meson: convert hw/pcmcia
[qemu/ar7.git] / hw / ppc / spapr.c
blob0ae293ec943129a48890835d84cd01e791a28865
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
87 #include <libfdt.h>
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF (128 * MiB)
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 static void spapr_dt_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
270 if (!pa_features) {
271 return;
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static hwaddr spapr_node0_size(MachineState *machine)
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
308 return machine->ram_size;
311 static void add_str(GString *s, const gchar *s1)
313 g_string_append_len(s, s1, strlen(s1) + 1);
316 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 MemoryDeviceInfoList *info;
346 for (info = list; info; info = info->next) {
347 MemoryDeviceInfo *value = info->value;
349 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
350 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352 if (addr >= pcdimm_info->addr &&
353 addr < (pcdimm_info->addr + pcdimm_info->size)) {
354 return pcdimm_info->node;
359 return -1;
362 struct sPAPRDrconfCellV2 {
363 uint32_t seq_lmbs;
364 uint64_t base_addr;
365 uint32_t drc_index;
366 uint32_t aa_index;
367 uint32_t flags;
368 } QEMU_PACKED;
370 typedef struct DrconfCellQueue {
371 struct sPAPRDrconfCellV2 cell;
372 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
373 } DrconfCellQueue;
375 static DrconfCellQueue *
376 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
377 uint32_t drc_index, uint32_t aa_index,
378 uint32_t flags)
380 DrconfCellQueue *elem;
382 elem = g_malloc0(sizeof(*elem));
383 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
384 elem->cell.base_addr = cpu_to_be64(base_addr);
385 elem->cell.drc_index = cpu_to_be32(drc_index);
386 elem->cell.aa_index = cpu_to_be32(aa_index);
387 elem->cell.flags = cpu_to_be32(flags);
389 return elem;
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
393 int offset, MemoryDeviceInfoList *dimms)
395 MachineState *machine = MACHINE(spapr);
396 uint8_t *int_buf, *cur_index;
397 int ret;
398 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
399 uint64_t addr, cur_addr, size;
400 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
401 uint64_t mem_end = machine->device_memory->base +
402 memory_region_size(&machine->device_memory->mr);
403 uint32_t node, buf_len, nr_entries = 0;
404 SpaprDrc *drc;
405 DrconfCellQueue *elem, *next;
406 MemoryDeviceInfoList *info;
407 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410 /* Entry to cover RAM and the gap area */
411 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED |
413 SPAPR_LMB_FLAGS_DRC_INVALID);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
415 nr_entries++;
417 cur_addr = machine->device_memory->base;
418 for (info = dimms; info; info = info->next) {
419 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421 addr = di->addr;
422 size = di->size;
423 node = di->node;
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
430 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
431 continue;
433 /* Entry for hot-pluggable area */
434 if (cur_addr < addr) {
435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
436 g_assert(drc);
437 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
438 cur_addr, spapr_drc_index(drc), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440 nr_entries++;
443 /* Entry for DIMM */
444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
445 g_assert(drc);
446 elem = spapr_get_drconf_cell(size / lmb_size, addr,
447 spapr_drc_index(drc), node,
448 (SPAPR_LMB_FLAGS_ASSIGNED |
449 SPAPR_LMB_FLAGS_HOTREMOVABLE));
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
452 cur_addr = addr + size;
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr < mem_end) {
457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458 g_assert(drc);
459 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460 cur_addr, spapr_drc_index(drc), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462 nr_entries++;
465 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466 int_buf = cur_index = g_malloc0(buf_len);
467 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468 cur_index += sizeof(nr_entries);
470 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472 cur_index += sizeof(elem->cell);
473 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474 g_free(elem);
477 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478 g_free(int_buf);
479 if (ret < 0) {
480 return -1;
482 return 0;
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486 int offset, MemoryDeviceInfoList *dimms)
488 MachineState *machine = MACHINE(spapr);
489 int i, ret;
490 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492 uint32_t nr_lmbs = (machine->device_memory->base +
493 memory_region_size(&machine->device_memory->mr)) /
494 lmb_size;
495 uint32_t *int_buf, *cur_index, buf_len;
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
500 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501 cur_index = int_buf = g_malloc0(buf_len);
502 int_buf[0] = cpu_to_be32(nr_lmbs);
503 cur_index++;
504 for (i = 0; i < nr_lmbs; i++) {
505 uint64_t addr = i * lmb_size;
506 uint32_t *dynamic_memory = cur_index;
508 if (i >= device_lmb_start) {
509 SpaprDrc *drc;
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512 g_assert(drc);
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519 if (memory_region_present(get_system_memory(), addr)) {
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521 } else {
522 dynamic_memory[5] = cpu_to_be32(0);
524 } else {
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
530 dynamic_memory[0] = cpu_to_be32(addr >> 32);
531 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532 dynamic_memory[2] = cpu_to_be32(0);
533 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory[4] = cpu_to_be32(-1);
535 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536 SPAPR_LMB_FLAGS_DRC_INVALID);
539 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
541 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542 g_free(int_buf);
543 if (ret < 0) {
544 return -1;
546 return 0;
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555 void *fdt)
557 MachineState *machine = MACHINE(spapr);
558 int nb_numa_nodes = machine->numa_state->num_nodes;
559 int ret, i, offset;
560 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
562 uint32_t *int_buf, *cur_index, buf_len;
563 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
564 MemoryDeviceInfoList *dimms = NULL;
567 * Don't create the node if there is no device memory
569 if (machine->ram_size == machine->maxram_size) {
570 return 0;
573 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
575 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
576 sizeof(prop_lmb_size));
577 if (ret < 0) {
578 return ret;
581 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
582 if (ret < 0) {
583 return ret;
586 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
587 if (ret < 0) {
588 return ret;
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms = qmp_memory_device_list();
593 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
594 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
595 } else {
596 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
598 qapi_free_MemoryDeviceInfoList(dimms);
600 if (ret < 0) {
601 return ret;
604 /* ibm,associativity-lookup-arrays */
605 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
606 cur_index = int_buf = g_malloc0(buf_len);
607 int_buf[0] = cpu_to_be32(nr_nodes);
608 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
609 cur_index += 2;
610 for (i = 0; i < nr_nodes; i++) {
611 uint32_t associativity[] = {
612 cpu_to_be32(0x0),
613 cpu_to_be32(0x0),
614 cpu_to_be32(0x0),
615 cpu_to_be32(i)
617 memcpy(cur_index, associativity, sizeof(associativity));
618 cur_index += 4;
620 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
621 (cur_index - int_buf) * sizeof(uint32_t));
622 g_free(int_buf);
624 return ret;
627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
629 MachineState *machine = MACHINE(spapr);
630 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
631 hwaddr mem_start, node_size;
632 int i, nb_nodes = machine->numa_state->num_nodes;
633 NodeInfo *nodes = machine->numa_state->nodes;
635 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
636 if (!nodes[i].node_mem) {
637 continue;
639 if (mem_start >= machine->ram_size) {
640 node_size = 0;
641 } else {
642 node_size = nodes[i].node_mem;
643 if (node_size > machine->ram_size - mem_start) {
644 node_size = machine->ram_size - mem_start;
647 if (!mem_start) {
648 /* spapr_machine_init() checks for rma_size <= node0_size
649 * already */
650 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
651 mem_start += spapr->rma_size;
652 node_size -= spapr->rma_size;
654 for ( ; node_size; ) {
655 hwaddr sizetmp = pow2floor(node_size);
657 /* mem_start != 0 here */
658 if (ctzl(mem_start) < ctzl(sizetmp)) {
659 sizetmp = 1ULL << ctzl(mem_start);
662 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
663 node_size -= sizetmp;
664 mem_start += sizetmp;
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
670 int ret;
672 g_assert(smc->dr_lmb_enabled);
673 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
674 if (ret) {
675 return ret;
679 return 0;
682 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
683 SpaprMachineState *spapr)
685 MachineState *ms = MACHINE(spapr);
686 PowerPCCPU *cpu = POWERPC_CPU(cs);
687 CPUPPCState *env = &cpu->env;
688 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
689 int index = spapr_get_vcpu_id(cpu);
690 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ;
694 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop[64];
696 size_t page_sizes_prop_size;
697 unsigned int smp_threads = ms->smp.threads;
698 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
699 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
700 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
701 SpaprDrc *drc;
702 int drc_index;
703 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
704 int i;
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
707 if (drc) {
708 drc_index = spapr_drc_index(drc);
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
712 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
713 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
715 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
716 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
717 env->dcache_line_size)));
718 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
719 env->dcache_line_size)));
720 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
721 env->icache_line_size)));
722 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
723 env->icache_line_size)));
725 if (pcc->l1_dcache_size) {
726 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
727 pcc->l1_dcache_size)));
728 } else {
729 warn_report("Unknown L1 dcache size for cpu");
731 if (pcc->l1_icache_size) {
732 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
733 pcc->l1_icache_size)));
734 } else {
735 warn_report("Unknown L1 icache size for cpu");
738 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
739 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
740 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
742 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
743 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
745 if (env->spr_cb[SPR_PURR].oea_read) {
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
748 if (env->spr_cb[SPR_SPURR].oea_read) {
749 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
752 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
753 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
754 segs, sizeof(segs))));
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
759 * 2 == VSX available
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
765 } else {
766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
773 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
776 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
777 sizeof(page_sizes_prop));
778 if (page_sizes_prop_size) {
779 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
780 page_sizes_prop, page_sizes_prop_size)));
783 spapr_dt_pa_features(spapr, cpu, fdt, offset);
785 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
786 cs->cpu_index / vcpus_per_socket)));
788 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
789 pft_size_prop, sizeof(pft_size_prop))));
791 if (ms->numa_state->num_nodes > 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
795 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
797 if (pcc->radix_page_info) {
798 for (i = 0; i < pcc->radix_page_info->count; i++) {
799 radix_AP_encodings[i] =
800 cpu_to_be32(pcc->radix_page_info->entries[i]);
802 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
803 radix_AP_encodings,
804 pcc->radix_page_info->count *
805 sizeof(radix_AP_encodings[0]))));
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
812 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
813 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
814 pcc->lrg_decr_bits)));
817 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
819 CPUState **rev;
820 CPUState *cs;
821 int n_cpus;
822 int cpus_offset;
823 char *nodename;
824 int i;
826 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
827 _FDT(cpus_offset);
828 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
836 * The CPU list cannot be traversed in reverse order, so we need
837 * to do extra work.
839 n_cpus = 0;
840 rev = NULL;
841 CPU_FOREACH(cs) {
842 rev = g_renew(CPUState *, rev, n_cpus + 1);
843 rev[n_cpus++] = cs;
846 for (i = n_cpus - 1; i >= 0; i--) {
847 CPUState *cs = rev[i];
848 PowerPCCPU *cpu = POWERPC_CPU(cs);
849 int index = spapr_get_vcpu_id(cpu);
850 DeviceClass *dc = DEVICE_GET_CLASS(cs);
851 int offset;
853 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
854 continue;
857 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
858 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
859 g_free(nodename);
860 _FDT(offset);
861 spapr_dt_cpu(cs, fdt, offset, spapr);
864 g_free(rev);
867 static int spapr_dt_rng(void *fdt)
869 int node;
870 int ret;
872 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
873 if (node <= 0) {
874 return -1;
876 ret = fdt_setprop_string(fdt, node, "device_type",
877 "ibm,platform-facilities");
878 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
879 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
881 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
882 if (node <= 0) {
883 return -1;
885 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
887 return ret ? -1 : 0;
890 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
892 MachineState *ms = MACHINE(spapr);
893 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
894 int rtas;
895 GString *hypertas = g_string_sized_new(256);
896 GString *qemu_hypertas = g_string_sized_new(256);
897 uint32_t refpoints[] = {
898 cpu_to_be32(0x4),
899 cpu_to_be32(0x4),
900 cpu_to_be32(0x2),
902 uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
903 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
904 memory_region_size(&MACHINE(spapr)->device_memory->mr);
905 uint32_t lrdr_capacity[] = {
906 cpu_to_be32(max_device_addr >> 32),
907 cpu_to_be32(max_device_addr & 0xffffffff),
908 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
909 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
911 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
912 uint32_t maxdomains[] = {
913 cpu_to_be32(4),
914 maxdomain,
915 maxdomain,
916 maxdomain,
917 cpu_to_be32(spapr->gpu_numa_id),
920 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
922 /* hypertas */
923 add_str(hypertas, "hcall-pft");
924 add_str(hypertas, "hcall-term");
925 add_str(hypertas, "hcall-dabr");
926 add_str(hypertas, "hcall-interrupt");
927 add_str(hypertas, "hcall-tce");
928 add_str(hypertas, "hcall-vio");
929 add_str(hypertas, "hcall-splpar");
930 add_str(hypertas, "hcall-join");
931 add_str(hypertas, "hcall-bulk");
932 add_str(hypertas, "hcall-set-mode");
933 add_str(hypertas, "hcall-sprg0");
934 add_str(hypertas, "hcall-copy");
935 add_str(hypertas, "hcall-debug");
936 add_str(hypertas, "hcall-vphn");
937 add_str(qemu_hypertas, "hcall-memop1");
939 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
940 add_str(hypertas, "hcall-multi-tce");
943 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
944 add_str(hypertas, "hcall-hpt-resize");
947 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
948 hypertas->str, hypertas->len));
949 g_string_free(hypertas, TRUE);
950 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
951 qemu_hypertas->str, qemu_hypertas->len));
952 g_string_free(qemu_hypertas, TRUE);
954 if (smc->pre_5_1_assoc_refpoints) {
955 nr_refpoints = 2;
958 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
959 refpoints, nr_refpoints * sizeof(refpoints[0])));
961 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
962 maxdomains, sizeof(maxdomains)));
965 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
966 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
968 * The system reset requirements are driven by existing Linux and PowerVM
969 * implementation which (contrary to PAPR) saves r3 in the error log
970 * structure like machine check, so Linux expects to find the saved r3
971 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
972 * does not look at the error value).
974 * System reset interrupts are not subject to interlock like machine
975 * check, so this memory area could be corrupted if the sreset is
976 * interrupted by a machine check (or vice versa) if it was shared. To
977 * prevent this, system reset uses per-CPU areas for the sreset save
978 * area. A system reset that interrupts a system reset handler could
979 * still overwrite this area, but Linux doesn't try to recover in that
980 * case anyway.
982 * The extra 8 bytes is required because Linux's FWNMI error log check
983 * is off-by-one.
985 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
986 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
987 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
988 RTAS_ERROR_LOG_MAX));
989 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
990 RTAS_EVENT_SCAN_RATE));
992 g_assert(msi_nonbroken);
993 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
996 * According to PAPR, rtas ibm,os-term does not guarantee a return
997 * back to the guest cpu.
999 * While an additional ibm,extended-os-term property indicates
1000 * that rtas call return will always occur. Set this property.
1002 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1004 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1005 lrdr_capacity, sizeof(lrdr_capacity)));
1007 spapr_dt_rtas_tokens(fdt, rtas);
1011 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1012 * and the XIVE features that the guest may request and thus the valid
1013 * values for bytes 23..26 of option vector 5:
1015 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1016 int chosen)
1018 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1020 char val[2 * 4] = {
1021 23, 0x00, /* XICS / XIVE mode */
1022 24, 0x00, /* Hash/Radix, filled in below. */
1023 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1024 26, 0x40, /* Radix options: GTSE == yes. */
1027 if (spapr->irq->xics && spapr->irq->xive) {
1028 val[1] = SPAPR_OV5_XIVE_BOTH;
1029 } else if (spapr->irq->xive) {
1030 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1031 } else {
1032 assert(spapr->irq->xics);
1033 val[1] = SPAPR_OV5_XIVE_LEGACY;
1036 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1037 first_ppc_cpu->compat_pvr)) {
1039 * If we're in a pre POWER9 compat mode then the guest should
1040 * do hash and use the legacy interrupt mode
1042 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1043 val[3] = 0x00; /* Hash */
1044 } else if (kvm_enabled()) {
1045 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1046 val[3] = 0x80; /* OV5_MMU_BOTH */
1047 } else if (kvmppc_has_cap_mmu_radix()) {
1048 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1049 } else {
1050 val[3] = 0x00; /* Hash */
1052 } else {
1053 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1054 val[3] = 0xC0;
1056 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1057 val, sizeof(val)));
1060 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1062 MachineState *machine = MACHINE(spapr);
1063 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1064 int chosen;
1066 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1068 if (reset) {
1069 const char *boot_device = machine->boot_order;
1070 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1071 size_t cb = 0;
1072 char *bootlist = get_boot_devices_list(&cb);
1074 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1075 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1076 machine->kernel_cmdline));
1079 if (spapr->initrd_size) {
1080 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1081 spapr->initrd_base));
1082 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1083 spapr->initrd_base + spapr->initrd_size));
1086 if (spapr->kernel_size) {
1087 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1088 cpu_to_be64(spapr->kernel_size) };
1090 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1091 &kprop, sizeof(kprop)));
1092 if (spapr->kernel_le) {
1093 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1096 if (boot_menu) {
1097 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1099 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1100 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1101 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1103 if (cb && bootlist) {
1104 int i;
1106 for (i = 0; i < cb; i++) {
1107 if (bootlist[i] == '\n') {
1108 bootlist[i] = ' ';
1111 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1114 if (boot_device && strlen(boot_device)) {
1115 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1118 if (!spapr->has_graphics && stdout_path) {
1120 * "linux,stdout-path" and "stdout" properties are
1121 * deprecated by linux kernel. New platforms should only
1122 * use the "stdout-path" property. Set the new property
1123 * and continue using older property to remain compatible
1124 * with the existing firmware.
1126 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1127 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1131 * We can deal with BAR reallocation just fine, advertise it
1132 * to the guest
1134 if (smc->linux_pci_probe) {
1135 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1138 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1140 g_free(stdout_path);
1141 g_free(bootlist);
1144 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1147 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1149 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1150 * KVM to work under pHyp with some guest co-operation */
1151 int hypervisor;
1152 uint8_t hypercall[16];
1154 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1155 /* indicate KVM hypercall interface */
1156 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1157 if (kvmppc_has_cap_fixup_hcalls()) {
1159 * Older KVM versions with older guest kernels were broken
1160 * with the magic page, don't allow the guest to map it.
1162 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1163 sizeof(hypercall))) {
1164 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1165 hypercall, sizeof(hypercall)));
1170 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1172 MachineState *machine = MACHINE(spapr);
1173 MachineClass *mc = MACHINE_GET_CLASS(machine);
1174 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1175 int ret;
1176 void *fdt;
1177 SpaprPhbState *phb;
1178 char *buf;
1180 fdt = g_malloc0(space);
1181 _FDT((fdt_create_empty_tree(fdt, space)));
1183 /* Root node */
1184 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1185 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1186 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1188 /* Guest UUID & Name*/
1189 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1190 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1191 if (qemu_uuid_set) {
1192 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1194 g_free(buf);
1196 if (qemu_get_vm_name()) {
1197 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1198 qemu_get_vm_name()));
1201 /* Host Model & Serial Number */
1202 if (spapr->host_model) {
1203 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1204 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1205 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1206 g_free(buf);
1209 if (spapr->host_serial) {
1210 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1211 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1212 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1213 g_free(buf);
1216 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1217 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1219 /* /interrupt controller */
1220 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1222 ret = spapr_dt_memory(spapr, fdt);
1223 if (ret < 0) {
1224 error_report("couldn't setup memory nodes in fdt");
1225 exit(1);
1228 /* /vdevice */
1229 spapr_dt_vdevice(spapr->vio_bus, fdt);
1231 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1232 ret = spapr_dt_rng(fdt);
1233 if (ret < 0) {
1234 error_report("could not set up rng device in the fdt");
1235 exit(1);
1239 QLIST_FOREACH(phb, &spapr->phbs, list) {
1240 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1241 if (ret < 0) {
1242 error_report("couldn't setup PCI devices in fdt");
1243 exit(1);
1247 spapr_dt_cpus(fdt, spapr);
1249 if (smc->dr_lmb_enabled) {
1250 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1253 if (mc->has_hotpluggable_cpus) {
1254 int offset = fdt_path_offset(fdt, "/cpus");
1255 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1256 if (ret < 0) {
1257 error_report("Couldn't set up CPU DR device tree properties");
1258 exit(1);
1262 /* /event-sources */
1263 spapr_dt_events(spapr, fdt);
1265 /* /rtas */
1266 spapr_dt_rtas(spapr, fdt);
1268 /* /chosen */
1269 spapr_dt_chosen(spapr, fdt, reset);
1271 /* /hypervisor */
1272 if (kvm_enabled()) {
1273 spapr_dt_hypervisor(spapr, fdt);
1276 /* Build memory reserve map */
1277 if (reset) {
1278 if (spapr->kernel_size) {
1279 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1280 spapr->kernel_size)));
1282 if (spapr->initrd_size) {
1283 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1284 spapr->initrd_size)));
1288 if (smc->dr_phb_enabled) {
1289 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1290 if (ret < 0) {
1291 error_report("Couldn't set up PHB DR device tree properties");
1292 exit(1);
1296 /* NVDIMM devices */
1297 if (mc->nvdimm_supported) {
1298 spapr_dt_persistent_memory(fdt);
1301 return fdt;
1304 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1306 SpaprMachineState *spapr = opaque;
1308 return (addr & 0x0fffffff) + spapr->kernel_addr;
1311 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1312 PowerPCCPU *cpu)
1314 CPUPPCState *env = &cpu->env;
1316 /* The TCG path should also be holding the BQL at this point */
1317 g_assert(qemu_mutex_iothread_locked());
1319 if (msr_pr) {
1320 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1321 env->gpr[3] = H_PRIVILEGE;
1322 } else {
1323 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1327 struct LPCRSyncState {
1328 target_ulong value;
1329 target_ulong mask;
1332 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1334 struct LPCRSyncState *s = arg.host_ptr;
1335 PowerPCCPU *cpu = POWERPC_CPU(cs);
1336 CPUPPCState *env = &cpu->env;
1337 target_ulong lpcr;
1339 cpu_synchronize_state(cs);
1340 lpcr = env->spr[SPR_LPCR];
1341 lpcr &= ~s->mask;
1342 lpcr |= s->value;
1343 ppc_store_lpcr(cpu, lpcr);
1346 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1348 CPUState *cs;
1349 struct LPCRSyncState s = {
1350 .value = value,
1351 .mask = mask
1353 CPU_FOREACH(cs) {
1354 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1358 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1360 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362 /* Copy PATE1:GR into PATE0:HR */
1363 entry->dw0 = spapr->patb_entry & PATE0_HR;
1364 entry->dw1 = spapr->patb_entry;
1367 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1368 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1369 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1370 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1371 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1374 * Get the fd to access the kernel htab, re-opening it if necessary
1376 static int get_htab_fd(SpaprMachineState *spapr)
1378 Error *local_err = NULL;
1380 if (spapr->htab_fd >= 0) {
1381 return spapr->htab_fd;
1384 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1385 if (spapr->htab_fd < 0) {
1386 error_report_err(local_err);
1389 return spapr->htab_fd;
1392 void close_htab_fd(SpaprMachineState *spapr)
1394 if (spapr->htab_fd >= 0) {
1395 close(spapr->htab_fd);
1397 spapr->htab_fd = -1;
1400 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1402 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1407 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1409 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1411 assert(kvm_enabled());
1413 if (!spapr->htab) {
1414 return 0;
1417 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1420 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1421 hwaddr ptex, int n)
1423 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1424 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1426 if (!spapr->htab) {
1428 * HTAB is controlled by KVM. Fetch into temporary buffer
1430 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1431 kvmppc_read_hptes(hptes, ptex, n);
1432 return hptes;
1436 * HTAB is controlled by QEMU. Just point to the internally
1437 * accessible PTEG.
1439 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1442 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1443 const ppc_hash_pte64_t *hptes,
1444 hwaddr ptex, int n)
1446 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1448 if (!spapr->htab) {
1449 g_free((void *)hptes);
1452 /* Nothing to do for qemu managed HPT */
1455 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1456 uint64_t pte0, uint64_t pte1)
1458 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1459 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1461 if (!spapr->htab) {
1462 kvmppc_write_hpte(ptex, pte0, pte1);
1463 } else {
1464 if (pte0 & HPTE64_V_VALID) {
1465 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1467 * When setting valid, we write PTE1 first. This ensures
1468 * proper synchronization with the reading code in
1469 * ppc_hash64_pteg_search()
1471 smp_wmb();
1472 stq_p(spapr->htab + offset, pte0);
1473 } else {
1474 stq_p(spapr->htab + offset, pte0);
1476 * When clearing it we set PTE0 first. This ensures proper
1477 * synchronization with the reading code in
1478 * ppc_hash64_pteg_search()
1480 smp_wmb();
1481 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1486 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1487 uint64_t pte1)
1489 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1490 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1492 if (!spapr->htab) {
1493 /* There should always be a hash table when this is called */
1494 error_report("spapr_hpte_set_c called with no hash table !");
1495 return;
1498 /* The HW performs a non-atomic byte update */
1499 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1502 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1503 uint64_t pte1)
1505 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1506 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1508 if (!spapr->htab) {
1509 /* There should always be a hash table when this is called */
1510 error_report("spapr_hpte_set_r called with no hash table !");
1511 return;
1514 /* The HW performs a non-atomic byte update */
1515 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1518 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1520 int shift;
1522 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1523 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1524 * that's much more than is needed for Linux guests */
1525 shift = ctz64(pow2ceil(ramsize)) - 7;
1526 shift = MAX(shift, 18); /* Minimum architected size */
1527 shift = MIN(shift, 46); /* Maximum architected size */
1528 return shift;
1531 void spapr_free_hpt(SpaprMachineState *spapr)
1533 g_free(spapr->htab);
1534 spapr->htab = NULL;
1535 spapr->htab_shift = 0;
1536 close_htab_fd(spapr);
1539 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1540 Error **errp)
1542 long rc;
1544 /* Clean up any HPT info from a previous boot */
1545 spapr_free_hpt(spapr);
1547 rc = kvmppc_reset_htab(shift);
1548 if (rc < 0) {
1549 /* kernel-side HPT needed, but couldn't allocate one */
1550 error_setg_errno(errp, errno,
1551 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1552 shift);
1553 /* This is almost certainly fatal, but if the caller really
1554 * wants to carry on with shift == 0, it's welcome to try */
1555 } else if (rc > 0) {
1556 /* kernel-side HPT allocated */
1557 if (rc != shift) {
1558 error_setg(errp,
1559 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1560 shift, rc);
1563 spapr->htab_shift = shift;
1564 spapr->htab = NULL;
1565 } else {
1566 /* kernel-side HPT not needed, allocate in userspace instead */
1567 size_t size = 1ULL << shift;
1568 int i;
1570 spapr->htab = qemu_memalign(size, size);
1571 if (!spapr->htab) {
1572 error_setg_errno(errp, errno,
1573 "Could not allocate HPT of order %d", shift);
1574 return;
1577 memset(spapr->htab, 0, size);
1578 spapr->htab_shift = shift;
1580 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1581 DIRTY_HPTE(HPTE(spapr->htab, i));
1584 /* We're setting up a hash table, so that means we're not radix */
1585 spapr->patb_entry = 0;
1586 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1589 void spapr_setup_hpt(SpaprMachineState *spapr)
1591 int hpt_shift;
1593 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1594 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1595 } else {
1596 uint64_t current_ram_size;
1598 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1599 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1601 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1603 if (kvm_enabled()) {
1604 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1606 /* Check our RMA fits in the possible VRMA */
1607 if (vrma_limit < spapr->rma_size) {
1608 error_report("Unable to create %" HWADDR_PRIu
1609 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1610 spapr->rma_size / MiB, vrma_limit / MiB);
1611 exit(EXIT_FAILURE);
1616 static int spapr_reset_drcs(Object *child, void *opaque)
1618 SpaprDrc *drc =
1619 (SpaprDrc *) object_dynamic_cast(child,
1620 TYPE_SPAPR_DR_CONNECTOR);
1622 if (drc) {
1623 spapr_drc_reset(drc);
1626 return 0;
1629 static void spapr_machine_reset(MachineState *machine)
1631 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1632 PowerPCCPU *first_ppc_cpu;
1633 hwaddr fdt_addr;
1634 void *fdt;
1635 int rc;
1637 kvmppc_svm_off(&error_fatal);
1638 spapr_caps_apply(spapr);
1640 first_ppc_cpu = POWERPC_CPU(first_cpu);
1641 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1642 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1643 spapr->max_compat_pvr)) {
1645 * If using KVM with radix mode available, VCPUs can be started
1646 * without a HPT because KVM will start them in radix mode.
1647 * Set the GR bit in PATE so that we know there is no HPT.
1649 spapr->patb_entry = PATE1_GR;
1650 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1651 } else {
1652 spapr_setup_hpt(spapr);
1655 qemu_devices_reset();
1657 spapr_ovec_cleanup(spapr->ov5_cas);
1658 spapr->ov5_cas = spapr_ovec_new();
1660 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1663 * This is fixing some of the default configuration of the XIVE
1664 * devices. To be called after the reset of the machine devices.
1666 spapr_irq_reset(spapr, &error_fatal);
1669 * There is no CAS under qtest. Simulate one to please the code that
1670 * depends on spapr->ov5_cas. This is especially needed to test device
1671 * unplug, so we do that before resetting the DRCs.
1673 if (qtest_enabled()) {
1674 spapr_ovec_cleanup(spapr->ov5_cas);
1675 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1678 /* DRC reset may cause a device to be unplugged. This will cause troubles
1679 * if this device is used by another device (eg, a running vhost backend
1680 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1681 * situations, we reset DRCs after all devices have been reset.
1683 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1685 spapr_clear_pending_events(spapr);
1688 * We place the device tree and RTAS just below either the top of the RMA,
1689 * or just below 2GB, whichever is lower, so that it can be
1690 * processed with 32-bit real mode code if necessary
1692 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1694 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1696 rc = fdt_pack(fdt);
1698 /* Should only fail if we've built a corrupted tree */
1699 assert(rc == 0);
1701 /* Load the fdt */
1702 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1703 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1704 g_free(spapr->fdt_blob);
1705 spapr->fdt_size = fdt_totalsize(fdt);
1706 spapr->fdt_initial_size = spapr->fdt_size;
1707 spapr->fdt_blob = fdt;
1709 /* Set up the entry state */
1710 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1711 first_ppc_cpu->env.gpr[5] = 0;
1713 spapr->fwnmi_system_reset_addr = -1;
1714 spapr->fwnmi_machine_check_addr = -1;
1715 spapr->fwnmi_machine_check_interlock = -1;
1717 /* Signal all vCPUs waiting on this condition */
1718 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1720 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1723 static void spapr_create_nvram(SpaprMachineState *spapr)
1725 DeviceState *dev = qdev_new("spapr-nvram");
1726 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1728 if (dinfo) {
1729 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1730 &error_fatal);
1733 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1735 spapr->nvram = (struct SpaprNvram *)dev;
1738 static void spapr_rtc_create(SpaprMachineState *spapr)
1740 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1741 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1742 &error_fatal, NULL);
1743 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1744 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1745 "date");
1748 /* Returns whether we want to use VGA or not */
1749 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1751 switch (vga_interface_type) {
1752 case VGA_NONE:
1753 return false;
1754 case VGA_DEVICE:
1755 return true;
1756 case VGA_STD:
1757 case VGA_VIRTIO:
1758 case VGA_CIRRUS:
1759 return pci_vga_init(pci_bus) != NULL;
1760 default:
1761 error_setg(errp,
1762 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1763 return false;
1767 static int spapr_pre_load(void *opaque)
1769 int rc;
1771 rc = spapr_caps_pre_load(opaque);
1772 if (rc) {
1773 return rc;
1776 return 0;
1779 static int spapr_post_load(void *opaque, int version_id)
1781 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1782 int err = 0;
1784 err = spapr_caps_post_migration(spapr);
1785 if (err) {
1786 return err;
1790 * In earlier versions, there was no separate qdev for the PAPR
1791 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1792 * So when migrating from those versions, poke the incoming offset
1793 * value into the RTC device
1795 if (version_id < 3) {
1796 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1797 if (err) {
1798 return err;
1802 if (kvm_enabled() && spapr->patb_entry) {
1803 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1804 bool radix = !!(spapr->patb_entry & PATE1_GR);
1805 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1808 * Update LPCR:HR and UPRT as they may not be set properly in
1809 * the stream
1811 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1812 LPCR_HR | LPCR_UPRT);
1814 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1815 if (err) {
1816 error_report("Process table config unsupported by the host");
1817 return -EINVAL;
1821 err = spapr_irq_post_load(spapr, version_id);
1822 if (err) {
1823 return err;
1826 return err;
1829 static int spapr_pre_save(void *opaque)
1831 int rc;
1833 rc = spapr_caps_pre_save(opaque);
1834 if (rc) {
1835 return rc;
1838 return 0;
1841 static bool version_before_3(void *opaque, int version_id)
1843 return version_id < 3;
1846 static bool spapr_pending_events_needed(void *opaque)
1848 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1849 return !QTAILQ_EMPTY(&spapr->pending_events);
1852 static const VMStateDescription vmstate_spapr_event_entry = {
1853 .name = "spapr_event_log_entry",
1854 .version_id = 1,
1855 .minimum_version_id = 1,
1856 .fields = (VMStateField[]) {
1857 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1858 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1859 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1860 NULL, extended_length),
1861 VMSTATE_END_OF_LIST()
1865 static const VMStateDescription vmstate_spapr_pending_events = {
1866 .name = "spapr_pending_events",
1867 .version_id = 1,
1868 .minimum_version_id = 1,
1869 .needed = spapr_pending_events_needed,
1870 .fields = (VMStateField[]) {
1871 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1872 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1873 VMSTATE_END_OF_LIST()
1877 static bool spapr_ov5_cas_needed(void *opaque)
1879 SpaprMachineState *spapr = opaque;
1880 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1881 bool cas_needed;
1883 /* Prior to the introduction of SpaprOptionVector, we had two option
1884 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1885 * Both of these options encode machine topology into the device-tree
1886 * in such a way that the now-booted OS should still be able to interact
1887 * appropriately with QEMU regardless of what options were actually
1888 * negotiatied on the source side.
1890 * As such, we can avoid migrating the CAS-negotiated options if these
1891 * are the only options available on the current machine/platform.
1892 * Since these are the only options available for pseries-2.7 and
1893 * earlier, this allows us to maintain old->new/new->old migration
1894 * compatibility.
1896 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1897 * via default pseries-2.8 machines and explicit command-line parameters.
1898 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1899 * of the actual CAS-negotiated values to continue working properly. For
1900 * example, availability of memory unplug depends on knowing whether
1901 * OV5_HP_EVT was negotiated via CAS.
1903 * Thus, for any cases where the set of available CAS-negotiatable
1904 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1905 * include the CAS-negotiated options in the migration stream, unless
1906 * if they affect boot time behaviour only.
1908 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1909 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1910 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1912 /* We need extra information if we have any bits outside the mask
1913 * defined above */
1914 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1916 spapr_ovec_cleanup(ov5_mask);
1918 return cas_needed;
1921 static const VMStateDescription vmstate_spapr_ov5_cas = {
1922 .name = "spapr_option_vector_ov5_cas",
1923 .version_id = 1,
1924 .minimum_version_id = 1,
1925 .needed = spapr_ov5_cas_needed,
1926 .fields = (VMStateField[]) {
1927 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1928 vmstate_spapr_ovec, SpaprOptionVector),
1929 VMSTATE_END_OF_LIST()
1933 static bool spapr_patb_entry_needed(void *opaque)
1935 SpaprMachineState *spapr = opaque;
1937 return !!spapr->patb_entry;
1940 static const VMStateDescription vmstate_spapr_patb_entry = {
1941 .name = "spapr_patb_entry",
1942 .version_id = 1,
1943 .minimum_version_id = 1,
1944 .needed = spapr_patb_entry_needed,
1945 .fields = (VMStateField[]) {
1946 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1947 VMSTATE_END_OF_LIST()
1951 static bool spapr_irq_map_needed(void *opaque)
1953 SpaprMachineState *spapr = opaque;
1955 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1958 static const VMStateDescription vmstate_spapr_irq_map = {
1959 .name = "spapr_irq_map",
1960 .version_id = 1,
1961 .minimum_version_id = 1,
1962 .needed = spapr_irq_map_needed,
1963 .fields = (VMStateField[]) {
1964 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1965 VMSTATE_END_OF_LIST()
1969 static bool spapr_dtb_needed(void *opaque)
1971 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1973 return smc->update_dt_enabled;
1976 static int spapr_dtb_pre_load(void *opaque)
1978 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1980 g_free(spapr->fdt_blob);
1981 spapr->fdt_blob = NULL;
1982 spapr->fdt_size = 0;
1984 return 0;
1987 static const VMStateDescription vmstate_spapr_dtb = {
1988 .name = "spapr_dtb",
1989 .version_id = 1,
1990 .minimum_version_id = 1,
1991 .needed = spapr_dtb_needed,
1992 .pre_load = spapr_dtb_pre_load,
1993 .fields = (VMStateField[]) {
1994 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1995 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1996 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1997 fdt_size),
1998 VMSTATE_END_OF_LIST()
2002 static bool spapr_fwnmi_needed(void *opaque)
2004 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2006 return spapr->fwnmi_machine_check_addr != -1;
2009 static int spapr_fwnmi_pre_save(void *opaque)
2011 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2014 * Check if machine check handling is in progress and print a
2015 * warning message.
2017 if (spapr->fwnmi_machine_check_interlock != -1) {
2018 warn_report("A machine check is being handled during migration. The"
2019 "handler may run and log hardware error on the destination");
2022 return 0;
2025 static const VMStateDescription vmstate_spapr_fwnmi = {
2026 .name = "spapr_fwnmi",
2027 .version_id = 1,
2028 .minimum_version_id = 1,
2029 .needed = spapr_fwnmi_needed,
2030 .pre_save = spapr_fwnmi_pre_save,
2031 .fields = (VMStateField[]) {
2032 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2033 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2034 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2035 VMSTATE_END_OF_LIST()
2039 static const VMStateDescription vmstate_spapr = {
2040 .name = "spapr",
2041 .version_id = 3,
2042 .minimum_version_id = 1,
2043 .pre_load = spapr_pre_load,
2044 .post_load = spapr_post_load,
2045 .pre_save = spapr_pre_save,
2046 .fields = (VMStateField[]) {
2047 /* used to be @next_irq */
2048 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2050 /* RTC offset */
2051 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2053 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2054 VMSTATE_END_OF_LIST()
2056 .subsections = (const VMStateDescription*[]) {
2057 &vmstate_spapr_ov5_cas,
2058 &vmstate_spapr_patb_entry,
2059 &vmstate_spapr_pending_events,
2060 &vmstate_spapr_cap_htm,
2061 &vmstate_spapr_cap_vsx,
2062 &vmstate_spapr_cap_dfp,
2063 &vmstate_spapr_cap_cfpc,
2064 &vmstate_spapr_cap_sbbc,
2065 &vmstate_spapr_cap_ibs,
2066 &vmstate_spapr_cap_hpt_maxpagesize,
2067 &vmstate_spapr_irq_map,
2068 &vmstate_spapr_cap_nested_kvm_hv,
2069 &vmstate_spapr_dtb,
2070 &vmstate_spapr_cap_large_decr,
2071 &vmstate_spapr_cap_ccf_assist,
2072 &vmstate_spapr_cap_fwnmi,
2073 &vmstate_spapr_fwnmi,
2074 NULL
2078 static int htab_save_setup(QEMUFile *f, void *opaque)
2080 SpaprMachineState *spapr = opaque;
2082 /* "Iteration" header */
2083 if (!spapr->htab_shift) {
2084 qemu_put_be32(f, -1);
2085 } else {
2086 qemu_put_be32(f, spapr->htab_shift);
2089 if (spapr->htab) {
2090 spapr->htab_save_index = 0;
2091 spapr->htab_first_pass = true;
2092 } else {
2093 if (spapr->htab_shift) {
2094 assert(kvm_enabled());
2099 return 0;
2102 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2103 int chunkstart, int n_valid, int n_invalid)
2105 qemu_put_be32(f, chunkstart);
2106 qemu_put_be16(f, n_valid);
2107 qemu_put_be16(f, n_invalid);
2108 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2109 HASH_PTE_SIZE_64 * n_valid);
2112 static void htab_save_end_marker(QEMUFile *f)
2114 qemu_put_be32(f, 0);
2115 qemu_put_be16(f, 0);
2116 qemu_put_be16(f, 0);
2119 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2120 int64_t max_ns)
2122 bool has_timeout = max_ns != -1;
2123 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2124 int index = spapr->htab_save_index;
2125 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2127 assert(spapr->htab_first_pass);
2129 do {
2130 int chunkstart;
2132 /* Consume invalid HPTEs */
2133 while ((index < htabslots)
2134 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2135 CLEAN_HPTE(HPTE(spapr->htab, index));
2136 index++;
2139 /* Consume valid HPTEs */
2140 chunkstart = index;
2141 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2142 && HPTE_VALID(HPTE(spapr->htab, index))) {
2143 CLEAN_HPTE(HPTE(spapr->htab, index));
2144 index++;
2147 if (index > chunkstart) {
2148 int n_valid = index - chunkstart;
2150 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2152 if (has_timeout &&
2153 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2154 break;
2157 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2159 if (index >= htabslots) {
2160 assert(index == htabslots);
2161 index = 0;
2162 spapr->htab_first_pass = false;
2164 spapr->htab_save_index = index;
2167 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2168 int64_t max_ns)
2170 bool final = max_ns < 0;
2171 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2172 int examined = 0, sent = 0;
2173 int index = spapr->htab_save_index;
2174 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2176 assert(!spapr->htab_first_pass);
2178 do {
2179 int chunkstart, invalidstart;
2181 /* Consume non-dirty HPTEs */
2182 while ((index < htabslots)
2183 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2184 index++;
2185 examined++;
2188 chunkstart = index;
2189 /* Consume valid dirty HPTEs */
2190 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2191 && HPTE_DIRTY(HPTE(spapr->htab, index))
2192 && HPTE_VALID(HPTE(spapr->htab, index))) {
2193 CLEAN_HPTE(HPTE(spapr->htab, index));
2194 index++;
2195 examined++;
2198 invalidstart = index;
2199 /* Consume invalid dirty HPTEs */
2200 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2201 && HPTE_DIRTY(HPTE(spapr->htab, index))
2202 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2203 CLEAN_HPTE(HPTE(spapr->htab, index));
2204 index++;
2205 examined++;
2208 if (index > chunkstart) {
2209 int n_valid = invalidstart - chunkstart;
2210 int n_invalid = index - invalidstart;
2212 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2213 sent += index - chunkstart;
2215 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2216 break;
2220 if (examined >= htabslots) {
2221 break;
2224 if (index >= htabslots) {
2225 assert(index == htabslots);
2226 index = 0;
2228 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2230 if (index >= htabslots) {
2231 assert(index == htabslots);
2232 index = 0;
2235 spapr->htab_save_index = index;
2237 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2240 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2241 #define MAX_KVM_BUF_SIZE 2048
2243 static int htab_save_iterate(QEMUFile *f, void *opaque)
2245 SpaprMachineState *spapr = opaque;
2246 int fd;
2247 int rc = 0;
2249 /* Iteration header */
2250 if (!spapr->htab_shift) {
2251 qemu_put_be32(f, -1);
2252 return 1;
2253 } else {
2254 qemu_put_be32(f, 0);
2257 if (!spapr->htab) {
2258 assert(kvm_enabled());
2260 fd = get_htab_fd(spapr);
2261 if (fd < 0) {
2262 return fd;
2265 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2266 if (rc < 0) {
2267 return rc;
2269 } else if (spapr->htab_first_pass) {
2270 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2271 } else {
2272 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2275 htab_save_end_marker(f);
2277 return rc;
2280 static int htab_save_complete(QEMUFile *f, void *opaque)
2282 SpaprMachineState *spapr = opaque;
2283 int fd;
2285 /* Iteration header */
2286 if (!spapr->htab_shift) {
2287 qemu_put_be32(f, -1);
2288 return 0;
2289 } else {
2290 qemu_put_be32(f, 0);
2293 if (!spapr->htab) {
2294 int rc;
2296 assert(kvm_enabled());
2298 fd = get_htab_fd(spapr);
2299 if (fd < 0) {
2300 return fd;
2303 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2304 if (rc < 0) {
2305 return rc;
2307 } else {
2308 if (spapr->htab_first_pass) {
2309 htab_save_first_pass(f, spapr, -1);
2311 htab_save_later_pass(f, spapr, -1);
2314 /* End marker */
2315 htab_save_end_marker(f);
2317 return 0;
2320 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2322 SpaprMachineState *spapr = opaque;
2323 uint32_t section_hdr;
2324 int fd = -1;
2325 Error *local_err = NULL;
2327 if (version_id < 1 || version_id > 1) {
2328 error_report("htab_load() bad version");
2329 return -EINVAL;
2332 section_hdr = qemu_get_be32(f);
2334 if (section_hdr == -1) {
2335 spapr_free_hpt(spapr);
2336 return 0;
2339 if (section_hdr) {
2340 /* First section gives the htab size */
2341 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2342 if (local_err) {
2343 error_report_err(local_err);
2344 return -EINVAL;
2346 return 0;
2349 if (!spapr->htab) {
2350 assert(kvm_enabled());
2352 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2353 if (fd < 0) {
2354 error_report_err(local_err);
2355 return fd;
2359 while (true) {
2360 uint32_t index;
2361 uint16_t n_valid, n_invalid;
2363 index = qemu_get_be32(f);
2364 n_valid = qemu_get_be16(f);
2365 n_invalid = qemu_get_be16(f);
2367 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2368 /* End of Stream */
2369 break;
2372 if ((index + n_valid + n_invalid) >
2373 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2374 /* Bad index in stream */
2375 error_report(
2376 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2377 index, n_valid, n_invalid, spapr->htab_shift);
2378 return -EINVAL;
2381 if (spapr->htab) {
2382 if (n_valid) {
2383 qemu_get_buffer(f, HPTE(spapr->htab, index),
2384 HASH_PTE_SIZE_64 * n_valid);
2386 if (n_invalid) {
2387 memset(HPTE(spapr->htab, index + n_valid), 0,
2388 HASH_PTE_SIZE_64 * n_invalid);
2390 } else {
2391 int rc;
2393 assert(fd >= 0);
2395 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2396 if (rc < 0) {
2397 return rc;
2402 if (!spapr->htab) {
2403 assert(fd >= 0);
2404 close(fd);
2407 return 0;
2410 static void htab_save_cleanup(void *opaque)
2412 SpaprMachineState *spapr = opaque;
2414 close_htab_fd(spapr);
2417 static SaveVMHandlers savevm_htab_handlers = {
2418 .save_setup = htab_save_setup,
2419 .save_live_iterate = htab_save_iterate,
2420 .save_live_complete_precopy = htab_save_complete,
2421 .save_cleanup = htab_save_cleanup,
2422 .load_state = htab_load,
2425 static void spapr_boot_set(void *opaque, const char *boot_device,
2426 Error **errp)
2428 MachineState *machine = MACHINE(opaque);
2429 machine->boot_order = g_strdup(boot_device);
2432 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2434 MachineState *machine = MACHINE(spapr);
2435 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2436 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2437 int i;
2439 for (i = 0; i < nr_lmbs; i++) {
2440 uint64_t addr;
2442 addr = i * lmb_size + machine->device_memory->base;
2443 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2444 addr / lmb_size);
2449 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2450 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2451 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2455 int i;
2457 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2458 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2459 " is not aligned to %" PRIu64 " MiB",
2460 machine->ram_size,
2461 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2462 return;
2465 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2466 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2467 " is not aligned to %" PRIu64 " MiB",
2468 machine->ram_size,
2469 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2470 return;
2473 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2474 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2475 error_setg(errp,
2476 "Node %d memory size 0x%" PRIx64
2477 " is not aligned to %" PRIu64 " MiB",
2478 i, machine->numa_state->nodes[i].node_mem,
2479 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2480 return;
2485 /* find cpu slot in machine->possible_cpus by core_id */
2486 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2488 int index = id / ms->smp.threads;
2490 if (index >= ms->possible_cpus->len) {
2491 return NULL;
2493 if (idx) {
2494 *idx = index;
2496 return &ms->possible_cpus->cpus[index];
2499 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2501 MachineState *ms = MACHINE(spapr);
2502 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2503 Error *local_err = NULL;
2504 bool vsmt_user = !!spapr->vsmt;
2505 int kvm_smt = kvmppc_smt_threads();
2506 int ret;
2507 unsigned int smp_threads = ms->smp.threads;
2509 if (!kvm_enabled() && (smp_threads > 1)) {
2510 error_setg(errp, "TCG cannot support more than 1 thread/core "
2511 "on a pseries machine");
2512 return;
2514 if (!is_power_of_2(smp_threads)) {
2515 error_setg(errp, "Cannot support %d threads/core on a pseries "
2516 "machine because it must be a power of 2", smp_threads);
2517 return;
2520 /* Detemine the VSMT mode to use: */
2521 if (vsmt_user) {
2522 if (spapr->vsmt < smp_threads) {
2523 error_setg(errp, "Cannot support VSMT mode %d"
2524 " because it must be >= threads/core (%d)",
2525 spapr->vsmt, smp_threads);
2526 return;
2528 /* In this case, spapr->vsmt has been set by the command line */
2529 } else if (!smc->smp_threads_vsmt) {
2531 * Default VSMT value is tricky, because we need it to be as
2532 * consistent as possible (for migration), but this requires
2533 * changing it for at least some existing cases. We pick 8 as
2534 * the value that we'd get with KVM on POWER8, the
2535 * overwhelmingly common case in production systems.
2537 spapr->vsmt = MAX(8, smp_threads);
2538 } else {
2539 spapr->vsmt = smp_threads;
2542 /* KVM: If necessary, set the SMT mode: */
2543 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2544 ret = kvmppc_set_smt_threads(spapr->vsmt);
2545 if (ret) {
2546 /* Looks like KVM isn't able to change VSMT mode */
2547 error_setg(&local_err,
2548 "Failed to set KVM's VSMT mode to %d (errno %d)",
2549 spapr->vsmt, ret);
2550 /* We can live with that if the default one is big enough
2551 * for the number of threads, and a submultiple of the one
2552 * we want. In this case we'll waste some vcpu ids, but
2553 * behaviour will be correct */
2554 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2555 warn_report_err(local_err);
2556 } else {
2557 if (!vsmt_user) {
2558 error_append_hint(&local_err,
2559 "On PPC, a VM with %d threads/core"
2560 " on a host with %d threads/core"
2561 " requires the use of VSMT mode %d.\n",
2562 smp_threads, kvm_smt, spapr->vsmt);
2564 kvmppc_error_append_smt_possible_hint(&local_err);
2565 error_propagate(errp, local_err);
2569 /* else TCG: nothing to do currently */
2572 static void spapr_init_cpus(SpaprMachineState *spapr)
2574 MachineState *machine = MACHINE(spapr);
2575 MachineClass *mc = MACHINE_GET_CLASS(machine);
2576 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2577 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2578 const CPUArchIdList *possible_cpus;
2579 unsigned int smp_cpus = machine->smp.cpus;
2580 unsigned int smp_threads = machine->smp.threads;
2581 unsigned int max_cpus = machine->smp.max_cpus;
2582 int boot_cores_nr = smp_cpus / smp_threads;
2583 int i;
2585 possible_cpus = mc->possible_cpu_arch_ids(machine);
2586 if (mc->has_hotpluggable_cpus) {
2587 if (smp_cpus % smp_threads) {
2588 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2589 smp_cpus, smp_threads);
2590 exit(1);
2592 if (max_cpus % smp_threads) {
2593 error_report("max_cpus (%u) must be multiple of threads (%u)",
2594 max_cpus, smp_threads);
2595 exit(1);
2597 } else {
2598 if (max_cpus != smp_cpus) {
2599 error_report("This machine version does not support CPU hotplug");
2600 exit(1);
2602 boot_cores_nr = possible_cpus->len;
2605 if (smc->pre_2_10_has_unused_icps) {
2606 int i;
2608 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2609 /* Dummy entries get deregistered when real ICPState objects
2610 * are registered during CPU core hotplug.
2612 pre_2_10_vmstate_register_dummy_icp(i);
2616 for (i = 0; i < possible_cpus->len; i++) {
2617 int core_id = i * smp_threads;
2619 if (mc->has_hotpluggable_cpus) {
2620 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2621 spapr_vcpu_id(spapr, core_id));
2624 if (i < boot_cores_nr) {
2625 Object *core = object_new(type);
2626 int nr_threads = smp_threads;
2628 /* Handle the partially filled core for older machine types */
2629 if ((i + 1) * smp_threads >= smp_cpus) {
2630 nr_threads = smp_cpus - i * smp_threads;
2633 object_property_set_int(core, "nr-threads", nr_threads,
2634 &error_fatal);
2635 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2636 &error_fatal);
2637 qdev_realize(DEVICE(core), NULL, &error_fatal);
2639 object_unref(core);
2644 static PCIHostState *spapr_create_default_phb(void)
2646 DeviceState *dev;
2648 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2649 qdev_prop_set_uint32(dev, "index", 0);
2650 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2652 return PCI_HOST_BRIDGE(dev);
2655 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2657 MachineState *machine = MACHINE(spapr);
2658 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2659 hwaddr rma_size = machine->ram_size;
2660 hwaddr node0_size = spapr_node0_size(machine);
2662 /* RMA has to fit in the first NUMA node */
2663 rma_size = MIN(rma_size, node0_size);
2666 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2667 * never exceed that
2669 rma_size = MIN(rma_size, 1 * TiB);
2672 * Clamp the RMA size based on machine type. This is for
2673 * migration compatibility with older qemu versions, which limited
2674 * the RMA size for complicated and mostly bad reasons.
2676 if (smc->rma_limit) {
2677 rma_size = MIN(rma_size, smc->rma_limit);
2680 if (rma_size < MIN_RMA_SLOF) {
2681 error_setg(errp,
2682 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2683 "ldMiB guest RMA (Real Mode Area memory)",
2684 MIN_RMA_SLOF / MiB);
2685 return 0;
2688 return rma_size;
2691 /* pSeries LPAR / sPAPR hardware init */
2692 static void spapr_machine_init(MachineState *machine)
2694 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2695 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2696 MachineClass *mc = MACHINE_GET_CLASS(machine);
2697 const char *kernel_filename = machine->kernel_filename;
2698 const char *initrd_filename = machine->initrd_filename;
2699 PCIHostState *phb;
2700 int i;
2701 MemoryRegion *sysmem = get_system_memory();
2702 long load_limit, fw_size;
2703 char *filename;
2704 Error *resize_hpt_err = NULL;
2706 msi_nonbroken = true;
2708 QLIST_INIT(&spapr->phbs);
2709 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2711 /* Determine capabilities to run with */
2712 spapr_caps_init(spapr);
2714 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2715 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2717 * If the user explicitly requested a mode we should either
2718 * supply it, or fail completely (which we do below). But if
2719 * it's not set explicitly, we reset our mode to something
2720 * that works
2722 if (resize_hpt_err) {
2723 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2724 error_free(resize_hpt_err);
2725 resize_hpt_err = NULL;
2726 } else {
2727 spapr->resize_hpt = smc->resize_hpt_default;
2731 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2733 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2735 * User requested HPT resize, but this host can't supply it. Bail out
2737 error_report_err(resize_hpt_err);
2738 exit(1);
2740 error_free(resize_hpt_err);
2742 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2744 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2745 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2748 * VSMT must be set in order to be able to compute VCPU ids, ie to
2749 * call spapr_max_server_number() or spapr_vcpu_id().
2751 spapr_set_vsmt_mode(spapr, &error_fatal);
2753 /* Set up Interrupt Controller before we create the VCPUs */
2754 spapr_irq_init(spapr, &error_fatal);
2756 /* Set up containers for ibm,client-architecture-support negotiated options
2758 spapr->ov5 = spapr_ovec_new();
2759 spapr->ov5_cas = spapr_ovec_new();
2761 if (smc->dr_lmb_enabled) {
2762 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2763 spapr_validate_node_memory(machine, &error_fatal);
2766 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2768 /* advertise support for dedicated HP event source to guests */
2769 if (spapr->use_hotplug_event_source) {
2770 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2773 /* advertise support for HPT resizing */
2774 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2775 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2778 /* advertise support for ibm,dyamic-memory-v2 */
2779 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2781 /* advertise XIVE on POWER9 machines */
2782 if (spapr->irq->xive) {
2783 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2786 /* init CPUs */
2787 spapr_init_cpus(spapr);
2790 * check we don't have a memory-less/cpu-less NUMA node
2791 * Firmware relies on the existing memory/cpu topology to provide the
2792 * NUMA topology to the kernel.
2793 * And the linux kernel needs to know the NUMA topology at start
2794 * to be able to hotplug CPUs later.
2796 if (machine->numa_state->num_nodes) {
2797 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2798 /* check for memory-less node */
2799 if (machine->numa_state->nodes[i].node_mem == 0) {
2800 CPUState *cs;
2801 int found = 0;
2802 /* check for cpu-less node */
2803 CPU_FOREACH(cs) {
2804 PowerPCCPU *cpu = POWERPC_CPU(cs);
2805 if (cpu->node_id == i) {
2806 found = 1;
2807 break;
2810 /* memory-less and cpu-less node */
2811 if (!found) {
2812 error_report(
2813 "Memory-less/cpu-less nodes are not supported (node %d)",
2815 exit(1);
2823 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2824 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2825 * called from vPHB reset handler so we initialize the counter here.
2826 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2827 * must be equally distant from any other node.
2828 * The final value of spapr->gpu_numa_id is going to be written to
2829 * max-associativity-domains in spapr_build_fdt().
2831 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2833 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2834 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2835 spapr->max_compat_pvr)) {
2836 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2837 /* KVM and TCG always allow GTSE with radix... */
2838 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2840 /* ... but not with hash (currently). */
2842 if (kvm_enabled()) {
2843 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2844 kvmppc_enable_logical_ci_hcalls();
2845 kvmppc_enable_set_mode_hcall();
2847 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2848 kvmppc_enable_clear_ref_mod_hcalls();
2850 /* Enable H_PAGE_INIT */
2851 kvmppc_enable_h_page_init();
2854 /* map RAM */
2855 memory_region_add_subregion(sysmem, 0, machine->ram);
2857 /* always allocate the device memory information */
2858 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2860 /* initialize hotplug memory address space */
2861 if (machine->ram_size < machine->maxram_size) {
2862 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2864 * Limit the number of hotpluggable memory slots to half the number
2865 * slots that KVM supports, leaving the other half for PCI and other
2866 * devices. However ensure that number of slots doesn't drop below 32.
2868 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2869 SPAPR_MAX_RAM_SLOTS;
2871 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2872 max_memslots = SPAPR_MAX_RAM_SLOTS;
2874 if (machine->ram_slots > max_memslots) {
2875 error_report("Specified number of memory slots %"
2876 PRIu64" exceeds max supported %d",
2877 machine->ram_slots, max_memslots);
2878 exit(1);
2881 machine->device_memory->base = ROUND_UP(machine->ram_size,
2882 SPAPR_DEVICE_MEM_ALIGN);
2883 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2884 "device-memory", device_mem_size);
2885 memory_region_add_subregion(sysmem, machine->device_memory->base,
2886 &machine->device_memory->mr);
2889 if (smc->dr_lmb_enabled) {
2890 spapr_create_lmb_dr_connectors(spapr);
2893 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2894 /* Create the error string for live migration blocker */
2895 error_setg(&spapr->fwnmi_migration_blocker,
2896 "A machine check is being handled during migration. The handler"
2897 "may run and log hardware error on the destination");
2900 if (mc->nvdimm_supported) {
2901 spapr_create_nvdimm_dr_connectors(spapr);
2904 /* Set up RTAS event infrastructure */
2905 spapr_events_init(spapr);
2907 /* Set up the RTC RTAS interfaces */
2908 spapr_rtc_create(spapr);
2910 /* Set up VIO bus */
2911 spapr->vio_bus = spapr_vio_bus_init();
2913 for (i = 0; i < serial_max_hds(); i++) {
2914 if (serial_hd(i)) {
2915 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2919 /* We always have at least the nvram device on VIO */
2920 spapr_create_nvram(spapr);
2923 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2924 * connectors (described in root DT node's "ibm,drc-types" property)
2925 * are pre-initialized here. additional child connectors (such as
2926 * connectors for a PHBs PCI slots) are added as needed during their
2927 * parent's realization.
2929 if (smc->dr_phb_enabled) {
2930 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2931 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2935 /* Set up PCI */
2936 spapr_pci_rtas_init();
2938 phb = spapr_create_default_phb();
2940 for (i = 0; i < nb_nics; i++) {
2941 NICInfo *nd = &nd_table[i];
2943 if (!nd->model) {
2944 nd->model = g_strdup("spapr-vlan");
2947 if (g_str_equal(nd->model, "spapr-vlan") ||
2948 g_str_equal(nd->model, "ibmveth")) {
2949 spapr_vlan_create(spapr->vio_bus, nd);
2950 } else {
2951 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2955 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2956 spapr_vscsi_create(spapr->vio_bus);
2959 /* Graphics */
2960 if (spapr_vga_init(phb->bus, &error_fatal)) {
2961 spapr->has_graphics = true;
2962 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2965 if (machine->usb) {
2966 if (smc->use_ohci_by_default) {
2967 pci_create_simple(phb->bus, -1, "pci-ohci");
2968 } else {
2969 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2972 if (spapr->has_graphics) {
2973 USBBus *usb_bus = usb_bus_find(-1);
2975 usb_create_simple(usb_bus, "usb-kbd");
2976 usb_create_simple(usb_bus, "usb-mouse");
2980 if (kernel_filename) {
2981 uint64_t lowaddr = 0;
2983 spapr->kernel_size = load_elf(kernel_filename, NULL,
2984 translate_kernel_address, spapr,
2985 NULL, &lowaddr, NULL, NULL, 1,
2986 PPC_ELF_MACHINE, 0, 0);
2987 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2988 spapr->kernel_size = load_elf(kernel_filename, NULL,
2989 translate_kernel_address, spapr, NULL,
2990 &lowaddr, NULL, NULL, 0,
2991 PPC_ELF_MACHINE,
2992 0, 0);
2993 spapr->kernel_le = spapr->kernel_size > 0;
2995 if (spapr->kernel_size < 0) {
2996 error_report("error loading %s: %s", kernel_filename,
2997 load_elf_strerror(spapr->kernel_size));
2998 exit(1);
3001 /* load initrd */
3002 if (initrd_filename) {
3003 /* Try to locate the initrd in the gap between the kernel
3004 * and the firmware. Add a bit of space just in case
3006 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3007 + 0x1ffff) & ~0xffff;
3008 spapr->initrd_size = load_image_targphys(initrd_filename,
3009 spapr->initrd_base,
3010 load_limit
3011 - spapr->initrd_base);
3012 if (spapr->initrd_size < 0) {
3013 error_report("could not load initial ram disk '%s'",
3014 initrd_filename);
3015 exit(1);
3020 if (bios_name == NULL) {
3021 bios_name = FW_FILE_NAME;
3023 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3024 if (!filename) {
3025 error_report("Could not find LPAR firmware '%s'", bios_name);
3026 exit(1);
3028 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3029 if (fw_size <= 0) {
3030 error_report("Could not load LPAR firmware '%s'", filename);
3031 exit(1);
3033 g_free(filename);
3035 /* FIXME: Should register things through the MachineState's qdev
3036 * interface, this is a legacy from the sPAPREnvironment structure
3037 * which predated MachineState but had a similar function */
3038 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3039 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3040 &savevm_htab_handlers, spapr);
3042 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3044 qemu_register_boot_set(spapr_boot_set, spapr);
3047 * Nothing needs to be done to resume a suspended guest because
3048 * suspending does not change the machine state, so no need for
3049 * a ->wakeup method.
3051 qemu_register_wakeup_support();
3053 if (kvm_enabled()) {
3054 /* to stop and start vmclock */
3055 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3056 &spapr->tb);
3058 kvmppc_spapr_enable_inkernel_multitce();
3061 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3064 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3066 if (!vm_type) {
3067 return 0;
3070 if (!strcmp(vm_type, "HV")) {
3071 return 1;
3074 if (!strcmp(vm_type, "PR")) {
3075 return 2;
3078 error_report("Unknown kvm-type specified '%s'", vm_type);
3079 exit(1);
3083 * Implementation of an interface to adjust firmware path
3084 * for the bootindex property handling.
3086 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3087 DeviceState *dev)
3089 #define CAST(type, obj, name) \
3090 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3091 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3092 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3093 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3095 if (d) {
3096 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3097 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3098 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3100 if (spapr) {
3102 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3103 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3104 * 0x8000 | (target << 8) | (bus << 5) | lun
3105 * (see the "Logical unit addressing format" table in SAM5)
3107 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3108 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3109 (uint64_t)id << 48);
3110 } else if (virtio) {
3112 * We use SRP luns of the form 01000000 | (target << 8) | lun
3113 * in the top 32 bits of the 64-bit LUN
3114 * Note: the quote above is from SLOF and it is wrong,
3115 * the actual binding is:
3116 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3118 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3119 if (d->lun >= 256) {
3120 /* Use the LUN "flat space addressing method" */
3121 id |= 0x4000;
3123 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3124 (uint64_t)id << 32);
3125 } else if (usb) {
3127 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3128 * in the top 32 bits of the 64-bit LUN
3130 unsigned usb_port = atoi(usb->port->path);
3131 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3132 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3133 (uint64_t)id << 32);
3138 * SLOF probes the USB devices, and if it recognizes that the device is a
3139 * storage device, it changes its name to "storage" instead of "usb-host",
3140 * and additionally adds a child node for the SCSI LUN, so the correct
3141 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3143 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3144 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3145 if (usb_host_dev_is_scsi_storage(usbdev)) {
3146 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3150 if (phb) {
3151 /* Replace "pci" with "pci@800000020000000" */
3152 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3155 if (vsc) {
3156 /* Same logic as virtio above */
3157 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3158 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3161 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3162 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3163 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3164 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3167 return NULL;
3170 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3172 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174 return g_strdup(spapr->kvm_type);
3177 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181 g_free(spapr->kvm_type);
3182 spapr->kvm_type = g_strdup(value);
3185 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3189 return spapr->use_hotplug_event_source;
3192 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3193 Error **errp)
3195 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3197 spapr->use_hotplug_event_source = value;
3200 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3202 return true;
3205 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209 switch (spapr->resize_hpt) {
3210 case SPAPR_RESIZE_HPT_DEFAULT:
3211 return g_strdup("default");
3212 case SPAPR_RESIZE_HPT_DISABLED:
3213 return g_strdup("disabled");
3214 case SPAPR_RESIZE_HPT_ENABLED:
3215 return g_strdup("enabled");
3216 case SPAPR_RESIZE_HPT_REQUIRED:
3217 return g_strdup("required");
3219 g_assert_not_reached();
3222 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3224 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3226 if (strcmp(value, "default") == 0) {
3227 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3228 } else if (strcmp(value, "disabled") == 0) {
3229 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3230 } else if (strcmp(value, "enabled") == 0) {
3231 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3232 } else if (strcmp(value, "required") == 0) {
3233 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3234 } else {
3235 error_setg(errp, "Bad value for \"resize-hpt\" property");
3239 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243 if (spapr->irq == &spapr_irq_xics_legacy) {
3244 return g_strdup("legacy");
3245 } else if (spapr->irq == &spapr_irq_xics) {
3246 return g_strdup("xics");
3247 } else if (spapr->irq == &spapr_irq_xive) {
3248 return g_strdup("xive");
3249 } else if (spapr->irq == &spapr_irq_dual) {
3250 return g_strdup("dual");
3252 g_assert_not_reached();
3255 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3260 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3261 return;
3264 /* The legacy IRQ backend can not be set */
3265 if (strcmp(value, "xics") == 0) {
3266 spapr->irq = &spapr_irq_xics;
3267 } else if (strcmp(value, "xive") == 0) {
3268 spapr->irq = &spapr_irq_xive;
3269 } else if (strcmp(value, "dual") == 0) {
3270 spapr->irq = &spapr_irq_dual;
3271 } else {
3272 error_setg(errp, "Bad value for \"ic-mode\" property");
3276 static char *spapr_get_host_model(Object *obj, Error **errp)
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280 return g_strdup(spapr->host_model);
3283 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3285 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3287 g_free(spapr->host_model);
3288 spapr->host_model = g_strdup(value);
3291 static char *spapr_get_host_serial(Object *obj, Error **errp)
3293 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295 return g_strdup(spapr->host_serial);
3298 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3300 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302 g_free(spapr->host_serial);
3303 spapr->host_serial = g_strdup(value);
3306 static void spapr_instance_init(Object *obj)
3308 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3309 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3311 spapr->htab_fd = -1;
3312 spapr->use_hotplug_event_source = true;
3313 object_property_add_str(obj, "kvm-type",
3314 spapr_get_kvm_type, spapr_set_kvm_type);
3315 object_property_set_description(obj, "kvm-type",
3316 "Specifies the KVM virtualization mode (HV, PR)");
3317 object_property_add_bool(obj, "modern-hotplug-events",
3318 spapr_get_modern_hotplug_events,
3319 spapr_set_modern_hotplug_events);
3320 object_property_set_description(obj, "modern-hotplug-events",
3321 "Use dedicated hotplug event mechanism in"
3322 " place of standard EPOW events when possible"
3323 " (required for memory hot-unplug support)");
3324 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3325 "Maximum permitted CPU compatibility mode");
3327 object_property_add_str(obj, "resize-hpt",
3328 spapr_get_resize_hpt, spapr_set_resize_hpt);
3329 object_property_set_description(obj, "resize-hpt",
3330 "Resizing of the Hash Page Table (enabled, disabled, required)");
3331 object_property_add_uint32_ptr(obj, "vsmt",
3332 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3333 object_property_set_description(obj, "vsmt",
3334 "Virtual SMT: KVM behaves as if this were"
3335 " the host's SMT mode");
3337 object_property_add_bool(obj, "vfio-no-msix-emulation",
3338 spapr_get_msix_emulation, NULL);
3340 object_property_add_uint64_ptr(obj, "kernel-addr",
3341 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3342 object_property_set_description(obj, "kernel-addr",
3343 stringify(KERNEL_LOAD_ADDR)
3344 " for -kernel is the default");
3345 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3346 /* The machine class defines the default interrupt controller mode */
3347 spapr->irq = smc->irq;
3348 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3349 spapr_set_ic_mode);
3350 object_property_set_description(obj, "ic-mode",
3351 "Specifies the interrupt controller mode (xics, xive, dual)");
3353 object_property_add_str(obj, "host-model",
3354 spapr_get_host_model, spapr_set_host_model);
3355 object_property_set_description(obj, "host-model",
3356 "Host model to advertise in guest device tree");
3357 object_property_add_str(obj, "host-serial",
3358 spapr_get_host_serial, spapr_set_host_serial);
3359 object_property_set_description(obj, "host-serial",
3360 "Host serial number to advertise in guest device tree");
3363 static void spapr_machine_finalizefn(Object *obj)
3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367 g_free(spapr->kvm_type);
3370 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3372 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3373 PowerPCCPU *cpu = POWERPC_CPU(cs);
3374 CPUPPCState *env = &cpu->env;
3376 cpu_synchronize_state(cs);
3377 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3378 if (spapr->fwnmi_system_reset_addr != -1) {
3379 uint64_t rtas_addr, addr;
3381 /* get rtas addr from fdt */
3382 rtas_addr = spapr_get_rtas_addr();
3383 if (!rtas_addr) {
3384 qemu_system_guest_panicked(NULL);
3385 return;
3388 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3389 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3390 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3391 env->gpr[3] = addr;
3393 ppc_cpu_do_system_reset(cs);
3394 if (spapr->fwnmi_system_reset_addr != -1) {
3395 env->nip = spapr->fwnmi_system_reset_addr;
3399 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3401 CPUState *cs;
3403 CPU_FOREACH(cs) {
3404 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3408 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3409 void *fdt, int *fdt_start_offset, Error **errp)
3411 uint64_t addr;
3412 uint32_t node;
3414 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3415 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3416 &error_abort);
3417 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3418 SPAPR_MEMORY_BLOCK_SIZE);
3419 return 0;
3422 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3423 bool dedicated_hp_event_source, Error **errp)
3425 SpaprDrc *drc;
3426 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3427 int i;
3428 uint64_t addr = addr_start;
3429 bool hotplugged = spapr_drc_hotplugged(dev);
3430 Error *local_err = NULL;
3432 for (i = 0; i < nr_lmbs; i++) {
3433 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3434 addr / SPAPR_MEMORY_BLOCK_SIZE);
3435 g_assert(drc);
3437 spapr_drc_attach(drc, dev, &local_err);
3438 if (local_err) {
3439 while (addr > addr_start) {
3440 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3442 addr / SPAPR_MEMORY_BLOCK_SIZE);
3443 spapr_drc_detach(drc);
3445 error_propagate(errp, local_err);
3446 return;
3448 if (!hotplugged) {
3449 spapr_drc_reset(drc);
3451 addr += SPAPR_MEMORY_BLOCK_SIZE;
3453 /* send hotplug notification to the
3454 * guest only in case of hotplugged memory
3456 if (hotplugged) {
3457 if (dedicated_hp_event_source) {
3458 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3459 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3460 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3461 nr_lmbs,
3462 spapr_drc_index(drc));
3463 } else {
3464 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3465 nr_lmbs);
3470 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3471 Error **errp)
3473 Error *local_err = NULL;
3474 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3475 PCDIMMDevice *dimm = PC_DIMM(dev);
3476 uint64_t size, addr, slot;
3477 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3479 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3481 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3482 if (local_err) {
3483 goto out;
3486 if (!is_nvdimm) {
3487 addr = object_property_get_uint(OBJECT(dimm),
3488 PC_DIMM_ADDR_PROP, &local_err);
3489 if (local_err) {
3490 goto out_unplug;
3492 spapr_add_lmbs(dev, addr, size,
3493 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3494 &local_err);
3495 } else {
3496 slot = object_property_get_uint(OBJECT(dimm),
3497 PC_DIMM_SLOT_PROP, &local_err);
3498 if (local_err) {
3499 goto out_unplug;
3501 spapr_add_nvdimm(dev, slot, &local_err);
3504 if (local_err) {
3505 goto out_unplug;
3508 return;
3510 out_unplug:
3511 pc_dimm_unplug(dimm, MACHINE(ms));
3512 out:
3513 error_propagate(errp, local_err);
3516 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3517 Error **errp)
3519 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3520 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3521 const MachineClass *mc = MACHINE_CLASS(smc);
3522 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3523 PCDIMMDevice *dimm = PC_DIMM(dev);
3524 Error *local_err = NULL;
3525 uint64_t size;
3526 Object *memdev;
3527 hwaddr pagesize;
3529 if (!smc->dr_lmb_enabled) {
3530 error_setg(errp, "Memory hotplug not supported for this machine");
3531 return;
3534 if (is_nvdimm && !mc->nvdimm_supported) {
3535 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3536 return;
3539 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3540 if (local_err) {
3541 error_propagate(errp, local_err);
3542 return;
3545 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3546 error_setg(errp, "Hotplugged memory size must be a multiple of "
3547 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3548 return;
3549 } else if (is_nvdimm) {
3550 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3551 if (local_err) {
3552 error_propagate(errp, local_err);
3553 return;
3557 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3558 &error_abort);
3559 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3560 spapr_check_pagesize(spapr, pagesize, &local_err);
3561 if (local_err) {
3562 error_propagate(errp, local_err);
3563 return;
3566 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3569 struct SpaprDimmState {
3570 PCDIMMDevice *dimm;
3571 uint32_t nr_lmbs;
3572 QTAILQ_ENTRY(SpaprDimmState) next;
3575 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3576 PCDIMMDevice *dimm)
3578 SpaprDimmState *dimm_state = NULL;
3580 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3581 if (dimm_state->dimm == dimm) {
3582 break;
3585 return dimm_state;
3588 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3589 uint32_t nr_lmbs,
3590 PCDIMMDevice *dimm)
3592 SpaprDimmState *ds = NULL;
3595 * If this request is for a DIMM whose removal had failed earlier
3596 * (due to guest's refusal to remove the LMBs), we would have this
3597 * dimm already in the pending_dimm_unplugs list. In that
3598 * case don't add again.
3600 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3601 if (!ds) {
3602 ds = g_malloc0(sizeof(SpaprDimmState));
3603 ds->nr_lmbs = nr_lmbs;
3604 ds->dimm = dimm;
3605 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3607 return ds;
3610 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3611 SpaprDimmState *dimm_state)
3613 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3614 g_free(dimm_state);
3617 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3618 PCDIMMDevice *dimm)
3620 SpaprDrc *drc;
3621 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3622 &error_abort);
3623 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3624 uint32_t avail_lmbs = 0;
3625 uint64_t addr_start, addr;
3626 int i;
3628 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3629 &error_abort);
3631 addr = addr_start;
3632 for (i = 0; i < nr_lmbs; i++) {
3633 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3634 addr / SPAPR_MEMORY_BLOCK_SIZE);
3635 g_assert(drc);
3636 if (drc->dev) {
3637 avail_lmbs++;
3639 addr += SPAPR_MEMORY_BLOCK_SIZE;
3642 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3645 /* Callback to be called during DRC release. */
3646 void spapr_lmb_release(DeviceState *dev)
3648 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3649 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3650 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3652 /* This information will get lost if a migration occurs
3653 * during the unplug process. In this case recover it. */
3654 if (ds == NULL) {
3655 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3656 g_assert(ds);
3657 /* The DRC being examined by the caller at least must be counted */
3658 g_assert(ds->nr_lmbs);
3661 if (--ds->nr_lmbs) {
3662 return;
3666 * Now that all the LMBs have been removed by the guest, call the
3667 * unplug handler chain. This can never fail.
3669 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3670 object_unparent(OBJECT(dev));
3673 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3675 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3676 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3678 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3679 qdev_unrealize(dev);
3680 spapr_pending_dimm_unplugs_remove(spapr, ds);
3683 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3684 DeviceState *dev, Error **errp)
3686 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3687 Error *local_err = NULL;
3688 PCDIMMDevice *dimm = PC_DIMM(dev);
3689 uint32_t nr_lmbs;
3690 uint64_t size, addr_start, addr;
3691 int i;
3692 SpaprDrc *drc;
3694 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3695 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3696 return;
3699 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3700 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3702 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3703 &local_err);
3704 if (local_err) {
3705 error_propagate(errp, local_err);
3706 return;
3710 * An existing pending dimm state for this DIMM means that there is an
3711 * unplug operation in progress, waiting for the spapr_lmb_release
3712 * callback to complete the job (BQL can't cover that far). In this case,
3713 * bail out to avoid detaching DRCs that were already released.
3715 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3716 error_setg(errp, "Memory unplug already in progress for device %s",
3717 dev->id);
3718 return;
3721 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3723 addr = addr_start;
3724 for (i = 0; i < nr_lmbs; i++) {
3725 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3726 addr / SPAPR_MEMORY_BLOCK_SIZE);
3727 g_assert(drc);
3729 spapr_drc_detach(drc);
3730 addr += SPAPR_MEMORY_BLOCK_SIZE;
3733 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3734 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3735 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3736 nr_lmbs, spapr_drc_index(drc));
3739 /* Callback to be called during DRC release. */
3740 void spapr_core_release(DeviceState *dev)
3742 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3744 /* Call the unplug handler chain. This can never fail. */
3745 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3746 object_unparent(OBJECT(dev));
3749 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3751 MachineState *ms = MACHINE(hotplug_dev);
3752 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3753 CPUCore *cc = CPU_CORE(dev);
3754 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3756 if (smc->pre_2_10_has_unused_icps) {
3757 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3758 int i;
3760 for (i = 0; i < cc->nr_threads; i++) {
3761 CPUState *cs = CPU(sc->threads[i]);
3763 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3767 assert(core_slot);
3768 core_slot->cpu = NULL;
3769 qdev_unrealize(dev);
3772 static
3773 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3774 Error **errp)
3776 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3777 int index;
3778 SpaprDrc *drc;
3779 CPUCore *cc = CPU_CORE(dev);
3781 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3782 error_setg(errp, "Unable to find CPU core with core-id: %d",
3783 cc->core_id);
3784 return;
3786 if (index == 0) {
3787 error_setg(errp, "Boot CPU core may not be unplugged");
3788 return;
3791 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3792 spapr_vcpu_id(spapr, cc->core_id));
3793 g_assert(drc);
3795 if (!spapr_drc_unplug_requested(drc)) {
3796 spapr_drc_detach(drc);
3797 spapr_hotplug_req_remove_by_index(drc);
3801 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3802 void *fdt, int *fdt_start_offset, Error **errp)
3804 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3805 CPUState *cs = CPU(core->threads[0]);
3806 PowerPCCPU *cpu = POWERPC_CPU(cs);
3807 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3808 int id = spapr_get_vcpu_id(cpu);
3809 char *nodename;
3810 int offset;
3812 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3813 offset = fdt_add_subnode(fdt, 0, nodename);
3814 g_free(nodename);
3816 spapr_dt_cpu(cs, fdt, offset, spapr);
3818 *fdt_start_offset = offset;
3819 return 0;
3822 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3823 Error **errp)
3825 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3826 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3827 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3828 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3829 CPUCore *cc = CPU_CORE(dev);
3830 CPUState *cs;
3831 SpaprDrc *drc;
3832 Error *local_err = NULL;
3833 CPUArchId *core_slot;
3834 int index;
3835 bool hotplugged = spapr_drc_hotplugged(dev);
3836 int i;
3838 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3839 if (!core_slot) {
3840 error_setg(errp, "Unable to find CPU core with core-id: %d",
3841 cc->core_id);
3842 return;
3844 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3845 spapr_vcpu_id(spapr, cc->core_id));
3847 g_assert(drc || !mc->has_hotpluggable_cpus);
3849 if (drc) {
3850 spapr_drc_attach(drc, dev, &local_err);
3851 if (local_err) {
3852 error_propagate(errp, local_err);
3853 return;
3856 if (hotplugged) {
3858 * Send hotplug notification interrupt to the guest only
3859 * in case of hotplugged CPUs.
3861 spapr_hotplug_req_add_by_index(drc);
3862 } else {
3863 spapr_drc_reset(drc);
3867 core_slot->cpu = OBJECT(dev);
3869 if (smc->pre_2_10_has_unused_icps) {
3870 for (i = 0; i < cc->nr_threads; i++) {
3871 cs = CPU(core->threads[i]);
3872 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3877 * Set compatibility mode to match the boot CPU, which was either set
3878 * by the machine reset code or by CAS.
3880 if (hotplugged) {
3881 for (i = 0; i < cc->nr_threads; i++) {
3882 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3883 &local_err);
3884 if (local_err) {
3885 error_propagate(errp, local_err);
3886 return;
3892 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3893 Error **errp)
3895 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3896 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3897 CPUCore *cc = CPU_CORE(dev);
3898 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3899 const char *type = object_get_typename(OBJECT(dev));
3900 CPUArchId *core_slot;
3901 int index;
3902 unsigned int smp_threads = machine->smp.threads;
3904 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3905 error_setg(errp, "CPU hotplug not supported for this machine");
3906 return;
3909 if (strcmp(base_core_type, type)) {
3910 error_setg(errp, "CPU core type should be %s", base_core_type);
3911 return;
3914 if (cc->core_id % smp_threads) {
3915 error_setg(errp, "invalid core id %d", cc->core_id);
3916 return;
3920 * In general we should have homogeneous threads-per-core, but old
3921 * (pre hotplug support) machine types allow the last core to have
3922 * reduced threads as a compatibility hack for when we allowed
3923 * total vcpus not a multiple of threads-per-core.
3925 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3926 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3927 smp_threads);
3928 return;
3931 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3932 if (!core_slot) {
3933 error_setg(errp, "core id %d out of range", cc->core_id);
3934 return;
3937 if (core_slot->cpu) {
3938 error_setg(errp, "core %d already populated", cc->core_id);
3939 return;
3942 numa_cpu_pre_plug(core_slot, dev, errp);
3945 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3946 void *fdt, int *fdt_start_offset, Error **errp)
3948 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3949 int intc_phandle;
3951 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3952 if (intc_phandle <= 0) {
3953 return -1;
3956 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3957 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3958 return -1;
3961 /* generally SLOF creates these, for hotplug it's up to QEMU */
3962 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3964 return 0;
3967 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3968 Error **errp)
3970 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3971 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3972 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3973 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3975 if (dev->hotplugged && !smc->dr_phb_enabled) {
3976 error_setg(errp, "PHB hotplug not supported for this machine");
3977 return;
3980 if (sphb->index == (uint32_t)-1) {
3981 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3982 return;
3986 * This will check that sphb->index doesn't exceed the maximum number of
3987 * PHBs for the current machine type.
3989 smc->phb_placement(spapr, sphb->index,
3990 &sphb->buid, &sphb->io_win_addr,
3991 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3992 windows_supported, sphb->dma_liobn,
3993 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3994 errp);
3997 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3998 Error **errp)
4000 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4001 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4002 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4003 SpaprDrc *drc;
4004 bool hotplugged = spapr_drc_hotplugged(dev);
4005 Error *local_err = NULL;
4007 if (!smc->dr_phb_enabled) {
4008 return;
4011 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4012 /* hotplug hooks should check it's enabled before getting this far */
4013 assert(drc);
4015 spapr_drc_attach(drc, dev, &local_err);
4016 if (local_err) {
4017 error_propagate(errp, local_err);
4018 return;
4021 if (hotplugged) {
4022 spapr_hotplug_req_add_by_index(drc);
4023 } else {
4024 spapr_drc_reset(drc);
4028 void spapr_phb_release(DeviceState *dev)
4030 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4032 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4033 object_unparent(OBJECT(dev));
4036 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4038 qdev_unrealize(dev);
4041 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4042 DeviceState *dev, Error **errp)
4044 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4045 SpaprDrc *drc;
4047 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4048 assert(drc);
4050 if (!spapr_drc_unplug_requested(drc)) {
4051 spapr_drc_detach(drc);
4052 spapr_hotplug_req_remove_by_index(drc);
4056 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4057 Error **errp)
4059 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4060 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4062 if (spapr->tpm_proxy != NULL) {
4063 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4064 return;
4067 spapr->tpm_proxy = tpm_proxy;
4070 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4072 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4074 qdev_unrealize(dev);
4075 object_unparent(OBJECT(dev));
4076 spapr->tpm_proxy = NULL;
4079 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4080 DeviceState *dev, Error **errp)
4082 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4083 spapr_memory_plug(hotplug_dev, dev, errp);
4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4085 spapr_core_plug(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4087 spapr_phb_plug(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4089 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4093 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4094 DeviceState *dev, Error **errp)
4096 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4097 spapr_memory_unplug(hotplug_dev, dev);
4098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4099 spapr_core_unplug(hotplug_dev, dev);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4101 spapr_phb_unplug(hotplug_dev, dev);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4103 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4107 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4108 DeviceState *dev, Error **errp)
4110 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4111 MachineClass *mc = MACHINE_GET_CLASS(sms);
4112 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4114 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4115 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4116 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4117 } else {
4118 /* NOTE: this means there is a window after guest reset, prior to
4119 * CAS negotiation, where unplug requests will fail due to the
4120 * capability not being detected yet. This is a bit different than
4121 * the case with PCI unplug, where the events will be queued and
4122 * eventually handled by the guest after boot
4124 error_setg(errp, "Memory hot unplug not supported for this guest");
4126 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4127 if (!mc->has_hotpluggable_cpus) {
4128 error_setg(errp, "CPU hot unplug not supported on this machine");
4129 return;
4131 spapr_core_unplug_request(hotplug_dev, dev, errp);
4132 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4133 if (!smc->dr_phb_enabled) {
4134 error_setg(errp, "PHB hot unplug not supported on this machine");
4135 return;
4137 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4138 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4139 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4143 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4144 DeviceState *dev, Error **errp)
4146 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4147 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4148 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4149 spapr_core_pre_plug(hotplug_dev, dev, errp);
4150 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4151 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4155 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4156 DeviceState *dev)
4158 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4159 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4160 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4161 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4162 return HOTPLUG_HANDLER(machine);
4164 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4165 PCIDevice *pcidev = PCI_DEVICE(dev);
4166 PCIBus *root = pci_device_root_bus(pcidev);
4167 SpaprPhbState *phb =
4168 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4169 TYPE_SPAPR_PCI_HOST_BRIDGE);
4171 if (phb) {
4172 return HOTPLUG_HANDLER(phb);
4175 return NULL;
4178 static CpuInstanceProperties
4179 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4181 CPUArchId *core_slot;
4182 MachineClass *mc = MACHINE_GET_CLASS(machine);
4184 /* make sure possible_cpu are intialized */
4185 mc->possible_cpu_arch_ids(machine);
4186 /* get CPU core slot containing thread that matches cpu_index */
4187 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4188 assert(core_slot);
4189 return core_slot->props;
4192 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4194 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4197 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4199 int i;
4200 unsigned int smp_threads = machine->smp.threads;
4201 unsigned int smp_cpus = machine->smp.cpus;
4202 const char *core_type;
4203 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4204 MachineClass *mc = MACHINE_GET_CLASS(machine);
4206 if (!mc->has_hotpluggable_cpus) {
4207 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4209 if (machine->possible_cpus) {
4210 assert(machine->possible_cpus->len == spapr_max_cores);
4211 return machine->possible_cpus;
4214 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4215 if (!core_type) {
4216 error_report("Unable to find sPAPR CPU Core definition");
4217 exit(1);
4220 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4221 sizeof(CPUArchId) * spapr_max_cores);
4222 machine->possible_cpus->len = spapr_max_cores;
4223 for (i = 0; i < machine->possible_cpus->len; i++) {
4224 int core_id = i * smp_threads;
4226 machine->possible_cpus->cpus[i].type = core_type;
4227 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4228 machine->possible_cpus->cpus[i].arch_id = core_id;
4229 machine->possible_cpus->cpus[i].props.has_core_id = true;
4230 machine->possible_cpus->cpus[i].props.core_id = core_id;
4232 return machine->possible_cpus;
4235 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4236 uint64_t *buid, hwaddr *pio,
4237 hwaddr *mmio32, hwaddr *mmio64,
4238 unsigned n_dma, uint32_t *liobns,
4239 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4242 * New-style PHB window placement.
4244 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4245 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4246 * windows.
4248 * Some guest kernels can't work with MMIO windows above 1<<46
4249 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4251 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4252 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4253 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4254 * 1TiB 64-bit MMIO windows for each PHB.
4256 const uint64_t base_buid = 0x800000020000000ULL;
4257 int i;
4259 /* Sanity check natural alignments */
4260 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4261 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4263 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4264 /* Sanity check bounds */
4265 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4266 SPAPR_PCI_MEM32_WIN_SIZE);
4267 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4268 SPAPR_PCI_MEM64_WIN_SIZE);
4270 if (index >= SPAPR_MAX_PHBS) {
4271 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4272 SPAPR_MAX_PHBS - 1);
4273 return;
4276 *buid = base_buid + index;
4277 for (i = 0; i < n_dma; ++i) {
4278 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4281 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4282 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4283 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4285 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4286 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4289 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4291 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4293 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4296 static void spapr_ics_resend(XICSFabric *dev)
4298 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4300 ics_resend(spapr->ics);
4303 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4305 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4307 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4310 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4311 Monitor *mon)
4313 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4315 spapr_irq_print_info(spapr, mon);
4316 monitor_printf(mon, "irqchip: %s\n",
4317 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4321 * This is a XIVE only operation
4323 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4324 uint8_t nvt_blk, uint32_t nvt_idx,
4325 bool cam_ignore, uint8_t priority,
4326 uint32_t logic_serv, XiveTCTXMatch *match)
4328 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4329 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4330 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4331 int count;
4333 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4334 priority, logic_serv, match);
4335 if (count < 0) {
4336 return count;
4340 * When we implement the save and restore of the thread interrupt
4341 * contexts in the enter/exit CPU handlers of the machine and the
4342 * escalations in QEMU, we should be able to handle non dispatched
4343 * vCPUs.
4345 * Until this is done, the sPAPR machine should find at least one
4346 * matching context always.
4348 if (count == 0) {
4349 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4350 nvt_blk, nvt_idx);
4353 return count;
4356 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4358 return cpu->vcpu_id;
4361 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4363 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4364 MachineState *ms = MACHINE(spapr);
4365 int vcpu_id;
4367 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4369 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4370 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4371 error_append_hint(errp, "Adjust the number of cpus to %d "
4372 "or try to raise the number of threads per core\n",
4373 vcpu_id * ms->smp.threads / spapr->vsmt);
4374 return;
4377 cpu->vcpu_id = vcpu_id;
4380 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4382 CPUState *cs;
4384 CPU_FOREACH(cs) {
4385 PowerPCCPU *cpu = POWERPC_CPU(cs);
4387 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4388 return cpu;
4392 return NULL;
4395 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4397 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4399 /* These are only called by TCG, KVM maintains dispatch state */
4401 spapr_cpu->prod = false;
4402 if (spapr_cpu->vpa_addr) {
4403 CPUState *cs = CPU(cpu);
4404 uint32_t dispatch;
4406 dispatch = ldl_be_phys(cs->as,
4407 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4408 dispatch++;
4409 if ((dispatch & 1) != 0) {
4410 qemu_log_mask(LOG_GUEST_ERROR,
4411 "VPA: incorrect dispatch counter value for "
4412 "dispatched partition %u, correcting.\n", dispatch);
4413 dispatch++;
4415 stl_be_phys(cs->as,
4416 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4420 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4422 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4424 if (spapr_cpu->vpa_addr) {
4425 CPUState *cs = CPU(cpu);
4426 uint32_t dispatch;
4428 dispatch = ldl_be_phys(cs->as,
4429 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4430 dispatch++;
4431 if ((dispatch & 1) != 1) {
4432 qemu_log_mask(LOG_GUEST_ERROR,
4433 "VPA: incorrect dispatch counter value for "
4434 "preempted partition %u, correcting.\n", dispatch);
4435 dispatch++;
4437 stl_be_phys(cs->as,
4438 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4442 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4444 MachineClass *mc = MACHINE_CLASS(oc);
4445 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4446 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4447 NMIClass *nc = NMI_CLASS(oc);
4448 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4449 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4450 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4451 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4452 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4454 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4455 mc->ignore_boot_device_suffixes = true;
4458 * We set up the default / latest behaviour here. The class_init
4459 * functions for the specific versioned machine types can override
4460 * these details for backwards compatibility
4462 mc->init = spapr_machine_init;
4463 mc->reset = spapr_machine_reset;
4464 mc->block_default_type = IF_SCSI;
4465 mc->max_cpus = 1024;
4466 mc->no_parallel = 1;
4467 mc->default_boot_order = "";
4468 mc->default_ram_size = 512 * MiB;
4469 mc->default_ram_id = "ppc_spapr.ram";
4470 mc->default_display = "std";
4471 mc->kvm_type = spapr_kvm_type;
4472 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4473 mc->pci_allow_0_address = true;
4474 assert(!mc->get_hotplug_handler);
4475 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4476 hc->pre_plug = spapr_machine_device_pre_plug;
4477 hc->plug = spapr_machine_device_plug;
4478 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4479 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4480 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4481 hc->unplug_request = spapr_machine_device_unplug_request;
4482 hc->unplug = spapr_machine_device_unplug;
4484 smc->dr_lmb_enabled = true;
4485 smc->update_dt_enabled = true;
4486 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4487 mc->has_hotpluggable_cpus = true;
4488 mc->nvdimm_supported = true;
4489 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4490 fwc->get_dev_path = spapr_get_fw_dev_path;
4491 nc->nmi_monitor_handler = spapr_nmi;
4492 smc->phb_placement = spapr_phb_placement;
4493 vhc->hypercall = emulate_spapr_hypercall;
4494 vhc->hpt_mask = spapr_hpt_mask;
4495 vhc->map_hptes = spapr_map_hptes;
4496 vhc->unmap_hptes = spapr_unmap_hptes;
4497 vhc->hpte_set_c = spapr_hpte_set_c;
4498 vhc->hpte_set_r = spapr_hpte_set_r;
4499 vhc->get_pate = spapr_get_pate;
4500 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4501 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4502 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4503 xic->ics_get = spapr_ics_get;
4504 xic->ics_resend = spapr_ics_resend;
4505 xic->icp_get = spapr_icp_get;
4506 ispc->print_info = spapr_pic_print_info;
4507 /* Force NUMA node memory size to be a multiple of
4508 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4509 * in which LMBs are represented and hot-added
4511 mc->numa_mem_align_shift = 28;
4512 mc->auto_enable_numa = true;
4514 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4515 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4516 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4517 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4518 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4519 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4520 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4521 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4522 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4523 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4524 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4525 spapr_caps_add_properties(smc);
4526 smc->irq = &spapr_irq_dual;
4527 smc->dr_phb_enabled = true;
4528 smc->linux_pci_probe = true;
4529 smc->smp_threads_vsmt = true;
4530 smc->nr_xirqs = SPAPR_NR_XIRQS;
4531 xfc->match_nvt = spapr_match_nvt;
4534 static const TypeInfo spapr_machine_info = {
4535 .name = TYPE_SPAPR_MACHINE,
4536 .parent = TYPE_MACHINE,
4537 .abstract = true,
4538 .instance_size = sizeof(SpaprMachineState),
4539 .instance_init = spapr_instance_init,
4540 .instance_finalize = spapr_machine_finalizefn,
4541 .class_size = sizeof(SpaprMachineClass),
4542 .class_init = spapr_machine_class_init,
4543 .interfaces = (InterfaceInfo[]) {
4544 { TYPE_FW_PATH_PROVIDER },
4545 { TYPE_NMI },
4546 { TYPE_HOTPLUG_HANDLER },
4547 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4548 { TYPE_XICS_FABRIC },
4549 { TYPE_INTERRUPT_STATS_PROVIDER },
4550 { TYPE_XIVE_FABRIC },
4555 static void spapr_machine_latest_class_options(MachineClass *mc)
4557 mc->alias = "pseries";
4558 mc->is_default = true;
4561 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4562 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4563 void *data) \
4565 MachineClass *mc = MACHINE_CLASS(oc); \
4566 spapr_machine_##suffix##_class_options(mc); \
4567 if (latest) { \
4568 spapr_machine_latest_class_options(mc); \
4571 static const TypeInfo spapr_machine_##suffix##_info = { \
4572 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4573 .parent = TYPE_SPAPR_MACHINE, \
4574 .class_init = spapr_machine_##suffix##_class_init, \
4575 }; \
4576 static void spapr_machine_register_##suffix(void) \
4578 type_register(&spapr_machine_##suffix##_info); \
4580 type_init(spapr_machine_register_##suffix)
4583 * pseries-5.1
4585 static void spapr_machine_5_1_class_options(MachineClass *mc)
4587 /* Defaults for the latest behaviour inherited from the base class */
4590 DEFINE_SPAPR_MACHINE(5_1, "5.1", true);
4593 * pseries-5.0
4595 static void spapr_machine_5_0_class_options(MachineClass *mc)
4597 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4598 static GlobalProperty compat[] = {
4599 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4602 spapr_machine_5_1_class_options(mc);
4603 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4604 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4605 mc->numa_mem_supported = true;
4606 smc->pre_5_1_assoc_refpoints = true;
4609 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4612 * pseries-4.2
4614 static void spapr_machine_4_2_class_options(MachineClass *mc)
4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618 spapr_machine_5_0_class_options(mc);
4619 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4620 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4621 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4622 smc->rma_limit = 16 * GiB;
4623 mc->nvdimm_supported = false;
4626 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4629 * pseries-4.1
4631 static void spapr_machine_4_1_class_options(MachineClass *mc)
4633 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4634 static GlobalProperty compat[] = {
4635 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4636 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4639 spapr_machine_4_2_class_options(mc);
4640 smc->linux_pci_probe = false;
4641 smc->smp_threads_vsmt = false;
4642 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4643 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4646 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4649 * pseries-4.0
4651 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4652 uint64_t *buid, hwaddr *pio,
4653 hwaddr *mmio32, hwaddr *mmio64,
4654 unsigned n_dma, uint32_t *liobns,
4655 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4657 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4658 nv2gpa, nv2atsd, errp);
4659 *nv2gpa = 0;
4660 *nv2atsd = 0;
4663 static void spapr_machine_4_0_class_options(MachineClass *mc)
4665 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4667 spapr_machine_4_1_class_options(mc);
4668 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4669 smc->phb_placement = phb_placement_4_0;
4670 smc->irq = &spapr_irq_xics;
4671 smc->pre_4_1_migration = true;
4674 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4677 * pseries-3.1
4679 static void spapr_machine_3_1_class_options(MachineClass *mc)
4681 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683 spapr_machine_4_0_class_options(mc);
4684 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4686 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4687 smc->update_dt_enabled = false;
4688 smc->dr_phb_enabled = false;
4689 smc->broken_host_serial_model = true;
4690 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4691 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4692 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4693 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4696 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4699 * pseries-3.0
4702 static void spapr_machine_3_0_class_options(MachineClass *mc)
4704 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706 spapr_machine_3_1_class_options(mc);
4707 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4709 smc->legacy_irq_allocation = true;
4710 smc->nr_xirqs = 0x400;
4711 smc->irq = &spapr_irq_xics_legacy;
4714 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4717 * pseries-2.12
4719 static void spapr_machine_2_12_class_options(MachineClass *mc)
4721 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4722 static GlobalProperty compat[] = {
4723 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4724 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4727 spapr_machine_3_0_class_options(mc);
4728 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4729 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4731 /* We depend on kvm_enabled() to choose a default value for the
4732 * hpt-max-page-size capability. Of course we can't do it here
4733 * because this is too early and the HW accelerator isn't initialzed
4734 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4736 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4739 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4741 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4743 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4745 spapr_machine_2_12_class_options(mc);
4746 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4747 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4748 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4751 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4754 * pseries-2.11
4757 static void spapr_machine_2_11_class_options(MachineClass *mc)
4759 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4761 spapr_machine_2_12_class_options(mc);
4762 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4763 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4766 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4769 * pseries-2.10
4772 static void spapr_machine_2_10_class_options(MachineClass *mc)
4774 spapr_machine_2_11_class_options(mc);
4775 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4778 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4781 * pseries-2.9
4784 static void spapr_machine_2_9_class_options(MachineClass *mc)
4786 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4787 static GlobalProperty compat[] = {
4788 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4791 spapr_machine_2_10_class_options(mc);
4792 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4793 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4794 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4795 smc->pre_2_10_has_unused_icps = true;
4796 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4799 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4802 * pseries-2.8
4805 static void spapr_machine_2_8_class_options(MachineClass *mc)
4807 static GlobalProperty compat[] = {
4808 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4811 spapr_machine_2_9_class_options(mc);
4812 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4813 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4814 mc->numa_mem_align_shift = 23;
4817 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4820 * pseries-2.7
4823 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4824 uint64_t *buid, hwaddr *pio,
4825 hwaddr *mmio32, hwaddr *mmio64,
4826 unsigned n_dma, uint32_t *liobns,
4827 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4829 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4830 const uint64_t base_buid = 0x800000020000000ULL;
4831 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4832 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4833 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4834 const uint32_t max_index = 255;
4835 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4837 uint64_t ram_top = MACHINE(spapr)->ram_size;
4838 hwaddr phb0_base, phb_base;
4839 int i;
4841 /* Do we have device memory? */
4842 if (MACHINE(spapr)->maxram_size > ram_top) {
4843 /* Can't just use maxram_size, because there may be an
4844 * alignment gap between normal and device memory regions
4846 ram_top = MACHINE(spapr)->device_memory->base +
4847 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4850 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4852 if (index > max_index) {
4853 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4854 max_index);
4855 return;
4858 *buid = base_buid + index;
4859 for (i = 0; i < n_dma; ++i) {
4860 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4863 phb_base = phb0_base + index * phb_spacing;
4864 *pio = phb_base + pio_offset;
4865 *mmio32 = phb_base + mmio_offset;
4867 * We don't set the 64-bit MMIO window, relying on the PHB's
4868 * fallback behaviour of automatically splitting a large "32-bit"
4869 * window into contiguous 32-bit and 64-bit windows
4872 *nv2gpa = 0;
4873 *nv2atsd = 0;
4876 static void spapr_machine_2_7_class_options(MachineClass *mc)
4878 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4879 static GlobalProperty compat[] = {
4880 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4881 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4882 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4883 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4886 spapr_machine_2_8_class_options(mc);
4887 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4888 mc->default_machine_opts = "modern-hotplug-events=off";
4889 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4890 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4891 smc->phb_placement = phb_placement_2_7;
4894 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4897 * pseries-2.6
4900 static void spapr_machine_2_6_class_options(MachineClass *mc)
4902 static GlobalProperty compat[] = {
4903 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4906 spapr_machine_2_7_class_options(mc);
4907 mc->has_hotpluggable_cpus = false;
4908 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4909 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4912 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4915 * pseries-2.5
4918 static void spapr_machine_2_5_class_options(MachineClass *mc)
4920 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4921 static GlobalProperty compat[] = {
4922 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4925 spapr_machine_2_6_class_options(mc);
4926 smc->use_ohci_by_default = true;
4927 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4928 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4931 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4934 * pseries-2.4
4937 static void spapr_machine_2_4_class_options(MachineClass *mc)
4939 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4941 spapr_machine_2_5_class_options(mc);
4942 smc->dr_lmb_enabled = false;
4943 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4946 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4949 * pseries-2.3
4952 static void spapr_machine_2_3_class_options(MachineClass *mc)
4954 static GlobalProperty compat[] = {
4955 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4957 spapr_machine_2_4_class_options(mc);
4958 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4959 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4961 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4964 * pseries-2.2
4967 static void spapr_machine_2_2_class_options(MachineClass *mc)
4969 static GlobalProperty compat[] = {
4970 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4973 spapr_machine_2_3_class_options(mc);
4974 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4975 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4976 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4978 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4981 * pseries-2.1
4984 static void spapr_machine_2_1_class_options(MachineClass *mc)
4986 spapr_machine_2_2_class_options(mc);
4987 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4989 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4991 static void spapr_machine_register_types(void)
4993 type_register_static(&spapr_machine_info);
4996 type_init(spapr_machine_register_types)