Add a pc-0-10 machine type for compatibility with 0.10.x
[qemu/aliguori-queue.git] / hw / ne2000.c
blobb9c018ab2e8f13c7661f37dfd7d1e62243e275ce
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "pc.h"
27 #include "net.h"
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
32 #define MAX_ETH_FRAME_SIZE 1514
34 #define E8390_CMD 0x00 /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41 #define EN0_TSR 0x04 /* Transmit status reg RD */
42 #define EN0_TPSR 0x04 /* Transmit starting page WR */
43 #define EN0_NCR 0x05 /* Number of collision reg RD */
44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45 #define EN0_FIFO 0x06 /* FIFO RD */
46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
56 #define EN0_RSR 0x0c /* rx status reg RD */
57 #define EN0_RXCR 0x0c /* RX configuration reg WR */
58 #define EN0_TXCR 0x0d /* TX configuration reg WR */
59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60 #define EN0_DCFG 0x0e /* Data configuration reg WR */
61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
65 #define EN1_PHYS 0x11
66 #define EN1_CURPAG 0x17
67 #define EN1_MULT 0x18
69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72 #define EN3_CONFIG0 0x33
73 #define EN3_CONFIG1 0x34
74 #define EN3_CONFIG2 0x35
75 #define EN3_CONFIG3 0x36
77 /* Register accessed at EN_CMD, the 8390 base addr. */
78 #define E8390_STOP 0x01 /* Stop and reset the chip */
79 #define E8390_START 0x02 /* Start the chip, clear reset */
80 #define E8390_TRANS 0x04 /* Transmit a frame */
81 #define E8390_RREAD 0x08 /* Remote read */
82 #define E8390_RWRITE 0x10 /* Remote write */
83 #define E8390_NODMA 0x20 /* Remote DMA */
84 #define E8390_PAGE0 0x00 /* Select page chip registers */
85 #define E8390_PAGE1 0x40 /* using the two high-order bits */
86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX 0x01 /* Receiver, no error */
90 #define ENISR_TX 0x02 /* Transmitter, no error */
91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
95 #define ENISR_RDC 0x40 /* remote dma complete */
96 #define ENISR_RESET 0x80 /* Reset completed */
97 #define ENISR_ALL 0x3f /* Interrupts we will enable */
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK 0x01 /* Received a good packet */
101 #define ENRSR_CRC 0x02 /* CRC error */
102 #define ENRSR_FAE 0x04 /* frame alignment error */
103 #define ENRSR_FO 0x08 /* FIFO overrun */
104 #define ENRSR_MPA 0x10 /* missed pkt */
105 #define ENRSR_PHY 0x20 /* physical/multicast address */
106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107 #define ENRSR_DEF 0x80 /* deferring */
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119 #define NE2000_PMEM_SIZE (32*1024)
120 #define NE2000_PMEM_START (16*1024)
121 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122 #define NE2000_MEM_SIZE NE2000_PMEM_END
124 typedef struct NE2000State {
125 uint8_t cmd;
126 uint32_t start;
127 uint32_t stop;
128 uint8_t boundary;
129 uint8_t tsr;
130 uint8_t tpsr;
131 uint16_t tcnt;
132 uint16_t rcnt;
133 uint32_t rsar;
134 uint8_t rsr;
135 uint8_t rxcr;
136 uint8_t isr;
137 uint8_t dcfg;
138 uint8_t imr;
139 uint8_t phys[6]; /* mac address */
140 uint8_t curpag;
141 uint8_t mult[8]; /* multicast mask array */
142 qemu_irq irq;
143 int isa_io_base;
144 PCIDevice *pci_dev;
145 VLANClientState *vc;
146 uint8_t macaddr[6];
147 uint8_t mem[NE2000_MEM_SIZE];
148 } NE2000State;
150 static void ne2000_reset(NE2000State *s)
152 int i;
154 s->isr = ENISR_RESET;
155 memcpy(s->mem, s->macaddr, 6);
156 s->mem[14] = 0x57;
157 s->mem[15] = 0x57;
159 /* duplicate prom data */
160 for(i = 15;i >= 0; i--) {
161 s->mem[2 * i] = s->mem[i];
162 s->mem[2 * i + 1] = s->mem[i];
166 static void ne2000_update_irq(NE2000State *s)
168 int isr;
169 isr = (s->isr & s->imr) & 0x7f;
170 #if defined(DEBUG_NE2000)
171 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
172 isr ? 1 : 0, s->isr, s->imr);
173 #endif
174 qemu_set_irq(s->irq, (isr != 0));
177 #define POLYNOMIAL 0x04c11db6
179 /* From FreeBSD */
180 /* XXX: optimize */
181 static int compute_mcast_idx(const uint8_t *ep)
183 uint32_t crc;
184 int carry, i, j;
185 uint8_t b;
187 crc = 0xffffffff;
188 for (i = 0; i < 6; i++) {
189 b = *ep++;
190 for (j = 0; j < 8; j++) {
191 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
192 crc <<= 1;
193 b >>= 1;
194 if (carry)
195 crc = ((crc ^ POLYNOMIAL) | carry);
198 return (crc >> 26);
201 static int ne2000_buffer_full(NE2000State *s)
203 int avail, index, boundary;
205 index = s->curpag << 8;
206 boundary = s->boundary << 8;
207 if (index < boundary)
208 avail = boundary - index;
209 else
210 avail = (s->stop - s->start) - (index - boundary);
211 if (avail < (MAX_ETH_FRAME_SIZE + 4))
212 return 1;
213 return 0;
216 static int ne2000_can_receive(VLANClientState *vc)
218 NE2000State *s = vc->opaque;
220 if (s->cmd & E8390_STOP)
221 return 1;
222 return !ne2000_buffer_full(s);
225 #define MIN_BUF_SIZE 60
227 static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
229 NE2000State *s = vc->opaque;
230 int size = size_;
231 uint8_t *p;
232 unsigned int total_len, next, avail, len, index, mcast_idx;
233 uint8_t buf1[60];
234 static const uint8_t broadcast_macaddr[6] =
235 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
237 #if defined(DEBUG_NE2000)
238 printf("NE2000: received len=%d\n", size);
239 #endif
241 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
242 return -1;
244 /* XXX: check this */
245 if (s->rxcr & 0x10) {
246 /* promiscuous: receive all */
247 } else {
248 if (!memcmp(buf, broadcast_macaddr, 6)) {
249 /* broadcast address */
250 if (!(s->rxcr & 0x04))
251 return size;
252 } else if (buf[0] & 0x01) {
253 /* multicast */
254 if (!(s->rxcr & 0x08))
255 return size;
256 mcast_idx = compute_mcast_idx(buf);
257 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
258 return size;
259 } else if (s->mem[0] == buf[0] &&
260 s->mem[2] == buf[1] &&
261 s->mem[4] == buf[2] &&
262 s->mem[6] == buf[3] &&
263 s->mem[8] == buf[4] &&
264 s->mem[10] == buf[5]) {
265 /* match */
266 } else {
267 return size;
272 /* if too small buffer, then expand it */
273 if (size < MIN_BUF_SIZE) {
274 memcpy(buf1, buf, size);
275 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
276 buf = buf1;
277 size = MIN_BUF_SIZE;
280 index = s->curpag << 8;
281 /* 4 bytes for header */
282 total_len = size + 4;
283 /* address for next packet (4 bytes for CRC) */
284 next = index + ((total_len + 4 + 255) & ~0xff);
285 if (next >= s->stop)
286 next -= (s->stop - s->start);
287 /* prepare packet header */
288 p = s->mem + index;
289 s->rsr = ENRSR_RXOK; /* receive status */
290 /* XXX: check this */
291 if (buf[0] & 0x01)
292 s->rsr |= ENRSR_PHY;
293 p[0] = s->rsr;
294 p[1] = next >> 8;
295 p[2] = total_len;
296 p[3] = total_len >> 8;
297 index += 4;
299 /* write packet data */
300 while (size > 0) {
301 if (index <= s->stop)
302 avail = s->stop - index;
303 else
304 avail = 0;
305 len = size;
306 if (len > avail)
307 len = avail;
308 memcpy(s->mem + index, buf, len);
309 buf += len;
310 index += len;
311 if (index == s->stop)
312 index = s->start;
313 size -= len;
315 s->curpag = next >> 8;
317 /* now we can signal we have received something */
318 s->isr |= ENISR_RX;
319 ne2000_update_irq(s);
321 return size_;
324 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
326 NE2000State *s = opaque;
327 int offset, page, index;
329 addr &= 0xf;
330 #ifdef DEBUG_NE2000
331 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
332 #endif
333 if (addr == E8390_CMD) {
334 /* control register */
335 s->cmd = val;
336 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
337 s->isr &= ~ENISR_RESET;
338 /* test specific case: zero length transfer */
339 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
340 s->rcnt == 0) {
341 s->isr |= ENISR_RDC;
342 ne2000_update_irq(s);
344 if (val & E8390_TRANS) {
345 index = (s->tpsr << 8);
346 /* XXX: next 2 lines are a hack to make netware 3.11 work */
347 if (index >= NE2000_PMEM_END)
348 index -= NE2000_PMEM_SIZE;
349 /* fail safe: check range on the transmitted length */
350 if (index + s->tcnt <= NE2000_PMEM_END) {
351 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
353 /* signal end of transfer */
354 s->tsr = ENTSR_PTX;
355 s->isr |= ENISR_TX;
356 s->cmd &= ~E8390_TRANS;
357 ne2000_update_irq(s);
360 } else {
361 page = s->cmd >> 6;
362 offset = addr | (page << 4);
363 switch(offset) {
364 case EN0_STARTPG:
365 s->start = val << 8;
366 break;
367 case EN0_STOPPG:
368 s->stop = val << 8;
369 break;
370 case EN0_BOUNDARY:
371 s->boundary = val;
372 break;
373 case EN0_IMR:
374 s->imr = val;
375 ne2000_update_irq(s);
376 break;
377 case EN0_TPSR:
378 s->tpsr = val;
379 break;
380 case EN0_TCNTLO:
381 s->tcnt = (s->tcnt & 0xff00) | val;
382 break;
383 case EN0_TCNTHI:
384 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
385 break;
386 case EN0_RSARLO:
387 s->rsar = (s->rsar & 0xff00) | val;
388 break;
389 case EN0_RSARHI:
390 s->rsar = (s->rsar & 0x00ff) | (val << 8);
391 break;
392 case EN0_RCNTLO:
393 s->rcnt = (s->rcnt & 0xff00) | val;
394 break;
395 case EN0_RCNTHI:
396 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
397 break;
398 case EN0_RXCR:
399 s->rxcr = val;
400 break;
401 case EN0_DCFG:
402 s->dcfg = val;
403 break;
404 case EN0_ISR:
405 s->isr &= ~(val & 0x7f);
406 ne2000_update_irq(s);
407 break;
408 case EN1_PHYS ... EN1_PHYS + 5:
409 s->phys[offset - EN1_PHYS] = val;
410 break;
411 case EN1_CURPAG:
412 s->curpag = val;
413 break;
414 case EN1_MULT ... EN1_MULT + 7:
415 s->mult[offset - EN1_MULT] = val;
416 break;
421 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
423 NE2000State *s = opaque;
424 int offset, page, ret;
426 addr &= 0xf;
427 if (addr == E8390_CMD) {
428 ret = s->cmd;
429 } else {
430 page = s->cmd >> 6;
431 offset = addr | (page << 4);
432 switch(offset) {
433 case EN0_TSR:
434 ret = s->tsr;
435 break;
436 case EN0_BOUNDARY:
437 ret = s->boundary;
438 break;
439 case EN0_ISR:
440 ret = s->isr;
441 break;
442 case EN0_RSARLO:
443 ret = s->rsar & 0x00ff;
444 break;
445 case EN0_RSARHI:
446 ret = s->rsar >> 8;
447 break;
448 case EN1_PHYS ... EN1_PHYS + 5:
449 ret = s->phys[offset - EN1_PHYS];
450 break;
451 case EN1_CURPAG:
452 ret = s->curpag;
453 break;
454 case EN1_MULT ... EN1_MULT + 7:
455 ret = s->mult[offset - EN1_MULT];
456 break;
457 case EN0_RSR:
458 ret = s->rsr;
459 break;
460 case EN2_STARTPG:
461 ret = s->start >> 8;
462 break;
463 case EN2_STOPPG:
464 ret = s->stop >> 8;
465 break;
466 case EN0_RTL8029ID0:
467 ret = 0x50;
468 break;
469 case EN0_RTL8029ID1:
470 ret = 0x43;
471 break;
472 case EN3_CONFIG0:
473 ret = 0; /* 10baseT media */
474 break;
475 case EN3_CONFIG2:
476 ret = 0x40; /* 10baseT active */
477 break;
478 case EN3_CONFIG3:
479 ret = 0x40; /* Full duplex */
480 break;
481 default:
482 ret = 0x00;
483 break;
486 #ifdef DEBUG_NE2000
487 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
488 #endif
489 return ret;
492 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
493 uint32_t val)
495 if (addr < 32 ||
496 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
497 s->mem[addr] = val;
501 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
502 uint32_t val)
504 addr &= ~1; /* XXX: check exact behaviour if not even */
505 if (addr < 32 ||
506 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
507 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
511 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
512 uint32_t val)
514 addr &= ~1; /* XXX: check exact behaviour if not even */
515 if (addr < 32 ||
516 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
517 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
521 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
523 if (addr < 32 ||
524 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
525 return s->mem[addr];
526 } else {
527 return 0xff;
531 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
533 addr &= ~1; /* XXX: check exact behaviour if not even */
534 if (addr < 32 ||
535 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
536 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
537 } else {
538 return 0xffff;
542 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
544 addr &= ~1; /* XXX: check exact behaviour if not even */
545 if (addr < 32 ||
546 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
547 return le32_to_cpupu((uint32_t *)(s->mem + addr));
548 } else {
549 return 0xffffffff;
553 static inline void ne2000_dma_update(NE2000State *s, int len)
555 s->rsar += len;
556 /* wrap */
557 /* XXX: check what to do if rsar > stop */
558 if (s->rsar == s->stop)
559 s->rsar = s->start;
561 if (s->rcnt <= len) {
562 s->rcnt = 0;
563 /* signal end of transfer */
564 s->isr |= ENISR_RDC;
565 ne2000_update_irq(s);
566 } else {
567 s->rcnt -= len;
571 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
573 NE2000State *s = opaque;
575 #ifdef DEBUG_NE2000
576 printf("NE2000: asic write val=0x%04x\n", val);
577 #endif
578 if (s->rcnt == 0)
579 return;
580 if (s->dcfg & 0x01) {
581 /* 16 bit access */
582 ne2000_mem_writew(s, s->rsar, val);
583 ne2000_dma_update(s, 2);
584 } else {
585 /* 8 bit access */
586 ne2000_mem_writeb(s, s->rsar, val);
587 ne2000_dma_update(s, 1);
591 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
593 NE2000State *s = opaque;
594 int ret;
596 if (s->dcfg & 0x01) {
597 /* 16 bit access */
598 ret = ne2000_mem_readw(s, s->rsar);
599 ne2000_dma_update(s, 2);
600 } else {
601 /* 8 bit access */
602 ret = ne2000_mem_readb(s, s->rsar);
603 ne2000_dma_update(s, 1);
605 #ifdef DEBUG_NE2000
606 printf("NE2000: asic read val=0x%04x\n", ret);
607 #endif
608 return ret;
611 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
613 NE2000State *s = opaque;
615 #ifdef DEBUG_NE2000
616 printf("NE2000: asic writel val=0x%04x\n", val);
617 #endif
618 if (s->rcnt == 0)
619 return;
620 /* 32 bit access */
621 ne2000_mem_writel(s, s->rsar, val);
622 ne2000_dma_update(s, 4);
625 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
627 NE2000State *s = opaque;
628 int ret;
630 /* 32 bit access */
631 ret = ne2000_mem_readl(s, s->rsar);
632 ne2000_dma_update(s, 4);
633 #ifdef DEBUG_NE2000
634 printf("NE2000: asic readl val=0x%04x\n", ret);
635 #endif
636 return ret;
639 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
641 /* nothing to do (end of reset pulse) */
644 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
646 NE2000State *s = opaque;
647 ne2000_reset(s);
648 return 0;
651 static void ne2000_save(QEMUFile* f,void* opaque)
653 NE2000State* s=(NE2000State*)opaque;
654 uint32_t tmp;
656 if (s->pci_dev)
657 pci_device_save(s->pci_dev, f);
659 qemu_put_8s(f, &s->rxcr);
661 qemu_put_8s(f, &s->cmd);
662 qemu_put_be32s(f, &s->start);
663 qemu_put_be32s(f, &s->stop);
664 qemu_put_8s(f, &s->boundary);
665 qemu_put_8s(f, &s->tsr);
666 qemu_put_8s(f, &s->tpsr);
667 qemu_put_be16s(f, &s->tcnt);
668 qemu_put_be16s(f, &s->rcnt);
669 qemu_put_be32s(f, &s->rsar);
670 qemu_put_8s(f, &s->rsr);
671 qemu_put_8s(f, &s->isr);
672 qemu_put_8s(f, &s->dcfg);
673 qemu_put_8s(f, &s->imr);
674 qemu_put_buffer(f, s->phys, 6);
675 qemu_put_8s(f, &s->curpag);
676 qemu_put_buffer(f, s->mult, 8);
677 tmp = 0;
678 qemu_put_be32s(f, &tmp); /* ignored, was irq */
679 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
682 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
684 NE2000State* s=(NE2000State*)opaque;
685 int ret;
686 uint32_t tmp;
688 if (version_id > 3)
689 return -EINVAL;
691 if (s->pci_dev && version_id >= 3) {
692 ret = pci_device_load(s->pci_dev, f);
693 if (ret < 0)
694 return ret;
697 if (version_id >= 2) {
698 qemu_get_8s(f, &s->rxcr);
699 } else {
700 s->rxcr = 0x0c;
703 qemu_get_8s(f, &s->cmd);
704 qemu_get_be32s(f, &s->start);
705 qemu_get_be32s(f, &s->stop);
706 qemu_get_8s(f, &s->boundary);
707 qemu_get_8s(f, &s->tsr);
708 qemu_get_8s(f, &s->tpsr);
709 qemu_get_be16s(f, &s->tcnt);
710 qemu_get_be16s(f, &s->rcnt);
711 qemu_get_be32s(f, &s->rsar);
712 qemu_get_8s(f, &s->rsr);
713 qemu_get_8s(f, &s->isr);
714 qemu_get_8s(f, &s->dcfg);
715 qemu_get_8s(f, &s->imr);
716 qemu_get_buffer(f, s->phys, 6);
717 qemu_get_8s(f, &s->curpag);
718 qemu_get_buffer(f, s->mult, 8);
719 qemu_get_be32s(f, &tmp); /* ignored */
720 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
722 return 0;
725 static void isa_ne2000_cleanup(VLANClientState *vc)
727 NE2000State *s = vc->opaque;
729 unregister_savevm("ne2000", s);
731 isa_unassign_ioport(s->isa_io_base, 16);
732 isa_unassign_ioport(s->isa_io_base + 0x10, 2);
733 isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
735 qemu_free(s);
738 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
740 NE2000State *s;
742 qemu_check_nic_model(nd, "ne2k_isa");
744 s = qemu_mallocz(sizeof(NE2000State));
746 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
747 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
749 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
750 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
751 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
752 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
754 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
755 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
756 s->isa_io_base = base;
757 s->irq = irq;
758 memcpy(s->macaddr, nd->macaddr, 6);
760 ne2000_reset(s);
762 s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
763 ne2000_can_receive, ne2000_receive,
764 NULL, isa_ne2000_cleanup, s);
766 qemu_format_nic_info_str(s->vc, s->macaddr);
768 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
771 /***********************************************************/
772 /* PCI NE2000 definitions */
774 typedef struct PCINE2000State {
775 PCIDevice dev;
776 NE2000State ne2000;
777 } PCINE2000State;
779 static void ne2000_map(PCIDevice *pci_dev, int region_num,
780 uint32_t addr, uint32_t size, int type)
782 PCINE2000State *d = (PCINE2000State *)pci_dev;
783 NE2000State *s = &d->ne2000;
785 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
786 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
788 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
789 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
790 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
791 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
792 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
793 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
795 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
796 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
799 static void ne2000_cleanup(VLANClientState *vc)
801 NE2000State *s = vc->opaque;
803 unregister_savevm("ne2000", s);
806 static void pci_ne2000_init(PCIDevice *pci_dev)
808 PCINE2000State *d = (PCINE2000State *)pci_dev;
809 NE2000State *s;
810 uint8_t *pci_conf;
812 pci_conf = d->dev.config;
813 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
814 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
815 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
816 pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
817 pci_conf[0x3d] = 1; // interrupt pin 0
819 pci_register_bar(&d->dev, 0, 0x100,
820 PCI_ADDRESS_SPACE_IO, ne2000_map);
821 s = &d->ne2000;
822 s->irq = d->dev.irq[0];
823 s->pci_dev = (PCIDevice *)d;
824 qdev_get_macaddr(&d->dev.qdev, s->macaddr);
825 ne2000_reset(s);
826 s->vc = qdev_get_vlan_client(&d->dev.qdev,
827 ne2000_can_receive, ne2000_receive, NULL,
828 ne2000_cleanup, s);
830 qemu_format_nic_info_str(s->vc, s->macaddr);
832 register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
835 static PCIDeviceInfo ne2000_info = {
836 .qdev.name = "ne2k_pci",
837 .qdev.size = sizeof(PCINE2000State),
838 .init = pci_ne2000_init,
841 static void ne2000_register_devices(void)
843 pci_qdev_register(&ne2000_info);
846 device_init(ne2000_register_devices)