");
4232 ret = -EINVAL;
4233 break;
4236 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4237 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4238 RAMBlock *block = ram_block_from_stream(f, flags);
4241 * After going into COLO, we should load the Page into colo_cache.
4243 if (migration_incoming_in_colo_state()) {
4244 host = colo_cache_from_block_offset(block, addr);
4245 } else {
4246 host = host_from_ram_block_offset(block, addr);
4248 if (!host) {
4249 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4250 ret = -EINVAL;
4251 break;
4254 if (!migration_incoming_in_colo_state()) {
4255 ramblock_recv_bitmap_set(block, host);
4258 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4261 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4262 case RAM_SAVE_FLAG_MEM_SIZE:
4263 /* Synchronize RAM block list */
4264 total_ram_bytes = addr;
4265 while (!ret && total_ram_bytes) {
4266 RAMBlock *block;
4267 char id[256];
4268 ram_addr_t length;
4270 len = qemu_get_byte(f);
4271 qemu_get_buffer(f, (uint8_t *)id, len);
4272 id[len] = 0;
4273 length = qemu_get_be64(f);
4275 block = qemu_ram_block_by_name(id);
4276 if (block && !qemu_ram_is_migratable(block)) {
4277 error_report("block %s should not be migrated !", id);
4278 ret = -EINVAL;
4279 } else if (block) {
4280 if (length != block->used_length) {
4281 Error *local_err = NULL;
4283 ret = qemu_ram_resize(block, length,
4284 &local_err);
4285 if (local_err) {
4286 error_report_err(local_err);
4289 /* For postcopy we need to check hugepage sizes match */
4290 if (postcopy_advised &&
4291 block->page_size != qemu_host_page_size) {
4292 uint64_t remote_page_size = qemu_get_be64(f);
4293 if (remote_page_size != block->page_size) {
4294 error_report("Mismatched RAM page size %s "
4295 "(local) %zd != %" PRId64,
4296 id, block->page_size,
4297 remote_page_size);
4298 ret = -EINVAL;
4301 if (migrate_ignore_shared()) {
4302 hwaddr addr = qemu_get_be64(f);
4303 bool ignored = qemu_get_byte(f);
4304 if (ignored != ramblock_is_ignored(block)) {
4305 error_report("RAM block %s should %s be migrated",
4306 id, ignored ? "" : "not");
4307 ret = -EINVAL;
4309 if (ramblock_is_ignored(block) &&
4310 block->mr->addr != addr) {
4311 error_report("Mismatched GPAs for block %s "
4312 "%" PRId64 "!= %" PRId64,
4313 id, (uint64_t)addr,
4314 (uint64_t)block->mr->addr);
4315 ret = -EINVAL;
4318 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4319 block->idstr);
4320 } else {
4321 error_report("Unknown ramblock \"%s\", cannot "
4322 "accept migration", id);
4323 ret = -EINVAL;
4326 total_ram_bytes -= length;
4328 break;
4330 case RAM_SAVE_FLAG_ZERO:
4331 ch = qemu_get_byte(f);
4332 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4333 break;
4335 case RAM_SAVE_FLAG_PAGE:
4336 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4337 break;
4339 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4340 len = qemu_get_be32(f);
4341 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4342 error_report("Invalid compressed data length: %d", len);
4343 ret = -EINVAL;
4344 break;
4346 decompress_data_with_multi_threads(f, host, len);
4347 break;
4349 case RAM_SAVE_FLAG_XBZRLE:
4350 if (load_xbzrle(f, addr, host) < 0) {
4351 error_report("Failed to decompress XBZRLE page at "
4352 RAM_ADDR_FMT, addr);
4353 ret = -EINVAL;
4354 break;
4356 break;
4357 case RAM_SAVE_FLAG_EOS:
4358 /* normal exit */
4359 multifd_recv_sync_main();
4360 break;
4361 default:
4362 if (flags & RAM_SAVE_FLAG_HOOK) {
4363 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4364 } else {
4365 error_report("Unknown combination of migration flags: %#x",
4366 flags);
4367 ret = -EINVAL;
4370 if (!ret) {
4371 ret = qemu_file_get_error(f);
4375 ret |= wait_for_decompress_done();
4376 rcu_read_unlock();
4377 trace_ram_load_complete(ret, seq_iter);
4379 if (!ret && migration_incoming_in_colo_state()) {
4380 colo_flush_ram_cache();
4382 return ret;
4385 static bool ram_has_postcopy(void *opaque)
4387 RAMBlock *rb;
4388 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4389 if (ramblock_is_pmem(rb)) {
4390 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4391 "is not supported now!", rb->idstr, rb->host);
4392 return false;
4396 return migrate_postcopy_ram();
4399 /* Sync all the dirty bitmap with destination VM. */
4400 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4402 RAMBlock *block;
4403 QEMUFile *file = s->to_dst_file;
4404 int ramblock_count = 0;
4406 trace_ram_dirty_bitmap_sync_start();
4408 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4409 qemu_savevm_send_recv_bitmap(file, block->idstr);
4410 trace_ram_dirty_bitmap_request(block->idstr);
4411 ramblock_count++;
4414 trace_ram_dirty_bitmap_sync_wait();
4416 /* Wait until all the ramblocks' dirty bitmap synced */
4417 while (ramblock_count--) {
4418 qemu_sem_wait(&s->rp_state.rp_sem);
4421 trace_ram_dirty_bitmap_sync_complete();
4423 return 0;
4426 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4428 qemu_sem_post(&s->rp_state.rp_sem);
4432 * Read the received bitmap, revert it as the initial dirty bitmap.
4433 * This is only used when the postcopy migration is paused but wants
4434 * to resume from a middle point.
4436 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4438 int ret = -EINVAL;
4439 QEMUFile *file = s->rp_state.from_dst_file;
4440 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4441 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4442 uint64_t size, end_mark;
4444 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4446 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4447 error_report("%s: incorrect state %s", __func__,
4448 MigrationStatus_str(s->state));
4449 return -EINVAL;
4453 * Note: see comments in ramblock_recv_bitmap_send() on why we
4454 * need the endianess convertion, and the paddings.
4456 local_size = ROUND_UP(local_size, 8);
4458 /* Add paddings */
4459 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4461 size = qemu_get_be64(file);
4463 /* The size of the bitmap should match with our ramblock */
4464 if (size != local_size) {
4465 error_report("%s: ramblock '%s' bitmap size mismatch "
4466 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4467 block->idstr, size, local_size);
4468 ret = -EINVAL;
4469 goto out;
4472 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4473 end_mark = qemu_get_be64(file);
4475 ret = qemu_file_get_error(file);
4476 if (ret || size != local_size) {
4477 error_report("%s: read bitmap failed for ramblock '%s': %d"
4478 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4479 __func__, block->idstr, ret, local_size, size);
4480 ret = -EIO;
4481 goto out;
4484 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4485 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4486 __func__, block->idstr, end_mark);
4487 ret = -EINVAL;
4488 goto out;
4492 * Endianess convertion. We are during postcopy (though paused).
4493 * The dirty bitmap won't change. We can directly modify it.
4495 bitmap_from_le(block->bmap, le_bitmap, nbits);
4498 * What we received is "received bitmap". Revert it as the initial
4499 * dirty bitmap for this ramblock.
4501 bitmap_complement(block->bmap, block->bmap, nbits);
4503 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4506 * We succeeded to sync bitmap for current ramblock. If this is
4507 * the last one to sync, we need to notify the main send thread.
4509 ram_dirty_bitmap_reload_notify(s);
4511 ret = 0;
4512 out:
4513 g_free(le_bitmap);
4514 return ret;
4517 static int ram_resume_prepare(MigrationState *s, void *opaque)
4519 RAMState *rs = *(RAMState **)opaque;
4520 int ret;
4522 ret = ram_dirty_bitmap_sync_all(s, rs);
4523 if (ret) {
4524 return ret;
4527 ram_state_resume_prepare(rs, s->to_dst_file);
4529 return 0;
4532 static SaveVMHandlers savevm_ram_handlers = {
4533 .save_setup = ram_save_setup,
4534 .save_live_iterate = ram_save_iterate,
4535 .save_live_complete_postcopy = ram_save_complete,
4536 .save_live_complete_precopy = ram_save_complete,
4537 .has_postcopy = ram_has_postcopy,
4538 .save_live_pending = ram_save_pending,
4539 .load_state = ram_load,
4540 .save_cleanup = ram_save_cleanup,
4541 .load_setup = ram_load_setup,
4542 .load_cleanup = ram_load_cleanup,
4543 .resume_prepare = ram_resume_prepare,
4546 void ram_mig_init(void)
4548 qemu_mutex_init(&XBZRLE.lock);
4549 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);