2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
36 #include "qemu-common.h"
41 #if defined(CONFIG_USER_ONLY)
46 //#define DEBUG_TB_INVALIDATE
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
82 static TranslationBlock
*tbs
;
83 int code_gen_max_blocks
;
84 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
101 #define code_gen_section \
102 __attribute__((aligned (32)))
105 uint8_t code_gen_prologue
[1024] code_gen_section
;
106 static uint8_t *code_gen_buffer
;
107 static unsigned long code_gen_buffer_size
;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size
;
110 uint8_t *code_gen_ptr
;
112 #if !defined(CONFIG_USER_ONLY)
114 uint8_t *phys_ram_dirty
;
115 static int in_migration
;
117 typedef struct RAMBlock
{
121 struct RAMBlock
*next
;
124 static RAMBlock
*ram_blocks
;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset
;
132 /* current CPU in the current thread. It is only valid inside
134 CPUState
*cpu_single_env
;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
143 typedef struct PageDesc
{
144 /* list of TBs intersecting this ram page */
145 TranslationBlock
*first_tb
;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count
;
149 uint8_t *code_bitmap
;
150 #if defined(CONFIG_USER_ONLY)
155 typedef struct PhysPageDesc
{
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset
;
158 ram_addr_t region_offset
;
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size
;
176 unsigned long qemu_host_page_bits
;
177 unsigned long qemu_host_page_size
;
178 unsigned long qemu_host_page_mask
;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc
*l1_map
[L1_SIZE
];
182 static PhysPageDesc
**l1_phys_map
;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
189 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
190 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
191 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
192 static int io_mem_watch
;
197 static const char *logfilename
= "qemu.log";
199 static const char *logfilename
= "/tmp/qemu.log";
203 static int log_append
= 0;
206 static int tlb_flush_count
;
207 static int tb_flush_count
;
208 static int tb_phys_invalidate_count
;
210 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
211 typedef struct subpage_t
{
212 target_phys_addr_t base
;
213 CPUReadMemoryFunc
* const *mem_read
[TARGET_PAGE_SIZE
][4];
214 CPUWriteMemoryFunc
* const *mem_write
[TARGET_PAGE_SIZE
][4];
215 void *opaque
[TARGET_PAGE_SIZE
][2][4];
216 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
220 static void map_exec(void *addr
, long size
)
223 VirtualProtect(addr
, size
,
224 PAGE_EXECUTE_READWRITE
, &old_protect
);
228 static void map_exec(void *addr
, long size
)
230 unsigned long start
, end
, page_size
;
232 page_size
= getpagesize();
233 start
= (unsigned long)addr
;
234 start
&= ~(page_size
- 1);
236 end
= (unsigned long)addr
+ size
;
237 end
+= page_size
- 1;
238 end
&= ~(page_size
- 1);
240 mprotect((void *)start
, end
- start
,
241 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
245 static void page_init(void)
247 /* NOTE: we can always suppose that qemu_host_page_size >=
251 SYSTEM_INFO system_info
;
253 GetSystemInfo(&system_info
);
254 qemu_real_host_page_size
= system_info
.dwPageSize
;
257 qemu_real_host_page_size
= getpagesize();
259 if (qemu_host_page_size
== 0)
260 qemu_host_page_size
= qemu_real_host_page_size
;
261 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
262 qemu_host_page_size
= TARGET_PAGE_SIZE
;
263 qemu_host_page_bits
= 0;
264 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
265 qemu_host_page_bits
++;
266 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
267 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
268 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
270 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
272 long long startaddr
, endaddr
;
277 last_brk
= (unsigned long)sbrk(0);
278 f
= fopen("/proc/self/maps", "r");
281 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
283 startaddr
= MIN(startaddr
,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
285 endaddr
= MIN(endaddr
,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
287 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
288 TARGET_PAGE_ALIGN(endaddr
),
299 static inline PageDesc
**page_l1_map(target_ulong index
)
301 #if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
304 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
307 return &l1_map
[index
>> L2_BITS
];
310 static inline PageDesc
*page_find_alloc(target_ulong index
)
313 lp
= page_l1_map(index
);
319 /* allocate if not found */
320 #if defined(CONFIG_USER_ONLY)
321 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
322 /* Don't use qemu_malloc because it may recurse. */
323 p
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
,
324 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
327 unsigned long addr
= h2g(p
);
328 page_set_flags(addr
& TARGET_PAGE_MASK
,
329 TARGET_PAGE_ALIGN(addr
+ len
),
333 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
337 return p
+ (index
& (L2_SIZE
- 1));
340 static inline PageDesc
*page_find(target_ulong index
)
343 lp
= page_l1_map(index
);
351 return p
+ (index
& (L2_SIZE
- 1));
354 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
359 p
= (void **)l1_phys_map
;
360 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
362 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
365 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
368 /* allocate if not found */
371 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
372 memset(p
, 0, sizeof(void *) * L1_SIZE
);
376 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
380 /* allocate if not found */
383 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
385 for (i
= 0; i
< L2_SIZE
; i
++) {
386 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
387 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
390 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
393 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
395 return phys_page_find_alloc(index
, 0);
398 #if !defined(CONFIG_USER_ONLY)
399 static void tlb_protect_code(ram_addr_t ram_addr
);
400 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
402 #define mmap_lock() do { } while(0)
403 #define mmap_unlock() do { } while(0)
406 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
408 #if defined(CONFIG_USER_ONLY)
409 /* Currently it is not recommended to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411 #define USE_STATIC_CODE_GEN_BUFFER
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
418 static void code_gen_alloc(unsigned long tb_size
)
420 #ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer
= static_code_gen_buffer
;
422 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
423 map_exec(code_gen_buffer
, code_gen_buffer_size
);
425 code_gen_buffer_size
= tb_size
;
426 if (code_gen_buffer_size
== 0) {
427 #if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
431 /* XXX: needs adjustments */
432 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
435 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
436 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439 #if defined(__linux__)
444 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
445 #if defined(__x86_64__)
447 /* Cannot map more than that */
448 if (code_gen_buffer_size
> (800 * 1024 * 1024))
449 code_gen_buffer_size
= (800 * 1024 * 1024);
450 #elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
453 start
= (void *) 0x60000000UL
;
454 if (code_gen_buffer_size
> (512 * 1024 * 1024))
455 code_gen_buffer_size
= (512 * 1024 * 1024);
456 #elif defined(__arm__)
457 /* Map the buffer below 32M, so we can use direct calls and branches */
459 start
= (void *) 0x01000000UL
;
460 if (code_gen_buffer_size
> 16 * 1024 * 1024)
461 code_gen_buffer_size
= 16 * 1024 * 1024;
463 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
464 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
466 if (code_gen_buffer
== MAP_FAILED
) {
467 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
471 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
475 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
476 #if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
480 addr
= (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size
> (800 * 1024 * 1024))
483 code_gen_buffer_size
= (800 * 1024 * 1024);
485 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
486 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
488 if (code_gen_buffer
== MAP_FAILED
) {
489 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
494 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
495 map_exec(code_gen_buffer
, code_gen_buffer_size
);
497 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
498 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
499 code_gen_buffer_max_size
= code_gen_buffer_size
-
500 code_gen_max_block_size();
501 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
502 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
505 /* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
508 void cpu_exec_init_all(unsigned long tb_size
)
511 code_gen_alloc(tb_size
);
512 code_gen_ptr
= code_gen_buffer
;
514 #if !defined(CONFIG_USER_ONLY)
519 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
521 static void cpu_common_pre_save(void *opaque
)
523 CPUState
*env
= opaque
;
525 cpu_synchronize_state(env
);
528 static int cpu_common_pre_load(void *opaque
)
530 CPUState
*env
= opaque
;
532 cpu_synchronize_state(env
);
536 static int cpu_common_post_load(void *opaque
, int version_id
)
538 CPUState
*env
= opaque
;
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env
->interrupt_request
&= ~0x01;
548 static const VMStateDescription vmstate_cpu_common
= {
549 .name
= "cpu_common",
551 .minimum_version_id
= 1,
552 .minimum_version_id_old
= 1,
553 .pre_save
= cpu_common_pre_save
,
554 .pre_load
= cpu_common_pre_load
,
555 .post_load
= cpu_common_post_load
,
556 .fields
= (VMStateField
[]) {
557 VMSTATE_UINT32(halted
, CPUState
),
558 VMSTATE_UINT32(interrupt_request
, CPUState
),
559 VMSTATE_END_OF_LIST()
564 CPUState
*qemu_get_cpu(int cpu
)
566 CPUState
*env
= first_cpu
;
569 if (env
->cpu_index
== cpu
)
577 void cpu_exec_init(CPUState
*env
)
582 #if defined(CONFIG_USER_ONLY)
585 env
->next_cpu
= NULL
;
588 while (*penv
!= NULL
) {
589 penv
= &(*penv
)->next_cpu
;
592 env
->cpu_index
= cpu_index
;
594 QTAILQ_INIT(&env
->breakpoints
);
595 QTAILQ_INIT(&env
->watchpoints
);
597 #if defined(CONFIG_USER_ONLY)
600 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
601 vmstate_register(cpu_index
, &vmstate_cpu_common
, env
);
602 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
603 cpu_save
, cpu_load
, env
);
607 static inline void invalidate_page_bitmap(PageDesc
*p
)
609 if (p
->code_bitmap
) {
610 qemu_free(p
->code_bitmap
);
611 p
->code_bitmap
= NULL
;
613 p
->code_write_count
= 0;
616 /* set to NULL all the 'first_tb' fields in all PageDescs */
617 static void page_flush_tb(void)
622 for(i
= 0; i
< L1_SIZE
; i
++) {
625 for(j
= 0; j
< L2_SIZE
; j
++) {
627 invalidate_page_bitmap(p
);
634 /* flush all the translation blocks */
635 /* XXX: tb_flush is currently not thread safe */
636 void tb_flush(CPUState
*env1
)
639 #if defined(DEBUG_FLUSH)
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
643 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
645 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
646 cpu_abort(env1
, "Internal error: code buffer overflow\n");
650 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
651 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
654 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
657 code_gen_ptr
= code_gen_buffer
;
658 /* XXX: flush processor icache at this point if cache flush is
663 #ifdef DEBUG_TB_CHECK
665 static void tb_invalidate_check(target_ulong address
)
667 TranslationBlock
*tb
;
669 address
&= TARGET_PAGE_MASK
;
670 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
671 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
672 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
673 address
>= tb
->pc
+ tb
->size
)) {
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
676 address
, (long)tb
->pc
, tb
->size
);
682 /* verify that all the pages have correct rights for code */
683 static void tb_page_check(void)
685 TranslationBlock
*tb
;
686 int i
, flags1
, flags2
;
688 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
689 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
690 flags1
= page_get_flags(tb
->pc
);
691 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
692 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
694 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
706 TranslationBlock
*tb1
;
710 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
713 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
717 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
719 TranslationBlock
*tb1
;
725 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
727 *ptb
= tb1
->page_next
[n1
];
730 ptb
= &tb1
->page_next
[n1
];
734 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
736 TranslationBlock
*tb1
, **ptb
;
739 ptb
= &tb
->jmp_next
[n
];
742 /* find tb(n) in circular list */
746 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
747 if (n1
== n
&& tb1
== tb
)
750 ptb
= &tb1
->jmp_first
;
752 ptb
= &tb1
->jmp_next
[n1
];
755 /* now we can suppress tb(n) from the list */
756 *ptb
= tb
->jmp_next
[n
];
758 tb
->jmp_next
[n
] = NULL
;
762 /* reset the jump entry 'n' of a TB so that it is not chained to
764 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
766 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
769 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
774 target_phys_addr_t phys_pc
;
775 TranslationBlock
*tb1
, *tb2
;
777 /* remove the TB from the hash list */
778 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
779 h
= tb_phys_hash_func(phys_pc
);
780 tb_remove(&tb_phys_hash
[h
], tb
,
781 offsetof(TranslationBlock
, phys_hash_next
));
783 /* remove the TB from the page list */
784 if (tb
->page_addr
[0] != page_addr
) {
785 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
786 tb_page_remove(&p
->first_tb
, tb
);
787 invalidate_page_bitmap(p
);
789 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
790 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
791 tb_page_remove(&p
->first_tb
, tb
);
792 invalidate_page_bitmap(p
);
795 tb_invalidated_flag
= 1;
797 /* remove the TB from the hash list */
798 h
= tb_jmp_cache_hash_func(tb
->pc
);
799 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
800 if (env
->tb_jmp_cache
[h
] == tb
)
801 env
->tb_jmp_cache
[h
] = NULL
;
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb
, 0);
806 tb_jmp_remove(tb
, 1);
808 /* suppress any remaining jumps to this TB */
814 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
815 tb2
= tb1
->jmp_next
[n1
];
816 tb_reset_jump(tb1
, n1
);
817 tb1
->jmp_next
[n1
] = NULL
;
820 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
822 tb_phys_invalidate_count
++;
825 static inline void set_bits(uint8_t *tab
, int start
, int len
)
831 mask
= 0xff << (start
& 7);
832 if ((start
& ~7) == (end
& ~7)) {
834 mask
&= ~(0xff << (end
& 7));
839 start
= (start
+ 8) & ~7;
841 while (start
< end1
) {
846 mask
= ~(0xff << (end
& 7));
852 static void build_page_bitmap(PageDesc
*p
)
854 int n
, tb_start
, tb_end
;
855 TranslationBlock
*tb
;
857 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
862 tb
= (TranslationBlock
*)((long)tb
& ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
868 tb_end
= tb_start
+ tb
->size
;
869 if (tb_end
> TARGET_PAGE_SIZE
)
870 tb_end
= TARGET_PAGE_SIZE
;
873 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
875 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
876 tb
= tb
->page_next
[n
];
880 TranslationBlock
*tb_gen_code(CPUState
*env
,
881 target_ulong pc
, target_ulong cs_base
,
882 int flags
, int cflags
)
884 TranslationBlock
*tb
;
886 target_ulong phys_pc
, phys_page2
, virt_page2
;
889 phys_pc
= get_phys_addr_code(env
, pc
);
892 /* flush must be done */
894 /* cannot fail at this point */
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag
= 1;
899 tc_ptr
= code_gen_ptr
;
901 tb
->cs_base
= cs_base
;
904 cpu_gen_code(env
, tb
, &code_gen_size
);
905 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
907 /* check next page if needed */
908 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
910 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
911 phys_page2
= get_phys_addr_code(env
, virt_page2
);
913 tb_link_phys(tb
, phys_pc
, phys_page2
);
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
923 int is_cpu_write_access
)
925 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
926 CPUState
*env
= cpu_single_env
;
927 target_ulong tb_start
, tb_end
;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found
= is_cpu_write_access
;
932 TranslationBlock
*current_tb
= NULL
;
933 int current_tb_modified
= 0;
934 target_ulong current_pc
= 0;
935 target_ulong current_cs_base
= 0;
936 int current_flags
= 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
939 p
= page_find(start
>> TARGET_PAGE_BITS
);
942 if (!p
->code_bitmap
&&
943 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
944 is_cpu_write_access
) {
945 /* build code bitmap */
946 build_page_bitmap(p
);
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
954 tb
= (TranslationBlock
*)((long)tb
& ~3);
955 tb_next
= tb
->page_next
[n
];
956 /* NOTE: this is subtle as a TB may span two physical pages */
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
961 tb_end
= tb_start
+ tb
->size
;
963 tb_start
= tb
->page_addr
[1];
964 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
966 if (!(tb_end
<= start
|| tb_start
>= end
)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found
) {
969 current_tb_not_found
= 0;
971 if (env
->mem_io_pc
) {
972 /* now we have a real cpu fault */
973 current_tb
= tb_find_pc(env
->mem_io_pc
);
976 if (current_tb
== tb
&&
977 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
984 current_tb_modified
= 1;
985 cpu_restore_state(current_tb
, env
,
986 env
->mem_io_pc
, NULL
);
987 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
995 saved_tb
= env
->current_tb
;
996 env
->current_tb
= NULL
;
998 tb_phys_invalidate(tb
, -1);
1000 env
->current_tb
= saved_tb
;
1001 if (env
->interrupt_request
&& env
->current_tb
)
1002 cpu_interrupt(env
, env
->interrupt_request
);
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1010 invalidate_page_bitmap(p
);
1011 if (is_cpu_write_access
) {
1012 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified
) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1021 env
->current_tb
= NULL
;
1022 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1023 cpu_resume_from_signal(env
, NULL
);
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env
->mem_io_vaddr
, len
,
1037 cpu_single_env
->eip
,
1038 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1041 p
= page_find(start
>> TARGET_PAGE_BITS
);
1044 if (p
->code_bitmap
) {
1045 offset
= start
& ~TARGET_PAGE_MASK
;
1046 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1047 if (b
& ((1 << len
) - 1))
1051 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1057 unsigned long pc
, void *puc
)
1059 TranslationBlock
*tb
;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock
*current_tb
= NULL
;
1064 CPUState
*env
= cpu_single_env
;
1065 int current_tb_modified
= 0;
1066 target_ulong current_pc
= 0;
1067 target_ulong current_cs_base
= 0;
1068 int current_flags
= 0;
1071 addr
&= TARGET_PAGE_MASK
;
1072 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb
&& pc
!= 0) {
1078 current_tb
= tb_find_pc(pc
);
1081 while (tb
!= NULL
) {
1083 tb
= (TranslationBlock
*)((long)tb
& ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb
== tb
&&
1086 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1093 current_tb_modified
= 1;
1094 cpu_restore_state(current_tb
, env
, pc
, puc
);
1095 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb
, addr
);
1100 tb
= tb
->page_next
[n
];
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified
) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1108 env
->current_tb
= NULL
;
1109 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1110 cpu_resume_from_signal(env
, puc
);
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock
*tb
,
1118 unsigned int n
, target_ulong page_addr
)
1121 TranslationBlock
*last_first_tb
;
1123 tb
->page_addr
[n
] = page_addr
;
1124 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1125 tb
->page_next
[n
] = p
->first_tb
;
1126 last_first_tb
= p
->first_tb
;
1127 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1128 invalidate_page_bitmap(p
);
1130 #if defined(TARGET_HAS_SMC) || 1
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p
->flags
& PAGE_WRITE
) {
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr
&= qemu_host_page_mask
;
1142 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1143 addr
+= TARGET_PAGE_SIZE
) {
1145 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1149 p2
->flags
&= ~PAGE_WRITE
;
1150 page_get_flags(addr
);
1152 mprotect(g2h(page_addr
), qemu_host_page_size
,
1153 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb
) {
1164 tlb_protect_code(page_addr
);
1168 #endif /* TARGET_HAS_SMC */
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock
*tb_alloc(target_ulong pc
)
1175 TranslationBlock
*tb
;
1177 if (nb_tbs
>= code_gen_max_blocks
||
1178 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1180 tb
= &tbs
[nb_tbs
++];
1186 void tb_free(TranslationBlock
*tb
)
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1192 code_gen_ptr
= tb
->tc_ptr
;
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock
*tb
,
1200 target_ulong phys_pc
, target_ulong phys_page2
)
1203 TranslationBlock
**ptb
;
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1208 /* add in the physical hash table */
1209 h
= tb_phys_hash_func(phys_pc
);
1210 ptb
= &tb_phys_hash
[h
];
1211 tb
->phys_hash_next
= *ptb
;
1214 /* add in the page list */
1215 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1216 if (phys_page2
!= -1)
1217 tb_alloc_page(tb
, 1, phys_page2
);
1219 tb
->page_addr
[1] = -1;
1221 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1222 tb
->jmp_next
[0] = NULL
;
1223 tb
->jmp_next
[1] = NULL
;
1225 /* init original jump addresses */
1226 if (tb
->tb_next_offset
[0] != 0xffff)
1227 tb_reset_jump(tb
, 0);
1228 if (tb
->tb_next_offset
[1] != 0xffff)
1229 tb_reset_jump(tb
, 1);
1231 #ifdef DEBUG_TB_CHECK
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1241 int m_min
, m_max
, m
;
1243 TranslationBlock
*tb
;
1247 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1248 tc_ptr
>= (unsigned long)code_gen_ptr
)
1250 /* binary search (cf Knuth) */
1253 while (m_min
<= m_max
) {
1254 m
= (m_min
+ m_max
) >> 1;
1256 v
= (unsigned long)tb
->tc_ptr
;
1259 else if (tc_ptr
< v
) {
1268 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1270 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1272 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1275 tb1
= tb
->jmp_next
[n
];
1277 /* find head of list */
1280 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1283 tb1
= tb1
->jmp_next
[n1
];
1285 /* we are now sure now that tb jumps to tb1 */
1288 /* remove tb from the jmp_first list */
1289 ptb
= &tb_next
->jmp_first
;
1293 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1294 if (n1
== n
&& tb1
== tb
)
1296 ptb
= &tb1
->jmp_next
[n1
];
1298 *ptb
= tb
->jmp_next
[n
];
1299 tb
->jmp_next
[n
] = NULL
;
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb
, n
);
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next
);
1309 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1311 tb_reset_jump_recursive2(tb
, 0);
1312 tb_reset_jump_recursive2(tb
, 1);
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1318 target_phys_addr_t addr
;
1320 ram_addr_t ram_addr
;
1323 addr
= cpu_get_phys_page_debug(env
, pc
);
1324 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1326 pd
= IO_MEM_UNASSIGNED
;
1328 pd
= p
->phys_offset
;
1330 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1331 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1337 int flags
, CPUWatchpoint
**watchpoint
)
1339 target_ulong len_mask
= ~(len
- 1);
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1344 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1348 wp
= qemu_malloc(sizeof(*wp
));
1351 wp
->len_mask
= len_mask
;
1354 /* keep all GDB-injected watchpoints in front */
1356 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1358 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1360 tlb_flush_page(env
, addr
);
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1371 target_ulong len_mask
= ~(len
- 1);
1374 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1375 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1376 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1377 cpu_watchpoint_remove_by_ref(env
, wp
);
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1387 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1389 tlb_flush_page(env
, watchpoint
->vaddr
);
1391 qemu_free(watchpoint
);
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1397 CPUWatchpoint
*wp
, *next
;
1399 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1400 if (wp
->flags
& mask
)
1401 cpu_watchpoint_remove_by_ref(env
, wp
);
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1407 CPUBreakpoint
**breakpoint
)
1409 #if defined(TARGET_HAS_ICE)
1412 bp
= qemu_malloc(sizeof(*bp
));
1417 /* keep all GDB-injected breakpoints in front */
1419 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1421 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1423 breakpoint_invalidate(env
, pc
);
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1436 #if defined(TARGET_HAS_ICE)
1439 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1440 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1441 cpu_breakpoint_remove_by_ref(env
, bp
);
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1454 #if defined(TARGET_HAS_ICE)
1455 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1457 breakpoint_invalidate(env
, breakpoint
->pc
);
1459 qemu_free(breakpoint
);
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint
*bp
, *next
;
1469 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1470 if (bp
->flags
& mask
)
1471 cpu_breakpoint_remove_by_ref(env
, bp
);
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState
*env
, int enabled
)
1480 #if defined(TARGET_HAS_ICE)
1481 if (env
->singlestep_enabled
!= enabled
) {
1482 env
->singlestep_enabled
= enabled
;
1484 kvm_update_guest_debug(env
, 0);
1486 /* must flush all the translated code to avoid inconsistencies */
1487 /* XXX: only flush what is necessary */
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags
)
1497 loglevel
= log_flags
;
1498 if (loglevel
&& !logfile
) {
1499 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1501 perror(logfilename
);
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 static char logfile_buf
[4096];
1508 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1510 #elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
1512 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1516 if (!loglevel
&& logfile
) {
1522 void cpu_set_log_filename(const char *filename
)
1524 logfilename
= strdup(filename
);
1529 cpu_set_log(loglevel
);
1532 static void cpu_unlink_tb(CPUState
*env
)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538 TranslationBlock
*tb
;
1539 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1541 spin_lock(&interrupt_lock
);
1542 tb
= env
->current_tb
;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1546 env
->current_tb
= NULL
;
1547 tb_reset_jump_recursive(tb
);
1549 spin_unlock(&interrupt_lock
);
1552 /* mask must never be zero, except for A20 change call */
1553 void cpu_interrupt(CPUState
*env
, int mask
)
1557 old_mask
= env
->interrupt_request
;
1558 env
->interrupt_request
|= mask
;
1560 #ifndef CONFIG_USER_ONLY
1562 * If called from iothread context, wake the target cpu in
1565 if (!qemu_cpu_self(env
)) {
1572 env
->icount_decr
.u16
.high
= 0xffff;
1573 #ifndef CONFIG_USER_ONLY
1575 && (mask
& ~old_mask
) != 0) {
1576 cpu_abort(env
, "Raised interrupt while not in I/O function");
1584 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1586 env
->interrupt_request
&= ~mask
;
1589 void cpu_exit(CPUState
*env
)
1591 env
->exit_request
= 1;
1595 const CPULogItem cpu_log_items
[] = {
1596 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM
, "in_asm",
1599 "show target assembly code for each compiled TB" },
1600 { CPU_LOG_TB_OP
, "op",
1601 "show micro ops for each compiled TB" },
1602 { CPU_LOG_TB_OP_OPT
, "op_opt",
1605 "before eflags optimization and "
1607 "after liveness analysis" },
1608 { CPU_LOG_INT
, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC
, "exec",
1611 "show trace before each executed TB (lots of logs)" },
1612 { CPU_LOG_TB_CPU
, "cpu",
1613 "show CPU state before block translation" },
1615 { CPU_LOG_PCALL
, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
1617 { CPU_LOG_RESET
, "cpu_reset",
1618 "show CPU state before CPU resets" },
1621 { CPU_LOG_IOPORT
, "ioport",
1622 "show all i/o ports accesses" },
1627 static int cmp1(const char *s1
, int n
, const char *s2
)
1629 if (strlen(s2
) != n
)
1631 return memcmp(s1
, s2
, n
) == 0;
1634 /* takes a comma separated list of log masks. Return 0 if error. */
1635 int cpu_str_to_log_mask(const char *str
)
1637 const CPULogItem
*item
;
1644 p1
= strchr(p
, ',');
1647 if(cmp1(p
,p1
-p
,"all")) {
1648 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1652 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1653 if (cmp1(p
, p1
- p
, item
->name
))
1667 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1674 fprintf(stderr
, "qemu: fatal: ");
1675 vfprintf(stderr
, fmt
, ap
);
1676 fprintf(stderr
, "\n");
1678 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1680 cpu_dump_state(env
, stderr
, fprintf
, 0);
1682 if (qemu_log_enabled()) {
1683 qemu_log("qemu: fatal: ");
1684 qemu_log_vprintf(fmt
, ap2
);
1687 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1689 log_cpu_state(env
, 0);
1696 #if defined(CONFIG_USER_ONLY)
1698 struct sigaction act
;
1699 sigfillset(&act
.sa_mask
);
1700 act
.sa_handler
= SIG_DFL
;
1701 sigaction(SIGABRT
, &act
, NULL
);
1707 CPUState
*cpu_copy(CPUState
*env
)
1709 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1710 CPUState
*next_cpu
= new_env
->next_cpu
;
1711 int cpu_index
= new_env
->cpu_index
;
1712 #if defined(TARGET_HAS_ICE)
1717 memcpy(new_env
, env
, sizeof(CPUState
));
1719 /* Preserve chaining and index. */
1720 new_env
->next_cpu
= next_cpu
;
1721 new_env
->cpu_index
= cpu_index
;
1723 /* Clone all break/watchpoints.
1724 Note: Once we support ptrace with hw-debug register access, make sure
1725 BP_CPU break/watchpoints are handled correctly on clone. */
1726 QTAILQ_INIT(&env
->breakpoints
);
1727 QTAILQ_INIT(&env
->watchpoints
);
1728 #if defined(TARGET_HAS_ICE)
1729 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1730 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1732 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1733 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1741 #if !defined(CONFIG_USER_ONLY)
1743 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1747 /* Discard jump cache entries for any tb which might potentially
1748 overlap the flushed page. */
1749 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1750 memset (&env
->tb_jmp_cache
[i
], 0,
1751 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1753 i
= tb_jmp_cache_hash_page(addr
);
1754 memset (&env
->tb_jmp_cache
[i
], 0,
1755 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1758 static CPUTLBEntry s_cputlb_empty_entry
= {
1765 /* NOTE: if flush_global is true, also flush global entries (not
1767 void tlb_flush(CPUState
*env
, int flush_global
)
1771 #if defined(DEBUG_TLB)
1772 printf("tlb_flush:\n");
1774 /* must reset current TB so that interrupts cannot modify the
1775 links while we are modifying them */
1776 env
->current_tb
= NULL
;
1778 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1780 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1781 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1785 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1790 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1792 if (addr
== (tlb_entry
->addr_read
&
1793 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1794 addr
== (tlb_entry
->addr_write
&
1795 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1796 addr
== (tlb_entry
->addr_code
&
1797 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1798 *tlb_entry
= s_cputlb_empty_entry
;
1802 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1807 #if defined(DEBUG_TLB)
1808 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1810 /* must reset current TB so that interrupts cannot modify the
1811 links while we are modifying them */
1812 env
->current_tb
= NULL
;
1814 addr
&= TARGET_PAGE_MASK
;
1815 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1816 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1817 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1819 tlb_flush_jmp_cache(env
, addr
);
1822 /* update the TLBs so that writes to code in the virtual page 'addr'
1824 static void tlb_protect_code(ram_addr_t ram_addr
)
1826 cpu_physical_memory_reset_dirty(ram_addr
,
1827 ram_addr
+ TARGET_PAGE_SIZE
,
1831 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1832 tested for self modifying code */
1833 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1836 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1839 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1840 unsigned long start
, unsigned long length
)
1843 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1844 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1845 if ((addr
- start
) < length
) {
1846 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1851 /* Note: start and end must be within the same ram block. */
1852 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1856 unsigned long length
, start1
;
1860 start
&= TARGET_PAGE_MASK
;
1861 end
= TARGET_PAGE_ALIGN(end
);
1863 length
= end
- start
;
1866 len
= length
>> TARGET_PAGE_BITS
;
1867 mask
= ~dirty_flags
;
1868 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1869 for(i
= 0; i
< len
; i
++)
1872 /* we modify the TLB cache so that the dirty bit will be set again
1873 when accessing the range */
1874 start1
= (unsigned long)qemu_get_ram_ptr(start
);
1875 /* Chek that we don't span multiple blocks - this breaks the
1876 address comparisons below. */
1877 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
1878 != (end
- 1) - start
) {
1882 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1884 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1885 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1886 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
1892 int cpu_physical_memory_set_dirty_tracking(int enable
)
1894 in_migration
= enable
;
1895 if (kvm_enabled()) {
1896 return kvm_set_migration_log(enable
);
1901 int cpu_physical_memory_get_dirty_tracking(void)
1903 return in_migration
;
1906 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
1907 target_phys_addr_t end_addr
)
1912 ret
= kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1916 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1918 ram_addr_t ram_addr
;
1921 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1922 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
1923 + tlb_entry
->addend
);
1924 ram_addr
= qemu_ram_addr_from_host(p
);
1925 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1926 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1931 /* update the TLB according to the current state of the dirty bits */
1932 void cpu_tlb_update_dirty(CPUState
*env
)
1936 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1937 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1938 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
1942 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1944 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1945 tlb_entry
->addr_write
= vaddr
;
1948 /* update the TLB corresponding to virtual page vaddr
1949 so that it is no longer dirty */
1950 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1955 vaddr
&= TARGET_PAGE_MASK
;
1956 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1957 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1958 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
1961 /* add a new TLB entry. At most one entry for a given virtual address
1962 is permitted. Return 0 if OK or 2 if the page could not be mapped
1963 (can only happen in non SOFTMMU mode for I/O pages or pages
1964 conflicting with the host address space). */
1965 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1966 target_phys_addr_t paddr
, int prot
,
1967 int mmu_idx
, int is_softmmu
)
1972 target_ulong address
;
1973 target_ulong code_address
;
1974 target_phys_addr_t addend
;
1978 target_phys_addr_t iotlb
;
1980 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1982 pd
= IO_MEM_UNASSIGNED
;
1984 pd
= p
->phys_offset
;
1986 #if defined(DEBUG_TLB)
1987 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1988 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1993 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1994 /* IO memory case (romd handled later) */
1995 address
|= TLB_MMIO
;
1997 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
1998 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2000 iotlb
= pd
& TARGET_PAGE_MASK
;
2001 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2002 iotlb
|= IO_MEM_NOTDIRTY
;
2004 iotlb
|= IO_MEM_ROM
;
2006 /* IO handlers are currently passed a physical address.
2007 It would be nice to pass an offset from the base address
2008 of that region. This would avoid having to special case RAM,
2009 and avoid full address decoding in every device.
2010 We can't use the high bits of pd for this because
2011 IO_MEM_ROMD uses these as a ram address. */
2012 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2014 iotlb
+= p
->region_offset
;
2020 code_address
= address
;
2021 /* Make accesses to pages with watchpoints go via the
2022 watchpoint trap routines. */
2023 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2024 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2025 iotlb
= io_mem_watch
+ paddr
;
2026 /* TODO: The memory case can be optimized by not trapping
2027 reads of pages with a write breakpoint. */
2028 address
|= TLB_MMIO
;
2032 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2033 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2034 te
= &env
->tlb_table
[mmu_idx
][index
];
2035 te
->addend
= addend
- vaddr
;
2036 if (prot
& PAGE_READ
) {
2037 te
->addr_read
= address
;
2042 if (prot
& PAGE_EXEC
) {
2043 te
->addr_code
= code_address
;
2047 if (prot
& PAGE_WRITE
) {
2048 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2049 (pd
& IO_MEM_ROMD
)) {
2050 /* Write access calls the I/O callback. */
2051 te
->addr_write
= address
| TLB_MMIO
;
2052 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2053 !cpu_physical_memory_is_dirty(pd
)) {
2054 te
->addr_write
= address
| TLB_NOTDIRTY
;
2056 te
->addr_write
= address
;
2059 te
->addr_write
= -1;
2066 void tlb_flush(CPUState
*env
, int flush_global
)
2070 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2074 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2075 target_phys_addr_t paddr
, int prot
,
2076 int mmu_idx
, int is_softmmu
)
2082 * Walks guest process memory "regions" one by one
2083 * and calls callback function 'fn' for each region.
2085 int walk_memory_regions(void *priv
,
2086 int (*fn
)(void *, unsigned long, unsigned long, unsigned long))
2088 unsigned long start
, end
;
2090 int i
, j
, prot
, prot1
;
2096 for (i
= 0; i
<= L1_SIZE
; i
++) {
2097 p
= (i
< L1_SIZE
) ? l1_map
[i
] : NULL
;
2098 for (j
= 0; j
< L2_SIZE
; j
++) {
2099 prot1
= (p
== NULL
) ? 0 : p
[j
].flags
;
2101 * "region" is one continuous chunk of memory
2102 * that has same protection flags set.
2104 if (prot1
!= prot
) {
2105 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2107 rc
= (*fn
)(priv
, start
, end
, prot
);
2108 /* callback can stop iteration by returning != 0 */
2125 static int dump_region(void *priv
, unsigned long start
,
2126 unsigned long end
, unsigned long prot
)
2128 FILE *f
= (FILE *)priv
;
2130 (void) fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2131 start
, end
, end
- start
,
2132 ((prot
& PAGE_READ
) ? 'r' : '-'),
2133 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2134 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2139 /* dump memory mappings */
2140 void page_dump(FILE *f
)
2142 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2144 walk_memory_regions(f
, dump_region
);
2147 int page_get_flags(target_ulong address
)
2151 p
= page_find(address
>> TARGET_PAGE_BITS
);
2157 /* modify the flags of a page and invalidate the code if
2158 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2159 depending on PAGE_WRITE */
2160 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2165 /* mmap_lock should already be held. */
2166 start
= start
& TARGET_PAGE_MASK
;
2167 end
= TARGET_PAGE_ALIGN(end
);
2168 if (flags
& PAGE_WRITE
)
2169 flags
|= PAGE_WRITE_ORG
;
2170 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2171 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2172 /* We may be called for host regions that are outside guest
2176 /* if the write protection is set, then we invalidate the code
2178 if (!(p
->flags
& PAGE_WRITE
) &&
2179 (flags
& PAGE_WRITE
) &&
2181 tb_invalidate_phys_page(addr
, 0, NULL
);
2187 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2193 if (start
+ len
< start
)
2194 /* we've wrapped around */
2197 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2198 start
= start
& TARGET_PAGE_MASK
;
2200 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2201 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2204 if( !(p
->flags
& PAGE_VALID
) )
2207 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2209 if (flags
& PAGE_WRITE
) {
2210 if (!(p
->flags
& PAGE_WRITE_ORG
))
2212 /* unprotect the page if it was put read-only because it
2213 contains translated code */
2214 if (!(p
->flags
& PAGE_WRITE
)) {
2215 if (!page_unprotect(addr
, 0, NULL
))
2224 /* called from signal handler: invalidate the code and unprotect the
2225 page. Return TRUE if the fault was successfully handled. */
2226 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2228 unsigned int page_index
, prot
, pindex
;
2230 target_ulong host_start
, host_end
, addr
;
2232 /* Technically this isn't safe inside a signal handler. However we
2233 know this only ever happens in a synchronous SEGV handler, so in
2234 practice it seems to be ok. */
2237 host_start
= address
& qemu_host_page_mask
;
2238 page_index
= host_start
>> TARGET_PAGE_BITS
;
2239 p1
= page_find(page_index
);
2244 host_end
= host_start
+ qemu_host_page_size
;
2247 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2251 /* if the page was really writable, then we change its
2252 protection back to writable */
2253 if (prot
& PAGE_WRITE_ORG
) {
2254 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2255 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2256 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2257 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2258 p1
[pindex
].flags
|= PAGE_WRITE
;
2259 /* and since the content will be modified, we must invalidate
2260 the corresponding translated code. */
2261 tb_invalidate_phys_page(address
, pc
, puc
);
2262 #ifdef DEBUG_TB_CHECK
2263 tb_invalidate_check(address
);
2273 static inline void tlb_set_dirty(CPUState
*env
,
2274 unsigned long addr
, target_ulong vaddr
)
2277 #endif /* defined(CONFIG_USER_ONLY) */
2279 #if !defined(CONFIG_USER_ONLY)
2281 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2282 ram_addr_t memory
, ram_addr_t region_offset
);
2283 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2284 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2285 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2288 if (addr > start_addr) \
2291 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2292 if (start_addr2 > 0) \
2296 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2297 end_addr2 = TARGET_PAGE_SIZE - 1; \
2299 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2300 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2305 /* register physical memory.
2306 For RAM, 'size' must be a multiple of the target page size.
2307 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
2310 start_addr and region_offset are rounded down to a page boundary
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2315 ram_addr_t phys_offset
,
2316 ram_addr_t region_offset
)
2318 target_phys_addr_t addr
, end_addr
;
2321 ram_addr_t orig_size
= size
;
2325 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2327 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2328 region_offset
= start_addr
;
2330 region_offset
&= TARGET_PAGE_MASK
;
2331 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2332 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2333 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2334 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2335 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2336 ram_addr_t orig_memory
= p
->phys_offset
;
2337 target_phys_addr_t start_addr2
, end_addr2
;
2338 int need_subpage
= 0;
2340 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2342 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2343 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2344 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2345 &p
->phys_offset
, orig_memory
,
2348 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2351 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2353 p
->region_offset
= 0;
2355 p
->phys_offset
= phys_offset
;
2356 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2357 (phys_offset
& IO_MEM_ROMD
))
2358 phys_offset
+= TARGET_PAGE_SIZE
;
2361 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2362 p
->phys_offset
= phys_offset
;
2363 p
->region_offset
= region_offset
;
2364 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2365 (phys_offset
& IO_MEM_ROMD
)) {
2366 phys_offset
+= TARGET_PAGE_SIZE
;
2368 target_phys_addr_t start_addr2
, end_addr2
;
2369 int need_subpage
= 0;
2371 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2372 end_addr2
, need_subpage
);
2374 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2375 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2376 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2377 addr
& TARGET_PAGE_MASK
);
2378 subpage_register(subpage
, start_addr2
, end_addr2
,
2379 phys_offset
, region_offset
);
2380 p
->region_offset
= 0;
2384 region_offset
+= TARGET_PAGE_SIZE
;
2387 /* since each CPU stores ram addresses in its TLB cache, we must
2388 reset the modified entries */
2390 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2395 /* XXX: temporary until new memory mapping API */
2396 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2400 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2402 return IO_MEM_UNASSIGNED
;
2403 return p
->phys_offset
;
2406 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2409 kvm_coalesce_mmio_region(addr
, size
);
2412 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2415 kvm_uncoalesce_mmio_region(addr
, size
);
2418 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2420 RAMBlock
*new_block
;
2422 size
= TARGET_PAGE_ALIGN(size
);
2423 new_block
= qemu_malloc(sizeof(*new_block
));
2425 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2426 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2427 new_block
->host
= mmap((void*)0x1000000, size
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2428 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2430 new_block
->host
= qemu_vmalloc(size
);
2432 #ifdef MADV_MERGEABLE
2433 madvise(new_block
->host
, size
, MADV_MERGEABLE
);
2435 new_block
->offset
= last_ram_offset
;
2436 new_block
->length
= size
;
2438 new_block
->next
= ram_blocks
;
2439 ram_blocks
= new_block
;
2441 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2442 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2443 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2444 0xff, size
>> TARGET_PAGE_BITS
);
2446 last_ram_offset
+= size
;
2449 kvm_setup_guest_memory(new_block
->host
, size
);
2451 return new_block
->offset
;
2454 void qemu_ram_free(ram_addr_t addr
)
2456 /* TODO: implement this. */
2459 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2460 With the exception of the softmmu code in this file, this should
2461 only be used for local memory (e.g. video ram) that the device owns,
2462 and knows it isn't going to access beyond the end of the block.
2464 It should not be used for general purpose DMA.
2465 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2467 void *qemu_get_ram_ptr(ram_addr_t addr
)
2474 prevp
= &ram_blocks
;
2476 while (block
&& (block
->offset
> addr
2477 || block
->offset
+ block
->length
<= addr
)) {
2479 prevp
= &prev
->next
;
2481 block
= block
->next
;
2484 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2487 /* Move this entry to to start of the list. */
2489 prev
->next
= block
->next
;
2490 block
->next
= *prevp
;
2493 return block
->host
+ (addr
- block
->offset
);
2496 /* Some of the softmmu routines need to translate from a host pointer
2497 (typically a TLB entry) back to a ram offset. */
2498 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2502 uint8_t *host
= ptr
;
2506 while (block
&& (block
->host
> host
2507 || block
->host
+ block
->length
<= host
)) {
2509 block
= block
->next
;
2512 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2515 return block
->offset
+ (host
- block
->host
);
2518 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2520 #ifdef DEBUG_UNASSIGNED
2521 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2523 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2524 do_unassigned_access(addr
, 0, 0, 0, 1);
2529 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2531 #ifdef DEBUG_UNASSIGNED
2532 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2534 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2535 do_unassigned_access(addr
, 0, 0, 0, 2);
2540 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2542 #ifdef DEBUG_UNASSIGNED
2543 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2545 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2546 do_unassigned_access(addr
, 0, 0, 0, 4);
2551 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2553 #ifdef DEBUG_UNASSIGNED
2554 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2556 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2557 do_unassigned_access(addr
, 1, 0, 0, 1);
2561 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2563 #ifdef DEBUG_UNASSIGNED
2564 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2566 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2567 do_unassigned_access(addr
, 1, 0, 0, 2);
2571 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2573 #ifdef DEBUG_UNASSIGNED
2574 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2576 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2577 do_unassigned_access(addr
, 1, 0, 0, 4);
2581 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
2582 unassigned_mem_readb
,
2583 unassigned_mem_readw
,
2584 unassigned_mem_readl
,
2587 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
2588 unassigned_mem_writeb
,
2589 unassigned_mem_writew
,
2590 unassigned_mem_writel
,
2593 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2597 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2598 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2599 #if !defined(CONFIG_USER_ONLY)
2600 tb_invalidate_phys_page_fast(ram_addr
, 1);
2601 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2604 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2605 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2606 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2607 /* we remove the notdirty callback only if the code has been
2609 if (dirty_flags
== 0xff)
2610 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2613 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2617 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2618 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2619 #if !defined(CONFIG_USER_ONLY)
2620 tb_invalidate_phys_page_fast(ram_addr
, 2);
2621 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2624 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2625 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2626 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2627 /* we remove the notdirty callback only if the code has been
2629 if (dirty_flags
== 0xff)
2630 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2633 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2637 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2638 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2639 #if !defined(CONFIG_USER_ONLY)
2640 tb_invalidate_phys_page_fast(ram_addr
, 4);
2641 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2644 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2645 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2646 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2647 /* we remove the notdirty callback only if the code has been
2649 if (dirty_flags
== 0xff)
2650 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2653 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
2654 NULL
, /* never used */
2655 NULL
, /* never used */
2656 NULL
, /* never used */
2659 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
2660 notdirty_mem_writeb
,
2661 notdirty_mem_writew
,
2662 notdirty_mem_writel
,
2665 /* Generate a debug exception if a watchpoint has been hit. */
2666 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2668 CPUState
*env
= cpu_single_env
;
2669 target_ulong pc
, cs_base
;
2670 TranslationBlock
*tb
;
2675 if (env
->watchpoint_hit
) {
2676 /* We re-entered the check after replacing the TB. Now raise
2677 * the debug interrupt so that is will trigger after the
2678 * current instruction. */
2679 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2682 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2683 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2684 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2685 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2686 wp
->flags
|= BP_WATCHPOINT_HIT
;
2687 if (!env
->watchpoint_hit
) {
2688 env
->watchpoint_hit
= wp
;
2689 tb
= tb_find_pc(env
->mem_io_pc
);
2691 cpu_abort(env
, "check_watchpoint: could not find TB for "
2692 "pc=%p", (void *)env
->mem_io_pc
);
2694 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2695 tb_phys_invalidate(tb
, -1);
2696 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2697 env
->exception_index
= EXCP_DEBUG
;
2699 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2700 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2702 cpu_resume_from_signal(env
, NULL
);
2705 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2710 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2711 so these check for a hit then pass through to the normal out-of-line
2713 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2715 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2716 return ldub_phys(addr
);
2719 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2721 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2722 return lduw_phys(addr
);
2725 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2727 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2728 return ldl_phys(addr
);
2731 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2734 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2735 stb_phys(addr
, val
);
2738 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2741 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2742 stw_phys(addr
, val
);
2745 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2748 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2749 stl_phys(addr
, val
);
2752 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
2758 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
2764 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2770 idx
= SUBPAGE_IDX(addr
);
2771 #if defined(DEBUG_SUBPAGE)
2772 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2773 mmio
, len
, addr
, idx
);
2775 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2776 addr
+ mmio
->region_offset
[idx
][0][len
]);
2781 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2782 uint32_t value
, unsigned int len
)
2786 idx
= SUBPAGE_IDX(addr
);
2787 #if defined(DEBUG_SUBPAGE)
2788 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2789 mmio
, len
, addr
, idx
, value
);
2791 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2792 addr
+ mmio
->region_offset
[idx
][1][len
],
2796 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2798 #if defined(DEBUG_SUBPAGE)
2799 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2802 return subpage_readlen(opaque
, addr
, 0);
2805 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2808 #if defined(DEBUG_SUBPAGE)
2809 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2811 subpage_writelen(opaque
, addr
, value
, 0);
2814 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2816 #if defined(DEBUG_SUBPAGE)
2817 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2820 return subpage_readlen(opaque
, addr
, 1);
2823 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2826 #if defined(DEBUG_SUBPAGE)
2827 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2829 subpage_writelen(opaque
, addr
, value
, 1);
2832 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2834 #if defined(DEBUG_SUBPAGE)
2835 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2838 return subpage_readlen(opaque
, addr
, 2);
2841 static void subpage_writel (void *opaque
,
2842 target_phys_addr_t addr
, uint32_t value
)
2844 #if defined(DEBUG_SUBPAGE)
2845 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2847 subpage_writelen(opaque
, addr
, value
, 2);
2850 static CPUReadMemoryFunc
* const subpage_read
[] = {
2856 static CPUWriteMemoryFunc
* const subpage_write
[] = {
2862 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2863 ram_addr_t memory
, ram_addr_t region_offset
)
2868 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2870 idx
= SUBPAGE_IDX(start
);
2871 eidx
= SUBPAGE_IDX(end
);
2872 #if defined(DEBUG_SUBPAGE)
2873 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
2874 mmio
, start
, end
, idx
, eidx
, memory
);
2876 memory
>>= IO_MEM_SHIFT
;
2877 for (; idx
<= eidx
; idx
++) {
2878 for (i
= 0; i
< 4; i
++) {
2879 if (io_mem_read
[memory
][i
]) {
2880 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2881 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2882 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2884 if (io_mem_write
[memory
][i
]) {
2885 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2886 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2887 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2895 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2896 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2901 mmio
= qemu_mallocz(sizeof(subpage_t
));
2904 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
2905 #if defined(DEBUG_SUBPAGE)
2906 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2907 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2909 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2910 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2916 static int get_free_io_mem_idx(void)
2920 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2921 if (!io_mem_used
[i
]) {
2925 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
2929 /* mem_read and mem_write are arrays of functions containing the
2930 function to access byte (index 0), word (index 1) and dword (index
2931 2). Functions can be omitted with a NULL function pointer.
2932 If io_index is non zero, the corresponding io zone is
2933 modified. If it is zero, a new io zone is allocated. The return
2934 value can be used with cpu_register_physical_memory(). (-1) is
2935 returned if error. */
2936 static int cpu_register_io_memory_fixed(int io_index
,
2937 CPUReadMemoryFunc
* const *mem_read
,
2938 CPUWriteMemoryFunc
* const *mem_write
,
2941 int i
, subwidth
= 0;
2943 if (io_index
<= 0) {
2944 io_index
= get_free_io_mem_idx();
2948 io_index
>>= IO_MEM_SHIFT
;
2949 if (io_index
>= IO_MEM_NB_ENTRIES
)
2953 for(i
= 0;i
< 3; i
++) {
2954 if (!mem_read
[i
] || !mem_write
[i
])
2955 subwidth
= IO_MEM_SUBWIDTH
;
2956 io_mem_read
[io_index
][i
] = mem_read
[i
];
2957 io_mem_write
[io_index
][i
] = mem_write
[i
];
2959 io_mem_opaque
[io_index
] = opaque
;
2960 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2963 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
2964 CPUWriteMemoryFunc
* const *mem_write
,
2967 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
2970 void cpu_unregister_io_memory(int io_table_address
)
2973 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2975 for (i
=0;i
< 3; i
++) {
2976 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2977 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2979 io_mem_opaque
[io_index
] = NULL
;
2980 io_mem_used
[io_index
] = 0;
2983 static void io_mem_init(void)
2987 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
2988 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2989 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
2993 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
2994 watch_mem_write
, NULL
);
2997 #endif /* !defined(CONFIG_USER_ONLY) */
2999 /* physical memory access (slow version, mainly for debug) */
3000 #if defined(CONFIG_USER_ONLY)
3001 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3002 int len
, int is_write
)
3009 page
= addr
& TARGET_PAGE_MASK
;
3010 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3013 flags
= page_get_flags(page
);
3014 if (!(flags
& PAGE_VALID
))
3017 if (!(flags
& PAGE_WRITE
))
3019 /* XXX: this code should not depend on lock_user */
3020 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3021 /* FIXME - should this return an error rather than just fail? */
3024 unlock_user(p
, addr
, l
);
3026 if (!(flags
& PAGE_READ
))
3028 /* XXX: this code should not depend on lock_user */
3029 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3030 /* FIXME - should this return an error rather than just fail? */
3033 unlock_user(p
, addr
, 0);
3042 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3043 int len
, int is_write
)
3048 target_phys_addr_t page
;
3053 page
= addr
& TARGET_PAGE_MASK
;
3054 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3057 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3059 pd
= IO_MEM_UNASSIGNED
;
3061 pd
= p
->phys_offset
;
3065 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3066 target_phys_addr_t addr1
= addr
;
3067 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3069 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3070 /* XXX: could force cpu_single_env to NULL to avoid
3072 if (l
>= 4 && ((addr1
& 3) == 0)) {
3073 /* 32 bit write access */
3075 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3077 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3078 /* 16 bit write access */
3080 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3083 /* 8 bit write access */
3085 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3089 unsigned long addr1
;
3090 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3092 ptr
= qemu_get_ram_ptr(addr1
);
3093 memcpy(ptr
, buf
, l
);
3094 if (!cpu_physical_memory_is_dirty(addr1
)) {
3095 /* invalidate code */
3096 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3098 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3099 (0xff & ~CODE_DIRTY_FLAG
);
3103 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3104 !(pd
& IO_MEM_ROMD
)) {
3105 target_phys_addr_t addr1
= addr
;
3107 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3109 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3110 if (l
>= 4 && ((addr1
& 3) == 0)) {
3111 /* 32 bit read access */
3112 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3115 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3116 /* 16 bit read access */
3117 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3121 /* 8 bit read access */
3122 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3128 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3129 (addr
& ~TARGET_PAGE_MASK
);
3130 memcpy(buf
, ptr
, l
);
3139 /* used for ROM loading : can write in RAM and ROM */
3140 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3141 const uint8_t *buf
, int len
)
3145 target_phys_addr_t page
;
3150 page
= addr
& TARGET_PAGE_MASK
;
3151 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3154 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3156 pd
= IO_MEM_UNASSIGNED
;
3158 pd
= p
->phys_offset
;
3161 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3162 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3163 !(pd
& IO_MEM_ROMD
)) {
3166 unsigned long addr1
;
3167 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3169 ptr
= qemu_get_ram_ptr(addr1
);
3170 memcpy(ptr
, buf
, l
);
3180 target_phys_addr_t addr
;
3181 target_phys_addr_t len
;
3184 static BounceBuffer bounce
;
3186 typedef struct MapClient
{
3188 void (*callback
)(void *opaque
);
3189 QLIST_ENTRY(MapClient
) link
;
3192 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3193 = QLIST_HEAD_INITIALIZER(map_client_list
);
3195 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3197 MapClient
*client
= qemu_malloc(sizeof(*client
));
3199 client
->opaque
= opaque
;
3200 client
->callback
= callback
;
3201 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3205 void cpu_unregister_map_client(void *_client
)
3207 MapClient
*client
= (MapClient
*)_client
;
3209 QLIST_REMOVE(client
, link
);
3213 static void cpu_notify_map_clients(void)
3217 while (!QLIST_EMPTY(&map_client_list
)) {
3218 client
= QLIST_FIRST(&map_client_list
);
3219 client
->callback(client
->opaque
);
3220 cpu_unregister_map_client(client
);
3224 /* Map a physical memory region into a host virtual address.
3225 * May map a subset of the requested range, given by and returned in *plen.
3226 * May return NULL if resources needed to perform the mapping are exhausted.
3227 * Use only for reads OR writes - not for read-modify-write operations.
3228 * Use cpu_register_map_client() to know when retrying the map operation is
3229 * likely to succeed.
3231 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3232 target_phys_addr_t
*plen
,
3235 target_phys_addr_t len
= *plen
;
3236 target_phys_addr_t done
= 0;
3238 uint8_t *ret
= NULL
;
3240 target_phys_addr_t page
;
3243 unsigned long addr1
;
3246 page
= addr
& TARGET_PAGE_MASK
;
3247 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3250 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3252 pd
= IO_MEM_UNASSIGNED
;
3254 pd
= p
->phys_offset
;
3257 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3258 if (done
|| bounce
.buffer
) {
3261 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3265 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3267 ptr
= bounce
.buffer
;
3269 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3270 ptr
= qemu_get_ram_ptr(addr1
);
3274 } else if (ret
+ done
!= ptr
) {
3286 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3287 * Will also mark the memory as dirty if is_write == 1. access_len gives
3288 * the amount of memory that was actually read or written by the caller.
3290 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3291 int is_write
, target_phys_addr_t access_len
)
3293 if (buffer
!= bounce
.buffer
) {
3295 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3296 while (access_len
) {
3298 l
= TARGET_PAGE_SIZE
;
3301 if (!cpu_physical_memory_is_dirty(addr1
)) {
3302 /* invalidate code */
3303 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3305 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3306 (0xff & ~CODE_DIRTY_FLAG
);
3315 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3317 qemu_vfree(bounce
.buffer
);
3318 bounce
.buffer
= NULL
;
3319 cpu_notify_map_clients();
3322 /* warning: addr must be aligned */
3323 uint32_t ldl_phys(target_phys_addr_t addr
)
3331 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3333 pd
= IO_MEM_UNASSIGNED
;
3335 pd
= p
->phys_offset
;
3338 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3339 !(pd
& IO_MEM_ROMD
)) {
3341 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3343 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3344 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3347 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3348 (addr
& ~TARGET_PAGE_MASK
);
3354 /* warning: addr must be aligned */
3355 uint64_t ldq_phys(target_phys_addr_t addr
)
3363 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3365 pd
= IO_MEM_UNASSIGNED
;
3367 pd
= p
->phys_offset
;
3370 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3371 !(pd
& IO_MEM_ROMD
)) {
3373 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3375 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3376 #ifdef TARGET_WORDS_BIGENDIAN
3377 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3378 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3380 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3381 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3385 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3386 (addr
& ~TARGET_PAGE_MASK
);
3393 uint32_t ldub_phys(target_phys_addr_t addr
)
3396 cpu_physical_memory_read(addr
, &val
, 1);
3401 uint32_t lduw_phys(target_phys_addr_t addr
)
3404 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3405 return tswap16(val
);
3408 /* warning: addr must be aligned. The ram page is not masked as dirty
3409 and the code inside is not invalidated. It is useful if the dirty
3410 bits are used to track modified PTEs */
3411 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3418 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3420 pd
= IO_MEM_UNASSIGNED
;
3422 pd
= p
->phys_offset
;
3425 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3426 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3428 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3429 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3431 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3432 ptr
= qemu_get_ram_ptr(addr1
);
3435 if (unlikely(in_migration
)) {
3436 if (!cpu_physical_memory_is_dirty(addr1
)) {
3437 /* invalidate code */
3438 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3440 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3441 (0xff & ~CODE_DIRTY_FLAG
);
3447 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3454 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3456 pd
= IO_MEM_UNASSIGNED
;
3458 pd
= p
->phys_offset
;
3461 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3462 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3464 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3465 #ifdef TARGET_WORDS_BIGENDIAN
3466 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3467 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3469 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3470 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3473 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3474 (addr
& ~TARGET_PAGE_MASK
);
3479 /* warning: addr must be aligned */
3480 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3487 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3489 pd
= IO_MEM_UNASSIGNED
;
3491 pd
= p
->phys_offset
;
3494 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3495 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3497 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3498 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3500 unsigned long addr1
;
3501 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3503 ptr
= qemu_get_ram_ptr(addr1
);
3505 if (!cpu_physical_memory_is_dirty(addr1
)) {
3506 /* invalidate code */
3507 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3509 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3510 (0xff & ~CODE_DIRTY_FLAG
);
3516 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3519 cpu_physical_memory_write(addr
, &v
, 1);
3523 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3525 uint16_t v
= tswap16(val
);
3526 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3530 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3533 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3538 /* virtual memory access for debug (includes writing to ROM) */
3539 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3540 uint8_t *buf
, int len
, int is_write
)
3543 target_phys_addr_t phys_addr
;
3547 page
= addr
& TARGET_PAGE_MASK
;
3548 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3549 /* if no physical page mapped, return an error */
3550 if (phys_addr
== -1)
3552 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3555 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3556 #if !defined(CONFIG_USER_ONLY)
3558 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3561 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3569 /* in deterministic execution mode, instructions doing device I/Os
3570 must be at the end of the TB */
3571 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3573 TranslationBlock
*tb
;
3575 target_ulong pc
, cs_base
;
3578 tb
= tb_find_pc((unsigned long)retaddr
);
3580 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3583 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3584 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3585 /* Calculate how many instructions had been executed before the fault
3587 n
= n
- env
->icount_decr
.u16
.low
;
3588 /* Generate a new TB ending on the I/O insn. */
3590 /* On MIPS and SH, delay slot instructions can only be restarted if
3591 they were already the first instruction in the TB. If this is not
3592 the first instruction in a TB then re-execute the preceding
3594 #if defined(TARGET_MIPS)
3595 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3596 env
->active_tc
.PC
-= 4;
3597 env
->icount_decr
.u16
.low
++;
3598 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3600 #elif defined(TARGET_SH4)
3601 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3604 env
->icount_decr
.u16
.low
++;
3605 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3608 /* This should never happen. */
3609 if (n
> CF_COUNT_MASK
)
3610 cpu_abort(env
, "TB too big during recompile");
3612 cflags
= n
| CF_LAST_IO
;
3614 cs_base
= tb
->cs_base
;
3616 tb_phys_invalidate(tb
, -1);
3617 /* FIXME: In theory this could raise an exception. In practice
3618 we have already translated the block once so it's probably ok. */
3619 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3620 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3621 the first in the TB) then we end up generating a whole new TB and
3622 repeating the fault, which is horribly inefficient.
3623 Better would be to execute just this insn uncached, or generate a
3625 cpu_resume_from_signal(env
, NULL
);
3628 void dump_exec_info(FILE *f
,
3629 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3631 int i
, target_code_size
, max_target_code_size
;
3632 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3633 TranslationBlock
*tb
;
3635 target_code_size
= 0;
3636 max_target_code_size
= 0;
3638 direct_jmp_count
= 0;
3639 direct_jmp2_count
= 0;
3640 for(i
= 0; i
< nb_tbs
; i
++) {
3642 target_code_size
+= tb
->size
;
3643 if (tb
->size
> max_target_code_size
)
3644 max_target_code_size
= tb
->size
;
3645 if (tb
->page_addr
[1] != -1)
3647 if (tb
->tb_next_offset
[0] != 0xffff) {
3649 if (tb
->tb_next_offset
[1] != 0xffff) {
3650 direct_jmp2_count
++;
3654 /* XXX: avoid using doubles ? */
3655 cpu_fprintf(f
, "Translation buffer state:\n");
3656 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3657 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3658 cpu_fprintf(f
, "TB count %d/%d\n",
3659 nb_tbs
, code_gen_max_blocks
);
3660 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3661 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3662 max_target_code_size
);
3663 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3664 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3665 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3666 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3668 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3669 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3671 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3673 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3674 cpu_fprintf(f
, "\nStatistics:\n");
3675 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3676 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3677 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3678 tcg_dump_info(f
, cpu_fprintf
);
3681 #if !defined(CONFIG_USER_ONLY)
3683 #define MMUSUFFIX _cmmu
3684 #define GETPC() NULL
3685 #define env cpu_single_env
3686 #define SOFTMMU_CODE_ACCESS
3689 #include "softmmu_template.h"
3692 #include "softmmu_template.h"
3695 #include "softmmu_template.h"
3698 #include "softmmu_template.h"