4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
48 GDB_SIGNAL_UNKNOWN
= 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table
[] = {
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
226 static int gdb_signal_table
[] = {
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig
)
240 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
241 if (gdb_signal_table
[i
] == sig
)
243 return GDB_SIGNAL_UNKNOWN
;
247 static int gdb_signal_to_target (int sig
)
249 if (sig
< ARRAY_SIZE (gdb_signal_table
))
250 return gdb_signal_table
[sig
];
257 typedef struct GDBRegisterState
{
263 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 #define gpr_map gpr_map32
510 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
523 if (n
< CPU_NB_REGS
) {
524 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
525 GET_REG64(env
->regs
[gpr_map
[n
]]);
526 } else if (n
< CPU_NB_REGS32
) {
527 GET_REG32(env
->regs
[gpr_map32
[n
]]);
529 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
534 memset(mem_buf
, 0, 10);
537 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
539 if (n
< CPU_NB_REGS32
||
540 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
541 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
542 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
548 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
553 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
555 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
556 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
557 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
558 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
559 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
560 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
562 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
563 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
564 (env
->fpstt
& 0x7) << 11);
565 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
578 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
580 uint16_t selector
= ldl_p(mem_buf
);
582 if (selector
!= env
->segs
[sreg
].selector
) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env
, sreg
, selector
);
586 unsigned int limit
, flags
;
589 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
590 base
= selector
<< 4;
594 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
597 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
603 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
607 if (n
< CPU_NB_REGS
) {
608 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
609 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
610 return sizeof(target_ulong
);
611 } else if (n
< CPU_NB_REGS32
) {
613 env
->regs
[n
] &= ~0xffffffffUL
;
614 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
617 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
623 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
625 if (n
< CPU_NB_REGS32
||
626 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
627 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
628 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
634 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
635 env
->eip
= ldq_p(mem_buf
);
638 env
->eip
&= ~0xffffffffUL
;
639 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
643 env
->eflags
= ldl_p(mem_buf
);
646 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
647 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
648 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
649 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
650 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
651 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
653 case IDX_FP_REGS
+ 8:
654 env
->fpuc
= ldl_p(mem_buf
);
656 case IDX_FP_REGS
+ 9:
657 tmp
= ldl_p(mem_buf
);
658 env
->fpstt
= (tmp
>> 11) & 7;
659 env
->fpus
= tmp
& ~0x3800;
661 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
662 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
663 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
664 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
665 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
666 case IDX_FP_REGS
+ 15: /* fop */ return 4;
669 env
->mxcsr
= ldl_p(mem_buf
);
673 /* Unrecognised register. */
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
688 #define GDB_CORE_XML "power-core.xml"
691 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
695 GET_REGL(env
->gpr
[n
]);
700 stfq_p(mem_buf
, env
->fpr
[n
-32]);
704 case 64: GET_REGL(env
->nip
);
705 case 65: GET_REGL(env
->msr
);
710 for (i
= 0; i
< 8; i
++)
711 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
714 case 67: GET_REGL(env
->lr
);
715 case 68: GET_REGL(env
->ctr
);
716 case 69: GET_REGL(env
->xer
);
721 GET_REG32(0); /* fpscr */
728 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
732 env
->gpr
[n
] = ldtul_p(mem_buf
);
733 return sizeof(target_ulong
);
738 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
743 env
->nip
= ldtul_p(mem_buf
);
744 return sizeof(target_ulong
);
746 ppc_store_msr(env
, ldtul_p(mem_buf
));
747 return sizeof(target_ulong
);
750 uint32_t cr
= ldl_p(mem_buf
);
752 for (i
= 0; i
< 8; i
++)
753 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
757 env
->lr
= ldtul_p(mem_buf
);
758 return sizeof(target_ulong
);
760 env
->ctr
= ldtul_p(mem_buf
);
761 return sizeof(target_ulong
);
763 env
->xer
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
780 #define NUM_CORE_REGS 72
784 #define GET_REGA(val) GET_REG32(val)
786 #define GET_REGA(val) GET_REGL(val)
789 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 GET_REGA(env
->gregs
[n
]);
796 /* register window */
797 GET_REGA(env
->regwptr
[n
- 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
802 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 case 64: GET_REGA(env
->y
);
807 case 65: GET_REGA(GET_PSR(env
));
808 case 66: GET_REGA(env
->wim
);
809 case 67: GET_REGA(env
->tbr
);
810 case 68: GET_REGA(env
->pc
);
811 case 69: GET_REGA(env
->npc
);
812 case 70: GET_REGA(env
->fsr
);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
819 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
822 /* f32-f62 (double width, even numbers only) */
825 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
826 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
830 case 80: GET_REGL(env
->pc
);
831 case 81: GET_REGL(env
->npc
);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
833 ((env
->asi
& 0xff) << 24) |
834 ((env
->pstate
& 0xfff) << 8) |
836 case 83: GET_REGL(env
->fsr
);
837 case 84: GET_REGL(env
->fprs
);
838 case 85: GET_REGL(env
->y
);
844 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
846 #if defined(TARGET_ABI32)
849 tmp
= ldl_p(mem_buf
);
853 tmp
= ldtul_p(mem_buf
);
860 /* register window */
861 env
->regwptr
[n
- 8] = tmp
;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
866 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 case 64: env
->y
= tmp
; break;
871 case 65: PUT_PSR(env
, tmp
); break;
872 case 66: env
->wim
= tmp
; break;
873 case 67: env
->tbr
= tmp
; break;
874 case 68: env
->pc
= tmp
; break;
875 case 69: env
->npc
= tmp
; break;
876 case 70: env
->fsr
= tmp
; break;
884 env
->fpr
[n
] = ldfl_p(mem_buf
);
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
892 case 80: env
->pc
= tmp
; break;
893 case 81: env
->npc
= tmp
; break;
895 PUT_CCR(env
, tmp
>> 32);
896 env
->asi
= (tmp
>> 24) & 0xff;
897 env
->pstate
= (tmp
>> 8) & 0xfff;
898 PUT_CWP64(env
, tmp
& 0xff);
900 case 83: env
->fsr
= tmp
; break;
901 case 84: env
->fprs
= tmp
; break;
902 case 85: env
->y
= tmp
; break;
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
922 /* Core integer register. */
923 GET_REG32(env
->regs
[n
]);
929 memset(mem_buf
, 0, 12);
934 /* FPA status register. */
940 GET_REG32(cpsr_read(env
));
942 /* Unknown register. */
946 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 tmp
= ldl_p(mem_buf
);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
958 /* Core integer register. */
962 if (n
< 24) { /* 16-23 */
963 /* FPA registers (ignored). */
970 /* FPA status register (ignored). */
976 cpsr_write (env
, tmp
, 0xffffffff);
979 /* Unknown register. */
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
993 GET_REG32(env
->dregs
[n
]);
996 GET_REG32(env
->aregs
[n
- 8]);
999 case 16: GET_REG32(env
->sr
);
1000 case 17: GET_REG32(env
->pc
);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1008 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1012 tmp
= ldl_p(mem_buf
);
1016 env
->dregs
[n
] = tmp
;
1017 } else if (n
< 16) {
1019 env
->aregs
[n
- 8] = tmp
;
1022 case 16: env
->sr
= tmp
; break;
1023 case 17: env
->pc
= tmp
; break;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1036 GET_REGL(env
->active_tc
.gpr
[n
]);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1039 if (n
>= 38 && n
< 70) {
1040 if (env
->CP0_Status
& (1 << CP0St_FR
))
1041 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1043 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1046 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1047 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1051 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1052 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1053 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1054 case 35: GET_REGL(env
->CP0_BadVAddr
);
1055 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1056 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1060 if (n
>= 73 && n
<= 88) {
1061 /* 16 embedded regs. */
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm
[] =
1071 float_round_nearest_even
,
1072 float_round_to_zero
,
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1083 tmp
= ldtul_p(mem_buf
);
1086 env
->active_tc
.gpr
[n
] = tmp
;
1087 return sizeof(target_ulong
);
1089 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1090 && n
>= 38 && n
< 73) {
1092 if (env
->CP0_Status
& (1 << CP0St_FR
))
1093 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1095 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1099 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE
;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1107 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1109 return sizeof(target_ulong
);
1112 case 32: env
->CP0_Status
= tmp
; break;
1113 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1114 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1115 case 35: env
->CP0_BadVAddr
= tmp
; break;
1116 case 36: env
->CP0_Cause
= tmp
; break;
1118 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1120 env
->hflags
|= MIPS_HFLAG_M16
;
1122 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1125 case 72: /* fp, ignored */ break;
1129 /* Other registers are readonly. Ignore writes. */
1133 return sizeof(target_ulong
);
1135 #elif defined (TARGET_SH4)
1137 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1138 /* FIXME: We should use XML for this. */
1140 #define NUM_CORE_REGS 59
1142 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1145 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1146 GET_REGL(env
->gregs
[n
+ 16]);
1148 GET_REGL(env
->gregs
[n
]);
1150 } else if (n
< 16) {
1151 GET_REGL(env
->gregs
[n
- 8]);
1152 } else if (n
>= 25 && n
< 41) {
1153 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1154 } else if (n
>= 43 && n
< 51) {
1155 GET_REGL(env
->gregs
[n
- 43]);
1156 } else if (n
>= 51 && n
< 59) {
1157 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1160 case 16: GET_REGL(env
->pc
);
1161 case 17: GET_REGL(env
->pr
);
1162 case 18: GET_REGL(env
->gbr
);
1163 case 19: GET_REGL(env
->vbr
);
1164 case 20: GET_REGL(env
->mach
);
1165 case 21: GET_REGL(env
->macl
);
1166 case 22: GET_REGL(env
->sr
);
1167 case 23: GET_REGL(env
->fpul
);
1168 case 24: GET_REGL(env
->fpscr
);
1169 case 41: GET_REGL(env
->ssr
);
1170 case 42: GET_REGL(env
->spc
);
1176 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1180 tmp
= ldl_p(mem_buf
);
1183 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1184 env
->gregs
[n
+ 16] = tmp
;
1186 env
->gregs
[n
] = tmp
;
1189 } else if (n
< 16) {
1190 env
->gregs
[n
- 8] = tmp
;
1192 } else if (n
>= 25 && n
< 41) {
1193 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1194 } else if (n
>= 43 && n
< 51) {
1195 env
->gregs
[n
- 43] = tmp
;
1197 } else if (n
>= 51 && n
< 59) {
1198 env
->gregs
[n
- (51 - 16)] = tmp
;
1202 case 16: env
->pc
= tmp
;
1203 case 17: env
->pr
= tmp
;
1204 case 18: env
->gbr
= tmp
;
1205 case 19: env
->vbr
= tmp
;
1206 case 20: env
->mach
= tmp
;
1207 case 21: env
->macl
= tmp
;
1208 case 22: env
->sr
= tmp
;
1209 case 23: env
->fpul
= tmp
;
1210 case 24: env
->fpscr
= tmp
;
1211 case 41: env
->ssr
= tmp
;
1212 case 42: env
->spc
= tmp
;
1218 #elif defined (TARGET_MICROBLAZE)
1220 #define NUM_CORE_REGS (32 + 5)
1222 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1225 GET_REG32(env
->regs
[n
]);
1227 GET_REG32(env
->sregs
[n
- 32]);
1232 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1236 if (n
> NUM_CORE_REGS
)
1239 tmp
= ldl_p(mem_buf
);
1244 env
->sregs
[n
- 32] = tmp
;
1248 #elif defined (TARGET_CRIS)
1250 #define NUM_CORE_REGS 49
1253 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1256 GET_REG32(env
->regs
[n
]);
1266 GET_REG8(env
->pregs
[n
- 16]);
1269 GET_REG8(env
->pregs
[n
- 16]);
1273 GET_REG16(env
->pregs
[n
- 16]);
1277 GET_REG32(env
->pregs
[n
- 16]);
1285 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1289 if (env
->pregs
[PR_VR
] < 32)
1290 return read_register_crisv10(env
, mem_buf
, n
);
1292 srs
= env
->pregs
[PR_SRS
];
1294 GET_REG32(env
->regs
[n
]);
1297 if (n
>= 21 && n
< 32) {
1298 GET_REG32(env
->pregs
[n
- 16]);
1300 if (n
>= 33 && n
< 49) {
1301 GET_REG32(env
->sregs
[srs
][n
- 33]);
1304 case 16: GET_REG8(env
->pregs
[0]);
1305 case 17: GET_REG8(env
->pregs
[1]);
1306 case 18: GET_REG32(env
->pregs
[2]);
1307 case 19: GET_REG8(srs
);
1308 case 20: GET_REG16(env
->pregs
[4]);
1309 case 32: GET_REG32(env
->pc
);
1315 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1322 tmp
= ldl_p(mem_buf
);
1328 if (n
>= 21 && n
< 32) {
1329 env
->pregs
[n
- 16] = tmp
;
1332 /* FIXME: Should support function regs be writable? */
1336 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1339 case 32: env
->pc
= tmp
; break;
1344 #elif defined (TARGET_ALPHA)
1346 #define NUM_CORE_REGS 67
1348 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1358 d
.d
= env
->fir
[n
- 32];
1362 val
= cpu_alpha_load_fpcr(env
);
1372 /* 31 really is the zero register; 65 is unassigned in the
1373 gdb protocol, but is still required to occupy 8 bytes. */
1382 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1384 target_ulong tmp
= ldtul_p(mem_buf
);
1393 env
->fir
[n
- 32] = d
.d
;
1396 cpu_alpha_store_fpcr(env
, tmp
);
1406 /* 31 really is the zero register; 65 is unassigned in the
1407 gdb protocol, but is still required to occupy 8 bytes. */
1414 #elif defined (TARGET_S390X)
1416 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1418 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1421 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1422 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1423 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1424 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1425 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1426 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1427 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1428 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1431 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1432 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1438 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1443 tmpl
= ldtul_p(mem_buf
);
1444 tmp32
= ldl_p(mem_buf
);
1447 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1448 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1449 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1450 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1451 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1452 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1453 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1454 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1457 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1458 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1465 #define NUM_CORE_REGS 0
1467 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1472 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1479 static int num_g_regs
= NUM_CORE_REGS
;
1482 /* Encode data using the encoding for 'x' packets. */
1483 static int memtox(char *buf
, const char *mem
, int len
)
1491 case '#': case '$': case '*': case '}':
1503 static const char *get_feature_xml(const char *p
, const char **newp
)
1505 extern const char *const xml_builtin
[][2];
1509 static char target_xml
[1024];
1512 while (p
[len
] && p
[len
] != ':')
1517 if (strncmp(p
, "target.xml", len
) == 0) {
1518 /* Generate the XML description for this CPU. */
1519 if (!target_xml
[0]) {
1520 GDBRegisterState
*r
;
1522 snprintf(target_xml
, sizeof(target_xml
),
1523 "<?xml version=\"1.0\"?>"
1524 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1526 "<xi:include href=\"%s\"/>",
1529 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1530 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1531 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1532 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1534 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1538 for (i
= 0; ; i
++) {
1539 name
= xml_builtin
[i
][0];
1540 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1543 return name
? xml_builtin
[i
][1] : NULL
;
1547 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1549 GDBRegisterState
*r
;
1551 if (reg
< NUM_CORE_REGS
)
1552 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1554 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1555 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1556 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1562 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1564 GDBRegisterState
*r
;
1566 if (reg
< NUM_CORE_REGS
)
1567 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1569 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1570 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1571 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1577 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1578 specifies the first register number and these registers are included in
1579 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1580 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1583 void gdb_register_coprocessor(CPUState
* env
,
1584 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1585 int num_regs
, const char *xml
, int g_pos
)
1587 GDBRegisterState
*s
;
1588 GDBRegisterState
**p
;
1589 static int last_reg
= NUM_CORE_REGS
;
1591 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1592 s
->base_reg
= last_reg
;
1593 s
->num_regs
= num_regs
;
1594 s
->get_reg
= get_reg
;
1595 s
->set_reg
= set_reg
;
1599 /* Check for duplicates. */
1600 if (strcmp((*p
)->xml
, xml
) == 0)
1604 /* Add to end of list. */
1605 last_reg
+= num_regs
;
1608 if (g_pos
!= s
->base_reg
) {
1609 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1610 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1612 num_g_regs
= last_reg
;
1617 #ifndef CONFIG_USER_ONLY
1618 static const int xlat_gdb_type
[] = {
1619 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1620 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1621 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1625 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1631 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1634 case GDB_BREAKPOINT_SW
:
1635 case GDB_BREAKPOINT_HW
:
1636 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1637 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1642 #ifndef CONFIG_USER_ONLY
1643 case GDB_WATCHPOINT_WRITE
:
1644 case GDB_WATCHPOINT_READ
:
1645 case GDB_WATCHPOINT_ACCESS
:
1646 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1647 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1659 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1665 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1668 case GDB_BREAKPOINT_SW
:
1669 case GDB_BREAKPOINT_HW
:
1670 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1671 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1676 #ifndef CONFIG_USER_ONLY
1677 case GDB_WATCHPOINT_WRITE
:
1678 case GDB_WATCHPOINT_READ
:
1679 case GDB_WATCHPOINT_ACCESS
:
1680 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1681 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1692 static void gdb_breakpoint_remove_all(void)
1696 if (kvm_enabled()) {
1697 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1701 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1702 cpu_breakpoint_remove_all(env
, BP_GDB
);
1703 #ifndef CONFIG_USER_ONLY
1704 cpu_watchpoint_remove_all(env
, BP_GDB
);
1709 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1711 #if defined(TARGET_I386)
1712 cpu_synchronize_state(s
->c_cpu
);
1714 #elif defined (TARGET_PPC)
1716 #elif defined (TARGET_SPARC)
1718 s
->c_cpu
->npc
= pc
+ 4;
1719 #elif defined (TARGET_ARM)
1720 s
->c_cpu
->regs
[15] = pc
;
1721 #elif defined (TARGET_SH4)
1723 #elif defined (TARGET_MIPS)
1724 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1726 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1728 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1730 #elif defined (TARGET_MICROBLAZE)
1731 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1732 #elif defined (TARGET_CRIS)
1734 #elif defined (TARGET_ALPHA)
1736 #elif defined (TARGET_S390X)
1737 cpu_synchronize_state(s
->c_cpu
);
1738 s
->c_cpu
->psw
.addr
= pc
;
1742 static inline int gdb_id(CPUState
*env
)
1744 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1745 return env
->host_tid
;
1747 return env
->cpu_index
+ 1;
1751 static CPUState
*find_cpu(uint32_t thread_id
)
1755 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1756 if (gdb_id(env
) == thread_id
) {
1764 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1769 int ch
, reg_size
, type
, res
;
1770 char buf
[MAX_PACKET_LENGTH
];
1771 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1773 target_ulong addr
, len
;
1776 printf("command='%s'\n", line_buf
);
1782 /* TODO: Make this return the correct value for user-mode. */
1783 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1786 /* Remove all the breakpoints when this query is issued,
1787 * because gdb is doing and initial connect and the state
1788 * should be cleaned up.
1790 gdb_breakpoint_remove_all();
1794 addr
= strtoull(p
, (char **)&p
, 16);
1795 gdb_set_cpu_pc(s
, addr
);
1801 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1802 if (s
->signal
== -1)
1807 if (strncmp(p
, "Cont", 4) == 0) {
1808 int res_signal
, res_thread
;
1812 put_packet(s
, "vCont;c;C;s;S");
1827 if (action
== 'C' || action
== 'S') {
1828 signal
= strtoul(p
, (char **)&p
, 16);
1829 } else if (action
!= 'c' && action
!= 's') {
1835 thread
= strtoull(p
+1, (char **)&p
, 16);
1837 action
= tolower(action
);
1838 if (res
== 0 || (res
== 'c' && action
== 's')) {
1840 res_signal
= signal
;
1841 res_thread
= thread
;
1845 if (res_thread
!= -1 && res_thread
!= 0) {
1846 env
= find_cpu(res_thread
);
1848 put_packet(s
, "E22");
1854 cpu_single_step(s
->c_cpu
, sstep_flags
);
1856 s
->signal
= res_signal
;
1862 goto unknown_command
;
1865 /* Kill the target */
1866 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1870 gdb_breakpoint_remove_all();
1872 put_packet(s
, "OK");
1876 addr
= strtoull(p
, (char **)&p
, 16);
1877 gdb_set_cpu_pc(s
, addr
);
1879 cpu_single_step(s
->c_cpu
, sstep_flags
);
1887 ret
= strtoull(p
, (char **)&p
, 16);
1890 err
= strtoull(p
, (char **)&p
, 16);
1897 if (gdb_current_syscall_cb
)
1898 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1900 put_packet(s
, "T02");
1907 cpu_synchronize_state(s
->g_cpu
);
1909 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1910 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1913 memtohex(buf
, mem_buf
, len
);
1917 cpu_synchronize_state(s
->g_cpu
);
1918 registers
= mem_buf
;
1919 len
= strlen(p
) / 2;
1920 hextomem((uint8_t *)registers
, p
, len
);
1921 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1922 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1924 registers
+= reg_size
;
1926 put_packet(s
, "OK");
1929 addr
= strtoull(p
, (char **)&p
, 16);
1932 len
= strtoull(p
, NULL
, 16);
1933 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1934 put_packet (s
, "E14");
1936 memtohex(buf
, mem_buf
, len
);
1941 addr
= strtoull(p
, (char **)&p
, 16);
1944 len
= strtoull(p
, (char **)&p
, 16);
1947 hextomem(mem_buf
, p
, len
);
1948 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1949 put_packet(s
, "E14");
1951 put_packet(s
, "OK");
1954 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1955 This works, but can be very slow. Anything new enough to
1956 understand XML also knows how to use this properly. */
1958 goto unknown_command
;
1959 addr
= strtoull(p
, (char **)&p
, 16);
1960 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1962 memtohex(buf
, mem_buf
, reg_size
);
1965 put_packet(s
, "E14");
1970 goto unknown_command
;
1971 addr
= strtoull(p
, (char **)&p
, 16);
1974 reg_size
= strlen(p
) / 2;
1975 hextomem(mem_buf
, p
, reg_size
);
1976 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1977 put_packet(s
, "OK");
1981 type
= strtoul(p
, (char **)&p
, 16);
1984 addr
= strtoull(p
, (char **)&p
, 16);
1987 len
= strtoull(p
, (char **)&p
, 16);
1989 res
= gdb_breakpoint_insert(addr
, len
, type
);
1991 res
= gdb_breakpoint_remove(addr
, len
, type
);
1993 put_packet(s
, "OK");
1994 else if (res
== -ENOSYS
)
1997 put_packet(s
, "E22");
2001 thread
= strtoull(p
, (char **)&p
, 16);
2002 if (thread
== -1 || thread
== 0) {
2003 put_packet(s
, "OK");
2006 env
= find_cpu(thread
);
2008 put_packet(s
, "E22");
2014 put_packet(s
, "OK");
2018 put_packet(s
, "OK");
2021 put_packet(s
, "E22");
2026 thread
= strtoull(p
, (char **)&p
, 16);
2027 env
= find_cpu(thread
);
2030 put_packet(s
, "OK");
2032 put_packet(s
, "E22");
2037 /* parse any 'q' packets here */
2038 if (!strcmp(p
,"qemu.sstepbits")) {
2039 /* Query Breakpoint bit definitions */
2040 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2046 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2047 /* Display or change the sstep_flags */
2050 /* Display current setting */
2051 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2056 type
= strtoul(p
, (char **)&p
, 16);
2058 put_packet(s
, "OK");
2060 } else if (strcmp(p
,"C") == 0) {
2061 /* "Current thread" remains vague in the spec, so always return
2062 * the first CPU (gdb returns the first thread). */
2063 put_packet(s
, "QC1");
2065 } else if (strcmp(p
,"fThreadInfo") == 0) {
2066 s
->query_cpu
= first_cpu
;
2067 goto report_cpuinfo
;
2068 } else if (strcmp(p
,"sThreadInfo") == 0) {
2071 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2073 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2077 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2078 thread
= strtoull(p
+16, (char **)&p
, 16);
2079 env
= find_cpu(thread
);
2081 cpu_synchronize_state(env
);
2082 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2083 "CPU#%d [%s]", env
->cpu_index
,
2084 env
->halted
? "halted " : "running");
2085 memtohex(buf
, mem_buf
, len
);
2090 #ifdef CONFIG_USER_ONLY
2091 else if (strncmp(p
, "Offsets", 7) == 0) {
2092 TaskState
*ts
= s
->c_cpu
->opaque
;
2094 snprintf(buf
, sizeof(buf
),
2095 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2096 ";Bss=" TARGET_ABI_FMT_lx
,
2097 ts
->info
->code_offset
,
2098 ts
->info
->data_offset
,
2099 ts
->info
->data_offset
);
2103 #else /* !CONFIG_USER_ONLY */
2104 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2105 int len
= strlen(p
+ 5);
2107 if ((len
% 2) != 0) {
2108 put_packet(s
, "E01");
2111 hextomem(mem_buf
, p
+ 5, len
);
2114 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2115 put_packet(s
, "OK");
2118 #endif /* !CONFIG_USER_ONLY */
2119 if (strncmp(p
, "Supported", 9) == 0) {
2120 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2122 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2128 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2130 target_ulong total_len
;
2134 xml
= get_feature_xml(p
, &p
);
2136 snprintf(buf
, sizeof(buf
), "E00");
2143 addr
= strtoul(p
, (char **)&p
, 16);
2146 len
= strtoul(p
, (char **)&p
, 16);
2148 total_len
= strlen(xml
);
2149 if (addr
> total_len
) {
2150 snprintf(buf
, sizeof(buf
), "E00");
2154 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2155 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2156 if (len
< total_len
- addr
) {
2158 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2161 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2163 put_packet_binary(s
, buf
, len
+ 1);
2167 /* Unrecognised 'q' command. */
2168 goto unknown_command
;
2172 /* put empty packet */
2180 void gdb_set_stop_cpu(CPUState
*env
)
2182 gdbserver_state
->c_cpu
= env
;
2183 gdbserver_state
->g_cpu
= env
;
2186 #ifndef CONFIG_USER_ONLY
2187 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2189 GDBState
*s
= gdbserver_state
;
2190 CPUState
*env
= s
->c_cpu
;
2195 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2196 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2199 /* disable single step if it was enable */
2200 cpu_single_step(env
, 0);
2202 if (reason
== EXCP_DEBUG
) {
2203 if (env
->watchpoint_hit
) {
2204 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2215 snprintf(buf
, sizeof(buf
),
2216 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2217 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2218 env
->watchpoint_hit
->vaddr
);
2220 env
->watchpoint_hit
= NULL
;
2224 ret
= GDB_SIGNAL_TRAP
;
2226 ret
= GDB_SIGNAL_INT
;
2228 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2233 /* Send a gdb syscall request.
2234 This accepts limited printf-style format specifiers, specifically:
2235 %x - target_ulong argument printed in hex.
2236 %lx - 64-bit argument printed in hex.
2237 %s - string pointer (target_ulong) and length (int) pair. */
2238 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2247 s
= gdbserver_state
;
2250 gdb_current_syscall_cb
= cb
;
2251 s
->state
= RS_SYSCALL
;
2252 #ifndef CONFIG_USER_ONLY
2253 vm_stop(EXCP_DEBUG
);
2264 addr
= va_arg(va
, target_ulong
);
2265 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2268 if (*(fmt
++) != 'x')
2270 i64
= va_arg(va
, uint64_t);
2271 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2274 addr
= va_arg(va
, target_ulong
);
2275 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2276 addr
, va_arg(va
, int));
2280 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2291 #ifdef CONFIG_USER_ONLY
2292 gdb_handlesig(s
->c_cpu
, 0);
2298 static void gdb_read_byte(GDBState
*s
, int ch
)
2303 #ifndef CONFIG_USER_ONLY
2304 if (s
->last_packet_len
) {
2305 /* Waiting for a response to the last packet. If we see the start
2306 of a new command then abandon the previous response. */
2309 printf("Got NACK, retransmitting\n");
2311 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2315 printf("Got ACK\n");
2317 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2319 if (ch
== '+' || ch
== '$')
2320 s
->last_packet_len
= 0;
2325 /* when the CPU is running, we cannot do anything except stop
2326 it when receiving a char */
2327 vm_stop(EXCP_INTERRUPT
);
2334 s
->line_buf_index
= 0;
2335 s
->state
= RS_GETLINE
;
2340 s
->state
= RS_CHKSUM1
;
2341 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2344 s
->line_buf
[s
->line_buf_index
++] = ch
;
2348 s
->line_buf
[s
->line_buf_index
] = '\0';
2349 s
->line_csum
= fromhex(ch
) << 4;
2350 s
->state
= RS_CHKSUM2
;
2353 s
->line_csum
|= fromhex(ch
);
2355 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2356 csum
+= s
->line_buf
[i
];
2358 if (s
->line_csum
!= (csum
& 0xff)) {
2360 put_buffer(s
, &reply
, 1);
2364 put_buffer(s
, &reply
, 1);
2365 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2374 #ifdef CONFIG_USER_ONLY
2380 s
= gdbserver_state
;
2382 if (gdbserver_fd
< 0 || s
->fd
< 0)
2389 gdb_handlesig (CPUState
*env
, int sig
)
2395 s
= gdbserver_state
;
2396 if (gdbserver_fd
< 0 || s
->fd
< 0)
2399 /* disable single step if it was enabled */
2400 cpu_single_step(env
, 0);
2405 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2408 /* put_packet() might have detected that the peer terminated the
2415 s
->running_state
= 0;
2416 while (s
->running_state
== 0) {
2417 n
= read (s
->fd
, buf
, 256);
2422 for (i
= 0; i
< n
; i
++)
2423 gdb_read_byte (s
, buf
[i
]);
2425 else if (n
== 0 || errno
!= EAGAIN
)
2427 /* XXX: Connection closed. Should probably wait for annother
2428 connection before continuing. */
2437 /* Tell the remote gdb that the process has exited. */
2438 void gdb_exit(CPUState
*env
, int code
)
2443 s
= gdbserver_state
;
2444 if (gdbserver_fd
< 0 || s
->fd
< 0)
2447 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2451 /* Tell the remote gdb that the process has exited due to SIG. */
2452 void gdb_signalled(CPUState
*env
, int sig
)
2457 s
= gdbserver_state
;
2458 if (gdbserver_fd
< 0 || s
->fd
< 0)
2461 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2465 static void gdb_accept(void)
2468 struct sockaddr_in sockaddr
;
2473 len
= sizeof(sockaddr
);
2474 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2475 if (fd
< 0 && errno
!= EINTR
) {
2478 } else if (fd
>= 0) {
2480 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2486 /* set short latency */
2488 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2490 s
= qemu_mallocz(sizeof(GDBState
));
2491 s
->c_cpu
= first_cpu
;
2492 s
->g_cpu
= first_cpu
;
2496 gdbserver_state
= s
;
2498 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2501 static int gdbserver_open(int port
)
2503 struct sockaddr_in sockaddr
;
2506 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2512 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2515 /* allow fast reuse */
2517 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2519 sockaddr
.sin_family
= AF_INET
;
2520 sockaddr
.sin_port
= htons(port
);
2521 sockaddr
.sin_addr
.s_addr
= 0;
2522 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2527 ret
= listen(fd
, 0);
2535 int gdbserver_start(int port
)
2537 gdbserver_fd
= gdbserver_open(port
);
2538 if (gdbserver_fd
< 0)
2540 /* accept connections */
2545 /* Disable gdb stub for child processes. */
2546 void gdbserver_fork(CPUState
*env
)
2548 GDBState
*s
= gdbserver_state
;
2549 if (gdbserver_fd
< 0 || s
->fd
< 0)
2553 cpu_breakpoint_remove_all(env
, BP_GDB
);
2554 cpu_watchpoint_remove_all(env
, BP_GDB
);
2557 static int gdb_chr_can_receive(void *opaque
)
2559 /* We can handle an arbitrarily large amount of data.
2560 Pick the maximum packet size, which is as good as anything. */
2561 return MAX_PACKET_LENGTH
;
2564 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2568 for (i
= 0; i
< size
; i
++) {
2569 gdb_read_byte(gdbserver_state
, buf
[i
]);
2573 static void gdb_chr_event(void *opaque
, int event
)
2576 case CHR_EVENT_OPENED
:
2577 vm_stop(EXCP_INTERRUPT
);
2585 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2587 char buf
[MAX_PACKET_LENGTH
];
2590 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2591 len
= (MAX_PACKET_LENGTH
/2) - 1;
2592 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2596 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2598 const char *p
= (const char *)buf
;
2601 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2603 if (len
<= max_sz
) {
2604 gdb_monitor_output(gdbserver_state
, p
, len
);
2607 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2615 static void gdb_sigterm_handler(int signal
)
2618 vm_stop(EXCP_INTERRUPT
);
2622 int gdbserver_start(const char *device
)
2625 char gdbstub_device_name
[128];
2626 CharDriverState
*chr
= NULL
;
2627 CharDriverState
*mon_chr
;
2631 if (strcmp(device
, "none") != 0) {
2632 if (strstart(device
, "tcp:", NULL
)) {
2633 /* enforce required TCP attributes */
2634 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2635 "%s,nowait,nodelay,server", device
);
2636 device
= gdbstub_device_name
;
2639 else if (strcmp(device
, "stdio") == 0) {
2640 struct sigaction act
;
2642 memset(&act
, 0, sizeof(act
));
2643 act
.sa_handler
= gdb_sigterm_handler
;
2644 sigaction(SIGINT
, &act
, NULL
);
2647 chr
= qemu_chr_open("gdb", device
, NULL
);
2651 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2652 gdb_chr_event
, NULL
);
2655 s
= gdbserver_state
;
2657 s
= qemu_mallocz(sizeof(GDBState
));
2658 gdbserver_state
= s
;
2660 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2662 /* Initialize a monitor terminal for gdb */
2663 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2664 mon_chr
->chr_write
= gdb_monitor_write
;
2665 monitor_init(mon_chr
, 0);
2668 qemu_chr_close(s
->chr
);
2669 mon_chr
= s
->mon_chr
;
2670 memset(s
, 0, sizeof(GDBState
));
2672 s
->c_cpu
= first_cpu
;
2673 s
->g_cpu
= first_cpu
;
2675 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2676 s
->mon_chr
= mon_chr
;