target-i386: Add API to get note's size
[qemu/ar7.git] / hw / mips_malta.c
blob4752bb286551e35fd7b10ce74ffdf7e42712137d
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "vmware_vga.h"
37 #include "qemu-char.h"
38 #include "sysemu.h"
39 #include "arch_init.h"
40 #include "boards.h"
41 #include "qemu-log.h"
42 #include "mips-bios.h"
43 #include "ide.h"
44 #include "loader.h"
45 #include "elf.h"
46 #include "mc146818rtc.h"
47 #include "i8254.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
50 #include "sysbus.h" /* SysBusDevice */
52 //#define DEBUG_BOARD_INIT
54 #define ENVP_ADDR 0x80002000l
55 #define ENVP_NB_ENTRIES 16
56 #define ENVP_ENTRY_SIZE 256
58 /* Hardware addresses */
59 #define FLASH_ADDRESS 0x1e000000ULL
60 #define FPGA_ADDRESS 0x1f000000ULL
61 #define RESET_ADDRESS 0x1fc00000ULL
63 #define FLASH_SIZE 0x400000
65 #define MAX_IDE_BUS 2
67 typedef struct {
68 MemoryRegion iomem;
69 MemoryRegion iomem_lo; /* 0 - 0x900 */
70 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
71 uint32_t leds;
72 uint32_t brk;
73 uint32_t gpout;
74 uint32_t i2cin;
75 uint32_t i2coe;
76 uint32_t i2cout;
77 uint32_t i2csel;
78 CharDriverState *display;
79 char display_text[9];
80 SerialState *uart;
81 } MaltaFPGAState;
83 typedef struct {
84 SysBusDevice busdev;
85 qemu_irq *i8259;
86 } MaltaState;
88 static ISADevice *pit;
90 static struct _loaderparams {
91 int ram_size;
92 const char *kernel_filename;
93 const char *kernel_cmdline;
94 const char *initrd_filename;
95 } loaderparams;
97 /* Malta FPGA */
98 static void malta_fpga_update_display(void *opaque)
100 char leds_text[9];
101 int i;
102 MaltaFPGAState *s = opaque;
104 for (i = 7 ; i >= 0 ; i--) {
105 if (s->leds & (1 << i))
106 leds_text[i] = '#';
107 else
108 leds_text[i] = ' ';
110 leds_text[8] = '\0';
112 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
113 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
117 * EEPROM 24C01 / 24C02 emulation.
119 * Emulation for serial EEPROMs:
120 * 24C01 - 1024 bit (128 x 8)
121 * 24C02 - 2048 bit (256 x 8)
123 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
126 //~ #define DEBUG
128 #if defined(DEBUG)
129 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
130 #else
131 # define logout(fmt, ...) ((void)0)
132 #endif
134 struct _eeprom24c0x_t {
135 uint8_t tick;
136 uint8_t address;
137 uint8_t command;
138 uint8_t ack;
139 uint8_t scl;
140 uint8_t sda;
141 uint8_t data;
142 //~ uint16_t size;
143 uint8_t contents[256];
146 typedef struct _eeprom24c0x_t eeprom24c0x_t;
148 static eeprom24c0x_t eeprom = {
149 .contents = {
150 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
151 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
152 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
153 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
154 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
155 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
156 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
157 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
158 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
159 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
160 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
161 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
162 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
163 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
165 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
169 static uint8_t eeprom24c0x_read(void)
171 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
172 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
173 return eeprom.sda;
176 static void eeprom24c0x_write(int scl, int sda)
178 if (eeprom.scl && scl && (eeprom.sda != sda)) {
179 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
180 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
181 if (!sda) {
182 eeprom.tick = 1;
183 eeprom.command = 0;
185 } else if (eeprom.tick == 0 && !eeprom.ack) {
186 /* Waiting for start. */
187 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
188 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
189 } else if (!eeprom.scl && scl) {
190 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
191 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
192 if (eeprom.ack) {
193 logout("\ti2c ack bit = 0\n");
194 sda = 0;
195 eeprom.ack = 0;
196 } else if (eeprom.sda == sda) {
197 uint8_t bit = (sda != 0);
198 logout("\ti2c bit = %d\n", bit);
199 if (eeprom.tick < 9) {
200 eeprom.command <<= 1;
201 eeprom.command += bit;
202 eeprom.tick++;
203 if (eeprom.tick == 9) {
204 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
205 eeprom.ack = 1;
207 } else if (eeprom.tick < 17) {
208 if (eeprom.command & 1) {
209 sda = ((eeprom.data & 0x80) != 0);
211 eeprom.address <<= 1;
212 eeprom.address += bit;
213 eeprom.tick++;
214 eeprom.data <<= 1;
215 if (eeprom.tick == 17) {
216 eeprom.data = eeprom.contents[eeprom.address];
217 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
218 eeprom.ack = 1;
219 eeprom.tick = 0;
221 } else if (eeprom.tick >= 17) {
222 sda = 0;
224 } else {
225 logout("\tsda changed with raising scl\n");
227 } else {
228 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
230 eeprom.scl = scl;
231 eeprom.sda = sda;
234 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
235 unsigned size)
237 MaltaFPGAState *s = opaque;
238 uint32_t val = 0;
239 uint32_t saddr;
241 saddr = (addr & 0xfffff);
243 switch (saddr) {
245 /* SWITCH Register */
246 case 0x00200:
247 val = 0x00000000; /* All switches closed */
248 break;
250 /* STATUS Register */
251 case 0x00208:
252 #ifdef TARGET_WORDS_BIGENDIAN
253 val = 0x00000012;
254 #else
255 val = 0x00000010;
256 #endif
257 break;
259 /* JMPRS Register */
260 case 0x00210:
261 val = 0x00;
262 break;
264 /* LEDBAR Register */
265 case 0x00408:
266 val = s->leds;
267 break;
269 /* BRKRES Register */
270 case 0x00508:
271 val = s->brk;
272 break;
274 /* UART Registers are handled directly by the serial device */
276 /* GPOUT Register */
277 case 0x00a00:
278 val = s->gpout;
279 break;
281 /* XXX: implement a real I2C controller */
283 /* GPINP Register */
284 case 0x00a08:
285 /* IN = OUT until a real I2C control is implemented */
286 if (s->i2csel)
287 val = s->i2cout;
288 else
289 val = 0x00;
290 break;
292 /* I2CINP Register */
293 case 0x00b00:
294 val = ((s->i2cin & ~1) | eeprom24c0x_read());
295 break;
297 /* I2COE Register */
298 case 0x00b08:
299 val = s->i2coe;
300 break;
302 /* I2COUT Register */
303 case 0x00b10:
304 val = s->i2cout;
305 break;
307 /* I2CSEL Register */
308 case 0x00b18:
309 val = s->i2csel;
310 break;
312 default:
313 #if 0
314 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
315 addr);
316 #endif
317 break;
319 return val;
322 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
323 uint64_t val, unsigned size)
325 MaltaFPGAState *s = opaque;
326 uint32_t saddr;
328 saddr = (addr & 0xfffff);
330 switch (saddr) {
332 /* SWITCH Register */
333 case 0x00200:
334 break;
336 /* JMPRS Register */
337 case 0x00210:
338 break;
340 /* LEDBAR Register */
341 case 0x00408:
342 s->leds = val & 0xff;
343 malta_fpga_update_display(s);
344 break;
346 /* ASCIIWORD Register */
347 case 0x00410:
348 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
349 malta_fpga_update_display(s);
350 break;
352 /* ASCIIPOS0 to ASCIIPOS7 Registers */
353 case 0x00418:
354 case 0x00420:
355 case 0x00428:
356 case 0x00430:
357 case 0x00438:
358 case 0x00440:
359 case 0x00448:
360 case 0x00450:
361 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
362 malta_fpga_update_display(s);
363 break;
365 /* SOFTRES Register */
366 case 0x00500:
367 if (val == 0x42)
368 qemu_system_reset_request ();
369 break;
371 /* BRKRES Register */
372 case 0x00508:
373 s->brk = val & 0xff;
374 break;
376 /* UART Registers are handled directly by the serial device */
378 /* GPOUT Register */
379 case 0x00a00:
380 s->gpout = val & 0xff;
381 break;
383 /* I2COE Register */
384 case 0x00b08:
385 s->i2coe = val & 0x03;
386 break;
388 /* I2COUT Register */
389 case 0x00b10:
390 eeprom24c0x_write(val & 0x02, val & 0x01);
391 s->i2cout = val;
392 break;
394 /* I2CSEL Register */
395 case 0x00b18:
396 s->i2csel = val & 0x01;
397 break;
399 default:
400 #if 0
401 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
402 addr);
403 #endif
404 break;
408 static const MemoryRegionOps malta_fpga_ops = {
409 .read = malta_fpga_read,
410 .write = malta_fpga_write,
411 .endianness = DEVICE_NATIVE_ENDIAN,
414 static void malta_fpga_reset(void *opaque)
416 MaltaFPGAState *s = opaque;
418 s->leds = 0x00;
419 s->brk = 0x0a;
420 s->gpout = 0x00;
421 s->i2cin = 0x3;
422 s->i2coe = 0x0;
423 s->i2cout = 0x3;
424 s->i2csel = 0x1;
426 s->display_text[8] = '\0';
427 snprintf(s->display_text, 9, " ");
430 static void malta_fpga_led_init(CharDriverState *chr)
432 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
433 qemu_chr_fe_printf(chr, "+--------+\r\n");
434 qemu_chr_fe_printf(chr, "+ +\r\n");
435 qemu_chr_fe_printf(chr, "+--------+\r\n");
436 qemu_chr_fe_printf(chr, "\n");
437 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
438 qemu_chr_fe_printf(chr, "+--------+\r\n");
439 qemu_chr_fe_printf(chr, "+ +\r\n");
440 qemu_chr_fe_printf(chr, "+--------+\r\n");
443 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
444 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
446 MaltaFPGAState *s;
448 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
450 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
451 "malta-fpga", 0x100000);
452 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
453 &s->iomem, 0, 0x900);
454 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
455 &s->iomem, 0xa00, 0x10000-0xa00);
457 memory_region_add_subregion(address_space, base, &s->iomem_lo);
458 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
460 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
462 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
463 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
465 malta_fpga_reset(s);
466 qemu_register_reset(malta_fpga_reset, s);
468 return s;
471 /* Network support */
472 static void network_init(void)
474 int i;
476 for(i = 0; i < nb_nics; i++) {
477 NICInfo *nd = &nd_table[i];
478 const char *default_devaddr = NULL;
480 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
481 /* The malta board has a PCNet card using PCI SLOT 11 */
482 default_devaddr = "0b";
484 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
488 /* ROM and pseudo bootloader
490 The following code implements a very very simple bootloader. It first
491 loads the registers a0 to a3 to the values expected by the OS, and
492 then jump at the kernel address.
494 The bootloader should pass the locations of the kernel arguments and
495 environment variables tables. Those tables contain the 32-bit address
496 of NULL terminated strings. The environment variables table should be
497 terminated by a NULL address.
499 For a simpler implementation, the number of kernel arguments is fixed
500 to two (the name of the kernel and the command line), and the two
501 tables are actually the same one.
503 The registers a0 to a3 should contain the following values:
504 a0 - number of kernel arguments
505 a1 - 32-bit address of the kernel arguments table
506 a2 - 32-bit address of the environment variables table
507 a3 - RAM size in bytes
510 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
511 int64_t kernel_entry)
513 uint32_t *p;
515 /* Small bootloader */
516 p = (uint32_t *)base;
517 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
518 stl_raw(p++, 0x00000000); /* nop */
520 /* YAMON service vector */
521 stl_raw(base + 0x500, 0xbfc00580); /* start: */
522 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
523 stl_raw(base + 0x520, 0xbfc00580); /* start: */
524 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
525 stl_raw(base + 0x534, 0xbfc00808); /* print: */
526 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
527 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
528 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
529 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
530 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
531 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
532 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
533 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
536 /* Second part of the bootloader */
537 p = (uint32_t *) (base + 0x580);
538 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
539 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
540 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
541 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
542 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
543 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
544 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
545 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
546 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
548 /* Load BAR registers as done by YAMON */
549 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
551 #ifdef TARGET_WORDS_BIGENDIAN
552 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
553 #else
554 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
555 #endif
556 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
558 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
560 #ifdef TARGET_WORDS_BIGENDIAN
561 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
562 #else
563 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
564 #endif
565 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
568 #else
569 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
570 #endif
571 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
573 #ifdef TARGET_WORDS_BIGENDIAN
574 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
575 #else
576 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
577 #endif
578 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
581 #else
582 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
583 #endif
584 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
586 #ifdef TARGET_WORDS_BIGENDIAN
587 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
588 #else
589 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
590 #endif
591 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
592 #ifdef TARGET_WORDS_BIGENDIAN
593 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
594 #else
595 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
596 #endif
597 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
599 /* Jump to kernel code */
600 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
601 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
602 stl_raw(p++, 0x03e00008); /* jr ra */
603 stl_raw(p++, 0x00000000); /* nop */
605 /* YAMON subroutines */
606 p = (uint32_t *) (base + 0x800);
607 stl_raw(p++, 0x03e00008); /* jr ra */
608 stl_raw(p++, 0x24020000); /* li v0,0 */
609 /* 808 YAMON print */
610 stl_raw(p++, 0x03e06821); /* move t5,ra */
611 stl_raw(p++, 0x00805821); /* move t3,a0 */
612 stl_raw(p++, 0x00a05021); /* move t2,a1 */
613 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
614 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
615 stl_raw(p++, 0x10800005); /* beqz a0,834 */
616 stl_raw(p++, 0x00000000); /* nop */
617 stl_raw(p++, 0x0ff0021c); /* jal 870 */
618 stl_raw(p++, 0x00000000); /* nop */
619 stl_raw(p++, 0x08000205); /* j 814 */
620 stl_raw(p++, 0x00000000); /* nop */
621 stl_raw(p++, 0x01a00008); /* jr t5 */
622 stl_raw(p++, 0x01602021); /* move a0,t3 */
623 /* 0x83c YAMON print_count */
624 stl_raw(p++, 0x03e06821); /* move t5,ra */
625 stl_raw(p++, 0x00805821); /* move t3,a0 */
626 stl_raw(p++, 0x00a05021); /* move t2,a1 */
627 stl_raw(p++, 0x00c06021); /* move t4,a2 */
628 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
629 stl_raw(p++, 0x0ff0021c); /* jal 870 */
630 stl_raw(p++, 0x00000000); /* nop */
631 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
632 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
633 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
634 stl_raw(p++, 0x00000000); /* nop */
635 stl_raw(p++, 0x01a00008); /* jr t5 */
636 stl_raw(p++, 0x01602021); /* move a0,t3 */
637 /* 0x870 */
638 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
639 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
640 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
641 stl_raw(p++, 0x00000000); /* nop */
642 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
643 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
644 stl_raw(p++, 0x00000000); /* nop */
645 stl_raw(p++, 0x03e00008); /* jr ra */
646 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
650 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
651 const char *string, ...)
653 va_list ap;
654 int32_t table_addr;
656 if (index >= ENVP_NB_ENTRIES)
657 return;
659 if (string == NULL) {
660 prom_buf[index] = 0;
661 return;
664 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
665 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
667 va_start(ap, string);
668 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
669 va_end(ap);
672 /* Kernel */
673 static int64_t load_kernel (void)
675 int64_t kernel_entry, kernel_high;
676 long initrd_size;
677 ram_addr_t initrd_offset;
678 int big_endian;
679 uint32_t *prom_buf;
680 long prom_size;
681 int prom_index = 0;
683 #ifdef TARGET_WORDS_BIGENDIAN
684 big_endian = 1;
685 #else
686 big_endian = 0;
687 #endif
689 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
690 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
691 big_endian, ELF_MACHINE, 1) < 0) {
692 fprintf(stderr, "qemu: could not load kernel '%s'\n",
693 loaderparams.kernel_filename);
694 exit(1);
697 /* load initrd */
698 initrd_size = 0;
699 initrd_offset = 0;
700 if (loaderparams.initrd_filename) {
701 initrd_size = get_image_size (loaderparams.initrd_filename);
702 if (initrd_size > 0) {
703 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
704 if (initrd_offset + initrd_size > ram_size) {
705 fprintf(stderr,
706 "qemu: memory too small for initial ram disk '%s'\n",
707 loaderparams.initrd_filename);
708 exit(1);
710 initrd_size = load_image_targphys(loaderparams.initrd_filename,
711 initrd_offset,
712 ram_size - initrd_offset);
714 if (initrd_size == (target_ulong) -1) {
715 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
716 loaderparams.initrd_filename);
717 exit(1);
721 /* Setup prom parameters. */
722 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
723 prom_buf = g_malloc(prom_size);
725 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
726 if (initrd_size > 0) {
727 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
728 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
729 loaderparams.kernel_cmdline);
730 } else {
731 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
734 prom_set(prom_buf, prom_index++, "memsize");
735 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
736 prom_set(prom_buf, prom_index++, "modetty0");
737 prom_set(prom_buf, prom_index++, "38400n8r");
738 prom_set(prom_buf, prom_index++, NULL);
740 rom_add_blob_fixed("prom", prom_buf, prom_size,
741 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
743 return kernel_entry;
746 static void malta_mips_config(CPUMIPSState *env)
748 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
749 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
752 static void main_cpu_reset(void *opaque)
754 CPUMIPSState *env = opaque;
755 cpu_state_reset(env);
757 /* The bootloader does not need to be rewritten as it is located in a
758 read only location. The kernel location and the arguments table
759 location does not change. */
760 if (loaderparams.kernel_filename) {
761 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
764 malta_mips_config(env);
767 static void cpu_request_exit(void *opaque, int irq, int level)
769 CPUMIPSState *env = cpu_single_env;
771 if (env && level) {
772 cpu_exit(env);
776 static
777 void mips_malta_init (ram_addr_t ram_size,
778 const char *boot_device,
779 const char *kernel_filename, const char *kernel_cmdline,
780 const char *initrd_filename, const char *cpu_model)
782 char *filename;
783 pflash_t *fl;
784 MemoryRegion *system_memory = get_system_memory();
785 MemoryRegion *ram = g_new(MemoryRegion, 1);
786 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
787 target_long bios_size = FLASH_SIZE;
788 int64_t kernel_entry;
789 PCIBus *pci_bus;
790 ISABus *isa_bus;
791 CPUMIPSState *env;
792 qemu_irq *isa_irq;
793 qemu_irq *cpu_exit_irq;
794 int piix4_devfn;
795 i2c_bus *smbus;
796 int i;
797 DriveInfo *dinfo;
798 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
799 DriveInfo *fd[MAX_FD];
800 int fl_idx = 0;
801 int fl_sectors = bios_size >> 16;
802 int be;
804 DeviceState *dev = qdev_create(NULL, "mips-malta");
805 MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev);
807 qdev_init_nofail(dev);
809 /* Make sure the first 3 serial ports are associated with a device. */
810 for(i = 0; i < 3; i++) {
811 if (!serial_hds[i]) {
812 char label[32];
813 snprintf(label, sizeof(label), "serial%d", i);
814 serial_hds[i] = qemu_chr_new(label, "null", NULL);
818 /* init CPUs */
819 if (cpu_model == NULL) {
820 #ifdef TARGET_MIPS64
821 cpu_model = "20Kc";
822 #else
823 cpu_model = "24Kf";
824 #endif
827 for (i = 0; i < smp_cpus; i++) {
828 env = cpu_init(cpu_model);
829 if (!env) {
830 fprintf(stderr, "Unable to find CPU definition\n");
831 exit(1);
833 /* Init internal devices */
834 cpu_mips_irq_init_cpu(env);
835 cpu_mips_clock_init(env);
836 qemu_register_reset(main_cpu_reset, env);
838 env = first_cpu;
840 /* allocate RAM */
841 if (ram_size > (256 << 20)) {
842 fprintf(stderr,
843 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
844 ((unsigned int)ram_size / (1 << 20)));
845 exit(1);
847 memory_region_init_ram(ram, "mips_malta.ram", ram_size);
848 vmstate_register_ram_global(ram);
849 memory_region_add_subregion(system_memory, 0, ram);
851 #ifdef TARGET_WORDS_BIGENDIAN
852 be = 1;
853 #else
854 be = 0;
855 #endif
856 /* FPGA */
857 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[2], serial_hds[2]);
859 /* Load firmware in flash / BIOS. */
860 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
861 #ifdef DEBUG_BOARD_INIT
862 if (dinfo) {
863 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
864 "addr %08llx '%s' %x\n",
865 fl_idx, bios_size, FLASH_ADDRESS,
866 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
868 #endif
869 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
870 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
871 65536, fl_sectors,
872 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
873 bios = pflash_cfi01_get_memory(fl);
874 fl_idx++;
875 if (kernel_filename) {
876 /* Write a small bootloader to the flash location. */
877 loaderparams.ram_size = ram_size;
878 loaderparams.kernel_filename = kernel_filename;
879 loaderparams.kernel_cmdline = kernel_cmdline;
880 loaderparams.initrd_filename = initrd_filename;
881 kernel_entry = load_kernel();
882 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
883 } else {
884 /* Load firmware from flash. */
885 if (!dinfo) {
886 /* Load a BIOS image. */
887 if (bios_name == NULL) {
888 bios_name = BIOS_FILENAME;
890 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
891 if (filename) {
892 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
893 BIOS_SIZE);
894 g_free(filename);
895 } else {
896 bios_size = -1;
898 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
899 fprintf(stderr,
900 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
901 bios_name);
902 exit(1);
905 /* In little endian mode the 32bit words in the bios are swapped,
906 a neat trick which allows bi-endian firmware. */
907 #ifndef TARGET_WORDS_BIGENDIAN
909 uint32_t *addr = memory_region_get_ram_ptr(bios);
910 uint32_t *end = addr + bios_size;
911 while (addr < end) {
912 bswap32s(addr);
913 addr++;
916 #endif
919 /* Map the BIOS at a 2nd physical location, as on the real board. */
920 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
921 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_alias);
923 /* Board ID = 0x420 (Malta Board with CoreLV)
924 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
925 map to the board ID. */
926 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
928 /* Init internal devices */
929 cpu_mips_irq_init_cpu(env);
930 cpu_mips_clock_init(env);
933 * We have a circular dependency problem: pci_bus depends on isa_irq,
934 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
935 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
936 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
937 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
939 isa_irq = qemu_irq_proxy(&s->i8259, 16);
941 /* Northbridge */
942 pci_bus = gt64120_register(isa_irq);
944 /* Southbridge */
945 ide_drive_get(hd, MAX_IDE_BUS);
947 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
949 /* Interrupt controller */
950 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
951 s->i8259 = i8259_init(isa_bus, env->irq[2]);
953 isa_bus_irqs(isa_bus, s->i8259);
954 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
955 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
956 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
957 isa_get_irq(NULL, 9), NULL, 0);
958 /* TODO: Populate SPD eeprom data. */
959 smbus_eeprom_init(smbus, 8, NULL, 0);
960 pit = pit_init(isa_bus, 0x40, 0, NULL);
961 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
962 DMA_init(0, cpu_exit_irq);
964 /* Super I/O */
965 isa_create_simple(isa_bus, "i8042");
967 rtc_init(isa_bus, 2000, NULL);
968 serial_isa_init(isa_bus, 0, serial_hds[0]);
969 serial_isa_init(isa_bus, 1, serial_hds[1]);
970 if (parallel_hds[0])
971 parallel_init(isa_bus, 0, parallel_hds[0]);
972 for(i = 0; i < MAX_FD; i++) {
973 fd[i] = drive_get(IF_FLOPPY, 0, i);
975 fdctrl_init_isa(isa_bus, fd);
977 /* Sound card */
978 audio_init(isa_bus, pci_bus);
980 /* Network card */
981 network_init();
983 /* Optional PCI video card */
984 if (cirrus_vga_enabled) {
985 pci_cirrus_vga_init(pci_bus);
986 } else if (vmsvga_enabled) {
987 pci_vmsvga_init(pci_bus);
988 } else if (std_vga_enabled) {
989 pci_vga_init(pci_bus);
993 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
995 return 0;
998 static void mips_malta_class_init(ObjectClass *klass, void *data)
1000 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1002 k->init = mips_malta_sysbus_device_init;
1005 static TypeInfo mips_malta_device = {
1006 .name = "mips-malta",
1007 .parent = TYPE_SYS_BUS_DEVICE,
1008 .instance_size = sizeof(MaltaState),
1009 .class_init = mips_malta_class_init,
1012 static QEMUMachine mips_malta_machine = {
1013 .name = "malta",
1014 .desc = "MIPS Malta Core LV",
1015 .init = mips_malta_init,
1016 .max_cpus = 16,
1017 .is_default = 1,
1020 static void mips_malta_register_types(void)
1022 type_register_static(&mips_malta_device);
1025 static void mips_malta_machine_init(void)
1027 qemu_register_machine(&mips_malta_machine);
1030 type_init(mips_malta_register_types)
1031 machine_init(mips_malta_machine_init);