Fix segv when passing an unknown protocol
[qemu/aliguori-queue.git] / kvm-all.c
blob73e814a31d81194ddff0f38636e87f504515e7dd
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "gdbstub.h"
26 #include "kvm.h"
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
31 //#define DEBUG_KVM
33 #ifdef DEBUG_KVM
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define dprintf(fmt, ...) \
38 do { } while (0)
39 #endif
41 typedef struct KVMSlot
43 target_phys_addr_t start_addr;
44 ram_addr_t memory_size;
45 ram_addr_t phys_offset;
46 int slot;
47 int flags;
48 } KVMSlot;
50 typedef struct kvm_dirty_log KVMDirtyLog;
52 int kvm_allowed = 0;
54 struct KVMState
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_SET_GUEST_DEBUG
61 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
62 #endif
65 static KVMState *kvm_state;
67 static KVMSlot *kvm_alloc_slot(KVMState *s)
69 int i;
71 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
72 /* KVM private memory slots */
73 if (i >= 8 && i < 12)
74 continue;
75 if (s->slots[i].memory_size == 0)
76 return &s->slots[i];
79 fprintf(stderr, "%s: no free slot available\n", __func__);
80 abort();
83 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
84 target_phys_addr_t start_addr,
85 target_phys_addr_t end_addr)
87 int i;
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 KVMSlot *mem = &s->slots[i];
92 if (start_addr == mem->start_addr &&
93 end_addr == mem->start_addr + mem->memory_size) {
94 return mem;
98 return NULL;
102 * Find overlapping slot with lowest start address
104 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
108 KVMSlot *found = NULL;
109 int i;
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
114 if (mem->memory_size == 0 ||
115 (found && found->start_addr < mem->start_addr)) {
116 continue;
119 if (end_addr > mem->start_addr &&
120 start_addr < mem->start_addr + mem->memory_size) {
121 found = mem;
125 return found;
128 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
130 struct kvm_userspace_memory_region mem;
132 mem.slot = slot->slot;
133 mem.guest_phys_addr = slot->start_addr;
134 mem.memory_size = slot->memory_size;
135 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
136 mem.flags = slot->flags;
138 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
142 int kvm_init_vcpu(CPUState *env)
144 KVMState *s = kvm_state;
145 long mmap_size;
146 int ret;
148 dprintf("kvm_init_vcpu\n");
150 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
151 if (ret < 0) {
152 dprintf("kvm_create_vcpu failed\n");
153 goto err;
156 env->kvm_fd = ret;
157 env->kvm_state = s;
159 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
160 if (mmap_size < 0) {
161 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
162 goto err;
165 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
166 env->kvm_fd, 0);
167 if (env->kvm_run == MAP_FAILED) {
168 ret = -errno;
169 dprintf("mmap'ing vcpu state failed\n");
170 goto err;
173 ret = kvm_arch_init_vcpu(env);
175 err:
176 return ret;
179 int kvm_sync_vcpus(void)
181 CPUState *env;
183 for (env = first_cpu; env != NULL; env = env->next_cpu) {
184 int ret;
186 ret = kvm_arch_put_registers(env);
187 if (ret)
188 return ret;
191 return 0;
195 * dirty pages logging control
197 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
198 ram_addr_t size, unsigned flags,
199 unsigned mask)
201 KVMState *s = kvm_state;
202 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
203 if (mem == NULL) {
204 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
205 TARGET_FMT_plx "\n", __func__, phys_addr,
206 phys_addr + size - 1);
207 return -EINVAL;
210 flags = (mem->flags & ~mask) | flags;
211 /* Nothing changed, no need to issue ioctl */
212 if (flags == mem->flags)
213 return 0;
215 mem->flags = flags;
217 return kvm_set_user_memory_region(s, mem);
220 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
222 return kvm_dirty_pages_log_change(phys_addr, size,
223 KVM_MEM_LOG_DIRTY_PAGES,
224 KVM_MEM_LOG_DIRTY_PAGES);
227 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
229 return kvm_dirty_pages_log_change(phys_addr, size,
231 KVM_MEM_LOG_DIRTY_PAGES);
235 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
236 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
237 * This means all bits are set to dirty.
239 * @start_add: start of logged region.
240 * @end_addr: end of logged region.
242 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
243 target_phys_addr_t end_addr)
245 KVMState *s = kvm_state;
246 KVMDirtyLog d;
247 KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr);
248 unsigned long alloc_size;
249 ram_addr_t addr;
250 target_phys_addr_t phys_addr = start_addr;
252 dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr,
253 mem->phys_offset);
254 if (mem == NULL) {
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1);
257 return;
260 alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap);
261 d.dirty_bitmap = qemu_mallocz(alloc_size);
263 d.slot = mem->slot;
264 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
265 d.slot, mem->start_addr, mem->phys_offset);
267 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
268 dprintf("ioctl failed %d\n", errno);
269 goto out;
272 phys_addr = start_addr;
273 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
274 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
275 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
276 unsigned word = nr / (sizeof(*bitmap) * 8);
277 unsigned bit = nr % (sizeof(*bitmap) * 8);
278 if ((bitmap[word] >> bit) & 1)
279 cpu_physical_memory_set_dirty(addr);
281 out:
282 qemu_free(d.dirty_bitmap);
285 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
287 int ret = -ENOSYS;
288 #ifdef KVM_CAP_COALESCED_MMIO
289 KVMState *s = kvm_state;
291 if (s->coalesced_mmio) {
292 struct kvm_coalesced_mmio_zone zone;
294 zone.addr = start;
295 zone.size = size;
297 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
299 #endif
301 return ret;
304 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
306 int ret = -ENOSYS;
307 #ifdef KVM_CAP_COALESCED_MMIO
308 KVMState *s = kvm_state;
310 if (s->coalesced_mmio) {
311 struct kvm_coalesced_mmio_zone zone;
313 zone.addr = start;
314 zone.size = size;
316 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
318 #endif
320 return ret;
323 int kvm_check_extension(KVMState *s, unsigned int extension)
325 int ret;
327 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
328 if (ret < 0) {
329 ret = 0;
332 return ret;
335 int kvm_init(int smp_cpus)
337 KVMState *s;
338 int ret;
339 int i;
341 if (smp_cpus > 1) {
342 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
343 return -EINVAL;
346 s = qemu_mallocz(sizeof(KVMState));
348 #ifdef KVM_CAP_SET_GUEST_DEBUG
349 TAILQ_INIT(&s->kvm_sw_breakpoints);
350 #endif
351 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
352 s->slots[i].slot = i;
354 s->vmfd = -1;
355 s->fd = open("/dev/kvm", O_RDWR);
356 if (s->fd == -1) {
357 fprintf(stderr, "Could not access KVM kernel module: %m\n");
358 ret = -errno;
359 goto err;
362 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
363 if (ret < KVM_API_VERSION) {
364 if (ret > 0)
365 ret = -EINVAL;
366 fprintf(stderr, "kvm version too old\n");
367 goto err;
370 if (ret > KVM_API_VERSION) {
371 ret = -EINVAL;
372 fprintf(stderr, "kvm version not supported\n");
373 goto err;
376 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
377 if (s->vmfd < 0)
378 goto err;
380 /* initially, KVM allocated its own memory and we had to jump through
381 * hooks to make phys_ram_base point to this. Modern versions of KVM
382 * just use a user allocated buffer so we can use regular pages
383 * unmodified. Make sure we have a sufficiently modern version of KVM.
385 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
386 ret = -EINVAL;
387 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
388 goto err;
391 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
392 * destroyed properly. Since we rely on this capability, refuse to work
393 * with any kernel without this capability. */
394 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
395 ret = -EINVAL;
397 fprintf(stderr,
398 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
399 "Please upgrade to at least kvm-81.\n");
400 goto err;
403 #ifdef KVM_CAP_COALESCED_MMIO
404 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
405 #else
406 s->coalesced_mmio = 0;
407 #endif
409 ret = kvm_arch_init(s, smp_cpus);
410 if (ret < 0)
411 goto err;
413 kvm_state = s;
415 return 0;
417 err:
418 if (s) {
419 if (s->vmfd != -1)
420 close(s->vmfd);
421 if (s->fd != -1)
422 close(s->fd);
424 qemu_free(s);
426 return ret;
429 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
430 int direction, int size, uint32_t count)
432 int i;
433 uint8_t *ptr = data;
435 for (i = 0; i < count; i++) {
436 if (direction == KVM_EXIT_IO_IN) {
437 switch (size) {
438 case 1:
439 stb_p(ptr, cpu_inb(env, port));
440 break;
441 case 2:
442 stw_p(ptr, cpu_inw(env, port));
443 break;
444 case 4:
445 stl_p(ptr, cpu_inl(env, port));
446 break;
448 } else {
449 switch (size) {
450 case 1:
451 cpu_outb(env, port, ldub_p(ptr));
452 break;
453 case 2:
454 cpu_outw(env, port, lduw_p(ptr));
455 break;
456 case 4:
457 cpu_outl(env, port, ldl_p(ptr));
458 break;
462 ptr += size;
465 return 1;
468 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
470 #ifdef KVM_CAP_COALESCED_MMIO
471 KVMState *s = kvm_state;
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_ring *ring;
475 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
476 while (ring->first != ring->last) {
477 struct kvm_coalesced_mmio *ent;
479 ent = &ring->coalesced_mmio[ring->first];
481 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
482 /* FIXME smp_wmb() */
483 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
486 #endif
489 int kvm_cpu_exec(CPUState *env)
491 struct kvm_run *run = env->kvm_run;
492 int ret;
494 dprintf("kvm_cpu_exec()\n");
496 do {
497 kvm_arch_pre_run(env, run);
499 if (env->exit_request) {
500 dprintf("interrupt exit requested\n");
501 ret = 0;
502 break;
505 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
506 kvm_arch_post_run(env, run);
508 if (ret == -EINTR || ret == -EAGAIN) {
509 dprintf("io window exit\n");
510 ret = 0;
511 break;
514 if (ret < 0) {
515 dprintf("kvm run failed %s\n", strerror(-ret));
516 abort();
519 kvm_run_coalesced_mmio(env, run);
521 ret = 0; /* exit loop */
522 switch (run->exit_reason) {
523 case KVM_EXIT_IO:
524 dprintf("handle_io\n");
525 ret = kvm_handle_io(env, run->io.port,
526 (uint8_t *)run + run->io.data_offset,
527 run->io.direction,
528 run->io.size,
529 run->io.count);
530 break;
531 case KVM_EXIT_MMIO:
532 dprintf("handle_mmio\n");
533 cpu_physical_memory_rw(run->mmio.phys_addr,
534 run->mmio.data,
535 run->mmio.len,
536 run->mmio.is_write);
537 ret = 1;
538 break;
539 case KVM_EXIT_IRQ_WINDOW_OPEN:
540 dprintf("irq_window_open\n");
541 break;
542 case KVM_EXIT_SHUTDOWN:
543 dprintf("shutdown\n");
544 qemu_system_reset_request();
545 ret = 1;
546 break;
547 case KVM_EXIT_UNKNOWN:
548 dprintf("kvm_exit_unknown\n");
549 break;
550 case KVM_EXIT_FAIL_ENTRY:
551 dprintf("kvm_exit_fail_entry\n");
552 break;
553 case KVM_EXIT_EXCEPTION:
554 dprintf("kvm_exit_exception\n");
555 break;
556 case KVM_EXIT_DEBUG:
557 dprintf("kvm_exit_debug\n");
558 #ifdef KVM_CAP_SET_GUEST_DEBUG
559 if (kvm_arch_debug(&run->debug.arch)) {
560 gdb_set_stop_cpu(env);
561 vm_stop(EXCP_DEBUG);
562 env->exception_index = EXCP_DEBUG;
563 return 0;
565 /* re-enter, this exception was guest-internal */
566 ret = 1;
567 #endif /* KVM_CAP_SET_GUEST_DEBUG */
568 break;
569 default:
570 dprintf("kvm_arch_handle_exit\n");
571 ret = kvm_arch_handle_exit(env, run);
572 break;
574 } while (ret > 0);
576 if (env->exit_request) {
577 env->exit_request = 0;
578 env->exception_index = EXCP_INTERRUPT;
581 return ret;
584 void kvm_set_phys_mem(target_phys_addr_t start_addr,
585 ram_addr_t size,
586 ram_addr_t phys_offset)
588 KVMState *s = kvm_state;
589 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
590 KVMSlot *mem, old;
591 int err;
593 if (start_addr & ~TARGET_PAGE_MASK) {
594 if (flags >= IO_MEM_UNASSIGNED) {
595 if (!kvm_lookup_overlapping_slot(s, start_addr,
596 start_addr + size)) {
597 return;
599 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
600 } else {
601 fprintf(stderr, "Only page-aligned memory slots supported\n");
603 abort();
606 /* KVM does not support read-only slots */
607 phys_offset &= ~IO_MEM_ROM;
609 while (1) {
610 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
611 if (!mem) {
612 break;
615 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
616 (start_addr + size <= mem->start_addr + mem->memory_size) &&
617 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
618 /* The new slot fits into the existing one and comes with
619 * identical parameters - nothing to be done. */
620 return;
623 old = *mem;
625 /* unregister the overlapping slot */
626 mem->memory_size = 0;
627 err = kvm_set_user_memory_region(s, mem);
628 if (err) {
629 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
630 __func__, strerror(-err));
631 abort();
634 /* Workaround for older KVM versions: we can't join slots, even not by
635 * unregistering the previous ones and then registering the larger
636 * slot. We have to maintain the existing fragmentation. Sigh.
638 * This workaround assumes that the new slot starts at the same
639 * address as the first existing one. If not or if some overlapping
640 * slot comes around later, we will fail (not seen in practice so far)
641 * - and actually require a recent KVM version. */
642 if (old.start_addr == start_addr && old.memory_size < size &&
643 flags < IO_MEM_UNASSIGNED) {
644 mem = kvm_alloc_slot(s);
645 mem->memory_size = old.memory_size;
646 mem->start_addr = old.start_addr;
647 mem->phys_offset = old.phys_offset;
648 mem->flags = 0;
650 err = kvm_set_user_memory_region(s, mem);
651 if (err) {
652 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
653 strerror(-err));
654 abort();
657 start_addr += old.memory_size;
658 phys_offset += old.memory_size;
659 size -= old.memory_size;
660 continue;
663 /* register prefix slot */
664 if (old.start_addr < start_addr) {
665 mem = kvm_alloc_slot(s);
666 mem->memory_size = start_addr - old.start_addr;
667 mem->start_addr = old.start_addr;
668 mem->phys_offset = old.phys_offset;
669 mem->flags = 0;
671 err = kvm_set_user_memory_region(s, mem);
672 if (err) {
673 fprintf(stderr, "%s: error registering prefix slot: %s\n",
674 __func__, strerror(-err));
675 abort();
679 /* register suffix slot */
680 if (old.start_addr + old.memory_size > start_addr + size) {
681 ram_addr_t size_delta;
683 mem = kvm_alloc_slot(s);
684 mem->start_addr = start_addr + size;
685 size_delta = mem->start_addr - old.start_addr;
686 mem->memory_size = old.memory_size - size_delta;
687 mem->phys_offset = old.phys_offset + size_delta;
688 mem->flags = 0;
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error registering suffix slot: %s\n",
693 __func__, strerror(-err));
694 abort();
699 /* in case the KVM bug workaround already "consumed" the new slot */
700 if (!size)
701 return;
703 /* KVM does not need to know about this memory */
704 if (flags >= IO_MEM_UNASSIGNED)
705 return;
707 mem = kvm_alloc_slot(s);
708 mem->memory_size = size;
709 mem->start_addr = start_addr;
710 mem->phys_offset = phys_offset;
711 mem->flags = 0;
713 err = kvm_set_user_memory_region(s, mem);
714 if (err) {
715 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
716 strerror(-err));
717 abort();
721 int kvm_ioctl(KVMState *s, int type, ...)
723 int ret;
724 void *arg;
725 va_list ap;
727 va_start(ap, type);
728 arg = va_arg(ap, void *);
729 va_end(ap);
731 ret = ioctl(s->fd, type, arg);
732 if (ret == -1)
733 ret = -errno;
735 return ret;
738 int kvm_vm_ioctl(KVMState *s, int type, ...)
740 int ret;
741 void *arg;
742 va_list ap;
744 va_start(ap, type);
745 arg = va_arg(ap, void *);
746 va_end(ap);
748 ret = ioctl(s->vmfd, type, arg);
749 if (ret == -1)
750 ret = -errno;
752 return ret;
755 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
757 int ret;
758 void *arg;
759 va_list ap;
761 va_start(ap, type);
762 arg = va_arg(ap, void *);
763 va_end(ap);
765 ret = ioctl(env->kvm_fd, type, arg);
766 if (ret == -1)
767 ret = -errno;
769 return ret;
772 int kvm_has_sync_mmu(void)
774 #ifdef KVM_CAP_SYNC_MMU
775 KVMState *s = kvm_state;
777 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
778 #else
779 return 0;
780 #endif
783 void kvm_setup_guest_memory(void *start, size_t size)
785 if (!kvm_has_sync_mmu()) {
786 #ifdef MADV_DONTFORK
787 int ret = madvise(start, size, MADV_DONTFORK);
789 if (ret) {
790 perror("madvice");
791 exit(1);
793 #else
794 fprintf(stderr,
795 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
796 exit(1);
797 #endif
801 #ifdef KVM_CAP_SET_GUEST_DEBUG
802 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
803 target_ulong pc)
805 struct kvm_sw_breakpoint *bp;
807 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
808 if (bp->pc == pc)
809 return bp;
811 return NULL;
814 int kvm_sw_breakpoints_active(CPUState *env)
816 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
819 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
821 struct kvm_guest_debug dbg;
823 dbg.control = 0;
824 if (env->singlestep_enabled)
825 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
827 kvm_arch_update_guest_debug(env, &dbg);
828 dbg.control |= reinject_trap;
830 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
833 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
834 target_ulong len, int type)
836 struct kvm_sw_breakpoint *bp;
837 CPUState *env;
838 int err;
840 if (type == GDB_BREAKPOINT_SW) {
841 bp = kvm_find_sw_breakpoint(current_env, addr);
842 if (bp) {
843 bp->use_count++;
844 return 0;
847 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
848 if (!bp)
849 return -ENOMEM;
851 bp->pc = addr;
852 bp->use_count = 1;
853 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
854 if (err) {
855 free(bp);
856 return err;
859 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
860 bp, entry);
861 } else {
862 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
863 if (err)
864 return err;
867 for (env = first_cpu; env != NULL; env = env->next_cpu) {
868 err = kvm_update_guest_debug(env, 0);
869 if (err)
870 return err;
872 return 0;
875 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
876 target_ulong len, int type)
878 struct kvm_sw_breakpoint *bp;
879 CPUState *env;
880 int err;
882 if (type == GDB_BREAKPOINT_SW) {
883 bp = kvm_find_sw_breakpoint(current_env, addr);
884 if (!bp)
885 return -ENOENT;
887 if (bp->use_count > 1) {
888 bp->use_count--;
889 return 0;
892 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
893 if (err)
894 return err;
896 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
897 qemu_free(bp);
898 } else {
899 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
900 if (err)
901 return err;
904 for (env = first_cpu; env != NULL; env = env->next_cpu) {
905 err = kvm_update_guest_debug(env, 0);
906 if (err)
907 return err;
909 return 0;
912 void kvm_remove_all_breakpoints(CPUState *current_env)
914 struct kvm_sw_breakpoint *bp, *next;
915 KVMState *s = current_env->kvm_state;
916 CPUState *env;
918 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
919 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
920 /* Try harder to find a CPU that currently sees the breakpoint. */
921 for (env = first_cpu; env != NULL; env = env->next_cpu) {
922 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
923 break;
927 kvm_arch_remove_all_hw_breakpoints();
929 for (env = first_cpu; env != NULL; env = env->next_cpu)
930 kvm_update_guest_debug(env, 0);
933 #else /* !KVM_CAP_SET_GUEST_DEBUG */
935 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
937 return -EINVAL;
940 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
941 target_ulong len, int type)
943 return -EINVAL;
946 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
947 target_ulong len, int type)
949 return -EINVAL;
952 void kvm_remove_all_breakpoints(CPUState *current_env)
955 #endif /* !KVM_CAP_SET_GUEST_DEBUG */