Get bsd-user host page protection code working on FreeBSD hosts
[qemu/aliguori-queue.git] / target-sparc / op_helper.c
blob704631a24e8e65b7ca6a854b8f7cfba8f624571e
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
14 //#define DEBUG_PSTATE
16 #ifdef DEBUG_MMU
17 #define DPRINTF_MMU(fmt, ...) \
18 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
19 #else
20 #define DPRINTF_MMU(fmt, ...) do {} while (0)
21 #endif
23 #ifdef DEBUG_MXCC
24 #define DPRINTF_MXCC(fmt, ...) \
25 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
26 #else
27 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
28 #endif
30 #ifdef DEBUG_ASI
31 #define DPRINTF_ASI(fmt, ...) \
32 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
33 #endif
35 #ifdef DEBUG_PSTATE
36 #define DPRINTF_PSTATE(fmt, ...) \
37 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
40 #endif
42 #ifdef TARGET_SPARC64
43 #ifndef TARGET_ABI32
44 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
45 #else
46 #define AM_CHECK(env1) (1)
47 #endif
48 #endif
50 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
51 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
52 int is_asi, int size);
53 #endif
55 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
56 // Calculates TSB pointer value for fault page size 8k or 64k
57 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
58 uint64_t tag_access_register,
59 int page_size)
61 uint64_t tsb_base = tsb_register & ~0x1fffULL;
62 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
63 int tsb_size = tsb_register & 0xf;
65 // discard lower 13 bits which hold tag access context
66 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
68 // now reorder bits
69 uint64_t tsb_base_mask = ~0x1fffULL;
70 uint64_t va = tag_access_va;
72 // move va bits to correct position
73 if (page_size == 8*1024) {
74 va >>= 9;
75 } else if (page_size == 64*1024) {
76 va >>= 12;
79 if (tsb_size) {
80 tsb_base_mask <<= tsb_size;
83 // calculate tsb_base mask and adjust va if split is in use
84 if (tsb_split) {
85 if (page_size == 8*1024) {
86 va &= ~(1ULL << (13 + tsb_size));
87 } else if (page_size == 64*1024) {
88 va |= (1ULL << (13 + tsb_size));
90 tsb_base_mask <<= 1;
93 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
96 // Calculates tag target register value by reordering bits
97 // in tag access register
98 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
100 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
103 static void replace_tlb_entry(SparcTLBEntry *tlb,
104 uint64_t tlb_tag, uint64_t tlb_tte,
105 CPUState *env1)
107 target_ulong mask, size, va, offset;
109 // flush page range if translation is valid
110 if (TTE_IS_VALID(tlb->tte)) {
112 mask = 0xffffffffffffe000ULL;
113 mask <<= 3 * ((tlb->tte >> 61) & 3);
114 size = ~mask + 1;
116 va = tlb->tag & mask;
118 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
119 tlb_flush_page(env1, va + offset);
123 tlb->tag = tlb_tag;
124 tlb->tte = tlb_tte;
127 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
128 const char* strmmu, CPUState *env1)
130 unsigned int i;
131 target_ulong mask;
133 for (i = 0; i < 64; i++) {
134 if (TTE_IS_VALID(tlb[i].tte)) {
136 mask = 0xffffffffffffe000ULL;
137 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
139 if ((demap_addr & mask) == (tlb[i].tag & mask)) {
140 replace_tlb_entry(&tlb[i], 0, 0, env1);
141 #ifdef DEBUG_MMU
142 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
143 dump_mmu(env1);
144 #endif
146 //return;
152 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
153 uint64_t tlb_tag, uint64_t tlb_tte,
154 const char* strmmu, CPUState *env1)
156 unsigned int i, replace_used;
158 // Try replacing invalid entry
159 for (i = 0; i < 64; i++) {
160 if (!TTE_IS_VALID(tlb[i].tte)) {
161 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
162 #ifdef DEBUG_MMU
163 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
164 dump_mmu(env1);
165 #endif
166 return;
170 // All entries are valid, try replacing unlocked entry
172 for (replace_used = 0; replace_used < 2; ++replace_used) {
174 // Used entries are not replaced on first pass
176 for (i = 0; i < 64; i++) {
177 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
179 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
180 #ifdef DEBUG_MMU
181 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
182 strmmu, (replace_used?"used":"unused"), i);
183 dump_mmu(env1);
184 #endif
185 return;
189 // Now reset used bit and search for unused entries again
191 for (i = 0; i < 64; i++) {
192 TTE_SET_UNUSED(tlb[i].tte);
196 #ifdef DEBUG_MMU
197 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
198 #endif
199 // error state?
202 #endif
204 static inline void address_mask(CPUState *env1, target_ulong *addr)
206 #ifdef TARGET_SPARC64
207 if (AM_CHECK(env1))
208 *addr &= 0xffffffffULL;
209 #endif
212 static void raise_exception(int tt)
214 env->exception_index = tt;
215 cpu_loop_exit();
218 void HELPER(raise_exception)(int tt)
220 raise_exception(tt);
223 static inline void set_cwp(int new_cwp)
225 cpu_set_cwp(env, new_cwp);
228 void helper_check_align(target_ulong addr, uint32_t align)
230 if (addr & align) {
231 #ifdef DEBUG_UNALIGNED
232 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
233 "\n", addr, env->pc);
234 #endif
235 raise_exception(TT_UNALIGNED);
239 #define F_HELPER(name, p) void helper_f##name##p(void)
241 #define F_BINOP(name) \
242 float32 helper_f ## name ## s (float32 src1, float32 src2) \
244 return float32_ ## name (src1, src2, &env->fp_status); \
246 F_HELPER(name, d) \
248 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
250 F_HELPER(name, q) \
252 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
255 F_BINOP(add);
256 F_BINOP(sub);
257 F_BINOP(mul);
258 F_BINOP(div);
259 #undef F_BINOP
261 void helper_fsmuld(float32 src1, float32 src2)
263 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
264 float32_to_float64(src2, &env->fp_status),
265 &env->fp_status);
268 void helper_fdmulq(void)
270 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
271 float64_to_float128(DT1, &env->fp_status),
272 &env->fp_status);
275 float32 helper_fnegs(float32 src)
277 return float32_chs(src);
280 #ifdef TARGET_SPARC64
281 F_HELPER(neg, d)
283 DT0 = float64_chs(DT1);
286 F_HELPER(neg, q)
288 QT0 = float128_chs(QT1);
290 #endif
292 /* Integer to float conversion. */
293 float32 helper_fitos(int32_t src)
295 return int32_to_float32(src, &env->fp_status);
298 void helper_fitod(int32_t src)
300 DT0 = int32_to_float64(src, &env->fp_status);
303 void helper_fitoq(int32_t src)
305 QT0 = int32_to_float128(src, &env->fp_status);
308 #ifdef TARGET_SPARC64
309 float32 helper_fxtos(void)
311 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
314 F_HELPER(xto, d)
316 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
319 F_HELPER(xto, q)
321 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
323 #endif
324 #undef F_HELPER
326 /* floating point conversion */
327 float32 helper_fdtos(void)
329 return float64_to_float32(DT1, &env->fp_status);
332 void helper_fstod(float32 src)
334 DT0 = float32_to_float64(src, &env->fp_status);
337 float32 helper_fqtos(void)
339 return float128_to_float32(QT1, &env->fp_status);
342 void helper_fstoq(float32 src)
344 QT0 = float32_to_float128(src, &env->fp_status);
347 void helper_fqtod(void)
349 DT0 = float128_to_float64(QT1, &env->fp_status);
352 void helper_fdtoq(void)
354 QT0 = float64_to_float128(DT1, &env->fp_status);
357 /* Float to integer conversion. */
358 int32_t helper_fstoi(float32 src)
360 return float32_to_int32_round_to_zero(src, &env->fp_status);
363 int32_t helper_fdtoi(void)
365 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
368 int32_t helper_fqtoi(void)
370 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
373 #ifdef TARGET_SPARC64
374 void helper_fstox(float32 src)
376 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
379 void helper_fdtox(void)
381 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
384 void helper_fqtox(void)
386 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
389 void helper_faligndata(void)
391 uint64_t tmp;
393 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
394 /* on many architectures a shift of 64 does nothing */
395 if ((env->gsr & 7) != 0) {
396 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
398 *((uint64_t *)&DT0) = tmp;
401 #ifdef HOST_WORDS_BIGENDIAN
402 #define VIS_B64(n) b[7 - (n)]
403 #define VIS_W64(n) w[3 - (n)]
404 #define VIS_SW64(n) sw[3 - (n)]
405 #define VIS_L64(n) l[1 - (n)]
406 #define VIS_B32(n) b[3 - (n)]
407 #define VIS_W32(n) w[1 - (n)]
408 #else
409 #define VIS_B64(n) b[n]
410 #define VIS_W64(n) w[n]
411 #define VIS_SW64(n) sw[n]
412 #define VIS_L64(n) l[n]
413 #define VIS_B32(n) b[n]
414 #define VIS_W32(n) w[n]
415 #endif
417 typedef union {
418 uint8_t b[8];
419 uint16_t w[4];
420 int16_t sw[4];
421 uint32_t l[2];
422 float64 d;
423 } vis64;
425 typedef union {
426 uint8_t b[4];
427 uint16_t w[2];
428 uint32_t l;
429 float32 f;
430 } vis32;
432 void helper_fpmerge(void)
434 vis64 s, d;
436 s.d = DT0;
437 d.d = DT1;
439 // Reverse calculation order to handle overlap
440 d.VIS_B64(7) = s.VIS_B64(3);
441 d.VIS_B64(6) = d.VIS_B64(3);
442 d.VIS_B64(5) = s.VIS_B64(2);
443 d.VIS_B64(4) = d.VIS_B64(2);
444 d.VIS_B64(3) = s.VIS_B64(1);
445 d.VIS_B64(2) = d.VIS_B64(1);
446 d.VIS_B64(1) = s.VIS_B64(0);
447 //d.VIS_B64(0) = d.VIS_B64(0);
449 DT0 = d.d;
452 void helper_fmul8x16(void)
454 vis64 s, d;
455 uint32_t tmp;
457 s.d = DT0;
458 d.d = DT1;
460 #define PMUL(r) \
461 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
462 if ((tmp & 0xff) > 0x7f) \
463 tmp += 0x100; \
464 d.VIS_W64(r) = tmp >> 8;
466 PMUL(0);
467 PMUL(1);
468 PMUL(2);
469 PMUL(3);
470 #undef PMUL
472 DT0 = d.d;
475 void helper_fmul8x16al(void)
477 vis64 s, d;
478 uint32_t tmp;
480 s.d = DT0;
481 d.d = DT1;
483 #define PMUL(r) \
484 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
485 if ((tmp & 0xff) > 0x7f) \
486 tmp += 0x100; \
487 d.VIS_W64(r) = tmp >> 8;
489 PMUL(0);
490 PMUL(1);
491 PMUL(2);
492 PMUL(3);
493 #undef PMUL
495 DT0 = d.d;
498 void helper_fmul8x16au(void)
500 vis64 s, d;
501 uint32_t tmp;
503 s.d = DT0;
504 d.d = DT1;
506 #define PMUL(r) \
507 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
508 if ((tmp & 0xff) > 0x7f) \
509 tmp += 0x100; \
510 d.VIS_W64(r) = tmp >> 8;
512 PMUL(0);
513 PMUL(1);
514 PMUL(2);
515 PMUL(3);
516 #undef PMUL
518 DT0 = d.d;
521 void helper_fmul8sux16(void)
523 vis64 s, d;
524 uint32_t tmp;
526 s.d = DT0;
527 d.d = DT1;
529 #define PMUL(r) \
530 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
531 if ((tmp & 0xff) > 0x7f) \
532 tmp += 0x100; \
533 d.VIS_W64(r) = tmp >> 8;
535 PMUL(0);
536 PMUL(1);
537 PMUL(2);
538 PMUL(3);
539 #undef PMUL
541 DT0 = d.d;
544 void helper_fmul8ulx16(void)
546 vis64 s, d;
547 uint32_t tmp;
549 s.d = DT0;
550 d.d = DT1;
552 #define PMUL(r) \
553 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
554 if ((tmp & 0xff) > 0x7f) \
555 tmp += 0x100; \
556 d.VIS_W64(r) = tmp >> 8;
558 PMUL(0);
559 PMUL(1);
560 PMUL(2);
561 PMUL(3);
562 #undef PMUL
564 DT0 = d.d;
567 void helper_fmuld8sux16(void)
569 vis64 s, d;
570 uint32_t tmp;
572 s.d = DT0;
573 d.d = DT1;
575 #define PMUL(r) \
576 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
577 if ((tmp & 0xff) > 0x7f) \
578 tmp += 0x100; \
579 d.VIS_L64(r) = tmp;
581 // Reverse calculation order to handle overlap
582 PMUL(1);
583 PMUL(0);
584 #undef PMUL
586 DT0 = d.d;
589 void helper_fmuld8ulx16(void)
591 vis64 s, d;
592 uint32_t tmp;
594 s.d = DT0;
595 d.d = DT1;
597 #define PMUL(r) \
598 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
599 if ((tmp & 0xff) > 0x7f) \
600 tmp += 0x100; \
601 d.VIS_L64(r) = tmp;
603 // Reverse calculation order to handle overlap
604 PMUL(1);
605 PMUL(0);
606 #undef PMUL
608 DT0 = d.d;
611 void helper_fexpand(void)
613 vis32 s;
614 vis64 d;
616 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
617 d.d = DT1;
618 d.VIS_W64(0) = s.VIS_B32(0) << 4;
619 d.VIS_W64(1) = s.VIS_B32(1) << 4;
620 d.VIS_W64(2) = s.VIS_B32(2) << 4;
621 d.VIS_W64(3) = s.VIS_B32(3) << 4;
623 DT0 = d.d;
626 #define VIS_HELPER(name, F) \
627 void name##16(void) \
629 vis64 s, d; \
631 s.d = DT0; \
632 d.d = DT1; \
634 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
635 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
636 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
637 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
639 DT0 = d.d; \
642 uint32_t name##16s(uint32_t src1, uint32_t src2) \
644 vis32 s, d; \
646 s.l = src1; \
647 d.l = src2; \
649 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
650 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
652 return d.l; \
655 void name##32(void) \
657 vis64 s, d; \
659 s.d = DT0; \
660 d.d = DT1; \
662 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
663 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
665 DT0 = d.d; \
668 uint32_t name##32s(uint32_t src1, uint32_t src2) \
670 vis32 s, d; \
672 s.l = src1; \
673 d.l = src2; \
675 d.l = F(d.l, s.l); \
677 return d.l; \
680 #define FADD(a, b) ((a) + (b))
681 #define FSUB(a, b) ((a) - (b))
682 VIS_HELPER(helper_fpadd, FADD)
683 VIS_HELPER(helper_fpsub, FSUB)
685 #define VIS_CMPHELPER(name, F) \
686 void name##16(void) \
688 vis64 s, d; \
690 s.d = DT0; \
691 d.d = DT1; \
693 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
694 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
695 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
696 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
698 DT0 = d.d; \
701 void name##32(void) \
703 vis64 s, d; \
705 s.d = DT0; \
706 d.d = DT1; \
708 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
709 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
711 DT0 = d.d; \
714 #define FCMPGT(a, b) ((a) > (b))
715 #define FCMPEQ(a, b) ((a) == (b))
716 #define FCMPLE(a, b) ((a) <= (b))
717 #define FCMPNE(a, b) ((a) != (b))
719 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
720 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
721 VIS_CMPHELPER(helper_fcmple, FCMPLE)
722 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
723 #endif
725 void helper_check_ieee_exceptions(void)
727 target_ulong status;
729 status = get_float_exception_flags(&env->fp_status);
730 if (status) {
731 /* Copy IEEE 754 flags into FSR */
732 if (status & float_flag_invalid)
733 env->fsr |= FSR_NVC;
734 if (status & float_flag_overflow)
735 env->fsr |= FSR_OFC;
736 if (status & float_flag_underflow)
737 env->fsr |= FSR_UFC;
738 if (status & float_flag_divbyzero)
739 env->fsr |= FSR_DZC;
740 if (status & float_flag_inexact)
741 env->fsr |= FSR_NXC;
743 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
744 /* Unmasked exception, generate a trap */
745 env->fsr |= FSR_FTT_IEEE_EXCP;
746 raise_exception(TT_FP_EXCP);
747 } else {
748 /* Accumulate exceptions */
749 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
754 void helper_clear_float_exceptions(void)
756 set_float_exception_flags(0, &env->fp_status);
759 float32 helper_fabss(float32 src)
761 return float32_abs(src);
764 #ifdef TARGET_SPARC64
765 void helper_fabsd(void)
767 DT0 = float64_abs(DT1);
770 void helper_fabsq(void)
772 QT0 = float128_abs(QT1);
774 #endif
776 float32 helper_fsqrts(float32 src)
778 return float32_sqrt(src, &env->fp_status);
781 void helper_fsqrtd(void)
783 DT0 = float64_sqrt(DT1, &env->fp_status);
786 void helper_fsqrtq(void)
788 QT0 = float128_sqrt(QT1, &env->fp_status);
791 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
792 void glue(helper_, name) (void) \
794 target_ulong new_fsr; \
796 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
797 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
798 case float_relation_unordered: \
799 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
800 if ((env->fsr & FSR_NVM) || TRAP) { \
801 env->fsr |= new_fsr; \
802 env->fsr |= FSR_NVC; \
803 env->fsr |= FSR_FTT_IEEE_EXCP; \
804 raise_exception(TT_FP_EXCP); \
805 } else { \
806 env->fsr |= FSR_NVA; \
808 break; \
809 case float_relation_less: \
810 new_fsr = FSR_FCC0 << FS; \
811 break; \
812 case float_relation_greater: \
813 new_fsr = FSR_FCC1 << FS; \
814 break; \
815 default: \
816 new_fsr = 0; \
817 break; \
819 env->fsr |= new_fsr; \
821 #define GEN_FCMPS(name, size, FS, TRAP) \
822 void glue(helper_, name)(float32 src1, float32 src2) \
824 target_ulong new_fsr; \
826 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
827 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
828 case float_relation_unordered: \
829 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
830 if ((env->fsr & FSR_NVM) || TRAP) { \
831 env->fsr |= new_fsr; \
832 env->fsr |= FSR_NVC; \
833 env->fsr |= FSR_FTT_IEEE_EXCP; \
834 raise_exception(TT_FP_EXCP); \
835 } else { \
836 env->fsr |= FSR_NVA; \
838 break; \
839 case float_relation_less: \
840 new_fsr = FSR_FCC0 << FS; \
841 break; \
842 case float_relation_greater: \
843 new_fsr = FSR_FCC1 << FS; \
844 break; \
845 default: \
846 new_fsr = 0; \
847 break; \
849 env->fsr |= new_fsr; \
852 GEN_FCMPS(fcmps, float32, 0, 0);
853 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
855 GEN_FCMPS(fcmpes, float32, 0, 1);
856 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
858 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
859 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
861 static uint32_t compute_all_flags(void)
863 return env->psr & PSR_ICC;
866 static uint32_t compute_C_flags(void)
868 return env->psr & PSR_CARRY;
871 static inline uint32_t get_NZ_icc(target_ulong dst)
873 uint32_t ret = 0;
875 if (!(dst & 0xffffffffULL))
876 ret |= PSR_ZERO;
877 if ((int32_t) (dst & 0xffffffffULL) < 0)
878 ret |= PSR_NEG;
879 return ret;
882 #ifdef TARGET_SPARC64
883 static uint32_t compute_all_flags_xcc(void)
885 return env->xcc & PSR_ICC;
888 static uint32_t compute_C_flags_xcc(void)
890 return env->xcc & PSR_CARRY;
893 static inline uint32_t get_NZ_xcc(target_ulong dst)
895 uint32_t ret = 0;
897 if (!dst)
898 ret |= PSR_ZERO;
899 if ((int64_t)dst < 0)
900 ret |= PSR_NEG;
901 return ret;
903 #endif
905 static inline uint32_t get_V_div_icc(target_ulong src2)
907 uint32_t ret = 0;
909 if (src2 != 0)
910 ret |= PSR_OVF;
911 return ret;
914 static uint32_t compute_all_div(void)
916 uint32_t ret;
918 ret = get_NZ_icc(CC_DST);
919 ret |= get_V_div_icc(CC_SRC2);
920 return ret;
923 static uint32_t compute_C_div(void)
925 return 0;
928 /* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
929 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
930 target_ulong src2)
932 uint32_t ret = 0;
934 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
935 | ((~(dst & (1ULL << 31)))
936 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
937 ret |= PSR_CARRY;
938 return ret;
941 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
942 target_ulong src2)
944 uint32_t ret = 0;
946 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
947 ret |= PSR_OVF;
948 return ret;
951 #ifdef TARGET_SPARC64
952 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
954 uint32_t ret = 0;
956 if (dst < src1)
957 ret |= PSR_CARRY;
958 return ret;
961 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
962 target_ulong src2)
964 uint32_t ret = 0;
966 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
967 ret |= PSR_OVF;
968 return ret;
971 static uint32_t compute_all_add_xcc(void)
973 uint32_t ret;
975 ret = get_NZ_xcc(CC_DST);
976 ret |= get_C_add_xcc(CC_DST, CC_SRC);
977 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
978 return ret;
981 static uint32_t compute_C_add_xcc(void)
983 return get_C_add_xcc(CC_DST, CC_SRC);
985 #endif
987 static uint32_t compute_all_add(void)
989 uint32_t ret;
991 ret = get_NZ_icc(CC_DST);
992 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
993 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
994 return ret;
997 static uint32_t compute_C_add(void)
999 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1002 #ifdef TARGET_SPARC64
1003 static uint32_t compute_all_addx_xcc(void)
1005 uint32_t ret;
1007 ret = get_NZ_xcc(CC_DST);
1008 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1009 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1010 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1011 return ret;
1014 static uint32_t compute_C_addx_xcc(void)
1016 uint32_t ret;
1018 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1019 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1020 return ret;
1022 #endif
1024 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1026 uint32_t ret = 0;
1028 if ((src1 | src2) & 0x3)
1029 ret |= PSR_OVF;
1030 return ret;
1033 static uint32_t compute_all_tadd(void)
1035 uint32_t ret;
1037 ret = get_NZ_icc(CC_DST);
1038 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1039 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1040 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1041 return ret;
1044 static uint32_t compute_C_tadd(void)
1046 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1049 static uint32_t compute_all_taddtv(void)
1051 uint32_t ret;
1053 ret = get_NZ_icc(CC_DST);
1054 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1055 return ret;
1058 static uint32_t compute_C_taddtv(void)
1060 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1063 /* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1064 static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1065 target_ulong src2)
1067 uint32_t ret = 0;
1069 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1070 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1071 | (src2 & (1ULL << 31)))))
1072 ret |= PSR_CARRY;
1073 return ret;
1076 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1077 target_ulong src2)
1079 uint32_t ret = 0;
1081 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1082 ret |= PSR_OVF;
1083 return ret;
1087 #ifdef TARGET_SPARC64
1088 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1090 uint32_t ret = 0;
1092 if (src1 < src2)
1093 ret |= PSR_CARRY;
1094 return ret;
1097 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1098 target_ulong src2)
1100 uint32_t ret = 0;
1102 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1103 ret |= PSR_OVF;
1104 return ret;
1107 static uint32_t compute_all_sub_xcc(void)
1109 uint32_t ret;
1111 ret = get_NZ_xcc(CC_DST);
1112 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1113 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1114 return ret;
1117 static uint32_t compute_C_sub_xcc(void)
1119 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1121 #endif
1123 static uint32_t compute_all_sub(void)
1125 uint32_t ret;
1127 ret = get_NZ_icc(CC_DST);
1128 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1129 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1130 return ret;
1133 static uint32_t compute_C_sub(void)
1135 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1138 #ifdef TARGET_SPARC64
1139 static uint32_t compute_all_subx_xcc(void)
1141 uint32_t ret;
1143 ret = get_NZ_xcc(CC_DST);
1144 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1145 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1146 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1147 return ret;
1150 static uint32_t compute_C_subx_xcc(void)
1152 uint32_t ret;
1154 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1155 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1156 return ret;
1158 #endif
1160 static uint32_t compute_all_tsub(void)
1162 uint32_t ret;
1164 ret = get_NZ_icc(CC_DST);
1165 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1166 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1167 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1168 return ret;
1171 static uint32_t compute_C_tsub(void)
1173 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1176 static uint32_t compute_all_tsubtv(void)
1178 uint32_t ret;
1180 ret = get_NZ_icc(CC_DST);
1181 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1182 return ret;
1185 static uint32_t compute_C_tsubtv(void)
1187 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1190 static uint32_t compute_all_logic(void)
1192 return get_NZ_icc(CC_DST);
1195 static uint32_t compute_C_logic(void)
1197 return 0;
1200 #ifdef TARGET_SPARC64
1201 static uint32_t compute_all_logic_xcc(void)
1203 return get_NZ_xcc(CC_DST);
1205 #endif
1207 typedef struct CCTable {
1208 uint32_t (*compute_all)(void); /* return all the flags */
1209 uint32_t (*compute_c)(void); /* return the C flag */
1210 } CCTable;
1212 static const CCTable icc_table[CC_OP_NB] = {
1213 /* CC_OP_DYNAMIC should never happen */
1214 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1215 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1216 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1217 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
1218 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1219 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1220 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1221 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
1222 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1223 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1224 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1227 #ifdef TARGET_SPARC64
1228 static const CCTable xcc_table[CC_OP_NB] = {
1229 /* CC_OP_DYNAMIC should never happen */
1230 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1231 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1232 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1233 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1234 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1235 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1236 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1237 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1238 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1239 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1240 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1242 #endif
1244 void helper_compute_psr(void)
1246 uint32_t new_psr;
1248 new_psr = icc_table[CC_OP].compute_all();
1249 env->psr = new_psr;
1250 #ifdef TARGET_SPARC64
1251 new_psr = xcc_table[CC_OP].compute_all();
1252 env->xcc = new_psr;
1253 #endif
1254 CC_OP = CC_OP_FLAGS;
1257 uint32_t helper_compute_C_icc(void)
1259 uint32_t ret;
1261 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1262 return ret;
1265 #ifdef TARGET_SPARC64
1266 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1267 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1268 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1270 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1271 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1272 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1274 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1275 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1276 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1278 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1279 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1280 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1282 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1283 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1284 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1286 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1287 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1288 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1289 #endif
1290 #undef GEN_FCMPS
1292 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1293 defined(DEBUG_MXCC)
1294 static void dump_mxcc(CPUState *env)
1296 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1297 "\n",
1298 env->mxccdata[0], env->mxccdata[1],
1299 env->mxccdata[2], env->mxccdata[3]);
1300 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1301 "\n"
1302 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1303 "\n",
1304 env->mxccregs[0], env->mxccregs[1],
1305 env->mxccregs[2], env->mxccregs[3],
1306 env->mxccregs[4], env->mxccregs[5],
1307 env->mxccregs[6], env->mxccregs[7]);
1309 #endif
1311 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1312 && defined(DEBUG_ASI)
1313 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1314 uint64_t r1)
1316 switch (size)
1318 case 1:
1319 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1320 addr, asi, r1 & 0xff);
1321 break;
1322 case 2:
1323 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1324 addr, asi, r1 & 0xffff);
1325 break;
1326 case 4:
1327 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1328 addr, asi, r1 & 0xffffffff);
1329 break;
1330 case 8:
1331 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1332 addr, asi, r1);
1333 break;
1336 #endif
1338 #ifndef TARGET_SPARC64
1339 #ifndef CONFIG_USER_ONLY
1340 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1342 uint64_t ret = 0;
1343 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1344 uint32_t last_addr = addr;
1345 #endif
1347 helper_check_align(addr, size - 1);
1348 switch (asi) {
1349 case 2: /* SuperSparc MXCC registers */
1350 switch (addr) {
1351 case 0x01c00a00: /* MXCC control register */
1352 if (size == 8)
1353 ret = env->mxccregs[3];
1354 else
1355 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1356 size);
1357 break;
1358 case 0x01c00a04: /* MXCC control register */
1359 if (size == 4)
1360 ret = env->mxccregs[3];
1361 else
1362 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1363 size);
1364 break;
1365 case 0x01c00c00: /* Module reset register */
1366 if (size == 8) {
1367 ret = env->mxccregs[5];
1368 // should we do something here?
1369 } else
1370 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1371 size);
1372 break;
1373 case 0x01c00f00: /* MBus port address register */
1374 if (size == 8)
1375 ret = env->mxccregs[7];
1376 else
1377 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1378 size);
1379 break;
1380 default:
1381 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1382 size);
1383 break;
1385 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1386 "addr = %08x -> ret = %" PRIx64 ","
1387 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1388 #ifdef DEBUG_MXCC
1389 dump_mxcc(env);
1390 #endif
1391 break;
1392 case 3: /* MMU probe */
1394 int mmulev;
1396 mmulev = (addr >> 8) & 15;
1397 if (mmulev > 4)
1398 ret = 0;
1399 else
1400 ret = mmu_probe(env, addr, mmulev);
1401 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1402 addr, mmulev, ret);
1404 break;
1405 case 4: /* read MMU regs */
1407 int reg = (addr >> 8) & 0x1f;
1409 ret = env->mmuregs[reg];
1410 if (reg == 3) /* Fault status cleared on read */
1411 env->mmuregs[3] = 0;
1412 else if (reg == 0x13) /* Fault status read */
1413 ret = env->mmuregs[3];
1414 else if (reg == 0x14) /* Fault address read */
1415 ret = env->mmuregs[4];
1416 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1418 break;
1419 case 5: // Turbosparc ITLB Diagnostic
1420 case 6: // Turbosparc DTLB Diagnostic
1421 case 7: // Turbosparc IOTLB Diagnostic
1422 break;
1423 case 9: /* Supervisor code access */
1424 switch(size) {
1425 case 1:
1426 ret = ldub_code(addr);
1427 break;
1428 case 2:
1429 ret = lduw_code(addr);
1430 break;
1431 default:
1432 case 4:
1433 ret = ldl_code(addr);
1434 break;
1435 case 8:
1436 ret = ldq_code(addr);
1437 break;
1439 break;
1440 case 0xa: /* User data access */
1441 switch(size) {
1442 case 1:
1443 ret = ldub_user(addr);
1444 break;
1445 case 2:
1446 ret = lduw_user(addr);
1447 break;
1448 default:
1449 case 4:
1450 ret = ldl_user(addr);
1451 break;
1452 case 8:
1453 ret = ldq_user(addr);
1454 break;
1456 break;
1457 case 0xb: /* Supervisor data access */
1458 switch(size) {
1459 case 1:
1460 ret = ldub_kernel(addr);
1461 break;
1462 case 2:
1463 ret = lduw_kernel(addr);
1464 break;
1465 default:
1466 case 4:
1467 ret = ldl_kernel(addr);
1468 break;
1469 case 8:
1470 ret = ldq_kernel(addr);
1471 break;
1473 break;
1474 case 0xc: /* I-cache tag */
1475 case 0xd: /* I-cache data */
1476 case 0xe: /* D-cache tag */
1477 case 0xf: /* D-cache data */
1478 break;
1479 case 0x20: /* MMU passthrough */
1480 switch(size) {
1481 case 1:
1482 ret = ldub_phys(addr);
1483 break;
1484 case 2:
1485 ret = lduw_phys(addr);
1486 break;
1487 default:
1488 case 4:
1489 ret = ldl_phys(addr);
1490 break;
1491 case 8:
1492 ret = ldq_phys(addr);
1493 break;
1495 break;
1496 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1497 switch(size) {
1498 case 1:
1499 ret = ldub_phys((target_phys_addr_t)addr
1500 | ((target_phys_addr_t)(asi & 0xf) << 32));
1501 break;
1502 case 2:
1503 ret = lduw_phys((target_phys_addr_t)addr
1504 | ((target_phys_addr_t)(asi & 0xf) << 32));
1505 break;
1506 default:
1507 case 4:
1508 ret = ldl_phys((target_phys_addr_t)addr
1509 | ((target_phys_addr_t)(asi & 0xf) << 32));
1510 break;
1511 case 8:
1512 ret = ldq_phys((target_phys_addr_t)addr
1513 | ((target_phys_addr_t)(asi & 0xf) << 32));
1514 break;
1516 break;
1517 case 0x30: // Turbosparc secondary cache diagnostic
1518 case 0x31: // Turbosparc RAM snoop
1519 case 0x32: // Turbosparc page table descriptor diagnostic
1520 case 0x39: /* data cache diagnostic register */
1521 ret = 0;
1522 break;
1523 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1525 int reg = (addr >> 8) & 3;
1527 switch(reg) {
1528 case 0: /* Breakpoint Value (Addr) */
1529 ret = env->mmubpregs[reg];
1530 break;
1531 case 1: /* Breakpoint Mask */
1532 ret = env->mmubpregs[reg];
1533 break;
1534 case 2: /* Breakpoint Control */
1535 ret = env->mmubpregs[reg];
1536 break;
1537 case 3: /* Breakpoint Status */
1538 ret = env->mmubpregs[reg];
1539 env->mmubpregs[reg] = 0ULL;
1540 break;
1542 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1543 ret);
1545 break;
1546 case 8: /* User code access, XXX */
1547 default:
1548 do_unassigned_access(addr, 0, 0, asi, size);
1549 ret = 0;
1550 break;
1552 if (sign) {
1553 switch(size) {
1554 case 1:
1555 ret = (int8_t) ret;
1556 break;
1557 case 2:
1558 ret = (int16_t) ret;
1559 break;
1560 case 4:
1561 ret = (int32_t) ret;
1562 break;
1563 default:
1564 break;
1567 #ifdef DEBUG_ASI
1568 dump_asi("read ", last_addr, asi, size, ret);
1569 #endif
1570 return ret;
1573 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1575 helper_check_align(addr, size - 1);
1576 switch(asi) {
1577 case 2: /* SuperSparc MXCC registers */
1578 switch (addr) {
1579 case 0x01c00000: /* MXCC stream data register 0 */
1580 if (size == 8)
1581 env->mxccdata[0] = val;
1582 else
1583 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1584 size);
1585 break;
1586 case 0x01c00008: /* MXCC stream data register 1 */
1587 if (size == 8)
1588 env->mxccdata[1] = val;
1589 else
1590 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1591 size);
1592 break;
1593 case 0x01c00010: /* MXCC stream data register 2 */
1594 if (size == 8)
1595 env->mxccdata[2] = val;
1596 else
1597 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1598 size);
1599 break;
1600 case 0x01c00018: /* MXCC stream data register 3 */
1601 if (size == 8)
1602 env->mxccdata[3] = val;
1603 else
1604 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1605 size);
1606 break;
1607 case 0x01c00100: /* MXCC stream source */
1608 if (size == 8)
1609 env->mxccregs[0] = val;
1610 else
1611 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1612 size);
1613 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1615 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1617 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1618 16);
1619 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1620 24);
1621 break;
1622 case 0x01c00200: /* MXCC stream destination */
1623 if (size == 8)
1624 env->mxccregs[1] = val;
1625 else
1626 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1627 size);
1628 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1629 env->mxccdata[0]);
1630 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1631 env->mxccdata[1]);
1632 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1633 env->mxccdata[2]);
1634 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1635 env->mxccdata[3]);
1636 break;
1637 case 0x01c00a00: /* MXCC control register */
1638 if (size == 8)
1639 env->mxccregs[3] = val;
1640 else
1641 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1642 size);
1643 break;
1644 case 0x01c00a04: /* MXCC control register */
1645 if (size == 4)
1646 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1647 | val;
1648 else
1649 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1650 size);
1651 break;
1652 case 0x01c00e00: /* MXCC error register */
1653 // writing a 1 bit clears the error
1654 if (size == 8)
1655 env->mxccregs[6] &= ~val;
1656 else
1657 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1658 size);
1659 break;
1660 case 0x01c00f00: /* MBus port address register */
1661 if (size == 8)
1662 env->mxccregs[7] = val;
1663 else
1664 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1665 size);
1666 break;
1667 default:
1668 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1669 size);
1670 break;
1672 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1673 asi, size, addr, val);
1674 #ifdef DEBUG_MXCC
1675 dump_mxcc(env);
1676 #endif
1677 break;
1678 case 3: /* MMU flush */
1680 int mmulev;
1682 mmulev = (addr >> 8) & 15;
1683 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1684 switch (mmulev) {
1685 case 0: // flush page
1686 tlb_flush_page(env, addr & 0xfffff000);
1687 break;
1688 case 1: // flush segment (256k)
1689 case 2: // flush region (16M)
1690 case 3: // flush context (4G)
1691 case 4: // flush entire
1692 tlb_flush(env, 1);
1693 break;
1694 default:
1695 break;
1697 #ifdef DEBUG_MMU
1698 dump_mmu(env);
1699 #endif
1701 break;
1702 case 4: /* write MMU regs */
1704 int reg = (addr >> 8) & 0x1f;
1705 uint32_t oldreg;
1707 oldreg = env->mmuregs[reg];
1708 switch(reg) {
1709 case 0: // Control Register
1710 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1711 (val & 0x00ffffff);
1712 // Mappings generated during no-fault mode or MMU
1713 // disabled mode are invalid in normal mode
1714 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1715 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1716 tlb_flush(env, 1);
1717 break;
1718 case 1: // Context Table Pointer Register
1719 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1720 break;
1721 case 2: // Context Register
1722 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1723 if (oldreg != env->mmuregs[reg]) {
1724 /* we flush when the MMU context changes because
1725 QEMU has no MMU context support */
1726 tlb_flush(env, 1);
1728 break;
1729 case 3: // Synchronous Fault Status Register with Clear
1730 case 4: // Synchronous Fault Address Register
1731 break;
1732 case 0x10: // TLB Replacement Control Register
1733 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1734 break;
1735 case 0x13: // Synchronous Fault Status Register with Read and Clear
1736 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1737 break;
1738 case 0x14: // Synchronous Fault Address Register
1739 env->mmuregs[4] = val;
1740 break;
1741 default:
1742 env->mmuregs[reg] = val;
1743 break;
1745 if (oldreg != env->mmuregs[reg]) {
1746 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1747 reg, oldreg, env->mmuregs[reg]);
1749 #ifdef DEBUG_MMU
1750 dump_mmu(env);
1751 #endif
1753 break;
1754 case 5: // Turbosparc ITLB Diagnostic
1755 case 6: // Turbosparc DTLB Diagnostic
1756 case 7: // Turbosparc IOTLB Diagnostic
1757 break;
1758 case 0xa: /* User data access */
1759 switch(size) {
1760 case 1:
1761 stb_user(addr, val);
1762 break;
1763 case 2:
1764 stw_user(addr, val);
1765 break;
1766 default:
1767 case 4:
1768 stl_user(addr, val);
1769 break;
1770 case 8:
1771 stq_user(addr, val);
1772 break;
1774 break;
1775 case 0xb: /* Supervisor data access */
1776 switch(size) {
1777 case 1:
1778 stb_kernel(addr, val);
1779 break;
1780 case 2:
1781 stw_kernel(addr, val);
1782 break;
1783 default:
1784 case 4:
1785 stl_kernel(addr, val);
1786 break;
1787 case 8:
1788 stq_kernel(addr, val);
1789 break;
1791 break;
1792 case 0xc: /* I-cache tag */
1793 case 0xd: /* I-cache data */
1794 case 0xe: /* D-cache tag */
1795 case 0xf: /* D-cache data */
1796 case 0x10: /* I/D-cache flush page */
1797 case 0x11: /* I/D-cache flush segment */
1798 case 0x12: /* I/D-cache flush region */
1799 case 0x13: /* I/D-cache flush context */
1800 case 0x14: /* I/D-cache flush user */
1801 break;
1802 case 0x17: /* Block copy, sta access */
1804 // val = src
1805 // addr = dst
1806 // copy 32 bytes
1807 unsigned int i;
1808 uint32_t src = val & ~3, dst = addr & ~3, temp;
1810 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1811 temp = ldl_kernel(src);
1812 stl_kernel(dst, temp);
1815 break;
1816 case 0x1f: /* Block fill, stda access */
1818 // addr = dst
1819 // fill 32 bytes with val
1820 unsigned int i;
1821 uint32_t dst = addr & 7;
1823 for (i = 0; i < 32; i += 8, dst += 8)
1824 stq_kernel(dst, val);
1826 break;
1827 case 0x20: /* MMU passthrough */
1829 switch(size) {
1830 case 1:
1831 stb_phys(addr, val);
1832 break;
1833 case 2:
1834 stw_phys(addr, val);
1835 break;
1836 case 4:
1837 default:
1838 stl_phys(addr, val);
1839 break;
1840 case 8:
1841 stq_phys(addr, val);
1842 break;
1845 break;
1846 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1848 switch(size) {
1849 case 1:
1850 stb_phys((target_phys_addr_t)addr
1851 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1852 break;
1853 case 2:
1854 stw_phys((target_phys_addr_t)addr
1855 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1856 break;
1857 case 4:
1858 default:
1859 stl_phys((target_phys_addr_t)addr
1860 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1861 break;
1862 case 8:
1863 stq_phys((target_phys_addr_t)addr
1864 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1865 break;
1868 break;
1869 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1870 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1871 // Turbosparc snoop RAM
1872 case 0x32: // store buffer control or Turbosparc page table
1873 // descriptor diagnostic
1874 case 0x36: /* I-cache flash clear */
1875 case 0x37: /* D-cache flash clear */
1876 case 0x4c: /* breakpoint action */
1877 break;
1878 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1880 int reg = (addr >> 8) & 3;
1882 switch(reg) {
1883 case 0: /* Breakpoint Value (Addr) */
1884 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1885 break;
1886 case 1: /* Breakpoint Mask */
1887 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1888 break;
1889 case 2: /* Breakpoint Control */
1890 env->mmubpregs[reg] = (val & 0x7fULL);
1891 break;
1892 case 3: /* Breakpoint Status */
1893 env->mmubpregs[reg] = (val & 0xfULL);
1894 break;
1896 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1897 env->mmuregs[reg]);
1899 break;
1900 case 8: /* User code access, XXX */
1901 case 9: /* Supervisor code access, XXX */
1902 default:
1903 do_unassigned_access(addr, 1, 0, asi, size);
1904 break;
1906 #ifdef DEBUG_ASI
1907 dump_asi("write", addr, asi, size, val);
1908 #endif
1911 #endif /* CONFIG_USER_ONLY */
1912 #else /* TARGET_SPARC64 */
1914 #ifdef CONFIG_USER_ONLY
1915 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1917 uint64_t ret = 0;
1918 #if defined(DEBUG_ASI)
1919 target_ulong last_addr = addr;
1920 #endif
1922 if (asi < 0x80)
1923 raise_exception(TT_PRIV_ACT);
1925 helper_check_align(addr, size - 1);
1926 address_mask(env, &addr);
1928 switch (asi) {
1929 case 0x82: // Primary no-fault
1930 case 0x8a: // Primary no-fault LE
1931 if (page_check_range(addr, size, PAGE_READ) == -1) {
1932 #ifdef DEBUG_ASI
1933 dump_asi("read ", last_addr, asi, size, ret);
1934 #endif
1935 return 0;
1937 // Fall through
1938 case 0x80: // Primary
1939 case 0x88: // Primary LE
1941 switch(size) {
1942 case 1:
1943 ret = ldub_raw(addr);
1944 break;
1945 case 2:
1946 ret = lduw_raw(addr);
1947 break;
1948 case 4:
1949 ret = ldl_raw(addr);
1950 break;
1951 default:
1952 case 8:
1953 ret = ldq_raw(addr);
1954 break;
1957 break;
1958 case 0x83: // Secondary no-fault
1959 case 0x8b: // Secondary no-fault LE
1960 if (page_check_range(addr, size, PAGE_READ) == -1) {
1961 #ifdef DEBUG_ASI
1962 dump_asi("read ", last_addr, asi, size, ret);
1963 #endif
1964 return 0;
1966 // Fall through
1967 case 0x81: // Secondary
1968 case 0x89: // Secondary LE
1969 // XXX
1970 break;
1971 default:
1972 break;
1975 /* Convert from little endian */
1976 switch (asi) {
1977 case 0x88: // Primary LE
1978 case 0x89: // Secondary LE
1979 case 0x8a: // Primary no-fault LE
1980 case 0x8b: // Secondary no-fault LE
1981 switch(size) {
1982 case 2:
1983 ret = bswap16(ret);
1984 break;
1985 case 4:
1986 ret = bswap32(ret);
1987 break;
1988 case 8:
1989 ret = bswap64(ret);
1990 break;
1991 default:
1992 break;
1994 default:
1995 break;
1998 /* Convert to signed number */
1999 if (sign) {
2000 switch(size) {
2001 case 1:
2002 ret = (int8_t) ret;
2003 break;
2004 case 2:
2005 ret = (int16_t) ret;
2006 break;
2007 case 4:
2008 ret = (int32_t) ret;
2009 break;
2010 default:
2011 break;
2014 #ifdef DEBUG_ASI
2015 dump_asi("read ", last_addr, asi, size, ret);
2016 #endif
2017 return ret;
2020 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2022 #ifdef DEBUG_ASI
2023 dump_asi("write", addr, asi, size, val);
2024 #endif
2025 if (asi < 0x80)
2026 raise_exception(TT_PRIV_ACT);
2028 helper_check_align(addr, size - 1);
2029 address_mask(env, &addr);
2031 /* Convert to little endian */
2032 switch (asi) {
2033 case 0x88: // Primary LE
2034 case 0x89: // Secondary LE
2035 switch(size) {
2036 case 2:
2037 val = bswap16(val);
2038 break;
2039 case 4:
2040 val = bswap32(val);
2041 break;
2042 case 8:
2043 val = bswap64(val);
2044 break;
2045 default:
2046 break;
2048 default:
2049 break;
2052 switch(asi) {
2053 case 0x80: // Primary
2054 case 0x88: // Primary LE
2056 switch(size) {
2057 case 1:
2058 stb_raw(addr, val);
2059 break;
2060 case 2:
2061 stw_raw(addr, val);
2062 break;
2063 case 4:
2064 stl_raw(addr, val);
2065 break;
2066 case 8:
2067 default:
2068 stq_raw(addr, val);
2069 break;
2072 break;
2073 case 0x81: // Secondary
2074 case 0x89: // Secondary LE
2075 // XXX
2076 return;
2078 case 0x82: // Primary no-fault, RO
2079 case 0x83: // Secondary no-fault, RO
2080 case 0x8a: // Primary no-fault LE, RO
2081 case 0x8b: // Secondary no-fault LE, RO
2082 default:
2083 do_unassigned_access(addr, 1, 0, 1, size);
2084 return;
2088 #else /* CONFIG_USER_ONLY */
2090 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2092 uint64_t ret = 0;
2093 #if defined(DEBUG_ASI)
2094 target_ulong last_addr = addr;
2095 #endif
2097 asi &= 0xff;
2099 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2100 || ((env->def->features & CPU_FEATURE_HYPV)
2101 && asi >= 0x30 && asi < 0x80
2102 && !(env->hpstate & HS_PRIV)))
2103 raise_exception(TT_PRIV_ACT);
2105 helper_check_align(addr, size - 1);
2106 switch (asi) {
2107 case 0x82: // Primary no-fault
2108 case 0x8a: // Primary no-fault LE
2109 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2110 #ifdef DEBUG_ASI
2111 dump_asi("read ", last_addr, asi, size, ret);
2112 #endif
2113 return 0;
2115 // Fall through
2116 case 0x10: // As if user primary
2117 case 0x18: // As if user primary LE
2118 case 0x80: // Primary
2119 case 0x88: // Primary LE
2120 case 0xe2: // UA2007 Primary block init
2121 case 0xe3: // UA2007 Secondary block init
2122 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2123 if ((env->def->features & CPU_FEATURE_HYPV)
2124 && env->hpstate & HS_PRIV) {
2125 switch(size) {
2126 case 1:
2127 ret = ldub_hypv(addr);
2128 break;
2129 case 2:
2130 ret = lduw_hypv(addr);
2131 break;
2132 case 4:
2133 ret = ldl_hypv(addr);
2134 break;
2135 default:
2136 case 8:
2137 ret = ldq_hypv(addr);
2138 break;
2140 } else {
2141 switch(size) {
2142 case 1:
2143 ret = ldub_kernel(addr);
2144 break;
2145 case 2:
2146 ret = lduw_kernel(addr);
2147 break;
2148 case 4:
2149 ret = ldl_kernel(addr);
2150 break;
2151 default:
2152 case 8:
2153 ret = ldq_kernel(addr);
2154 break;
2157 } else {
2158 switch(size) {
2159 case 1:
2160 ret = ldub_user(addr);
2161 break;
2162 case 2:
2163 ret = lduw_user(addr);
2164 break;
2165 case 4:
2166 ret = ldl_user(addr);
2167 break;
2168 default:
2169 case 8:
2170 ret = ldq_user(addr);
2171 break;
2174 break;
2175 case 0x14: // Bypass
2176 case 0x15: // Bypass, non-cacheable
2177 case 0x1c: // Bypass LE
2178 case 0x1d: // Bypass, non-cacheable LE
2180 switch(size) {
2181 case 1:
2182 ret = ldub_phys(addr);
2183 break;
2184 case 2:
2185 ret = lduw_phys(addr);
2186 break;
2187 case 4:
2188 ret = ldl_phys(addr);
2189 break;
2190 default:
2191 case 8:
2192 ret = ldq_phys(addr);
2193 break;
2195 break;
2197 case 0x24: // Nucleus quad LDD 128 bit atomic
2198 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2199 // Only ldda allowed
2200 raise_exception(TT_ILL_INSN);
2201 return 0;
2202 case 0x83: // Secondary no-fault
2203 case 0x8b: // Secondary no-fault LE
2204 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2205 #ifdef DEBUG_ASI
2206 dump_asi("read ", last_addr, asi, size, ret);
2207 #endif
2208 return 0;
2210 // Fall through
2211 case 0x04: // Nucleus
2212 case 0x0c: // Nucleus Little Endian (LE)
2213 case 0x11: // As if user secondary
2214 case 0x19: // As if user secondary LE
2215 case 0x4a: // UPA config
2216 case 0x81: // Secondary
2217 case 0x89: // Secondary LE
2218 // XXX
2219 break;
2220 case 0x45: // LSU
2221 ret = env->lsu;
2222 break;
2223 case 0x50: // I-MMU regs
2225 int reg = (addr >> 3) & 0xf;
2227 if (reg == 0) {
2228 // I-TSB Tag Target register
2229 ret = ultrasparc_tag_target(env->immu.tag_access);
2230 } else {
2231 ret = env->immuregs[reg];
2234 break;
2236 case 0x51: // I-MMU 8k TSB pointer
2238 // env->immuregs[5] holds I-MMU TSB register value
2239 // env->immuregs[6] holds I-MMU Tag Access register value
2240 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2241 8*1024);
2242 break;
2244 case 0x52: // I-MMU 64k TSB pointer
2246 // env->immuregs[5] holds I-MMU TSB register value
2247 // env->immuregs[6] holds I-MMU Tag Access register value
2248 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2249 64*1024);
2250 break;
2252 case 0x55: // I-MMU data access
2254 int reg = (addr >> 3) & 0x3f;
2256 ret = env->itlb[reg].tte;
2257 break;
2259 case 0x56: // I-MMU tag read
2261 int reg = (addr >> 3) & 0x3f;
2263 ret = env->itlb[reg].tag;
2264 break;
2266 case 0x58: // D-MMU regs
2268 int reg = (addr >> 3) & 0xf;
2270 if (reg == 0) {
2271 // D-TSB Tag Target register
2272 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2273 } else {
2274 ret = env->dmmuregs[reg];
2276 break;
2278 case 0x59: // D-MMU 8k TSB pointer
2280 // env->dmmuregs[5] holds D-MMU TSB register value
2281 // env->dmmuregs[6] holds D-MMU Tag Access register value
2282 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2283 8*1024);
2284 break;
2286 case 0x5a: // D-MMU 64k TSB pointer
2288 // env->dmmuregs[5] holds D-MMU TSB register value
2289 // env->dmmuregs[6] holds D-MMU Tag Access register value
2290 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2291 64*1024);
2292 break;
2294 case 0x5d: // D-MMU data access
2296 int reg = (addr >> 3) & 0x3f;
2298 ret = env->dtlb[reg].tte;
2299 break;
2301 case 0x5e: // D-MMU tag read
2303 int reg = (addr >> 3) & 0x3f;
2305 ret = env->dtlb[reg].tag;
2306 break;
2308 case 0x46: // D-cache data
2309 case 0x47: // D-cache tag access
2310 case 0x4b: // E-cache error enable
2311 case 0x4c: // E-cache asynchronous fault status
2312 case 0x4d: // E-cache asynchronous fault address
2313 case 0x4e: // E-cache tag data
2314 case 0x66: // I-cache instruction access
2315 case 0x67: // I-cache tag access
2316 case 0x6e: // I-cache predecode
2317 case 0x6f: // I-cache LRU etc.
2318 case 0x76: // E-cache tag
2319 case 0x7e: // E-cache tag
2320 break;
2321 case 0x5b: // D-MMU data pointer
2322 case 0x48: // Interrupt dispatch, RO
2323 case 0x49: // Interrupt data receive
2324 case 0x7f: // Incoming interrupt vector, RO
2325 // XXX
2326 break;
2327 case 0x54: // I-MMU data in, WO
2328 case 0x57: // I-MMU demap, WO
2329 case 0x5c: // D-MMU data in, WO
2330 case 0x5f: // D-MMU demap, WO
2331 case 0x77: // Interrupt vector, WO
2332 default:
2333 do_unassigned_access(addr, 0, 0, 1, size);
2334 ret = 0;
2335 break;
2338 /* Convert from little endian */
2339 switch (asi) {
2340 case 0x0c: // Nucleus Little Endian (LE)
2341 case 0x18: // As if user primary LE
2342 case 0x19: // As if user secondary LE
2343 case 0x1c: // Bypass LE
2344 case 0x1d: // Bypass, non-cacheable LE
2345 case 0x88: // Primary LE
2346 case 0x89: // Secondary LE
2347 case 0x8a: // Primary no-fault LE
2348 case 0x8b: // Secondary no-fault LE
2349 switch(size) {
2350 case 2:
2351 ret = bswap16(ret);
2352 break;
2353 case 4:
2354 ret = bswap32(ret);
2355 break;
2356 case 8:
2357 ret = bswap64(ret);
2358 break;
2359 default:
2360 break;
2362 default:
2363 break;
2366 /* Convert to signed number */
2367 if (sign) {
2368 switch(size) {
2369 case 1:
2370 ret = (int8_t) ret;
2371 break;
2372 case 2:
2373 ret = (int16_t) ret;
2374 break;
2375 case 4:
2376 ret = (int32_t) ret;
2377 break;
2378 default:
2379 break;
2382 #ifdef DEBUG_ASI
2383 dump_asi("read ", last_addr, asi, size, ret);
2384 #endif
2385 return ret;
2388 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2390 #ifdef DEBUG_ASI
2391 dump_asi("write", addr, asi, size, val);
2392 #endif
2394 asi &= 0xff;
2396 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2397 || ((env->def->features & CPU_FEATURE_HYPV)
2398 && asi >= 0x30 && asi < 0x80
2399 && !(env->hpstate & HS_PRIV)))
2400 raise_exception(TT_PRIV_ACT);
2402 helper_check_align(addr, size - 1);
2403 /* Convert to little endian */
2404 switch (asi) {
2405 case 0x0c: // Nucleus Little Endian (LE)
2406 case 0x18: // As if user primary LE
2407 case 0x19: // As if user secondary LE
2408 case 0x1c: // Bypass LE
2409 case 0x1d: // Bypass, non-cacheable LE
2410 case 0x88: // Primary LE
2411 case 0x89: // Secondary LE
2412 switch(size) {
2413 case 2:
2414 val = bswap16(val);
2415 break;
2416 case 4:
2417 val = bswap32(val);
2418 break;
2419 case 8:
2420 val = bswap64(val);
2421 break;
2422 default:
2423 break;
2425 default:
2426 break;
2429 switch(asi) {
2430 case 0x10: // As if user primary
2431 case 0x18: // As if user primary LE
2432 case 0x80: // Primary
2433 case 0x88: // Primary LE
2434 case 0xe2: // UA2007 Primary block init
2435 case 0xe3: // UA2007 Secondary block init
2436 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2437 if ((env->def->features & CPU_FEATURE_HYPV)
2438 && env->hpstate & HS_PRIV) {
2439 switch(size) {
2440 case 1:
2441 stb_hypv(addr, val);
2442 break;
2443 case 2:
2444 stw_hypv(addr, val);
2445 break;
2446 case 4:
2447 stl_hypv(addr, val);
2448 break;
2449 case 8:
2450 default:
2451 stq_hypv(addr, val);
2452 break;
2454 } else {
2455 switch(size) {
2456 case 1:
2457 stb_kernel(addr, val);
2458 break;
2459 case 2:
2460 stw_kernel(addr, val);
2461 break;
2462 case 4:
2463 stl_kernel(addr, val);
2464 break;
2465 case 8:
2466 default:
2467 stq_kernel(addr, val);
2468 break;
2471 } else {
2472 switch(size) {
2473 case 1:
2474 stb_user(addr, val);
2475 break;
2476 case 2:
2477 stw_user(addr, val);
2478 break;
2479 case 4:
2480 stl_user(addr, val);
2481 break;
2482 case 8:
2483 default:
2484 stq_user(addr, val);
2485 break;
2488 break;
2489 case 0x14: // Bypass
2490 case 0x15: // Bypass, non-cacheable
2491 case 0x1c: // Bypass LE
2492 case 0x1d: // Bypass, non-cacheable LE
2494 switch(size) {
2495 case 1:
2496 stb_phys(addr, val);
2497 break;
2498 case 2:
2499 stw_phys(addr, val);
2500 break;
2501 case 4:
2502 stl_phys(addr, val);
2503 break;
2504 case 8:
2505 default:
2506 stq_phys(addr, val);
2507 break;
2510 return;
2511 case 0x24: // Nucleus quad LDD 128 bit atomic
2512 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2513 // Only ldda allowed
2514 raise_exception(TT_ILL_INSN);
2515 return;
2516 case 0x04: // Nucleus
2517 case 0x0c: // Nucleus Little Endian (LE)
2518 case 0x11: // As if user secondary
2519 case 0x19: // As if user secondary LE
2520 case 0x4a: // UPA config
2521 case 0x81: // Secondary
2522 case 0x89: // Secondary LE
2523 // XXX
2524 return;
2525 case 0x45: // LSU
2527 uint64_t oldreg;
2529 oldreg = env->lsu;
2530 env->lsu = val & (DMMU_E | IMMU_E);
2531 // Mappings generated during D/I MMU disabled mode are
2532 // invalid in normal mode
2533 if (oldreg != env->lsu) {
2534 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2535 oldreg, env->lsu);
2536 #ifdef DEBUG_MMU
2537 dump_mmu(env);
2538 #endif
2539 tlb_flush(env, 1);
2541 return;
2543 case 0x50: // I-MMU regs
2545 int reg = (addr >> 3) & 0xf;
2546 uint64_t oldreg;
2548 oldreg = env->immuregs[reg];
2549 switch(reg) {
2550 case 0: // RO
2551 return;
2552 case 1: // Not in I-MMU
2553 case 2:
2554 return;
2555 case 3: // SFSR
2556 if ((val & 1) == 0)
2557 val = 0; // Clear SFSR
2558 env->immu.sfsr = val;
2559 break;
2560 case 4: // RO
2561 return;
2562 case 5: // TSB access
2563 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2564 PRIx64 "\n", env->immu.tsb, val);
2565 env->immu.tsb = val;
2566 break;
2567 case 6: // Tag access
2568 env->immu.tag_access = val;
2569 break;
2570 case 7:
2571 case 8:
2572 return;
2573 default:
2574 break;
2577 if (oldreg != env->immuregs[reg]) {
2578 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2579 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2581 #ifdef DEBUG_MMU
2582 dump_mmu(env);
2583 #endif
2584 return;
2586 case 0x54: // I-MMU data in
2587 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2588 return;
2589 case 0x55: // I-MMU data access
2591 // TODO: auto demap
2593 unsigned int i = (addr >> 3) & 0x3f;
2595 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2597 #ifdef DEBUG_MMU
2598 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2599 dump_mmu(env);
2600 #endif
2601 return;
2603 case 0x57: // I-MMU demap
2604 demap_tlb(env->itlb, val, "immu", env);
2605 return;
2606 case 0x58: // D-MMU regs
2608 int reg = (addr >> 3) & 0xf;
2609 uint64_t oldreg;
2611 oldreg = env->dmmuregs[reg];
2612 switch(reg) {
2613 case 0: // RO
2614 case 4:
2615 return;
2616 case 3: // SFSR
2617 if ((val & 1) == 0) {
2618 val = 0; // Clear SFSR, Fault address
2619 env->dmmu.sfar = 0;
2621 env->dmmu.sfsr = val;
2622 break;
2623 case 1: // Primary context
2624 env->dmmu.mmu_primary_context = val;
2625 break;
2626 case 2: // Secondary context
2627 env->dmmu.mmu_secondary_context = val;
2628 break;
2629 case 5: // TSB access
2630 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2631 PRIx64 "\n", env->dmmu.tsb, val);
2632 env->dmmu.tsb = val;
2633 break;
2634 case 6: // Tag access
2635 env->dmmu.tag_access = val;
2636 break;
2637 case 7: // Virtual Watchpoint
2638 case 8: // Physical Watchpoint
2639 default:
2640 env->dmmuregs[reg] = val;
2641 break;
2644 if (oldreg != env->dmmuregs[reg]) {
2645 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2646 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2648 #ifdef DEBUG_MMU
2649 dump_mmu(env);
2650 #endif
2651 return;
2653 case 0x5c: // D-MMU data in
2654 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2655 return;
2656 case 0x5d: // D-MMU data access
2658 unsigned int i = (addr >> 3) & 0x3f;
2660 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2662 #ifdef DEBUG_MMU
2663 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2664 dump_mmu(env);
2665 #endif
2666 return;
2668 case 0x5f: // D-MMU demap
2669 demap_tlb(env->dtlb, val, "dmmu", env);
2670 return;
2671 case 0x49: // Interrupt data receive
2672 // XXX
2673 return;
2674 case 0x46: // D-cache data
2675 case 0x47: // D-cache tag access
2676 case 0x4b: // E-cache error enable
2677 case 0x4c: // E-cache asynchronous fault status
2678 case 0x4d: // E-cache asynchronous fault address
2679 case 0x4e: // E-cache tag data
2680 case 0x66: // I-cache instruction access
2681 case 0x67: // I-cache tag access
2682 case 0x6e: // I-cache predecode
2683 case 0x6f: // I-cache LRU etc.
2684 case 0x76: // E-cache tag
2685 case 0x7e: // E-cache tag
2686 return;
2687 case 0x51: // I-MMU 8k TSB pointer, RO
2688 case 0x52: // I-MMU 64k TSB pointer, RO
2689 case 0x56: // I-MMU tag read, RO
2690 case 0x59: // D-MMU 8k TSB pointer, RO
2691 case 0x5a: // D-MMU 64k TSB pointer, RO
2692 case 0x5b: // D-MMU data pointer, RO
2693 case 0x5e: // D-MMU tag read, RO
2694 case 0x48: // Interrupt dispatch, RO
2695 case 0x7f: // Incoming interrupt vector, RO
2696 case 0x82: // Primary no-fault, RO
2697 case 0x83: // Secondary no-fault, RO
2698 case 0x8a: // Primary no-fault LE, RO
2699 case 0x8b: // Secondary no-fault LE, RO
2700 default:
2701 do_unassigned_access(addr, 1, 0, 1, size);
2702 return;
2705 #endif /* CONFIG_USER_ONLY */
2707 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2709 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2710 || ((env->def->features & CPU_FEATURE_HYPV)
2711 && asi >= 0x30 && asi < 0x80
2712 && !(env->hpstate & HS_PRIV)))
2713 raise_exception(TT_PRIV_ACT);
2715 switch (asi) {
2716 case 0x24: // Nucleus quad LDD 128 bit atomic
2717 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2718 helper_check_align(addr, 0xf);
2719 if (rd == 0) {
2720 env->gregs[1] = ldq_kernel(addr + 8);
2721 if (asi == 0x2c)
2722 bswap64s(&env->gregs[1]);
2723 } else if (rd < 8) {
2724 env->gregs[rd] = ldq_kernel(addr);
2725 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2726 if (asi == 0x2c) {
2727 bswap64s(&env->gregs[rd]);
2728 bswap64s(&env->gregs[rd + 1]);
2730 } else {
2731 env->regwptr[rd] = ldq_kernel(addr);
2732 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2733 if (asi == 0x2c) {
2734 bswap64s(&env->regwptr[rd]);
2735 bswap64s(&env->regwptr[rd + 1]);
2738 break;
2739 default:
2740 helper_check_align(addr, 0x3);
2741 if (rd == 0)
2742 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2743 else if (rd < 8) {
2744 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2745 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2746 } else {
2747 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2748 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2750 break;
2754 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2756 unsigned int i;
2757 target_ulong val;
2759 helper_check_align(addr, 3);
2760 switch (asi) {
2761 case 0xf0: // Block load primary
2762 case 0xf1: // Block load secondary
2763 case 0xf8: // Block load primary LE
2764 case 0xf9: // Block load secondary LE
2765 if (rd & 7) {
2766 raise_exception(TT_ILL_INSN);
2767 return;
2769 helper_check_align(addr, 0x3f);
2770 for (i = 0; i < 16; i++) {
2771 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2773 addr += 4;
2776 return;
2777 default:
2778 break;
2781 val = helper_ld_asi(addr, asi, size, 0);
2782 switch(size) {
2783 default:
2784 case 4:
2785 *((uint32_t *)&env->fpr[rd]) = val;
2786 break;
2787 case 8:
2788 *((int64_t *)&DT0) = val;
2789 break;
2790 case 16:
2791 // XXX
2792 break;
2796 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2798 unsigned int i;
2799 target_ulong val = 0;
2801 helper_check_align(addr, 3);
2802 switch (asi) {
2803 case 0xe0: // UA2007 Block commit store primary (cache flush)
2804 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2805 case 0xf0: // Block store primary
2806 case 0xf1: // Block store secondary
2807 case 0xf8: // Block store primary LE
2808 case 0xf9: // Block store secondary LE
2809 if (rd & 7) {
2810 raise_exception(TT_ILL_INSN);
2811 return;
2813 helper_check_align(addr, 0x3f);
2814 for (i = 0; i < 16; i++) {
2815 val = *(uint32_t *)&env->fpr[rd++];
2816 helper_st_asi(addr, val, asi & 0x8f, 4);
2817 addr += 4;
2820 return;
2821 default:
2822 break;
2825 switch(size) {
2826 default:
2827 case 4:
2828 val = *((uint32_t *)&env->fpr[rd]);
2829 break;
2830 case 8:
2831 val = *((int64_t *)&DT0);
2832 break;
2833 case 16:
2834 // XXX
2835 break;
2837 helper_st_asi(addr, val, asi, size);
2840 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2841 target_ulong val2, uint32_t asi)
2843 target_ulong ret;
2845 val2 &= 0xffffffffUL;
2846 ret = helper_ld_asi(addr, asi, 4, 0);
2847 ret &= 0xffffffffUL;
2848 if (val2 == ret)
2849 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2850 return ret;
2853 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2854 target_ulong val2, uint32_t asi)
2856 target_ulong ret;
2858 ret = helper_ld_asi(addr, asi, 8, 0);
2859 if (val2 == ret)
2860 helper_st_asi(addr, val1, asi, 8);
2861 return ret;
2863 #endif /* TARGET_SPARC64 */
2865 #ifndef TARGET_SPARC64
2866 void helper_rett(void)
2868 unsigned int cwp;
2870 if (env->psret == 1)
2871 raise_exception(TT_ILL_INSN);
2873 env->psret = 1;
2874 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2875 if (env->wim & (1 << cwp)) {
2876 raise_exception(TT_WIN_UNF);
2878 set_cwp(cwp);
2879 env->psrs = env->psrps;
2881 #endif
2883 target_ulong helper_udiv(target_ulong a, target_ulong b)
2885 uint64_t x0;
2886 uint32_t x1;
2888 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2889 x1 = b;
2891 if (x1 == 0) {
2892 raise_exception(TT_DIV_ZERO);
2895 x0 = x0 / x1;
2896 if (x0 > 0xffffffff) {
2897 env->cc_src2 = 1;
2898 return 0xffffffff;
2899 } else {
2900 env->cc_src2 = 0;
2901 return x0;
2905 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2907 int64_t x0;
2908 int32_t x1;
2910 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2911 x1 = b;
2913 if (x1 == 0) {
2914 raise_exception(TT_DIV_ZERO);
2917 x0 = x0 / x1;
2918 if ((int32_t) x0 != x0) {
2919 env->cc_src2 = 1;
2920 return x0 < 0? 0x80000000: 0x7fffffff;
2921 } else {
2922 env->cc_src2 = 0;
2923 return x0;
2927 void helper_stdf(target_ulong addr, int mem_idx)
2929 helper_check_align(addr, 7);
2930 #if !defined(CONFIG_USER_ONLY)
2931 switch (mem_idx) {
2932 case 0:
2933 stfq_user(addr, DT0);
2934 break;
2935 case 1:
2936 stfq_kernel(addr, DT0);
2937 break;
2938 #ifdef TARGET_SPARC64
2939 case 2:
2940 stfq_hypv(addr, DT0);
2941 break;
2942 #endif
2943 default:
2944 break;
2946 #else
2947 address_mask(env, &addr);
2948 stfq_raw(addr, DT0);
2949 #endif
2952 void helper_lddf(target_ulong addr, int mem_idx)
2954 helper_check_align(addr, 7);
2955 #if !defined(CONFIG_USER_ONLY)
2956 switch (mem_idx) {
2957 case 0:
2958 DT0 = ldfq_user(addr);
2959 break;
2960 case 1:
2961 DT0 = ldfq_kernel(addr);
2962 break;
2963 #ifdef TARGET_SPARC64
2964 case 2:
2965 DT0 = ldfq_hypv(addr);
2966 break;
2967 #endif
2968 default:
2969 break;
2971 #else
2972 address_mask(env, &addr);
2973 DT0 = ldfq_raw(addr);
2974 #endif
2977 void helper_ldqf(target_ulong addr, int mem_idx)
2979 // XXX add 128 bit load
2980 CPU_QuadU u;
2982 helper_check_align(addr, 7);
2983 #if !defined(CONFIG_USER_ONLY)
2984 switch (mem_idx) {
2985 case 0:
2986 u.ll.upper = ldq_user(addr);
2987 u.ll.lower = ldq_user(addr + 8);
2988 QT0 = u.q;
2989 break;
2990 case 1:
2991 u.ll.upper = ldq_kernel(addr);
2992 u.ll.lower = ldq_kernel(addr + 8);
2993 QT0 = u.q;
2994 break;
2995 #ifdef TARGET_SPARC64
2996 case 2:
2997 u.ll.upper = ldq_hypv(addr);
2998 u.ll.lower = ldq_hypv(addr + 8);
2999 QT0 = u.q;
3000 break;
3001 #endif
3002 default:
3003 break;
3005 #else
3006 address_mask(env, &addr);
3007 u.ll.upper = ldq_raw(addr);
3008 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
3009 QT0 = u.q;
3010 #endif
3013 void helper_stqf(target_ulong addr, int mem_idx)
3015 // XXX add 128 bit store
3016 CPU_QuadU u;
3018 helper_check_align(addr, 7);
3019 #if !defined(CONFIG_USER_ONLY)
3020 switch (mem_idx) {
3021 case 0:
3022 u.q = QT0;
3023 stq_user(addr, u.ll.upper);
3024 stq_user(addr + 8, u.ll.lower);
3025 break;
3026 case 1:
3027 u.q = QT0;
3028 stq_kernel(addr, u.ll.upper);
3029 stq_kernel(addr + 8, u.ll.lower);
3030 break;
3031 #ifdef TARGET_SPARC64
3032 case 2:
3033 u.q = QT0;
3034 stq_hypv(addr, u.ll.upper);
3035 stq_hypv(addr + 8, u.ll.lower);
3036 break;
3037 #endif
3038 default:
3039 break;
3041 #else
3042 u.q = QT0;
3043 address_mask(env, &addr);
3044 stq_raw(addr, u.ll.upper);
3045 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3046 #endif
3049 static inline void set_fsr(void)
3051 int rnd_mode;
3053 switch (env->fsr & FSR_RD_MASK) {
3054 case FSR_RD_NEAREST:
3055 rnd_mode = float_round_nearest_even;
3056 break;
3057 default:
3058 case FSR_RD_ZERO:
3059 rnd_mode = float_round_to_zero;
3060 break;
3061 case FSR_RD_POS:
3062 rnd_mode = float_round_up;
3063 break;
3064 case FSR_RD_NEG:
3065 rnd_mode = float_round_down;
3066 break;
3068 set_float_rounding_mode(rnd_mode, &env->fp_status);
3071 void helper_ldfsr(uint32_t new_fsr)
3073 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3074 set_fsr();
3077 #ifdef TARGET_SPARC64
3078 void helper_ldxfsr(uint64_t new_fsr)
3080 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3081 set_fsr();
3083 #endif
3085 void helper_debug(void)
3087 env->exception_index = EXCP_DEBUG;
3088 cpu_loop_exit();
3091 #ifndef TARGET_SPARC64
3092 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3093 handling ? */
3094 void helper_save(void)
3096 uint32_t cwp;
3098 cwp = cpu_cwp_dec(env, env->cwp - 1);
3099 if (env->wim & (1 << cwp)) {
3100 raise_exception(TT_WIN_OVF);
3102 set_cwp(cwp);
3105 void helper_restore(void)
3107 uint32_t cwp;
3109 cwp = cpu_cwp_inc(env, env->cwp + 1);
3110 if (env->wim & (1 << cwp)) {
3111 raise_exception(TT_WIN_UNF);
3113 set_cwp(cwp);
3116 void helper_wrpsr(target_ulong new_psr)
3118 if ((new_psr & PSR_CWP) >= env->nwindows)
3119 raise_exception(TT_ILL_INSN);
3120 else
3121 PUT_PSR(env, new_psr);
3124 target_ulong helper_rdpsr(void)
3126 return GET_PSR(env);
3129 #else
3130 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3131 handling ? */
3132 void helper_save(void)
3134 uint32_t cwp;
3136 cwp = cpu_cwp_dec(env, env->cwp - 1);
3137 if (env->cansave == 0) {
3138 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3139 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3140 ((env->wstate & 0x7) << 2)));
3141 } else {
3142 if (env->cleanwin - env->canrestore == 0) {
3143 // XXX Clean windows without trap
3144 raise_exception(TT_CLRWIN);
3145 } else {
3146 env->cansave--;
3147 env->canrestore++;
3148 set_cwp(cwp);
3153 void helper_restore(void)
3155 uint32_t cwp;
3157 cwp = cpu_cwp_inc(env, env->cwp + 1);
3158 if (env->canrestore == 0) {
3159 raise_exception(TT_FILL | (env->otherwin != 0 ?
3160 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3161 ((env->wstate & 0x7) << 2)));
3162 } else {
3163 env->cansave++;
3164 env->canrestore--;
3165 set_cwp(cwp);
3169 void helper_flushw(void)
3171 if (env->cansave != env->nwindows - 2) {
3172 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3173 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3174 ((env->wstate & 0x7) << 2)));
3178 void helper_saved(void)
3180 env->cansave++;
3181 if (env->otherwin == 0)
3182 env->canrestore--;
3183 else
3184 env->otherwin--;
3187 void helper_restored(void)
3189 env->canrestore++;
3190 if (env->cleanwin < env->nwindows - 1)
3191 env->cleanwin++;
3192 if (env->otherwin == 0)
3193 env->cansave--;
3194 else
3195 env->otherwin--;
3198 target_ulong helper_rdccr(void)
3200 return GET_CCR(env);
3203 void helper_wrccr(target_ulong new_ccr)
3205 PUT_CCR(env, new_ccr);
3208 // CWP handling is reversed in V9, but we still use the V8 register
3209 // order.
3210 target_ulong helper_rdcwp(void)
3212 return GET_CWP64(env);
3215 void helper_wrcwp(target_ulong new_cwp)
3217 PUT_CWP64(env, new_cwp);
3220 // This function uses non-native bit order
3221 #define GET_FIELD(X, FROM, TO) \
3222 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3224 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3225 #define GET_FIELD_SP(X, FROM, TO) \
3226 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3228 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3230 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3231 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3232 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3233 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3234 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3235 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3236 (((pixel_addr >> 55) & 1) << 4) |
3237 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3238 GET_FIELD_SP(pixel_addr, 11, 12);
3241 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3243 uint64_t tmp;
3245 tmp = addr + offset;
3246 env->gsr &= ~7ULL;
3247 env->gsr |= tmp & 7ULL;
3248 return tmp & ~7ULL;
3251 target_ulong helper_popc(target_ulong val)
3253 return ctpop64(val);
3256 static inline uint64_t *get_gregset(uint32_t pstate)
3258 switch (pstate) {
3259 default:
3260 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3261 pstate,
3262 (pstate & PS_IG) ? " IG" : "",
3263 (pstate & PS_MG) ? " MG" : "",
3264 (pstate & PS_AG) ? " AG" : "");
3265 /* pass through to normal set of global registers */
3266 case 0:
3267 return env->bgregs;
3268 case PS_AG:
3269 return env->agregs;
3270 case PS_MG:
3271 return env->mgregs;
3272 case PS_IG:
3273 return env->igregs;
3277 static inline void change_pstate(uint32_t new_pstate)
3279 uint32_t pstate_regs, new_pstate_regs;
3280 uint64_t *src, *dst;
3282 if (env->def->features & CPU_FEATURE_GL) {
3283 // PS_AG is not implemented in this case
3284 new_pstate &= ~PS_AG;
3287 pstate_regs = env->pstate & 0xc01;
3288 new_pstate_regs = new_pstate & 0xc01;
3290 if (new_pstate_regs != pstate_regs) {
3291 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3292 pstate_regs, new_pstate_regs);
3293 // Switch global register bank
3294 src = get_gregset(new_pstate_regs);
3295 dst = get_gregset(pstate_regs);
3296 memcpy32(dst, env->gregs);
3297 memcpy32(env->gregs, src);
3299 else {
3300 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3301 new_pstate_regs);
3303 env->pstate = new_pstate;
3306 void helper_wrpstate(target_ulong new_state)
3308 change_pstate(new_state & 0xf3f);
3310 #if !defined(CONFIG_USER_ONLY)
3311 if (cpu_interrupts_enabled(env)) {
3312 cpu_check_irqs(env);
3314 #endif
3317 void helper_wrpil(target_ulong new_pil)
3319 #if !defined(CONFIG_USER_ONLY)
3320 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3321 env->psrpil, (uint32_t)new_pil);
3323 env->psrpil = new_pil;
3325 if (cpu_interrupts_enabled(env)) {
3326 cpu_check_irqs(env);
3328 #endif
3331 void helper_done(void)
3333 trap_state* tsptr = cpu_tsptr(env);
3335 env->pc = tsptr->tnpc;
3336 env->npc = tsptr->tnpc + 4;
3337 PUT_CCR(env, tsptr->tstate >> 32);
3338 env->asi = (tsptr->tstate >> 24) & 0xff;
3339 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3340 PUT_CWP64(env, tsptr->tstate & 0xff);
3341 env->tl--;
3343 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3345 #if !defined(CONFIG_USER_ONLY)
3346 if (cpu_interrupts_enabled(env)) {
3347 cpu_check_irqs(env);
3349 #endif
3352 void helper_retry(void)
3354 trap_state* tsptr = cpu_tsptr(env);
3356 env->pc = tsptr->tpc;
3357 env->npc = tsptr->tnpc;
3358 PUT_CCR(env, tsptr->tstate >> 32);
3359 env->asi = (tsptr->tstate >> 24) & 0xff;
3360 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3361 PUT_CWP64(env, tsptr->tstate & 0xff);
3362 env->tl--;
3364 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3366 #if !defined(CONFIG_USER_ONLY)
3367 if (cpu_interrupts_enabled(env)) {
3368 cpu_check_irqs(env);
3370 #endif
3373 static void do_modify_softint(const char* operation, uint32_t value)
3375 if (env->softint != value) {
3376 env->softint = value;
3377 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3378 #if !defined(CONFIG_USER_ONLY)
3379 if (cpu_interrupts_enabled(env)) {
3380 cpu_check_irqs(env);
3382 #endif
3386 void helper_set_softint(uint64_t value)
3388 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3391 void helper_clear_softint(uint64_t value)
3393 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3396 void helper_write_softint(uint64_t value)
3398 do_modify_softint("helper_write_softint", (uint32_t)value);
3400 #endif
3402 void helper_flush(target_ulong addr)
3404 addr &= ~7;
3405 tb_invalidate_page_range(addr, addr + 8);
3408 #ifdef TARGET_SPARC64
3409 #ifdef DEBUG_PCALL
3410 static const char * const excp_names[0x80] = {
3411 [TT_TFAULT] = "Instruction Access Fault",
3412 [TT_TMISS] = "Instruction Access MMU Miss",
3413 [TT_CODE_ACCESS] = "Instruction Access Error",
3414 [TT_ILL_INSN] = "Illegal Instruction",
3415 [TT_PRIV_INSN] = "Privileged Instruction",
3416 [TT_NFPU_INSN] = "FPU Disabled",
3417 [TT_FP_EXCP] = "FPU Exception",
3418 [TT_TOVF] = "Tag Overflow",
3419 [TT_CLRWIN] = "Clean Windows",
3420 [TT_DIV_ZERO] = "Division By Zero",
3421 [TT_DFAULT] = "Data Access Fault",
3422 [TT_DMISS] = "Data Access MMU Miss",
3423 [TT_DATA_ACCESS] = "Data Access Error",
3424 [TT_DPROT] = "Data Protection Error",
3425 [TT_UNALIGNED] = "Unaligned Memory Access",
3426 [TT_PRIV_ACT] = "Privileged Action",
3427 [TT_EXTINT | 0x1] = "External Interrupt 1",
3428 [TT_EXTINT | 0x2] = "External Interrupt 2",
3429 [TT_EXTINT | 0x3] = "External Interrupt 3",
3430 [TT_EXTINT | 0x4] = "External Interrupt 4",
3431 [TT_EXTINT | 0x5] = "External Interrupt 5",
3432 [TT_EXTINT | 0x6] = "External Interrupt 6",
3433 [TT_EXTINT | 0x7] = "External Interrupt 7",
3434 [TT_EXTINT | 0x8] = "External Interrupt 8",
3435 [TT_EXTINT | 0x9] = "External Interrupt 9",
3436 [TT_EXTINT | 0xa] = "External Interrupt 10",
3437 [TT_EXTINT | 0xb] = "External Interrupt 11",
3438 [TT_EXTINT | 0xc] = "External Interrupt 12",
3439 [TT_EXTINT | 0xd] = "External Interrupt 13",
3440 [TT_EXTINT | 0xe] = "External Interrupt 14",
3441 [TT_EXTINT | 0xf] = "External Interrupt 15",
3443 #endif
3445 trap_state* cpu_tsptr(CPUState* env)
3447 return &env->ts[env->tl & MAXTL_MASK];
3450 void do_interrupt(CPUState *env)
3452 int intno = env->exception_index;
3453 trap_state* tsptr;
3455 #ifdef DEBUG_PCALL
3456 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3457 static int count;
3458 const char *name;
3460 if (intno < 0 || intno >= 0x180)
3461 name = "Unknown";
3462 else if (intno >= 0x100)
3463 name = "Trap Instruction";
3464 else if (intno >= 0xc0)
3465 name = "Window Fill";
3466 else if (intno >= 0x80)
3467 name = "Window Spill";
3468 else {
3469 name = excp_names[intno];
3470 if (!name)
3471 name = "Unknown";
3474 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3475 " SP=%016" PRIx64 "\n",
3476 count, name, intno,
3477 env->pc,
3478 env->npc, env->regwptr[6]);
3479 log_cpu_state(env, 0);
3480 #if 0
3482 int i;
3483 uint8_t *ptr;
3485 qemu_log(" code=");
3486 ptr = (uint8_t *)env->pc;
3487 for(i = 0; i < 16; i++) {
3488 qemu_log(" %02x", ldub(ptr + i));
3490 qemu_log("\n");
3492 #endif
3493 count++;
3495 #endif
3496 #if !defined(CONFIG_USER_ONLY)
3497 if (env->tl >= env->maxtl) {
3498 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3499 " Error state", env->exception_index, env->tl, env->maxtl);
3500 return;
3502 #endif
3503 if (env->tl < env->maxtl - 1) {
3504 env->tl++;
3505 } else {
3506 env->pstate |= PS_RED;
3507 if (env->tl < env->maxtl)
3508 env->tl++;
3510 tsptr = cpu_tsptr(env);
3512 tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3513 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3514 GET_CWP64(env);
3515 tsptr->tpc = env->pc;
3516 tsptr->tnpc = env->npc;
3517 tsptr->tt = intno;
3519 switch (intno) {
3520 case TT_IVEC:
3521 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3522 break;
3523 case TT_TFAULT:
3524 case TT_DFAULT:
3525 case TT_TMISS ... TT_TMISS + 3:
3526 case TT_DMISS ... TT_DMISS + 3:
3527 case TT_DPROT ... TT_DPROT + 3:
3528 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3529 break;
3530 default:
3531 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3532 break;
3535 if (intno == TT_CLRWIN)
3536 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3537 else if ((intno & 0x1c0) == TT_SPILL)
3538 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3539 else if ((intno & 0x1c0) == TT_FILL)
3540 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3541 env->tbr &= ~0x7fffULL;
3542 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3543 env->pc = env->tbr;
3544 env->npc = env->pc + 4;
3545 env->exception_index = -1;
3547 #else
3548 #ifdef DEBUG_PCALL
3549 static const char * const excp_names[0x80] = {
3550 [TT_TFAULT] = "Instruction Access Fault",
3551 [TT_ILL_INSN] = "Illegal Instruction",
3552 [TT_PRIV_INSN] = "Privileged Instruction",
3553 [TT_NFPU_INSN] = "FPU Disabled",
3554 [TT_WIN_OVF] = "Window Overflow",
3555 [TT_WIN_UNF] = "Window Underflow",
3556 [TT_UNALIGNED] = "Unaligned Memory Access",
3557 [TT_FP_EXCP] = "FPU Exception",
3558 [TT_DFAULT] = "Data Access Fault",
3559 [TT_TOVF] = "Tag Overflow",
3560 [TT_EXTINT | 0x1] = "External Interrupt 1",
3561 [TT_EXTINT | 0x2] = "External Interrupt 2",
3562 [TT_EXTINT | 0x3] = "External Interrupt 3",
3563 [TT_EXTINT | 0x4] = "External Interrupt 4",
3564 [TT_EXTINT | 0x5] = "External Interrupt 5",
3565 [TT_EXTINT | 0x6] = "External Interrupt 6",
3566 [TT_EXTINT | 0x7] = "External Interrupt 7",
3567 [TT_EXTINT | 0x8] = "External Interrupt 8",
3568 [TT_EXTINT | 0x9] = "External Interrupt 9",
3569 [TT_EXTINT | 0xa] = "External Interrupt 10",
3570 [TT_EXTINT | 0xb] = "External Interrupt 11",
3571 [TT_EXTINT | 0xc] = "External Interrupt 12",
3572 [TT_EXTINT | 0xd] = "External Interrupt 13",
3573 [TT_EXTINT | 0xe] = "External Interrupt 14",
3574 [TT_EXTINT | 0xf] = "External Interrupt 15",
3575 [TT_TOVF] = "Tag Overflow",
3576 [TT_CODE_ACCESS] = "Instruction Access Error",
3577 [TT_DATA_ACCESS] = "Data Access Error",
3578 [TT_DIV_ZERO] = "Division By Zero",
3579 [TT_NCP_INSN] = "Coprocessor Disabled",
3581 #endif
3583 void do_interrupt(CPUState *env)
3585 int cwp, intno = env->exception_index;
3587 #ifdef DEBUG_PCALL
3588 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3589 static int count;
3590 const char *name;
3592 if (intno < 0 || intno >= 0x100)
3593 name = "Unknown";
3594 else if (intno >= 0x80)
3595 name = "Trap Instruction";
3596 else {
3597 name = excp_names[intno];
3598 if (!name)
3599 name = "Unknown";
3602 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3603 count, name, intno,
3604 env->pc,
3605 env->npc, env->regwptr[6]);
3606 log_cpu_state(env, 0);
3607 #if 0
3609 int i;
3610 uint8_t *ptr;
3612 qemu_log(" code=");
3613 ptr = (uint8_t *)env->pc;
3614 for(i = 0; i < 16; i++) {
3615 qemu_log(" %02x", ldub(ptr + i));
3617 qemu_log("\n");
3619 #endif
3620 count++;
3622 #endif
3623 #if !defined(CONFIG_USER_ONLY)
3624 if (env->psret == 0) {
3625 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3626 env->exception_index);
3627 return;
3629 #endif
3630 env->psret = 0;
3631 cwp = cpu_cwp_dec(env, env->cwp - 1);
3632 cpu_set_cwp(env, cwp);
3633 env->regwptr[9] = env->pc;
3634 env->regwptr[10] = env->npc;
3635 env->psrps = env->psrs;
3636 env->psrs = 1;
3637 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3638 env->pc = env->tbr;
3639 env->npc = env->pc + 4;
3640 env->exception_index = -1;
3642 #endif
3644 #if !defined(CONFIG_USER_ONLY)
3646 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3647 void *retaddr);
3649 #define MMUSUFFIX _mmu
3650 #define ALIGNED_ONLY
3652 #define SHIFT 0
3653 #include "softmmu_template.h"
3655 #define SHIFT 1
3656 #include "softmmu_template.h"
3658 #define SHIFT 2
3659 #include "softmmu_template.h"
3661 #define SHIFT 3
3662 #include "softmmu_template.h"
3664 /* XXX: make it generic ? */
3665 static void cpu_restore_state2(void *retaddr)
3667 TranslationBlock *tb;
3668 unsigned long pc;
3670 if (retaddr) {
3671 /* now we have a real cpu fault */
3672 pc = (unsigned long)retaddr;
3673 tb = tb_find_pc(pc);
3674 if (tb) {
3675 /* the PC is inside the translated code. It means that we have
3676 a virtual CPU fault */
3677 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3682 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3683 void *retaddr)
3685 #ifdef DEBUG_UNALIGNED
3686 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3687 "\n", addr, env->pc);
3688 #endif
3689 cpu_restore_state2(retaddr);
3690 raise_exception(TT_UNALIGNED);
3693 /* try to fill the TLB and return an exception if error. If retaddr is
3694 NULL, it means that the function was called in C code (i.e. not
3695 from generated code or from helper.c) */
3696 /* XXX: fix it to restore all registers */
3697 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3699 int ret;
3700 CPUState *saved_env;
3702 /* XXX: hack to restore env in all cases, even if not called from
3703 generated code */
3704 saved_env = env;
3705 env = cpu_single_env;
3707 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3708 if (ret) {
3709 cpu_restore_state2(retaddr);
3710 cpu_loop_exit();
3712 env = saved_env;
3715 #endif /* !CONFIG_USER_ONLY */
3717 #ifndef TARGET_SPARC64
3718 #if !defined(CONFIG_USER_ONLY)
3719 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3720 int is_asi, int size)
3722 CPUState *saved_env;
3723 int fault_type;
3725 /* XXX: hack to restore env in all cases, even if not called from
3726 generated code */
3727 saved_env = env;
3728 env = cpu_single_env;
3729 #ifdef DEBUG_UNASSIGNED
3730 if (is_asi)
3731 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3732 " asi 0x%02x from " TARGET_FMT_lx "\n",
3733 is_exec ? "exec" : is_write ? "write" : "read", size,
3734 size == 1 ? "" : "s", addr, is_asi, env->pc);
3735 else
3736 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3737 " from " TARGET_FMT_lx "\n",
3738 is_exec ? "exec" : is_write ? "write" : "read", size,
3739 size == 1 ? "" : "s", addr, env->pc);
3740 #endif
3741 /* Don't overwrite translation and access faults */
3742 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
3743 if ((fault_type > 4) || (fault_type == 0)) {
3744 env->mmuregs[3] = 0; /* Fault status register */
3745 if (is_asi)
3746 env->mmuregs[3] |= 1 << 16;
3747 if (env->psrs)
3748 env->mmuregs[3] |= 1 << 5;
3749 if (is_exec)
3750 env->mmuregs[3] |= 1 << 6;
3751 if (is_write)
3752 env->mmuregs[3] |= 1 << 7;
3753 env->mmuregs[3] |= (5 << 2) | 2;
3754 /* SuperSPARC will never place instruction fault addresses in the FAR */
3755 if (!is_exec) {
3756 env->mmuregs[4] = addr; /* Fault address register */
3759 /* overflow (same type fault was not read before another fault) */
3760 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
3761 env->mmuregs[3] |= 1;
3764 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3765 if (is_exec)
3766 raise_exception(TT_CODE_ACCESS);
3767 else
3768 raise_exception(TT_DATA_ACCESS);
3771 /* flush neverland mappings created during no-fault mode,
3772 so the sequential MMU faults report proper fault types */
3773 if (env->mmuregs[0] & MMU_NF) {
3774 tlb_flush(env, 1);
3777 env = saved_env;
3779 #endif
3780 #else
3781 #if defined(CONFIG_USER_ONLY)
3782 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
3783 int is_asi, int size)
3784 #else
3785 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3786 int is_asi, int size)
3787 #endif
3789 CPUState *saved_env;
3791 /* XXX: hack to restore env in all cases, even if not called from
3792 generated code */
3793 saved_env = env;
3794 env = cpu_single_env;
3796 #ifdef DEBUG_UNASSIGNED
3797 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3798 "\n", addr, env->pc);
3799 #endif
3801 if (is_exec)
3802 raise_exception(TT_CODE_ACCESS);
3803 else
3804 raise_exception(TT_DATA_ACCESS);
3806 env = saved_env;
3808 #endif
3811 #ifdef TARGET_SPARC64
3812 void helper_tick_set_count(void *opaque, uint64_t count)
3814 #if !defined(CONFIG_USER_ONLY)
3815 cpu_tick_set_count(opaque, count);
3816 #endif
3819 uint64_t helper_tick_get_count(void *opaque)
3821 #if !defined(CONFIG_USER_ONLY)
3822 return cpu_tick_get_count(opaque);
3823 #else
3824 return 0;
3825 #endif
3828 void helper_tick_set_limit(void *opaque, uint64_t limit)
3830 #if !defined(CONFIG_USER_ONLY)
3831 cpu_tick_set_limit(opaque, limit);
3832 #endif
3834 #endif