virtio-blk: Avoid zeroing every request structure
[qemu/aliguori-queue.git] / hw / ne2000.c
blob78fe14fe1c21aa73a354992ed6b9d5320855d17a
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "net.h"
27 #include "ne2000.h"
28 #include "loader.h"
30 /* debug NE2000 card */
31 //#define DEBUG_NE2000
33 #define MAX_ETH_FRAME_SIZE 1514
35 #define E8390_CMD 0x00 /* The command register (for all pages) */
36 /* Page 0 register offsets. */
37 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
38 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
39 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
40 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
41 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
42 #define EN0_TSR 0x04 /* Transmit status reg RD */
43 #define EN0_TPSR 0x04 /* Transmit starting page WR */
44 #define EN0_NCR 0x05 /* Number of collision reg RD */
45 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
46 #define EN0_FIFO 0x06 /* FIFO RD */
47 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
48 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
49 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
50 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
51 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
52 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
53 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
54 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
55 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
56 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
57 #define EN0_RSR 0x0c /* rx status reg RD */
58 #define EN0_RXCR 0x0c /* RX configuration reg WR */
59 #define EN0_TXCR 0x0d /* TX configuration reg WR */
60 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
61 #define EN0_DCFG 0x0e /* Data configuration reg WR */
62 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
63 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
64 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
66 #define EN1_PHYS 0x11
67 #define EN1_CURPAG 0x17
68 #define EN1_MULT 0x18
70 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
71 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
73 #define EN3_CONFIG0 0x33
74 #define EN3_CONFIG1 0x34
75 #define EN3_CONFIG2 0x35
76 #define EN3_CONFIG3 0x36
78 /* Register accessed at EN_CMD, the 8390 base addr. */
79 #define E8390_STOP 0x01 /* Stop and reset the chip */
80 #define E8390_START 0x02 /* Start the chip, clear reset */
81 #define E8390_TRANS 0x04 /* Transmit a frame */
82 #define E8390_RREAD 0x08 /* Remote read */
83 #define E8390_RWRITE 0x10 /* Remote write */
84 #define E8390_NODMA 0x20 /* Remote DMA */
85 #define E8390_PAGE0 0x00 /* Select page chip registers */
86 #define E8390_PAGE1 0x40 /* using the two high-order bits */
87 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
89 /* Bits in EN0_ISR - Interrupt status register */
90 #define ENISR_RX 0x01 /* Receiver, no error */
91 #define ENISR_TX 0x02 /* Transmitter, no error */
92 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
93 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
94 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
95 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
96 #define ENISR_RDC 0x40 /* remote dma complete */
97 #define ENISR_RESET 0x80 /* Reset completed */
98 #define ENISR_ALL 0x3f /* Interrupts we will enable */
100 /* Bits in received packet status byte and EN0_RSR*/
101 #define ENRSR_RXOK 0x01 /* Received a good packet */
102 #define ENRSR_CRC 0x02 /* CRC error */
103 #define ENRSR_FAE 0x04 /* frame alignment error */
104 #define ENRSR_FO 0x08 /* FIFO overrun */
105 #define ENRSR_MPA 0x10 /* missed pkt */
106 #define ENRSR_PHY 0x20 /* physical/multicast address */
107 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
108 #define ENRSR_DEF 0x80 /* deferring */
110 /* Transmitted packet status, EN0_TSR. */
111 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
112 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
113 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
114 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
115 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
116 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
117 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
118 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
120 typedef struct PCINE2000State {
121 PCIDevice dev;
122 NE2000State ne2000;
123 } PCINE2000State;
125 void ne2000_reset(NE2000State *s)
127 int i;
129 s->isr = ENISR_RESET;
130 memcpy(s->mem, &s->c.macaddr, 6);
131 s->mem[14] = 0x57;
132 s->mem[15] = 0x57;
134 /* duplicate prom data */
135 for(i = 15;i >= 0; i--) {
136 s->mem[2 * i] = s->mem[i];
137 s->mem[2 * i + 1] = s->mem[i];
141 static void ne2000_update_irq(NE2000State *s)
143 int isr;
144 isr = (s->isr & s->imr) & 0x7f;
145 #if defined(DEBUG_NE2000)
146 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
147 isr ? 1 : 0, s->isr, s->imr);
148 #endif
149 qemu_set_irq(s->irq, (isr != 0));
152 #define POLYNOMIAL 0x04c11db6
154 /* From FreeBSD */
155 /* XXX: optimize */
156 static int compute_mcast_idx(const uint8_t *ep)
158 uint32_t crc;
159 int carry, i, j;
160 uint8_t b;
162 crc = 0xffffffff;
163 for (i = 0; i < 6; i++) {
164 b = *ep++;
165 for (j = 0; j < 8; j++) {
166 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
167 crc <<= 1;
168 b >>= 1;
169 if (carry)
170 crc = ((crc ^ POLYNOMIAL) | carry);
173 return (crc >> 26);
176 static int ne2000_buffer_full(NE2000State *s)
178 int avail, index, boundary;
180 index = s->curpag << 8;
181 boundary = s->boundary << 8;
182 if (index < boundary)
183 avail = boundary - index;
184 else
185 avail = (s->stop - s->start) - (index - boundary);
186 if (avail < (MAX_ETH_FRAME_SIZE + 4))
187 return 1;
188 return 0;
191 int ne2000_can_receive(VLANClientState *nc)
193 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
195 if (s->cmd & E8390_STOP)
196 return 1;
197 return !ne2000_buffer_full(s);
200 #define MIN_BUF_SIZE 60
202 ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
204 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
205 int size = size_;
206 uint8_t *p;
207 unsigned int total_len, next, avail, len, index, mcast_idx;
208 uint8_t buf1[60];
209 static const uint8_t broadcast_macaddr[6] =
210 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
212 #if defined(DEBUG_NE2000)
213 printf("NE2000: received len=%d\n", size);
214 #endif
216 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
217 return -1;
219 /* XXX: check this */
220 if (s->rxcr & 0x10) {
221 /* promiscuous: receive all */
222 } else {
223 if (!memcmp(buf, broadcast_macaddr, 6)) {
224 /* broadcast address */
225 if (!(s->rxcr & 0x04))
226 return size;
227 } else if (buf[0] & 0x01) {
228 /* multicast */
229 if (!(s->rxcr & 0x08))
230 return size;
231 mcast_idx = compute_mcast_idx(buf);
232 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
233 return size;
234 } else if (s->mem[0] == buf[0] &&
235 s->mem[2] == buf[1] &&
236 s->mem[4] == buf[2] &&
237 s->mem[6] == buf[3] &&
238 s->mem[8] == buf[4] &&
239 s->mem[10] == buf[5]) {
240 /* match */
241 } else {
242 return size;
247 /* if too small buffer, then expand it */
248 if (size < MIN_BUF_SIZE) {
249 memcpy(buf1, buf, size);
250 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
251 buf = buf1;
252 size = MIN_BUF_SIZE;
255 index = s->curpag << 8;
256 /* 4 bytes for header */
257 total_len = size + 4;
258 /* address for next packet (4 bytes for CRC) */
259 next = index + ((total_len + 4 + 255) & ~0xff);
260 if (next >= s->stop)
261 next -= (s->stop - s->start);
262 /* prepare packet header */
263 p = s->mem + index;
264 s->rsr = ENRSR_RXOK; /* receive status */
265 /* XXX: check this */
266 if (buf[0] & 0x01)
267 s->rsr |= ENRSR_PHY;
268 p[0] = s->rsr;
269 p[1] = next >> 8;
270 p[2] = total_len;
271 p[3] = total_len >> 8;
272 index += 4;
274 /* write packet data */
275 while (size > 0) {
276 if (index <= s->stop)
277 avail = s->stop - index;
278 else
279 avail = 0;
280 len = size;
281 if (len > avail)
282 len = avail;
283 memcpy(s->mem + index, buf, len);
284 buf += len;
285 index += len;
286 if (index == s->stop)
287 index = s->start;
288 size -= len;
290 s->curpag = next >> 8;
292 /* now we can signal we have received something */
293 s->isr |= ENISR_RX;
294 ne2000_update_irq(s);
296 return size_;
299 void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
301 NE2000State *s = opaque;
302 int offset, page, index;
304 addr &= 0xf;
305 #ifdef DEBUG_NE2000
306 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
307 #endif
308 if (addr == E8390_CMD) {
309 /* control register */
310 s->cmd = val;
311 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
312 s->isr &= ~ENISR_RESET;
313 /* test specific case: zero length transfer */
314 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
315 s->rcnt == 0) {
316 s->isr |= ENISR_RDC;
317 ne2000_update_irq(s);
319 if (val & E8390_TRANS) {
320 index = (s->tpsr << 8);
321 /* XXX: next 2 lines are a hack to make netware 3.11 work */
322 if (index >= NE2000_PMEM_END)
323 index -= NE2000_PMEM_SIZE;
324 /* fail safe: check range on the transmitted length */
325 if (index + s->tcnt <= NE2000_PMEM_END) {
326 qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
328 /* signal end of transfer */
329 s->tsr = ENTSR_PTX;
330 s->isr |= ENISR_TX;
331 s->cmd &= ~E8390_TRANS;
332 ne2000_update_irq(s);
335 } else {
336 page = s->cmd >> 6;
337 offset = addr | (page << 4);
338 switch(offset) {
339 case EN0_STARTPG:
340 s->start = val << 8;
341 break;
342 case EN0_STOPPG:
343 s->stop = val << 8;
344 break;
345 case EN0_BOUNDARY:
346 s->boundary = val;
347 break;
348 case EN0_IMR:
349 s->imr = val;
350 ne2000_update_irq(s);
351 break;
352 case EN0_TPSR:
353 s->tpsr = val;
354 break;
355 case EN0_TCNTLO:
356 s->tcnt = (s->tcnt & 0xff00) | val;
357 break;
358 case EN0_TCNTHI:
359 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
360 break;
361 case EN0_RSARLO:
362 s->rsar = (s->rsar & 0xff00) | val;
363 break;
364 case EN0_RSARHI:
365 s->rsar = (s->rsar & 0x00ff) | (val << 8);
366 break;
367 case EN0_RCNTLO:
368 s->rcnt = (s->rcnt & 0xff00) | val;
369 break;
370 case EN0_RCNTHI:
371 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
372 break;
373 case EN0_RXCR:
374 s->rxcr = val;
375 break;
376 case EN0_DCFG:
377 s->dcfg = val;
378 break;
379 case EN0_ISR:
380 s->isr &= ~(val & 0x7f);
381 ne2000_update_irq(s);
382 break;
383 case EN1_PHYS ... EN1_PHYS + 5:
384 s->phys[offset - EN1_PHYS] = val;
385 break;
386 case EN1_CURPAG:
387 s->curpag = val;
388 break;
389 case EN1_MULT ... EN1_MULT + 7:
390 s->mult[offset - EN1_MULT] = val;
391 break;
396 uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
398 NE2000State *s = opaque;
399 int offset, page, ret;
401 addr &= 0xf;
402 if (addr == E8390_CMD) {
403 ret = s->cmd;
404 } else {
405 page = s->cmd >> 6;
406 offset = addr | (page << 4);
407 switch(offset) {
408 case EN0_TSR:
409 ret = s->tsr;
410 break;
411 case EN0_BOUNDARY:
412 ret = s->boundary;
413 break;
414 case EN0_ISR:
415 ret = s->isr;
416 break;
417 case EN0_RSARLO:
418 ret = s->rsar & 0x00ff;
419 break;
420 case EN0_RSARHI:
421 ret = s->rsar >> 8;
422 break;
423 case EN1_PHYS ... EN1_PHYS + 5:
424 ret = s->phys[offset - EN1_PHYS];
425 break;
426 case EN1_CURPAG:
427 ret = s->curpag;
428 break;
429 case EN1_MULT ... EN1_MULT + 7:
430 ret = s->mult[offset - EN1_MULT];
431 break;
432 case EN0_RSR:
433 ret = s->rsr;
434 break;
435 case EN2_STARTPG:
436 ret = s->start >> 8;
437 break;
438 case EN2_STOPPG:
439 ret = s->stop >> 8;
440 break;
441 case EN0_RTL8029ID0:
442 ret = 0x50;
443 break;
444 case EN0_RTL8029ID1:
445 ret = 0x43;
446 break;
447 case EN3_CONFIG0:
448 ret = 0; /* 10baseT media */
449 break;
450 case EN3_CONFIG2:
451 ret = 0x40; /* 10baseT active */
452 break;
453 case EN3_CONFIG3:
454 ret = 0x40; /* Full duplex */
455 break;
456 default:
457 ret = 0x00;
458 break;
461 #ifdef DEBUG_NE2000
462 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
463 #endif
464 return ret;
467 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
468 uint32_t val)
470 if (addr < 32 ||
471 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
472 s->mem[addr] = val;
476 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
477 uint32_t val)
479 addr &= ~1; /* XXX: check exact behaviour if not even */
480 if (addr < 32 ||
481 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
482 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
486 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
487 uint32_t val)
489 addr &= ~1; /* XXX: check exact behaviour if not even */
490 if (addr < 32 ||
491 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
496 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
498 if (addr < 32 ||
499 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500 return s->mem[addr];
501 } else {
502 return 0xff;
506 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
508 addr &= ~1; /* XXX: check exact behaviour if not even */
509 if (addr < 32 ||
510 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
511 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
512 } else {
513 return 0xffff;
517 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
519 addr &= ~1; /* XXX: check exact behaviour if not even */
520 if (addr < 32 ||
521 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522 return le32_to_cpupu((uint32_t *)(s->mem + addr));
523 } else {
524 return 0xffffffff;
528 static inline void ne2000_dma_update(NE2000State *s, int len)
530 s->rsar += len;
531 /* wrap */
532 /* XXX: check what to do if rsar > stop */
533 if (s->rsar == s->stop)
534 s->rsar = s->start;
536 if (s->rcnt <= len) {
537 s->rcnt = 0;
538 /* signal end of transfer */
539 s->isr |= ENISR_RDC;
540 ne2000_update_irq(s);
541 } else {
542 s->rcnt -= len;
546 void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
548 NE2000State *s = opaque;
550 #ifdef DEBUG_NE2000
551 printf("NE2000: asic write val=0x%04x\n", val);
552 #endif
553 if (s->rcnt == 0)
554 return;
555 if (s->dcfg & 0x01) {
556 /* 16 bit access */
557 ne2000_mem_writew(s, s->rsar, val);
558 ne2000_dma_update(s, 2);
559 } else {
560 /* 8 bit access */
561 ne2000_mem_writeb(s, s->rsar, val);
562 ne2000_dma_update(s, 1);
566 uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
568 NE2000State *s = opaque;
569 int ret;
571 if (s->dcfg & 0x01) {
572 /* 16 bit access */
573 ret = ne2000_mem_readw(s, s->rsar);
574 ne2000_dma_update(s, 2);
575 } else {
576 /* 8 bit access */
577 ret = ne2000_mem_readb(s, s->rsar);
578 ne2000_dma_update(s, 1);
580 #ifdef DEBUG_NE2000
581 printf("NE2000: asic read val=0x%04x\n", ret);
582 #endif
583 return ret;
586 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
588 NE2000State *s = opaque;
590 #ifdef DEBUG_NE2000
591 printf("NE2000: asic writel val=0x%04x\n", val);
592 #endif
593 if (s->rcnt == 0)
594 return;
595 /* 32 bit access */
596 ne2000_mem_writel(s, s->rsar, val);
597 ne2000_dma_update(s, 4);
600 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
602 NE2000State *s = opaque;
603 int ret;
605 /* 32 bit access */
606 ret = ne2000_mem_readl(s, s->rsar);
607 ne2000_dma_update(s, 4);
608 #ifdef DEBUG_NE2000
609 printf("NE2000: asic readl val=0x%04x\n", ret);
610 #endif
611 return ret;
614 void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
616 /* nothing to do (end of reset pulse) */
619 uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
621 NE2000State *s = opaque;
622 ne2000_reset(s);
623 return 0;
626 static int ne2000_post_load(void* opaque, int version_id)
628 NE2000State* s = opaque;
630 if (version_id < 2) {
631 s->rxcr = 0x0c;
633 return 0;
636 const VMStateDescription vmstate_ne2000 = {
637 .name = "ne2000",
638 .version_id = 2,
639 .minimum_version_id = 0,
640 .minimum_version_id_old = 0,
641 .post_load = ne2000_post_load,
642 .fields = (VMStateField []) {
643 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
644 VMSTATE_UINT8(cmd, NE2000State),
645 VMSTATE_UINT32(start, NE2000State),
646 VMSTATE_UINT32(stop, NE2000State),
647 VMSTATE_UINT8(boundary, NE2000State),
648 VMSTATE_UINT8(tsr, NE2000State),
649 VMSTATE_UINT8(tpsr, NE2000State),
650 VMSTATE_UINT16(tcnt, NE2000State),
651 VMSTATE_UINT16(rcnt, NE2000State),
652 VMSTATE_UINT32(rsar, NE2000State),
653 VMSTATE_UINT8(rsr, NE2000State),
654 VMSTATE_UINT8(isr, NE2000State),
655 VMSTATE_UINT8(dcfg, NE2000State),
656 VMSTATE_UINT8(imr, NE2000State),
657 VMSTATE_BUFFER(phys, NE2000State),
658 VMSTATE_UINT8(curpag, NE2000State),
659 VMSTATE_BUFFER(mult, NE2000State),
660 VMSTATE_UNUSED(4), /* was irq */
661 VMSTATE_BUFFER(mem, NE2000State),
662 VMSTATE_END_OF_LIST()
666 static const VMStateDescription vmstate_pci_ne2000 = {
667 .name = "ne2000",
668 .version_id = 3,
669 .minimum_version_id = 3,
670 .minimum_version_id_old = 3,
671 .fields = (VMStateField []) {
672 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
673 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
674 VMSTATE_END_OF_LIST()
678 /***********************************************************/
679 /* PCI NE2000 definitions */
681 static void ne2000_map(PCIDevice *pci_dev, int region_num,
682 pcibus_t addr, pcibus_t size, int type)
684 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
685 NE2000State *s = &d->ne2000;
687 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
688 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
690 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
691 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
692 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
693 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
694 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
695 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
697 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
698 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
701 static void ne2000_cleanup(VLANClientState *nc)
703 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
705 s->nic = NULL;
708 static NetClientInfo net_ne2000_info = {
709 .type = NET_CLIENT_TYPE_NIC,
710 .size = sizeof(NICState),
711 .can_receive = ne2000_can_receive,
712 .receive = ne2000_receive,
713 .cleanup = ne2000_cleanup,
716 static int pci_ne2000_init(PCIDevice *pci_dev)
718 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
719 NE2000State *s;
720 uint8_t *pci_conf;
722 pci_conf = d->dev.config;
723 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
724 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
725 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
726 pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
727 /* TODO: RST# value should be 0. PCI spec 6.2.4 */
728 pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
730 pci_register_bar(&d->dev, 0, 0x100,
731 PCI_BASE_ADDRESS_SPACE_IO, ne2000_map);
732 s = &d->ne2000;
733 s->irq = d->dev.irq[0];
735 qemu_macaddr_default_if_unset(&s->c.macaddr);
736 ne2000_reset(s);
738 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739 pci_dev->qdev.info->name, pci_dev->qdev.id, s);
740 qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
742 if (!pci_dev->qdev.hotplugged) {
743 static int loaded = 0;
744 if (!loaded) {
745 rom_add_option("pxe-ne2k_pci.bin");
746 loaded = 1;
750 return 0;
753 static int pci_ne2000_exit(PCIDevice *pci_dev)
755 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
756 NE2000State *s = &d->ne2000;
758 qemu_del_vlan_client(&s->nic->nc);
759 return 0;
762 static PCIDeviceInfo ne2000_info = {
763 .qdev.name = "ne2k_pci",
764 .qdev.size = sizeof(PCINE2000State),
765 .qdev.vmsd = &vmstate_pci_ne2000,
766 .init = pci_ne2000_init,
767 .exit = pci_ne2000_exit,
768 .qdev.props = (Property[]) {
769 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
770 DEFINE_PROP_END_OF_LIST(),
774 static void ne2000_register_devices(void)
776 pci_qdev_register(&ne2000_info);
779 device_init(ne2000_register_devices)