dec: actually implement PCI bridging
[qemu/aliguori-queue.git] / exec.c
blobb0caf7c24f81b0a598c8fd6fa31cf9febf0a0c37
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
195 /* log support */
196 #ifdef WIN32
197 static const char *logfilename = "qemu.log";
198 #else
199 static const char *logfilename = "/tmp/qemu.log";
200 #endif
201 FILE *logfile;
202 int loglevel;
203 static int log_append = 0;
205 /* statistics */
206 static int tlb_flush_count;
207 static int tb_flush_count;
208 static int tb_phys_invalidate_count;
210 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
211 typedef struct subpage_t {
212 target_phys_addr_t base;
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
215 void *opaque[TARGET_PAGE_SIZE][2][4];
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217 } subpage_t;
219 #ifdef _WIN32
220 static void map_exec(void *addr, long size)
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
227 #else
228 static void map_exec(void *addr, long size)
230 unsigned long start, end, page_size;
232 page_size = getpagesize();
233 start = (unsigned long)addr;
234 start &= ~(page_size - 1);
236 end = (unsigned long)addr + size;
237 end += page_size - 1;
238 end &= ~(page_size - 1);
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
243 #endif
245 static void page_init(void)
247 /* NOTE: we can always suppose that qemu_host_page_size >=
248 TARGET_PAGE_SIZE */
249 #ifdef _WIN32
251 SYSTEM_INFO system_info;
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
256 #else
257 qemu_real_host_page_size = getpagesize();
258 #endif
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
270 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
276 mmap_lock();
277 last_brk = (unsigned long)sbrk(0);
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
287 page_set_flags(startaddr & TARGET_PAGE_MASK,
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
291 } while (!feof(f));
292 fclose(f);
294 mmap_unlock();
296 #endif
299 static inline PageDesc **page_l1_map(target_ulong index)
301 #if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
305 return NULL;
306 #endif
307 return &l1_map[index >> L2_BITS];
310 static inline PageDesc *page_find_alloc(target_ulong index)
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
320 #if defined(CONFIG_USER_ONLY)
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
325 *lp = p;
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
332 #else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335 #endif
337 return p + (index & (L2_SIZE - 1));
340 static inline PageDesc *page_find(target_ulong index)
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
347 p = *lp;
348 if (!p) {
349 return NULL;
351 return p + (index & (L2_SIZE - 1));
354 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
356 void **lp, **p;
357 PhysPageDesc *pd;
359 p = (void **)l1_phys_map;
360 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
362 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364 #endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
375 #endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
377 pd = *lp;
378 if (!pd) {
379 int i;
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
385 for (i = 0; i < L2_SIZE; i++) {
386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
393 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
395 return phys_page_find_alloc(index, 0);
398 #if !defined(CONFIG_USER_ONLY)
399 static void tlb_protect_code(ram_addr_t ram_addr);
400 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
401 target_ulong vaddr);
402 #define mmap_lock() do { } while(0)
403 #define mmap_unlock() do { } while(0)
404 #endif
406 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
408 #if defined(CONFIG_USER_ONLY)
409 /* Currently it is not recommended to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411 #define USE_STATIC_CODE_GEN_BUFFER
412 #endif
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416 #endif
418 static void code_gen_alloc(unsigned long tb_size)
420 #ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424 #else
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
427 #if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430 #else
431 /* XXX: needs adjustments */
432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
433 #endif
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439 #if defined(__linux__)
441 int flags;
442 void *start = NULL;
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445 #if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
450 #elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
456 #elif defined(__arm__)
457 /* Map the buffer below 32M, so we can use direct calls and branches */
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
462 #endif
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
471 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476 #if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484 #endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
493 #else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496 #endif
497 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
505 /* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508 void cpu_exec_init_all(unsigned long tb_size)
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
513 page_init();
514 #if !defined(CONFIG_USER_ONLY)
515 io_mem_init();
516 #endif
519 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
521 static void cpu_common_pre_save(void *opaque)
523 CPUState *env = opaque;
525 cpu_synchronize_state(env);
528 static int cpu_common_pre_load(void *opaque)
530 CPUState *env = opaque;
532 cpu_synchronize_state(env);
533 return 0;
536 static int cpu_common_post_load(void *opaque, int version_id)
538 CPUState *env = opaque;
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
543 tlb_flush(env, 1);
545 return 0;
548 static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
562 #endif
564 CPUState *qemu_get_cpu(int cpu)
566 CPUState *env = first_cpu;
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
574 return env;
577 void cpu_exec_init(CPUState *env)
579 CPUState **penv;
580 int cpu_index;
582 #if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584 #endif
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
589 penv = &(*penv)->next_cpu;
590 cpu_index++;
592 env->cpu_index = cpu_index;
593 env->numa_node = 0;
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
596 *penv = env;
597 #if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599 #endif
600 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604 #endif
607 static inline void invalidate_page_bitmap(PageDesc *p)
609 if (p->code_bitmap) {
610 qemu_free(p->code_bitmap);
611 p->code_bitmap = NULL;
613 p->code_write_count = 0;
616 /* set to NULL all the 'first_tb' fields in all PageDescs */
617 static void page_flush_tb(void)
619 int i, j;
620 PageDesc *p;
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
634 /* flush all the translation blocks */
635 /* XXX: tb_flush is currently not thread safe */
636 void tb_flush(CPUState *env1)
638 CPUState *env;
639 #if defined(DEBUG_FLUSH)
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
644 #endif
645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
648 nb_tbs = 0;
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
655 page_flush_tb();
657 code_gen_ptr = code_gen_buffer;
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
660 tb_flush_count++;
663 #ifdef DEBUG_TB_CHECK
665 static void tb_invalidate_check(target_ulong address)
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
676 address, (long)tb->pc, tb->size);
682 /* verify that all the pages have correct rights for code */
683 static void tb_page_check(void)
685 TranslationBlock *tb;
686 int i, flags1, flags2;
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
694 (long)tb->pc, tb->size, flags1, flags2);
700 #endif
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
719 TranslationBlock *tb1;
720 unsigned int n1;
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
730 ptb = &tb1->page_next[n1];
734 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
758 tb->jmp_next[n] = NULL;
762 /* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764 static inline void tb_reset_jump(TranslationBlock *tb, int n)
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
769 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
771 CPUState *env;
772 PageDesc *p;
773 unsigned int h, n1;
774 target_phys_addr_t phys_pc;
775 TranslationBlock *tb1, *tb2;
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
780 tb_remove(&tb_phys_hash[h], tb,
781 offsetof(TranslationBlock, phys_hash_next));
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
795 tb_invalidated_flag = 1;
797 /* remove the TB from the hash list */
798 h = tb_jmp_cache_hash_func(tb->pc);
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
822 tb_phys_invalidate_count++;
825 static inline void set_bits(uint8_t *tab, int start, int len)
827 int end, mask, end1;
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
852 static void build_page_bitmap(PageDesc *p)
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
880 TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
895 tb = tb_alloc(pc);
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
904 cpu_gen_code(env, tb, &code_gen_size);
905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
907 /* check next page if needed */
908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
909 phys_page2 = -1;
910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
911 phys_page2 = get_phys_addr_code(env, virt_page2);
913 tb_link_phys(tb, phys_pc, phys_page2);
914 return tb;
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
923 int is_cpu_write_access)
925 TranslationBlock *tb, *tb_next, *saved_tb;
926 CPUState *env = cpu_single_env;
927 target_ulong tb_start, tb_end;
928 PageDesc *p;
929 int n;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
939 p = page_find(start >> TARGET_PAGE_BITS);
940 if (!p)
941 return;
942 if (!p->code_bitmap &&
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
945 /* build code bitmap */
946 build_page_bitmap(p);
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
966 if (!(tb_end <= start || tb_start >= end)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
971 if (env->mem_io_pc) {
972 /* now we have a real cpu fault */
973 current_tb = tb_find_pc(env->mem_io_pc);
976 if (current_tb == tb &&
977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
984 current_tb_modified = 1;
985 cpu_restore_state(current_tb, env,
986 env->mem_io_pc, NULL);
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
998 tb_phys_invalidate(tb, -1);
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1005 tb = tb_next;
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
1011 if (is_cpu_write_access) {
1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1015 #endif
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
1021 env->current_tb = NULL;
1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1023 cpu_resume_from_signal(env, NULL);
1025 #endif
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1031 PageDesc *p;
1032 int offset, b;
1033 #if 0
1034 if (1) {
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1040 #endif
1041 p = page_find(start >> TARGET_PAGE_BITS);
1042 if (!p)
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
1051 tb_invalidate_phys_page_range(start, start + len, 1);
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1057 unsigned long pc, void *puc)
1059 TranslationBlock *tb;
1060 PageDesc *p;
1061 int n;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock *current_tb = NULL;
1064 CPUState *env = cpu_single_env;
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
1069 #endif
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
1073 if (!p)
1074 return;
1075 tb = p->first_tb;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1080 #endif
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1102 p->first_tb = NULL;
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, puc);
1112 #endif
1114 #endif
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock *tb,
1118 unsigned int n, target_ulong page_addr)
1120 PageDesc *p;
1121 TranslationBlock *last_first_tb;
1123 tb->page_addr[n] = page_addr;
1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
1130 #if defined(TARGET_HAS_SMC) || 1
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p->flags & PAGE_WRITE) {
1134 target_ulong addr;
1135 PageDesc *p2;
1136 int prot;
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr &= qemu_host_page_mask;
1141 prot = 0;
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1152 mprotect(g2h(page_addr), qemu_host_page_size,
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1156 page_addr);
1157 #endif
1159 #else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
1164 tlb_protect_code(page_addr);
1166 #endif
1168 #endif /* TARGET_HAS_SMC */
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock *tb_alloc(target_ulong pc)
1175 TranslationBlock *tb;
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1179 return NULL;
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
1182 tb->cflags = 0;
1183 return tb;
1186 void tb_free(TranslationBlock *tb)
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock *tb,
1200 target_ulong phys_pc, target_ulong phys_page2)
1202 unsigned int h;
1203 TranslationBlock **ptb;
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
1214 /* add in the page list */
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
1231 #ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233 #endif
1234 mmap_unlock();
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1265 return &tbs[m_max];
1268 static void tb_reset_jump_recursive(TranslationBlock *tb);
1270 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next);
1309 static void tb_reset_jump_recursive(TranslationBlock *tb)
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1318 target_phys_addr_t addr;
1319 target_ulong pd;
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1333 #endif
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
1339 target_ulong len_mask = ~(len - 1);
1340 CPUWatchpoint *wp;
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1348 wp = qemu_malloc(sizeof(*wp));
1350 wp->vaddr = addr;
1351 wp->len_mask = len_mask;
1352 wp->flags = flags;
1354 /* keep all GDB-injected watchpoints in front */
1355 if (flags & BP_GDB)
1356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1360 tlb_flush_page(env, addr);
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
1371 target_ulong len_mask = ~(len - 1);
1372 CPUWatchpoint *wp;
1374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1375 if (addr == wp->vaddr && len_mask == wp->len_mask
1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1377 cpu_watchpoint_remove_by_ref(env, wp);
1378 return 0;
1381 return -ENOENT;
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1389 tlb_flush_page(env, watchpoint->vaddr);
1391 qemu_free(watchpoint);
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1397 CPUWatchpoint *wp, *next;
1399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1412 bp = qemu_malloc(sizeof(*bp));
1414 bp->pc = pc;
1415 bp->flags = flags;
1417 /* keep all GDB-injected breakpoints in front */
1418 if (flags & BP_GDB)
1419 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1423 breakpoint_invalidate(env, pc);
1425 if (breakpoint)
1426 *breakpoint = bp;
1427 return 0;
1428 #else
1429 return -ENOSYS;
1430 #endif
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1436 #if defined(TARGET_HAS_ICE)
1437 CPUBreakpoint *bp;
1439 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1445 return -ENOENT;
1446 #else
1447 return -ENOSYS;
1448 #endif
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1454 #if defined(TARGET_HAS_ICE)
1455 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1457 breakpoint_invalidate(env, breakpoint->pc);
1459 qemu_free(breakpoint);
1460 #endif
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint *bp, *next;
1469 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
1473 #endif
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState *env, int enabled)
1480 #if defined(TARGET_HAS_ICE)
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
1486 /* must flush all the translated code to avoid inconsistencies */
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1491 #endif
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags)
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
1499 logfile = fopen(logfilename, log_append ? "a" : "w");
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 static char logfile_buf[4096];
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1510 #elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
1512 setvbuf(logfile, NULL, _IOLBF, 0);
1513 #endif
1514 log_append = 1;
1516 if (!loglevel && logfile) {
1517 fclose(logfile);
1518 logfile = NULL;
1522 void cpu_set_log_filename(const char *filename)
1524 logfilename = strdup(filename);
1525 if (logfile) {
1526 fclose(logfile);
1527 logfile = NULL;
1529 cpu_set_log(loglevel);
1532 static void cpu_unlink_tb(CPUState *env)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538 TranslationBlock *tb;
1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1541 spin_lock(&interrupt_lock);
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1549 spin_unlock(&interrupt_lock);
1552 /* mask must never be zero, except for A20 change call */
1553 void cpu_interrupt(CPUState *env, int mask)
1555 int old_mask;
1557 old_mask = env->interrupt_request;
1558 env->interrupt_request |= mask;
1560 #ifndef CONFIG_USER_ONLY
1562 * If called from iothread context, wake the target cpu in
1563 * case its halted.
1565 if (!qemu_cpu_self(env)) {
1566 qemu_cpu_kick(env);
1567 return;
1569 #endif
1571 if (use_icount) {
1572 env->icount_decr.u16.high = 0xffff;
1573 #ifndef CONFIG_USER_ONLY
1574 if (!can_do_io(env)
1575 && (mask & ~old_mask) != 0) {
1576 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 #endif
1579 } else {
1580 cpu_unlink_tb(env);
1584 void cpu_reset_interrupt(CPUState *env, int mask)
1586 env->interrupt_request &= ~mask;
1589 void cpu_exit(CPUState *env)
1591 env->exit_request = 1;
1592 cpu_unlink_tb(env);
1595 const CPULogItem cpu_log_items[] = {
1596 { CPU_LOG_TB_OUT_ASM, "out_asm",
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM, "in_asm",
1599 "show target assembly code for each compiled TB" },
1600 { CPU_LOG_TB_OP, "op",
1601 "show micro ops for each compiled TB" },
1602 { CPU_LOG_TB_OP_OPT, "op_opt",
1603 "show micro ops "
1604 #ifdef TARGET_I386
1605 "before eflags optimization and "
1606 #endif
1607 "after liveness analysis" },
1608 { CPU_LOG_INT, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC, "exec",
1611 "show trace before each executed TB (lots of logs)" },
1612 { CPU_LOG_TB_CPU, "cpu",
1613 "show CPU state before block translation" },
1614 #ifdef TARGET_I386
1615 { CPU_LOG_PCALL, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
1617 { CPU_LOG_RESET, "cpu_reset",
1618 "show CPU state before CPU resets" },
1619 #endif
1620 #ifdef DEBUG_IOPORT
1621 { CPU_LOG_IOPORT, "ioport",
1622 "show all i/o ports accesses" },
1623 #endif
1624 { 0, NULL, NULL },
1627 static int cmp1(const char *s1, int n, const char *s2)
1629 if (strlen(s2) != n)
1630 return 0;
1631 return memcmp(s1, s2, n) == 0;
1634 /* takes a comma separated list of log masks. Return 0 if error. */
1635 int cpu_str_to_log_mask(const char *str)
1637 const CPULogItem *item;
1638 int mask;
1639 const char *p, *p1;
1641 p = str;
1642 mask = 0;
1643 for(;;) {
1644 p1 = strchr(p, ',');
1645 if (!p1)
1646 p1 = p + strlen(p);
1647 if(cmp1(p,p1-p,"all")) {
1648 for(item = cpu_log_items; item->mask != 0; item++) {
1649 mask |= item->mask;
1651 } else {
1652 for(item = cpu_log_items; item->mask != 0; item++) {
1653 if (cmp1(p, p1 - p, item->name))
1654 goto found;
1656 return 0;
1658 found:
1659 mask |= item->mask;
1660 if (*p1 != ',')
1661 break;
1662 p = p1 + 1;
1664 return mask;
1667 void cpu_abort(CPUState *env, const char *fmt, ...)
1669 va_list ap;
1670 va_list ap2;
1672 va_start(ap, fmt);
1673 va_copy(ap2, ap);
1674 fprintf(stderr, "qemu: fatal: ");
1675 vfprintf(stderr, fmt, ap);
1676 fprintf(stderr, "\n");
1677 #ifdef TARGET_I386
1678 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1679 #else
1680 cpu_dump_state(env, stderr, fprintf, 0);
1681 #endif
1682 if (qemu_log_enabled()) {
1683 qemu_log("qemu: fatal: ");
1684 qemu_log_vprintf(fmt, ap2);
1685 qemu_log("\n");
1686 #ifdef TARGET_I386
1687 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1688 #else
1689 log_cpu_state(env, 0);
1690 #endif
1691 qemu_log_flush();
1692 qemu_log_close();
1694 va_end(ap2);
1695 va_end(ap);
1696 #if defined(CONFIG_USER_ONLY)
1698 struct sigaction act;
1699 sigfillset(&act.sa_mask);
1700 act.sa_handler = SIG_DFL;
1701 sigaction(SIGABRT, &act, NULL);
1703 #endif
1704 abort();
1707 CPUState *cpu_copy(CPUState *env)
1709 CPUState *new_env = cpu_init(env->cpu_model_str);
1710 CPUState *next_cpu = new_env->next_cpu;
1711 int cpu_index = new_env->cpu_index;
1712 #if defined(TARGET_HAS_ICE)
1713 CPUBreakpoint *bp;
1714 CPUWatchpoint *wp;
1715 #endif
1717 memcpy(new_env, env, sizeof(CPUState));
1719 /* Preserve chaining and index. */
1720 new_env->next_cpu = next_cpu;
1721 new_env->cpu_index = cpu_index;
1723 /* Clone all break/watchpoints.
1724 Note: Once we support ptrace with hw-debug register access, make sure
1725 BP_CPU break/watchpoints are handled correctly on clone. */
1726 QTAILQ_INIT(&env->breakpoints);
1727 QTAILQ_INIT(&env->watchpoints);
1728 #if defined(TARGET_HAS_ICE)
1729 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1730 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1732 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1733 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1734 wp->flags, NULL);
1736 #endif
1738 return new_env;
1741 #if !defined(CONFIG_USER_ONLY)
1743 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1745 unsigned int i;
1747 /* Discard jump cache entries for any tb which might potentially
1748 overlap the flushed page. */
1749 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1750 memset (&env->tb_jmp_cache[i], 0,
1751 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1753 i = tb_jmp_cache_hash_page(addr);
1754 memset (&env->tb_jmp_cache[i], 0,
1755 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1758 static CPUTLBEntry s_cputlb_empty_entry = {
1759 .addr_read = -1,
1760 .addr_write = -1,
1761 .addr_code = -1,
1762 .addend = -1,
1765 /* NOTE: if flush_global is true, also flush global entries (not
1766 implemented yet) */
1767 void tlb_flush(CPUState *env, int flush_global)
1769 int i;
1771 #if defined(DEBUG_TLB)
1772 printf("tlb_flush:\n");
1773 #endif
1774 /* must reset current TB so that interrupts cannot modify the
1775 links while we are modifying them */
1776 env->current_tb = NULL;
1778 for(i = 0; i < CPU_TLB_SIZE; i++) {
1779 int mmu_idx;
1780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1781 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1785 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1787 tlb_flush_count++;
1790 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1792 if (addr == (tlb_entry->addr_read &
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1794 addr == (tlb_entry->addr_write &
1795 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1796 addr == (tlb_entry->addr_code &
1797 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1798 *tlb_entry = s_cputlb_empty_entry;
1802 void tlb_flush_page(CPUState *env, target_ulong addr)
1804 int i;
1805 int mmu_idx;
1807 #if defined(DEBUG_TLB)
1808 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1809 #endif
1810 /* must reset current TB so that interrupts cannot modify the
1811 links while we are modifying them */
1812 env->current_tb = NULL;
1814 addr &= TARGET_PAGE_MASK;
1815 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1816 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1817 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1819 tlb_flush_jmp_cache(env, addr);
1822 /* update the TLBs so that writes to code in the virtual page 'addr'
1823 can be detected */
1824 static void tlb_protect_code(ram_addr_t ram_addr)
1826 cpu_physical_memory_reset_dirty(ram_addr,
1827 ram_addr + TARGET_PAGE_SIZE,
1828 CODE_DIRTY_FLAG);
1831 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1832 tested for self modifying code */
1833 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1834 target_ulong vaddr)
1836 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1839 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1840 unsigned long start, unsigned long length)
1842 unsigned long addr;
1843 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1844 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1845 if ((addr - start) < length) {
1846 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1851 /* Note: start and end must be within the same ram block. */
1852 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1853 int dirty_flags)
1855 CPUState *env;
1856 unsigned long length, start1;
1857 int i, mask, len;
1858 uint8_t *p;
1860 start &= TARGET_PAGE_MASK;
1861 end = TARGET_PAGE_ALIGN(end);
1863 length = end - start;
1864 if (length == 0)
1865 return;
1866 len = length >> TARGET_PAGE_BITS;
1867 mask = ~dirty_flags;
1868 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1869 for(i = 0; i < len; i++)
1870 p[i] &= mask;
1872 /* we modify the TLB cache so that the dirty bit will be set again
1873 when accessing the range */
1874 start1 = (unsigned long)qemu_get_ram_ptr(start);
1875 /* Chek that we don't span multiple blocks - this breaks the
1876 address comparisons below. */
1877 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1878 != (end - 1) - start) {
1879 abort();
1882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1883 int mmu_idx;
1884 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1887 start1, length);
1892 int cpu_physical_memory_set_dirty_tracking(int enable)
1894 in_migration = enable;
1895 if (kvm_enabled()) {
1896 return kvm_set_migration_log(enable);
1898 return 0;
1901 int cpu_physical_memory_get_dirty_tracking(void)
1903 return in_migration;
1906 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1907 target_phys_addr_t end_addr)
1909 int ret = 0;
1911 if (kvm_enabled())
1912 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1913 return ret;
1916 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918 ram_addr_t ram_addr;
1919 void *p;
1921 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1922 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1923 + tlb_entry->addend);
1924 ram_addr = qemu_ram_addr_from_host(p);
1925 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1926 tlb_entry->addr_write |= TLB_NOTDIRTY;
1931 /* update the TLB according to the current state of the dirty bits */
1932 void cpu_tlb_update_dirty(CPUState *env)
1934 int i;
1935 int mmu_idx;
1936 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1937 for(i = 0; i < CPU_TLB_SIZE; i++)
1938 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1942 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1944 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1945 tlb_entry->addr_write = vaddr;
1948 /* update the TLB corresponding to virtual page vaddr
1949 so that it is no longer dirty */
1950 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1952 int i;
1953 int mmu_idx;
1955 vaddr &= TARGET_PAGE_MASK;
1956 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1958 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1961 /* add a new TLB entry. At most one entry for a given virtual address
1962 is permitted. Return 0 if OK or 2 if the page could not be mapped
1963 (can only happen in non SOFTMMU mode for I/O pages or pages
1964 conflicting with the host address space). */
1965 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1966 target_phys_addr_t paddr, int prot,
1967 int mmu_idx, int is_softmmu)
1969 PhysPageDesc *p;
1970 unsigned long pd;
1971 unsigned int index;
1972 target_ulong address;
1973 target_ulong code_address;
1974 target_phys_addr_t addend;
1975 int ret;
1976 CPUTLBEntry *te;
1977 CPUWatchpoint *wp;
1978 target_phys_addr_t iotlb;
1980 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1981 if (!p) {
1982 pd = IO_MEM_UNASSIGNED;
1983 } else {
1984 pd = p->phys_offset;
1986 #if defined(DEBUG_TLB)
1987 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1988 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1989 #endif
1991 ret = 0;
1992 address = vaddr;
1993 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1994 /* IO memory case (romd handled later) */
1995 address |= TLB_MMIO;
1997 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1998 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1999 /* Normal RAM. */
2000 iotlb = pd & TARGET_PAGE_MASK;
2001 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2002 iotlb |= IO_MEM_NOTDIRTY;
2003 else
2004 iotlb |= IO_MEM_ROM;
2005 } else {
2006 /* IO handlers are currently passed a physical address.
2007 It would be nice to pass an offset from the base address
2008 of that region. This would avoid having to special case RAM,
2009 and avoid full address decoding in every device.
2010 We can't use the high bits of pd for this because
2011 IO_MEM_ROMD uses these as a ram address. */
2012 iotlb = (pd & ~TARGET_PAGE_MASK);
2013 if (p) {
2014 iotlb += p->region_offset;
2015 } else {
2016 iotlb += paddr;
2020 code_address = address;
2021 /* Make accesses to pages with watchpoints go via the
2022 watchpoint trap routines. */
2023 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2024 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2025 iotlb = io_mem_watch + paddr;
2026 /* TODO: The memory case can be optimized by not trapping
2027 reads of pages with a write breakpoint. */
2028 address |= TLB_MMIO;
2032 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2033 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2034 te = &env->tlb_table[mmu_idx][index];
2035 te->addend = addend - vaddr;
2036 if (prot & PAGE_READ) {
2037 te->addr_read = address;
2038 } else {
2039 te->addr_read = -1;
2042 if (prot & PAGE_EXEC) {
2043 te->addr_code = code_address;
2044 } else {
2045 te->addr_code = -1;
2047 if (prot & PAGE_WRITE) {
2048 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2049 (pd & IO_MEM_ROMD)) {
2050 /* Write access calls the I/O callback. */
2051 te->addr_write = address | TLB_MMIO;
2052 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2053 !cpu_physical_memory_is_dirty(pd)) {
2054 te->addr_write = address | TLB_NOTDIRTY;
2055 } else {
2056 te->addr_write = address;
2058 } else {
2059 te->addr_write = -1;
2061 return ret;
2064 #else
2066 void tlb_flush(CPUState *env, int flush_global)
2070 void tlb_flush_page(CPUState *env, target_ulong addr)
2074 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2075 target_phys_addr_t paddr, int prot,
2076 int mmu_idx, int is_softmmu)
2078 return 0;
2082 * Walks guest process memory "regions" one by one
2083 * and calls callback function 'fn' for each region.
2085 int walk_memory_regions(void *priv,
2086 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2088 unsigned long start, end;
2089 PageDesc *p = NULL;
2090 int i, j, prot, prot1;
2091 int rc = 0;
2093 start = end = -1;
2094 prot = 0;
2096 for (i = 0; i <= L1_SIZE; i++) {
2097 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2098 for (j = 0; j < L2_SIZE; j++) {
2099 prot1 = (p == NULL) ? 0 : p[j].flags;
2101 * "region" is one continuous chunk of memory
2102 * that has same protection flags set.
2104 if (prot1 != prot) {
2105 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2106 if (start != -1) {
2107 rc = (*fn)(priv, start, end, prot);
2108 /* callback can stop iteration by returning != 0 */
2109 if (rc != 0)
2110 return (rc);
2112 if (prot1 != 0)
2113 start = end;
2114 else
2115 start = -1;
2116 prot = prot1;
2118 if (p == NULL)
2119 break;
2122 return (rc);
2125 static int dump_region(void *priv, unsigned long start,
2126 unsigned long end, unsigned long prot)
2128 FILE *f = (FILE *)priv;
2130 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2131 start, end, end - start,
2132 ((prot & PAGE_READ) ? 'r' : '-'),
2133 ((prot & PAGE_WRITE) ? 'w' : '-'),
2134 ((prot & PAGE_EXEC) ? 'x' : '-'));
2136 return (0);
2139 /* dump memory mappings */
2140 void page_dump(FILE *f)
2142 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2144 walk_memory_regions(f, dump_region);
2147 int page_get_flags(target_ulong address)
2149 PageDesc *p;
2151 p = page_find(address >> TARGET_PAGE_BITS);
2152 if (!p)
2153 return 0;
2154 return p->flags;
2157 /* modify the flags of a page and invalidate the code if
2158 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2159 depending on PAGE_WRITE */
2160 void page_set_flags(target_ulong start, target_ulong end, int flags)
2162 PageDesc *p;
2163 target_ulong addr;
2165 /* mmap_lock should already be held. */
2166 start = start & TARGET_PAGE_MASK;
2167 end = TARGET_PAGE_ALIGN(end);
2168 if (flags & PAGE_WRITE)
2169 flags |= PAGE_WRITE_ORG;
2170 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2171 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2172 /* We may be called for host regions that are outside guest
2173 address space. */
2174 if (!p)
2175 return;
2176 /* if the write protection is set, then we invalidate the code
2177 inside */
2178 if (!(p->flags & PAGE_WRITE) &&
2179 (flags & PAGE_WRITE) &&
2180 p->first_tb) {
2181 tb_invalidate_phys_page(addr, 0, NULL);
2183 p->flags = flags;
2187 int page_check_range(target_ulong start, target_ulong len, int flags)
2189 PageDesc *p;
2190 target_ulong end;
2191 target_ulong addr;
2193 if (start + len < start)
2194 /* we've wrapped around */
2195 return -1;
2197 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2198 start = start & TARGET_PAGE_MASK;
2200 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2201 p = page_find(addr >> TARGET_PAGE_BITS);
2202 if( !p )
2203 return -1;
2204 if( !(p->flags & PAGE_VALID) )
2205 return -1;
2207 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2208 return -1;
2209 if (flags & PAGE_WRITE) {
2210 if (!(p->flags & PAGE_WRITE_ORG))
2211 return -1;
2212 /* unprotect the page if it was put read-only because it
2213 contains translated code */
2214 if (!(p->flags & PAGE_WRITE)) {
2215 if (!page_unprotect(addr, 0, NULL))
2216 return -1;
2218 return 0;
2221 return 0;
2224 /* called from signal handler: invalidate the code and unprotect the
2225 page. Return TRUE if the fault was successfully handled. */
2226 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2228 unsigned int page_index, prot, pindex;
2229 PageDesc *p, *p1;
2230 target_ulong host_start, host_end, addr;
2232 /* Technically this isn't safe inside a signal handler. However we
2233 know this only ever happens in a synchronous SEGV handler, so in
2234 practice it seems to be ok. */
2235 mmap_lock();
2237 host_start = address & qemu_host_page_mask;
2238 page_index = host_start >> TARGET_PAGE_BITS;
2239 p1 = page_find(page_index);
2240 if (!p1) {
2241 mmap_unlock();
2242 return 0;
2244 host_end = host_start + qemu_host_page_size;
2245 p = p1;
2246 prot = 0;
2247 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2248 prot |= p->flags;
2249 p++;
2251 /* if the page was really writable, then we change its
2252 protection back to writable */
2253 if (prot & PAGE_WRITE_ORG) {
2254 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2255 if (!(p1[pindex].flags & PAGE_WRITE)) {
2256 mprotect((void *)g2h(host_start), qemu_host_page_size,
2257 (prot & PAGE_BITS) | PAGE_WRITE);
2258 p1[pindex].flags |= PAGE_WRITE;
2259 /* and since the content will be modified, we must invalidate
2260 the corresponding translated code. */
2261 tb_invalidate_phys_page(address, pc, puc);
2262 #ifdef DEBUG_TB_CHECK
2263 tb_invalidate_check(address);
2264 #endif
2265 mmap_unlock();
2266 return 1;
2269 mmap_unlock();
2270 return 0;
2273 static inline void tlb_set_dirty(CPUState *env,
2274 unsigned long addr, target_ulong vaddr)
2277 #endif /* defined(CONFIG_USER_ONLY) */
2279 #if !defined(CONFIG_USER_ONLY)
2281 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2282 ram_addr_t memory, ram_addr_t region_offset);
2283 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2284 ram_addr_t orig_memory, ram_addr_t region_offset);
2285 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2286 need_subpage) \
2287 do { \
2288 if (addr > start_addr) \
2289 start_addr2 = 0; \
2290 else { \
2291 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2292 if (start_addr2 > 0) \
2293 need_subpage = 1; \
2296 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2297 end_addr2 = TARGET_PAGE_SIZE - 1; \
2298 else { \
2299 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2300 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2301 need_subpage = 1; \
2303 } while (0)
2305 /* register physical memory.
2306 For RAM, 'size' must be a multiple of the target page size.
2307 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
2310 start_addr and region_offset are rounded down to a page boundary
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314 ram_addr_t size,
2315 ram_addr_t phys_offset,
2316 ram_addr_t region_offset)
2318 target_phys_addr_t addr, end_addr;
2319 PhysPageDesc *p;
2320 CPUState *env;
2321 ram_addr_t orig_size = size;
2322 void *subpage;
2324 if (kvm_enabled())
2325 kvm_set_phys_mem(start_addr, size, phys_offset);
2327 if (phys_offset == IO_MEM_UNASSIGNED) {
2328 region_offset = start_addr;
2330 region_offset &= TARGET_PAGE_MASK;
2331 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2332 end_addr = start_addr + (target_phys_addr_t)size;
2333 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2334 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2335 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2336 ram_addr_t orig_memory = p->phys_offset;
2337 target_phys_addr_t start_addr2, end_addr2;
2338 int need_subpage = 0;
2340 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2341 need_subpage);
2342 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2343 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2344 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2345 &p->phys_offset, orig_memory,
2346 p->region_offset);
2347 } else {
2348 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2349 >> IO_MEM_SHIFT];
2351 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2352 region_offset);
2353 p->region_offset = 0;
2354 } else {
2355 p->phys_offset = phys_offset;
2356 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2357 (phys_offset & IO_MEM_ROMD))
2358 phys_offset += TARGET_PAGE_SIZE;
2360 } else {
2361 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2362 p->phys_offset = phys_offset;
2363 p->region_offset = region_offset;
2364 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2365 (phys_offset & IO_MEM_ROMD)) {
2366 phys_offset += TARGET_PAGE_SIZE;
2367 } else {
2368 target_phys_addr_t start_addr2, end_addr2;
2369 int need_subpage = 0;
2371 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2372 end_addr2, need_subpage);
2374 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2375 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2376 &p->phys_offset, IO_MEM_UNASSIGNED,
2377 addr & TARGET_PAGE_MASK);
2378 subpage_register(subpage, start_addr2, end_addr2,
2379 phys_offset, region_offset);
2380 p->region_offset = 0;
2384 region_offset += TARGET_PAGE_SIZE;
2387 /* since each CPU stores ram addresses in its TLB cache, we must
2388 reset the modified entries */
2389 /* XXX: slow ! */
2390 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2391 tlb_flush(env, 1);
2395 /* XXX: temporary until new memory mapping API */
2396 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2398 PhysPageDesc *p;
2400 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2401 if (!p)
2402 return IO_MEM_UNASSIGNED;
2403 return p->phys_offset;
2406 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2408 if (kvm_enabled())
2409 kvm_coalesce_mmio_region(addr, size);
2412 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414 if (kvm_enabled())
2415 kvm_uncoalesce_mmio_region(addr, size);
2418 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2420 RAMBlock *new_block;
2422 size = TARGET_PAGE_ALIGN(size);
2423 new_block = qemu_malloc(sizeof(*new_block));
2425 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2426 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2427 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2428 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2429 #else
2430 new_block->host = qemu_vmalloc(size);
2431 #endif
2432 #ifdef MADV_MERGEABLE
2433 madvise(new_block->host, size, MADV_MERGEABLE);
2434 #endif
2435 new_block->offset = last_ram_offset;
2436 new_block->length = size;
2438 new_block->next = ram_blocks;
2439 ram_blocks = new_block;
2441 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2442 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2443 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2444 0xff, size >> TARGET_PAGE_BITS);
2446 last_ram_offset += size;
2448 if (kvm_enabled())
2449 kvm_setup_guest_memory(new_block->host, size);
2451 return new_block->offset;
2454 void qemu_ram_free(ram_addr_t addr)
2456 /* TODO: implement this. */
2459 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2460 With the exception of the softmmu code in this file, this should
2461 only be used for local memory (e.g. video ram) that the device owns,
2462 and knows it isn't going to access beyond the end of the block.
2464 It should not be used for general purpose DMA.
2465 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2467 void *qemu_get_ram_ptr(ram_addr_t addr)
2469 RAMBlock *prev;
2470 RAMBlock **prevp;
2471 RAMBlock *block;
2473 prev = NULL;
2474 prevp = &ram_blocks;
2475 block = ram_blocks;
2476 while (block && (block->offset > addr
2477 || block->offset + block->length <= addr)) {
2478 if (prev)
2479 prevp = &prev->next;
2480 prev = block;
2481 block = block->next;
2483 if (!block) {
2484 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2485 abort();
2487 /* Move this entry to to start of the list. */
2488 if (prev) {
2489 prev->next = block->next;
2490 block->next = *prevp;
2491 *prevp = block;
2493 return block->host + (addr - block->offset);
2496 /* Some of the softmmu routines need to translate from a host pointer
2497 (typically a TLB entry) back to a ram offset. */
2498 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2500 RAMBlock *prev;
2501 RAMBlock *block;
2502 uint8_t *host = ptr;
2504 prev = NULL;
2505 block = ram_blocks;
2506 while (block && (block->host > host
2507 || block->host + block->length <= host)) {
2508 prev = block;
2509 block = block->next;
2511 if (!block) {
2512 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2513 abort();
2515 return block->offset + (host - block->host);
2518 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2520 #ifdef DEBUG_UNASSIGNED
2521 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2522 #endif
2523 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2524 do_unassigned_access(addr, 0, 0, 0, 1);
2525 #endif
2526 return 0;
2529 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2531 #ifdef DEBUG_UNASSIGNED
2532 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2533 #endif
2534 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2535 do_unassigned_access(addr, 0, 0, 0, 2);
2536 #endif
2537 return 0;
2540 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2542 #ifdef DEBUG_UNASSIGNED
2543 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2544 #endif
2545 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2546 do_unassigned_access(addr, 0, 0, 0, 4);
2547 #endif
2548 return 0;
2551 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2553 #ifdef DEBUG_UNASSIGNED
2554 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2555 #endif
2556 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2557 do_unassigned_access(addr, 1, 0, 0, 1);
2558 #endif
2561 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2563 #ifdef DEBUG_UNASSIGNED
2564 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2565 #endif
2566 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2567 do_unassigned_access(addr, 1, 0, 0, 2);
2568 #endif
2571 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2573 #ifdef DEBUG_UNASSIGNED
2574 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2575 #endif
2576 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2577 do_unassigned_access(addr, 1, 0, 0, 4);
2578 #endif
2581 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2582 unassigned_mem_readb,
2583 unassigned_mem_readw,
2584 unassigned_mem_readl,
2587 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2588 unassigned_mem_writeb,
2589 unassigned_mem_writew,
2590 unassigned_mem_writel,
2593 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2594 uint32_t val)
2596 int dirty_flags;
2597 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2598 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2599 #if !defined(CONFIG_USER_ONLY)
2600 tb_invalidate_phys_page_fast(ram_addr, 1);
2601 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2602 #endif
2604 stb_p(qemu_get_ram_ptr(ram_addr), val);
2605 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2606 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2607 /* we remove the notdirty callback only if the code has been
2608 flushed */
2609 if (dirty_flags == 0xff)
2610 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2613 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2614 uint32_t val)
2616 int dirty_flags;
2617 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2618 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2619 #if !defined(CONFIG_USER_ONLY)
2620 tb_invalidate_phys_page_fast(ram_addr, 2);
2621 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2622 #endif
2624 stw_p(qemu_get_ram_ptr(ram_addr), val);
2625 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2626 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2627 /* we remove the notdirty callback only if the code has been
2628 flushed */
2629 if (dirty_flags == 0xff)
2630 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2633 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2634 uint32_t val)
2636 int dirty_flags;
2637 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2638 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2639 #if !defined(CONFIG_USER_ONLY)
2640 tb_invalidate_phys_page_fast(ram_addr, 4);
2641 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2642 #endif
2644 stl_p(qemu_get_ram_ptr(ram_addr), val);
2645 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2646 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2647 /* we remove the notdirty callback only if the code has been
2648 flushed */
2649 if (dirty_flags == 0xff)
2650 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2653 static CPUReadMemoryFunc * const error_mem_read[3] = {
2654 NULL, /* never used */
2655 NULL, /* never used */
2656 NULL, /* never used */
2659 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2660 notdirty_mem_writeb,
2661 notdirty_mem_writew,
2662 notdirty_mem_writel,
2665 /* Generate a debug exception if a watchpoint has been hit. */
2666 static void check_watchpoint(int offset, int len_mask, int flags)
2668 CPUState *env = cpu_single_env;
2669 target_ulong pc, cs_base;
2670 TranslationBlock *tb;
2671 target_ulong vaddr;
2672 CPUWatchpoint *wp;
2673 int cpu_flags;
2675 if (env->watchpoint_hit) {
2676 /* We re-entered the check after replacing the TB. Now raise
2677 * the debug interrupt so that is will trigger after the
2678 * current instruction. */
2679 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2680 return;
2682 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2683 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2684 if ((vaddr == (wp->vaddr & len_mask) ||
2685 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2686 wp->flags |= BP_WATCHPOINT_HIT;
2687 if (!env->watchpoint_hit) {
2688 env->watchpoint_hit = wp;
2689 tb = tb_find_pc(env->mem_io_pc);
2690 if (!tb) {
2691 cpu_abort(env, "check_watchpoint: could not find TB for "
2692 "pc=%p", (void *)env->mem_io_pc);
2694 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2695 tb_phys_invalidate(tb, -1);
2696 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2697 env->exception_index = EXCP_DEBUG;
2698 } else {
2699 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2700 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2702 cpu_resume_from_signal(env, NULL);
2704 } else {
2705 wp->flags &= ~BP_WATCHPOINT_HIT;
2710 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2711 so these check for a hit then pass through to the normal out-of-line
2712 phys routines. */
2713 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2715 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2716 return ldub_phys(addr);
2719 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2721 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2722 return lduw_phys(addr);
2725 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2727 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2728 return ldl_phys(addr);
2731 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2732 uint32_t val)
2734 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2735 stb_phys(addr, val);
2738 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2739 uint32_t val)
2741 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2742 stw_phys(addr, val);
2745 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2746 uint32_t val)
2748 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2749 stl_phys(addr, val);
2752 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2753 watch_mem_readb,
2754 watch_mem_readw,
2755 watch_mem_readl,
2758 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2759 watch_mem_writeb,
2760 watch_mem_writew,
2761 watch_mem_writel,
2764 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2765 unsigned int len)
2767 uint32_t ret;
2768 unsigned int idx;
2770 idx = SUBPAGE_IDX(addr);
2771 #if defined(DEBUG_SUBPAGE)
2772 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2773 mmio, len, addr, idx);
2774 #endif
2775 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2776 addr + mmio->region_offset[idx][0][len]);
2778 return ret;
2781 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2782 uint32_t value, unsigned int len)
2784 unsigned int idx;
2786 idx = SUBPAGE_IDX(addr);
2787 #if defined(DEBUG_SUBPAGE)
2788 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2789 mmio, len, addr, idx, value);
2790 #endif
2791 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2792 addr + mmio->region_offset[idx][1][len],
2793 value);
2796 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2798 #if defined(DEBUG_SUBPAGE)
2799 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2800 #endif
2802 return subpage_readlen(opaque, addr, 0);
2805 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2806 uint32_t value)
2808 #if defined(DEBUG_SUBPAGE)
2809 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2810 #endif
2811 subpage_writelen(opaque, addr, value, 0);
2814 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2816 #if defined(DEBUG_SUBPAGE)
2817 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2818 #endif
2820 return subpage_readlen(opaque, addr, 1);
2823 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2824 uint32_t value)
2826 #if defined(DEBUG_SUBPAGE)
2827 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2828 #endif
2829 subpage_writelen(opaque, addr, value, 1);
2832 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2834 #if defined(DEBUG_SUBPAGE)
2835 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2836 #endif
2838 return subpage_readlen(opaque, addr, 2);
2841 static void subpage_writel (void *opaque,
2842 target_phys_addr_t addr, uint32_t value)
2844 #if defined(DEBUG_SUBPAGE)
2845 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2846 #endif
2847 subpage_writelen(opaque, addr, value, 2);
2850 static CPUReadMemoryFunc * const subpage_read[] = {
2851 &subpage_readb,
2852 &subpage_readw,
2853 &subpage_readl,
2856 static CPUWriteMemoryFunc * const subpage_write[] = {
2857 &subpage_writeb,
2858 &subpage_writew,
2859 &subpage_writel,
2862 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2863 ram_addr_t memory, ram_addr_t region_offset)
2865 int idx, eidx;
2866 unsigned int i;
2868 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2869 return -1;
2870 idx = SUBPAGE_IDX(start);
2871 eidx = SUBPAGE_IDX(end);
2872 #if defined(DEBUG_SUBPAGE)
2873 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2874 mmio, start, end, idx, eidx, memory);
2875 #endif
2876 memory >>= IO_MEM_SHIFT;
2877 for (; idx <= eidx; idx++) {
2878 for (i = 0; i < 4; i++) {
2879 if (io_mem_read[memory][i]) {
2880 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2881 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2882 mmio->region_offset[idx][0][i] = region_offset;
2884 if (io_mem_write[memory][i]) {
2885 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2886 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2887 mmio->region_offset[idx][1][i] = region_offset;
2892 return 0;
2895 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2896 ram_addr_t orig_memory, ram_addr_t region_offset)
2898 subpage_t *mmio;
2899 int subpage_memory;
2901 mmio = qemu_mallocz(sizeof(subpage_t));
2903 mmio->base = base;
2904 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2905 #if defined(DEBUG_SUBPAGE)
2906 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2907 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2908 #endif
2909 *phys = subpage_memory | IO_MEM_SUBPAGE;
2910 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2911 region_offset);
2913 return mmio;
2916 static int get_free_io_mem_idx(void)
2918 int i;
2920 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2921 if (!io_mem_used[i]) {
2922 io_mem_used[i] = 1;
2923 return i;
2925 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
2926 return -1;
2929 /* mem_read and mem_write are arrays of functions containing the
2930 function to access byte (index 0), word (index 1) and dword (index
2931 2). Functions can be omitted with a NULL function pointer.
2932 If io_index is non zero, the corresponding io zone is
2933 modified. If it is zero, a new io zone is allocated. The return
2934 value can be used with cpu_register_physical_memory(). (-1) is
2935 returned if error. */
2936 static int cpu_register_io_memory_fixed(int io_index,
2937 CPUReadMemoryFunc * const *mem_read,
2938 CPUWriteMemoryFunc * const *mem_write,
2939 void *opaque)
2941 int i, subwidth = 0;
2943 if (io_index <= 0) {
2944 io_index = get_free_io_mem_idx();
2945 if (io_index == -1)
2946 return io_index;
2947 } else {
2948 io_index >>= IO_MEM_SHIFT;
2949 if (io_index >= IO_MEM_NB_ENTRIES)
2950 return -1;
2953 for(i = 0;i < 3; i++) {
2954 if (!mem_read[i] || !mem_write[i])
2955 subwidth = IO_MEM_SUBWIDTH;
2956 io_mem_read[io_index][i] = mem_read[i];
2957 io_mem_write[io_index][i] = mem_write[i];
2959 io_mem_opaque[io_index] = opaque;
2960 return (io_index << IO_MEM_SHIFT) | subwidth;
2963 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2964 CPUWriteMemoryFunc * const *mem_write,
2965 void *opaque)
2967 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2970 void cpu_unregister_io_memory(int io_table_address)
2972 int i;
2973 int io_index = io_table_address >> IO_MEM_SHIFT;
2975 for (i=0;i < 3; i++) {
2976 io_mem_read[io_index][i] = unassigned_mem_read[i];
2977 io_mem_write[io_index][i] = unassigned_mem_write[i];
2979 io_mem_opaque[io_index] = NULL;
2980 io_mem_used[io_index] = 0;
2983 static void io_mem_init(void)
2985 int i;
2987 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2988 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2989 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2990 for (i=0; i<5; i++)
2991 io_mem_used[i] = 1;
2993 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2994 watch_mem_write, NULL);
2997 #endif /* !defined(CONFIG_USER_ONLY) */
2999 /* physical memory access (slow version, mainly for debug) */
3000 #if defined(CONFIG_USER_ONLY)
3001 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3002 int len, int is_write)
3004 int l, flags;
3005 target_ulong page;
3006 void * p;
3008 while (len > 0) {
3009 page = addr & TARGET_PAGE_MASK;
3010 l = (page + TARGET_PAGE_SIZE) - addr;
3011 if (l > len)
3012 l = len;
3013 flags = page_get_flags(page);
3014 if (!(flags & PAGE_VALID))
3015 return;
3016 if (is_write) {
3017 if (!(flags & PAGE_WRITE))
3018 return;
3019 /* XXX: this code should not depend on lock_user */
3020 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3021 /* FIXME - should this return an error rather than just fail? */
3022 return;
3023 memcpy(p, buf, l);
3024 unlock_user(p, addr, l);
3025 } else {
3026 if (!(flags & PAGE_READ))
3027 return;
3028 /* XXX: this code should not depend on lock_user */
3029 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3030 /* FIXME - should this return an error rather than just fail? */
3031 return;
3032 memcpy(buf, p, l);
3033 unlock_user(p, addr, 0);
3035 len -= l;
3036 buf += l;
3037 addr += l;
3041 #else
3042 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3043 int len, int is_write)
3045 int l, io_index;
3046 uint8_t *ptr;
3047 uint32_t val;
3048 target_phys_addr_t page;
3049 unsigned long pd;
3050 PhysPageDesc *p;
3052 while (len > 0) {
3053 page = addr & TARGET_PAGE_MASK;
3054 l = (page + TARGET_PAGE_SIZE) - addr;
3055 if (l > len)
3056 l = len;
3057 p = phys_page_find(page >> TARGET_PAGE_BITS);
3058 if (!p) {
3059 pd = IO_MEM_UNASSIGNED;
3060 } else {
3061 pd = p->phys_offset;
3064 if (is_write) {
3065 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3066 target_phys_addr_t addr1 = addr;
3067 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3068 if (p)
3069 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3070 /* XXX: could force cpu_single_env to NULL to avoid
3071 potential bugs */
3072 if (l >= 4 && ((addr1 & 3) == 0)) {
3073 /* 32 bit write access */
3074 val = ldl_p(buf);
3075 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3076 l = 4;
3077 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3078 /* 16 bit write access */
3079 val = lduw_p(buf);
3080 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3081 l = 2;
3082 } else {
3083 /* 8 bit write access */
3084 val = ldub_p(buf);
3085 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3086 l = 1;
3088 } else {
3089 unsigned long addr1;
3090 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3091 /* RAM case */
3092 ptr = qemu_get_ram_ptr(addr1);
3093 memcpy(ptr, buf, l);
3094 if (!cpu_physical_memory_is_dirty(addr1)) {
3095 /* invalidate code */
3096 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3097 /* set dirty bit */
3098 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3099 (0xff & ~CODE_DIRTY_FLAG);
3102 } else {
3103 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3104 !(pd & IO_MEM_ROMD)) {
3105 target_phys_addr_t addr1 = addr;
3106 /* I/O case */
3107 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3108 if (p)
3109 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3110 if (l >= 4 && ((addr1 & 3) == 0)) {
3111 /* 32 bit read access */
3112 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3113 stl_p(buf, val);
3114 l = 4;
3115 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3116 /* 16 bit read access */
3117 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3118 stw_p(buf, val);
3119 l = 2;
3120 } else {
3121 /* 8 bit read access */
3122 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3123 stb_p(buf, val);
3124 l = 1;
3126 } else {
3127 /* RAM case */
3128 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3129 (addr & ~TARGET_PAGE_MASK);
3130 memcpy(buf, ptr, l);
3133 len -= l;
3134 buf += l;
3135 addr += l;
3139 /* used for ROM loading : can write in RAM and ROM */
3140 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3141 const uint8_t *buf, int len)
3143 int l;
3144 uint8_t *ptr;
3145 target_phys_addr_t page;
3146 unsigned long pd;
3147 PhysPageDesc *p;
3149 while (len > 0) {
3150 page = addr & TARGET_PAGE_MASK;
3151 l = (page + TARGET_PAGE_SIZE) - addr;
3152 if (l > len)
3153 l = len;
3154 p = phys_page_find(page >> TARGET_PAGE_BITS);
3155 if (!p) {
3156 pd = IO_MEM_UNASSIGNED;
3157 } else {
3158 pd = p->phys_offset;
3161 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3162 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3163 !(pd & IO_MEM_ROMD)) {
3164 /* do nothing */
3165 } else {
3166 unsigned long addr1;
3167 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3168 /* ROM/RAM case */
3169 ptr = qemu_get_ram_ptr(addr1);
3170 memcpy(ptr, buf, l);
3172 len -= l;
3173 buf += l;
3174 addr += l;
3178 typedef struct {
3179 void *buffer;
3180 target_phys_addr_t addr;
3181 target_phys_addr_t len;
3182 } BounceBuffer;
3184 static BounceBuffer bounce;
3186 typedef struct MapClient {
3187 void *opaque;
3188 void (*callback)(void *opaque);
3189 QLIST_ENTRY(MapClient) link;
3190 } MapClient;
3192 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3193 = QLIST_HEAD_INITIALIZER(map_client_list);
3195 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3197 MapClient *client = qemu_malloc(sizeof(*client));
3199 client->opaque = opaque;
3200 client->callback = callback;
3201 QLIST_INSERT_HEAD(&map_client_list, client, link);
3202 return client;
3205 void cpu_unregister_map_client(void *_client)
3207 MapClient *client = (MapClient *)_client;
3209 QLIST_REMOVE(client, link);
3210 qemu_free(client);
3213 static void cpu_notify_map_clients(void)
3215 MapClient *client;
3217 while (!QLIST_EMPTY(&map_client_list)) {
3218 client = QLIST_FIRST(&map_client_list);
3219 client->callback(client->opaque);
3220 cpu_unregister_map_client(client);
3224 /* Map a physical memory region into a host virtual address.
3225 * May map a subset of the requested range, given by and returned in *plen.
3226 * May return NULL if resources needed to perform the mapping are exhausted.
3227 * Use only for reads OR writes - not for read-modify-write operations.
3228 * Use cpu_register_map_client() to know when retrying the map operation is
3229 * likely to succeed.
3231 void *cpu_physical_memory_map(target_phys_addr_t addr,
3232 target_phys_addr_t *plen,
3233 int is_write)
3235 target_phys_addr_t len = *plen;
3236 target_phys_addr_t done = 0;
3237 int l;
3238 uint8_t *ret = NULL;
3239 uint8_t *ptr;
3240 target_phys_addr_t page;
3241 unsigned long pd;
3242 PhysPageDesc *p;
3243 unsigned long addr1;
3245 while (len > 0) {
3246 page = addr & TARGET_PAGE_MASK;
3247 l = (page + TARGET_PAGE_SIZE) - addr;
3248 if (l > len)
3249 l = len;
3250 p = phys_page_find(page >> TARGET_PAGE_BITS);
3251 if (!p) {
3252 pd = IO_MEM_UNASSIGNED;
3253 } else {
3254 pd = p->phys_offset;
3257 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3258 if (done || bounce.buffer) {
3259 break;
3261 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3262 bounce.addr = addr;
3263 bounce.len = l;
3264 if (!is_write) {
3265 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3267 ptr = bounce.buffer;
3268 } else {
3269 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3270 ptr = qemu_get_ram_ptr(addr1);
3272 if (!done) {
3273 ret = ptr;
3274 } else if (ret + done != ptr) {
3275 break;
3278 len -= l;
3279 addr += l;
3280 done += l;
3282 *plen = done;
3283 return ret;
3286 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3287 * Will also mark the memory as dirty if is_write == 1. access_len gives
3288 * the amount of memory that was actually read or written by the caller.
3290 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3291 int is_write, target_phys_addr_t access_len)
3293 if (buffer != bounce.buffer) {
3294 if (is_write) {
3295 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3296 while (access_len) {
3297 unsigned l;
3298 l = TARGET_PAGE_SIZE;
3299 if (l > access_len)
3300 l = access_len;
3301 if (!cpu_physical_memory_is_dirty(addr1)) {
3302 /* invalidate code */
3303 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3304 /* set dirty bit */
3305 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3306 (0xff & ~CODE_DIRTY_FLAG);
3308 addr1 += l;
3309 access_len -= l;
3312 return;
3314 if (is_write) {
3315 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3317 qemu_vfree(bounce.buffer);
3318 bounce.buffer = NULL;
3319 cpu_notify_map_clients();
3322 /* warning: addr must be aligned */
3323 uint32_t ldl_phys(target_phys_addr_t addr)
3325 int io_index;
3326 uint8_t *ptr;
3327 uint32_t val;
3328 unsigned long pd;
3329 PhysPageDesc *p;
3331 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3332 if (!p) {
3333 pd = IO_MEM_UNASSIGNED;
3334 } else {
3335 pd = p->phys_offset;
3338 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3339 !(pd & IO_MEM_ROMD)) {
3340 /* I/O case */
3341 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3342 if (p)
3343 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3344 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3345 } else {
3346 /* RAM case */
3347 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3348 (addr & ~TARGET_PAGE_MASK);
3349 val = ldl_p(ptr);
3351 return val;
3354 /* warning: addr must be aligned */
3355 uint64_t ldq_phys(target_phys_addr_t addr)
3357 int io_index;
3358 uint8_t *ptr;
3359 uint64_t val;
3360 unsigned long pd;
3361 PhysPageDesc *p;
3363 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3364 if (!p) {
3365 pd = IO_MEM_UNASSIGNED;
3366 } else {
3367 pd = p->phys_offset;
3370 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3371 !(pd & IO_MEM_ROMD)) {
3372 /* I/O case */
3373 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3374 if (p)
3375 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3376 #ifdef TARGET_WORDS_BIGENDIAN
3377 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3378 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3379 #else
3380 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3381 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3382 #endif
3383 } else {
3384 /* RAM case */
3385 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3386 (addr & ~TARGET_PAGE_MASK);
3387 val = ldq_p(ptr);
3389 return val;
3392 /* XXX: optimize */
3393 uint32_t ldub_phys(target_phys_addr_t addr)
3395 uint8_t val;
3396 cpu_physical_memory_read(addr, &val, 1);
3397 return val;
3400 /* XXX: optimize */
3401 uint32_t lduw_phys(target_phys_addr_t addr)
3403 uint16_t val;
3404 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3405 return tswap16(val);
3408 /* warning: addr must be aligned. The ram page is not masked as dirty
3409 and the code inside is not invalidated. It is useful if the dirty
3410 bits are used to track modified PTEs */
3411 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3413 int io_index;
3414 uint8_t *ptr;
3415 unsigned long pd;
3416 PhysPageDesc *p;
3418 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3419 if (!p) {
3420 pd = IO_MEM_UNASSIGNED;
3421 } else {
3422 pd = p->phys_offset;
3425 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3426 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3427 if (p)
3428 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3429 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3430 } else {
3431 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3432 ptr = qemu_get_ram_ptr(addr1);
3433 stl_p(ptr, val);
3435 if (unlikely(in_migration)) {
3436 if (!cpu_physical_memory_is_dirty(addr1)) {
3437 /* invalidate code */
3438 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3439 /* set dirty bit */
3440 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3441 (0xff & ~CODE_DIRTY_FLAG);
3447 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3449 int io_index;
3450 uint8_t *ptr;
3451 unsigned long pd;
3452 PhysPageDesc *p;
3454 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3455 if (!p) {
3456 pd = IO_MEM_UNASSIGNED;
3457 } else {
3458 pd = p->phys_offset;
3461 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3462 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3463 if (p)
3464 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3465 #ifdef TARGET_WORDS_BIGENDIAN
3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3467 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3468 #else
3469 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3470 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3471 #endif
3472 } else {
3473 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3474 (addr & ~TARGET_PAGE_MASK);
3475 stq_p(ptr, val);
3479 /* warning: addr must be aligned */
3480 void stl_phys(target_phys_addr_t addr, uint32_t val)
3482 int io_index;
3483 uint8_t *ptr;
3484 unsigned long pd;
3485 PhysPageDesc *p;
3487 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3488 if (!p) {
3489 pd = IO_MEM_UNASSIGNED;
3490 } else {
3491 pd = p->phys_offset;
3494 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3495 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3496 if (p)
3497 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3498 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3499 } else {
3500 unsigned long addr1;
3501 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3502 /* RAM case */
3503 ptr = qemu_get_ram_ptr(addr1);
3504 stl_p(ptr, val);
3505 if (!cpu_physical_memory_is_dirty(addr1)) {
3506 /* invalidate code */
3507 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3508 /* set dirty bit */
3509 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3510 (0xff & ~CODE_DIRTY_FLAG);
3515 /* XXX: optimize */
3516 void stb_phys(target_phys_addr_t addr, uint32_t val)
3518 uint8_t v = val;
3519 cpu_physical_memory_write(addr, &v, 1);
3522 /* XXX: optimize */
3523 void stw_phys(target_phys_addr_t addr, uint32_t val)
3525 uint16_t v = tswap16(val);
3526 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3529 /* XXX: optimize */
3530 void stq_phys(target_phys_addr_t addr, uint64_t val)
3532 val = tswap64(val);
3533 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3536 #endif
3538 /* virtual memory access for debug (includes writing to ROM) */
3539 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3540 uint8_t *buf, int len, int is_write)
3542 int l;
3543 target_phys_addr_t phys_addr;
3544 target_ulong page;
3546 while (len > 0) {
3547 page = addr & TARGET_PAGE_MASK;
3548 phys_addr = cpu_get_phys_page_debug(env, page);
3549 /* if no physical page mapped, return an error */
3550 if (phys_addr == -1)
3551 return -1;
3552 l = (page + TARGET_PAGE_SIZE) - addr;
3553 if (l > len)
3554 l = len;
3555 phys_addr += (addr & ~TARGET_PAGE_MASK);
3556 #if !defined(CONFIG_USER_ONLY)
3557 if (is_write)
3558 cpu_physical_memory_write_rom(phys_addr, buf, l);
3559 else
3560 #endif
3561 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3562 len -= l;
3563 buf += l;
3564 addr += l;
3566 return 0;
3569 /* in deterministic execution mode, instructions doing device I/Os
3570 must be at the end of the TB */
3571 void cpu_io_recompile(CPUState *env, void *retaddr)
3573 TranslationBlock *tb;
3574 uint32_t n, cflags;
3575 target_ulong pc, cs_base;
3576 uint64_t flags;
3578 tb = tb_find_pc((unsigned long)retaddr);
3579 if (!tb) {
3580 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3581 retaddr);
3583 n = env->icount_decr.u16.low + tb->icount;
3584 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3585 /* Calculate how many instructions had been executed before the fault
3586 occurred. */
3587 n = n - env->icount_decr.u16.low;
3588 /* Generate a new TB ending on the I/O insn. */
3589 n++;
3590 /* On MIPS and SH, delay slot instructions can only be restarted if
3591 they were already the first instruction in the TB. If this is not
3592 the first instruction in a TB then re-execute the preceding
3593 branch. */
3594 #if defined(TARGET_MIPS)
3595 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3596 env->active_tc.PC -= 4;
3597 env->icount_decr.u16.low++;
3598 env->hflags &= ~MIPS_HFLAG_BMASK;
3600 #elif defined(TARGET_SH4)
3601 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3602 && n > 1) {
3603 env->pc -= 2;
3604 env->icount_decr.u16.low++;
3605 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3607 #endif
3608 /* This should never happen. */
3609 if (n > CF_COUNT_MASK)
3610 cpu_abort(env, "TB too big during recompile");
3612 cflags = n | CF_LAST_IO;
3613 pc = tb->pc;
3614 cs_base = tb->cs_base;
3615 flags = tb->flags;
3616 tb_phys_invalidate(tb, -1);
3617 /* FIXME: In theory this could raise an exception. In practice
3618 we have already translated the block once so it's probably ok. */
3619 tb_gen_code(env, pc, cs_base, flags, cflags);
3620 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3621 the first in the TB) then we end up generating a whole new TB and
3622 repeating the fault, which is horribly inefficient.
3623 Better would be to execute just this insn uncached, or generate a
3624 second new TB. */
3625 cpu_resume_from_signal(env, NULL);
3628 void dump_exec_info(FILE *f,
3629 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3631 int i, target_code_size, max_target_code_size;
3632 int direct_jmp_count, direct_jmp2_count, cross_page;
3633 TranslationBlock *tb;
3635 target_code_size = 0;
3636 max_target_code_size = 0;
3637 cross_page = 0;
3638 direct_jmp_count = 0;
3639 direct_jmp2_count = 0;
3640 for(i = 0; i < nb_tbs; i++) {
3641 tb = &tbs[i];
3642 target_code_size += tb->size;
3643 if (tb->size > max_target_code_size)
3644 max_target_code_size = tb->size;
3645 if (tb->page_addr[1] != -1)
3646 cross_page++;
3647 if (tb->tb_next_offset[0] != 0xffff) {
3648 direct_jmp_count++;
3649 if (tb->tb_next_offset[1] != 0xffff) {
3650 direct_jmp2_count++;
3654 /* XXX: avoid using doubles ? */
3655 cpu_fprintf(f, "Translation buffer state:\n");
3656 cpu_fprintf(f, "gen code size %ld/%ld\n",
3657 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3658 cpu_fprintf(f, "TB count %d/%d\n",
3659 nb_tbs, code_gen_max_blocks);
3660 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3661 nb_tbs ? target_code_size / nb_tbs : 0,
3662 max_target_code_size);
3663 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3664 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3665 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3666 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3667 cross_page,
3668 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3669 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3670 direct_jmp_count,
3671 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3672 direct_jmp2_count,
3673 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3674 cpu_fprintf(f, "\nStatistics:\n");
3675 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3676 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3677 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3678 tcg_dump_info(f, cpu_fprintf);
3681 #if !defined(CONFIG_USER_ONLY)
3683 #define MMUSUFFIX _cmmu
3684 #define GETPC() NULL
3685 #define env cpu_single_env
3686 #define SOFTMMU_CODE_ACCESS
3688 #define SHIFT 0
3689 #include "softmmu_template.h"
3691 #define SHIFT 1
3692 #include "softmmu_template.h"
3694 #define SHIFT 2
3695 #include "softmmu_template.h"
3697 #define SHIFT 3
3698 #include "softmmu_template.h"
3700 #undef env
3702 #endif