Port PCI NIC hotplug to QemuOpts
[qemu/aliguori-queue.git] / cpu-exec.c
blob8aa92c7854ed4ad22713e4c8368e24fd3745128d
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
47 int tb_invalidated_flag;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState *env)
54 return cpu_has_work(env);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
78 env = env1;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
160 ptb1 = &tb->phys_hash_next;
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
187 return tb;
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
197 return old_handler;
200 static void cpu_handle_debug_exception(CPUState *env)
202 CPUWatchpoint *wp;
204 if (!env->watchpoint_hit)
205 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 /* XXXXX */
253 #else
254 #error unsupported target CPU
255 #endif
256 env->exception_index = -1;
258 /* prepare setjmp context for exception handling */
259 for(;;) {
260 if (setjmp(env->jmp_env) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
262 #undef env
263 env = cpu_single_env;
264 #define env cpu_single_env
265 #endif
266 env->current_tb = NULL;
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 if (ret == EXCP_DEBUG)
273 cpu_handle_debug_exception(env);
274 break;
275 } else {
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
279 loop */
280 #if defined(TARGET_I386)
281 do_interrupt_user(env->exception_index,
282 env->exception_is_int,
283 env->error_code,
284 env->exception_next_eip);
285 /* successfully delivered */
286 env->old_exception = -1;
287 #endif
288 ret = env->exception_index;
289 break;
290 #else
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env->exception_index,
296 env->exception_is_int,
297 env->error_code,
298 env->exception_next_eip, 0);
299 /* successfully delivered */
300 env->old_exception = -1;
301 #elif defined(TARGET_PPC)
302 do_interrupt(env);
303 #elif defined(TARGET_MICROBLAZE)
304 do_interrupt(env);
305 #elif defined(TARGET_MIPS)
306 do_interrupt(env);
307 #elif defined(TARGET_SPARC)
308 do_interrupt(env);
309 #elif defined(TARGET_ARM)
310 do_interrupt(env);
311 #elif defined(TARGET_SH4)
312 do_interrupt(env);
313 #elif defined(TARGET_ALPHA)
314 do_interrupt(env);
315 #elif defined(TARGET_CRIS)
316 do_interrupt(env);
317 #elif defined(TARGET_M68K)
318 do_interrupt(0);
319 #endif
320 #endif
322 env->exception_index = -1;
325 if (kvm_enabled()) {
326 kvm_cpu_exec(env);
327 longjmp(env->jmp_env, 1);
330 next_tb = 0; /* force lookup of first TB */
331 for(;;) {
332 interrupt_request = env->interrupt_request;
333 if (unlikely(interrupt_request)) {
334 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
335 /* Mask out external interrupts for this step. */
336 interrupt_request &= ~(CPU_INTERRUPT_HARD |
337 CPU_INTERRUPT_FIQ |
338 CPU_INTERRUPT_SMI |
339 CPU_INTERRUPT_NMI);
341 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
342 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
343 env->exception_index = EXCP_DEBUG;
344 cpu_loop_exit();
346 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
347 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
348 defined(TARGET_MICROBLAZE)
349 if (interrupt_request & CPU_INTERRUPT_HALT) {
350 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
351 env->halted = 1;
352 env->exception_index = EXCP_HLT;
353 cpu_loop_exit();
355 #endif
356 #if defined(TARGET_I386)
357 if (interrupt_request & CPU_INTERRUPT_INIT) {
358 svm_check_intercept(SVM_EXIT_INIT);
359 do_cpu_init(env);
360 env->exception_index = EXCP_HALTED;
361 cpu_loop_exit();
362 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
363 do_cpu_sipi(env);
364 } else if (env->hflags2 & HF2_GIF_MASK) {
365 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
366 !(env->hflags & HF_SMM_MASK)) {
367 svm_check_intercept(SVM_EXIT_SMI);
368 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
369 do_smm_enter();
370 next_tb = 0;
371 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
372 !(env->hflags2 & HF2_NMI_MASK)) {
373 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
374 env->hflags2 |= HF2_NMI_MASK;
375 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
376 next_tb = 0;
377 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
378 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
379 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
382 (((env->hflags2 & HF2_VINTR_MASK) &&
383 (env->hflags2 & HF2_HIF_MASK)) ||
384 (!(env->hflags2 & HF2_VINTR_MASK) &&
385 (env->eflags & IF_MASK &&
386 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
387 int intno;
388 svm_check_intercept(SVM_EXIT_INTR);
389 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
390 intno = cpu_get_pic_interrupt(env);
391 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
392 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
393 #undef env
394 env = cpu_single_env;
395 #define env cpu_single_env
396 #endif
397 do_interrupt(intno, 0, 0, 0, 1);
398 /* ensure that no TB jump will be modified as
399 the program flow was changed */
400 next_tb = 0;
401 #if !defined(CONFIG_USER_ONLY)
402 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
403 (env->eflags & IF_MASK) &&
404 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
405 int intno;
406 /* FIXME: this should respect TPR */
407 svm_check_intercept(SVM_EXIT_VINTR);
408 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
409 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
410 do_interrupt(intno, 0, 0, 0, 1);
411 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
412 next_tb = 0;
413 #endif
416 #elif defined(TARGET_PPC)
417 #if 0
418 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
419 cpu_ppc_reset(env);
421 #endif
422 if (interrupt_request & CPU_INTERRUPT_HARD) {
423 ppc_hw_interrupt(env);
424 if (env->pending_interrupts == 0)
425 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
426 next_tb = 0;
428 #elif defined(TARGET_MICROBLAZE)
429 if ((interrupt_request & CPU_INTERRUPT_HARD)
430 && (env->sregs[SR_MSR] & MSR_IE)
431 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
432 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
433 env->exception_index = EXCP_IRQ;
434 do_interrupt(env);
435 next_tb = 0;
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
439 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
440 (env->CP0_Status & (1 << CP0St_IE)) &&
441 !(env->CP0_Status & (1 << CP0St_EXL)) &&
442 !(env->CP0_Status & (1 << CP0St_ERL)) &&
443 !(env->hflags & MIPS_HFLAG_DM)) {
444 /* Raise it */
445 env->exception_index = EXCP_EXT_INTERRUPT;
446 env->error_code = 0;
447 do_interrupt(env);
448 next_tb = 0;
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
452 cpu_interrupts_enabled(env)) {
453 int pil = env->interrupt_index & 15;
454 int type = env->interrupt_index & 0xf0;
456 if (((type == TT_EXTINT) &&
457 (pil == 15 || pil > env->psrpil)) ||
458 type != TT_EXTINT) {
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 env->exception_index = env->interrupt_index;
461 do_interrupt(env);
462 env->interrupt_index = 0;
463 next_tb = 0;
465 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469 #elif defined(TARGET_ARM)
470 if (interrupt_request & CPU_INTERRUPT_FIQ
471 && !(env->uncached_cpsr & CPSR_F)) {
472 env->exception_index = EXCP_FIQ;
473 do_interrupt(env);
474 next_tb = 0;
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request & CPU_INTERRUPT_HARD
486 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
487 || !(env->uncached_cpsr & CPSR_I))) {
488 env->exception_index = EXCP_IRQ;
489 do_interrupt(env);
490 next_tb = 0;
492 #elif defined(TARGET_SH4)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 do_interrupt(env);
495 next_tb = 0;
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request & CPU_INTERRUPT_HARD) {
499 do_interrupt(env);
500 next_tb = 0;
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request & CPU_INTERRUPT_HARD
504 && (env->pregs[PR_CCS] & I_FLAG)) {
505 env->exception_index = EXCP_IRQ;
506 do_interrupt(env);
507 next_tb = 0;
509 if (interrupt_request & CPU_INTERRUPT_NMI
510 && (env->pregs[PR_CCS] & M_FLAG)) {
511 env->exception_index = EXCP_NMI;
512 do_interrupt(env);
513 next_tb = 0;
515 #elif defined(TARGET_M68K)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && ((env->sr & SR_I) >> SR_I_SHIFT)
518 < env->pending_level) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
523 first signalled. */
524 env->exception_index = env->pending_vector;
525 do_interrupt(1);
526 next_tb = 0;
528 #endif
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
535 next_tb = 0;
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
541 cpu_loop_exit();
543 #ifdef CONFIG_DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
546 regs_to_env();
547 #if defined(TARGET_I386)
548 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
549 log_cpu_state(env, X86_DUMP_CCOP);
550 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env, env->cc_op);
559 env->cc_op = CC_OP_FLAGS;
560 env->sr = (env->sr & 0xffe0)
561 | env->cc_dest | (env->cc_x << 4);
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MICROBLAZE)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_MIPS)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_SH4)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_ALPHA)
570 log_cpu_state(env, 0);
571 #elif defined(TARGET_CRIS)
572 log_cpu_state(env, 0);
573 #else
574 #error unsupported target CPU
575 #endif
577 #endif
578 spin_lock(&tb_lock);
579 tb = tb_find_fast();
580 /* Note: we do it here to avoid a gcc bug on Mac OS X when
581 doing it in tb_find_slow */
582 if (tb_invalidated_flag) {
583 /* as some TB could have been invalidated because
584 of memory exceptions while generating the code, we
585 must recompute the hash index here */
586 next_tb = 0;
587 tb_invalidated_flag = 0;
589 #ifdef CONFIG_DEBUG_EXEC
590 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
591 (long)tb->tc_ptr, tb->pc,
592 lookup_symbol(tb->pc));
593 #endif
594 /* see if we can patch the calling TB. When the TB
595 spans two pages, we cannot safely do a direct
596 jump. */
598 if (next_tb != 0 && tb->page_addr[1] == -1) {
599 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
602 spin_unlock(&tb_lock);
603 env->current_tb = tb;
605 /* cpu_interrupt might be called while translating the
606 TB, but before it is linked into a potentially
607 infinite loop and becomes env->current_tb. Avoid
608 starting execution if there is a pending interrupt. */
609 if (unlikely (env->exit_request))
610 env->current_tb = NULL;
612 while (env->current_tb) {
613 tc_ptr = tb->tc_ptr;
614 /* execute the generated code */
615 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
616 #undef env
617 env = cpu_single_env;
618 #define env cpu_single_env
619 #endif
620 next_tb = tcg_qemu_tb_exec(tc_ptr);
621 env->current_tb = NULL;
622 if ((next_tb & 3) == 2) {
623 /* Instruction counter expired. */
624 int insns_left;
625 tb = (TranslationBlock *)(long)(next_tb & ~3);
626 /* Restore PC. */
627 cpu_pc_from_tb(env, tb);
628 insns_left = env->icount_decr.u32;
629 if (env->icount_extra && insns_left >= 0) {
630 /* Refill decrementer and continue execution. */
631 env->icount_extra += insns_left;
632 if (env->icount_extra > 0xffff) {
633 insns_left = 0xffff;
634 } else {
635 insns_left = env->icount_extra;
637 env->icount_extra -= insns_left;
638 env->icount_decr.u16.low = insns_left;
639 } else {
640 if (insns_left > 0) {
641 /* Execute remaining instructions. */
642 cpu_exec_nocache(insns_left, tb);
644 env->exception_index = EXCP_INTERRUPT;
645 next_tb = 0;
646 cpu_loop_exit();
650 /* reset soft MMU for next block (it can currently
651 only be set by a memory fault) */
652 } /* for(;;) */
653 } else {
654 env_to_regs();
656 } /* for(;;) */
659 #if defined(TARGET_I386)
660 /* restore flags in standard format */
661 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
662 #elif defined(TARGET_ARM)
663 /* XXX: Save/restore host fpu exception state?. */
664 #elif defined(TARGET_SPARC)
665 #elif defined(TARGET_PPC)
666 #elif defined(TARGET_M68K)
667 cpu_m68k_flush_flags(env, env->cc_op);
668 env->cc_op = CC_OP_FLAGS;
669 env->sr = (env->sr & 0xffe0)
670 | env->cc_dest | (env->cc_x << 4);
671 #elif defined(TARGET_MICROBLAZE)
672 #elif defined(TARGET_MIPS)
673 #elif defined(TARGET_SH4)
674 #elif defined(TARGET_ALPHA)
675 #elif defined(TARGET_CRIS)
676 /* XXXXX */
677 #else
678 #error unsupported target CPU
679 #endif
681 /* restore global registers */
682 #include "hostregs_helper.h"
684 /* fail safe : never use cpu_single_env outside cpu_exec() */
685 cpu_single_env = NULL;
686 return ret;
689 /* must only be called from the generated code as an exception can be
690 generated */
691 void tb_invalidate_page_range(target_ulong start, target_ulong end)
693 /* XXX: cannot enable it yet because it yields to MMU exception
694 where NIP != read address on PowerPC */
695 #if 0
696 target_ulong phys_addr;
697 phys_addr = get_phys_addr_code(env, start);
698 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
699 #endif
702 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
704 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
706 CPUX86State *saved_env;
708 saved_env = env;
709 env = s;
710 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
711 selector &= 0xffff;
712 cpu_x86_load_seg_cache(env, seg_reg, selector,
713 (selector << 4), 0xffff, 0);
714 } else {
715 helper_load_seg(seg_reg, selector);
717 env = saved_env;
720 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
722 CPUX86State *saved_env;
724 saved_env = env;
725 env = s;
727 helper_fsave(ptr, data32);
729 env = saved_env;
732 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
734 CPUX86State *saved_env;
736 saved_env = env;
737 env = s;
739 helper_frstor(ptr, data32);
741 env = saved_env;
744 #endif /* TARGET_I386 */
746 #if !defined(CONFIG_SOFTMMU)
748 #if defined(TARGET_I386)
749 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
750 #else
751 #define EXCEPTION_ACTION cpu_loop_exit()
752 #endif
754 /* 'pc' is the host PC at which the exception was raised. 'address' is
755 the effective address of the memory exception. 'is_write' is 1 if a
756 write caused the exception and otherwise 0'. 'old_set' is the
757 signal set which should be restored */
758 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
759 int is_write, sigset_t *old_set,
760 void *puc)
762 TranslationBlock *tb;
763 int ret;
765 if (cpu_single_env)
766 env = cpu_single_env; /* XXX: find a correct solution for multithread */
767 #if defined(DEBUG_SIGNAL)
768 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
769 pc, address, is_write, *(unsigned long *)old_set);
770 #endif
771 /* XXX: locking issue */
772 if (is_write && page_unprotect(h2g(address), pc, puc)) {
773 return 1;
776 /* see if it is an MMU fault */
777 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
778 if (ret < 0)
779 return 0; /* not an MMU fault */
780 if (ret == 0)
781 return 1; /* the MMU fault was handled without causing real CPU fault */
782 /* now we have a real cpu fault */
783 tb = tb_find_pc(pc);
784 if (tb) {
785 /* the PC is inside the translated code. It means that we have
786 a virtual CPU fault */
787 cpu_restore_state(tb, env, pc, puc);
790 /* we restore the process signal mask as the sigreturn should
791 do it (XXX: use sigsetjmp) */
792 sigprocmask(SIG_SETMASK, old_set, NULL);
793 EXCEPTION_ACTION;
795 /* never comes here */
796 return 1;
799 #if defined(__i386__)
801 #if defined(__APPLE__)
802 # include <sys/ucontext.h>
804 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
805 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
806 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined(__OpenBSD__)
809 # define EIP_sig(context) ((context)->sc_eip)
810 # define TRAP_sig(context) ((context)->sc_trapno)
811 # define ERROR_sig(context) ((context)->sc_err)
812 # define MASK_sig(context) ((context)->sc_mask)
813 #else
814 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
815 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
816 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
817 # define MASK_sig(context) ((context)->uc_sigmask)
818 #endif
820 int cpu_signal_handler(int host_signum, void *pinfo,
821 void *puc)
823 siginfo_t *info = pinfo;
824 #if defined(__OpenBSD__)
825 struct sigcontext *uc = puc;
826 #else
827 struct ucontext *uc = puc;
828 #endif
829 unsigned long pc;
830 int trapno;
832 #ifndef REG_EIP
833 /* for glibc 2.1 */
834 #define REG_EIP EIP
835 #define REG_ERR ERR
836 #define REG_TRAPNO TRAPNO
837 #endif
838 pc = EIP_sig(uc);
839 trapno = TRAP_sig(uc);
840 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
841 trapno == 0xe ?
842 (ERROR_sig(uc) >> 1) & 1 : 0,
843 &MASK_sig(uc), puc);
846 #elif defined(__x86_64__)
848 #ifdef __NetBSD__
849 #define PC_sig(context) _UC_MACHINE_PC(context)
850 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
851 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
852 #define MASK_sig(context) ((context)->uc_sigmask)
853 #elif defined(__OpenBSD__)
854 #define PC_sig(context) ((context)->sc_rip)
855 #define TRAP_sig(context) ((context)->sc_trapno)
856 #define ERROR_sig(context) ((context)->sc_err)
857 #define MASK_sig(context) ((context)->sc_mask)
858 #else
859 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
860 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
861 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
862 #define MASK_sig(context) ((context)->uc_sigmask)
863 #endif
865 int cpu_signal_handler(int host_signum, void *pinfo,
866 void *puc)
868 siginfo_t *info = pinfo;
869 unsigned long pc;
870 #ifdef __NetBSD__
871 ucontext_t *uc = puc;
872 #elif defined(__OpenBSD__)
873 struct sigcontext *uc = puc;
874 #else
875 struct ucontext *uc = puc;
876 #endif
878 pc = PC_sig(uc);
879 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
880 TRAP_sig(uc) == 0xe ?
881 (ERROR_sig(uc) >> 1) & 1 : 0,
882 &MASK_sig(uc), puc);
885 #elif defined(_ARCH_PPC)
887 /***********************************************************************
888 * signal context platform-specific definitions
889 * From Wine
891 #ifdef linux
892 /* All Registers access - only for local access */
893 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
894 /* Gpr Registers access */
895 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
896 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
897 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
898 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
899 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
900 # define LR_sig(context) REG_sig(link, context) /* Link register */
901 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
902 /* Float Registers access */
903 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
904 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
905 /* Exception Registers access */
906 # define DAR_sig(context) REG_sig(dar, context)
907 # define DSISR_sig(context) REG_sig(dsisr, context)
908 # define TRAP_sig(context) REG_sig(trap, context)
909 #endif /* linux */
911 #ifdef __APPLE__
912 # include <sys/ucontext.h>
913 typedef struct ucontext SIGCONTEXT;
914 /* All Registers access - only for local access */
915 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
916 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
917 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
918 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
921 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context)
924 # define XER_sig(context) REG_sig(xer, context) /* Link register */
925 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
926 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
929 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
930 /* Exception Registers access */
931 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
932 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
933 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
934 #endif /* __APPLE__ */
936 int cpu_signal_handler(int host_signum, void *pinfo,
937 void *puc)
939 siginfo_t *info = pinfo;
940 struct ucontext *uc = puc;
941 unsigned long pc;
942 int is_write;
944 pc = IAR_sig(uc);
945 is_write = 0;
946 #if 0
947 /* ppc 4xx case */
948 if (DSISR_sig(uc) & 0x00800000)
949 is_write = 1;
950 #else
951 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
952 is_write = 1;
953 #endif
954 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
955 is_write, &uc->uc_sigmask, puc);
958 #elif defined(__alpha__)
960 int cpu_signal_handler(int host_signum, void *pinfo,
961 void *puc)
963 siginfo_t *info = pinfo;
964 struct ucontext *uc = puc;
965 uint32_t *pc = uc->uc_mcontext.sc_pc;
966 uint32_t insn = *pc;
967 int is_write = 0;
969 /* XXX: need kernel patch to get write flag faster */
970 switch (insn >> 26) {
971 case 0x0d: // stw
972 case 0x0e: // stb
973 case 0x0f: // stq_u
974 case 0x24: // stf
975 case 0x25: // stg
976 case 0x26: // sts
977 case 0x27: // stt
978 case 0x2c: // stl
979 case 0x2d: // stq
980 case 0x2e: // stl_c
981 case 0x2f: // stq_c
982 is_write = 1;
985 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
986 is_write, &uc->uc_sigmask, puc);
988 #elif defined(__sparc__)
990 int cpu_signal_handler(int host_signum, void *pinfo,
991 void *puc)
993 siginfo_t *info = pinfo;
994 int is_write;
995 uint32_t insn;
996 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
997 uint32_t *regs = (uint32_t *)(info + 1);
998 void *sigmask = (regs + 20);
999 /* XXX: is there a standard glibc define ? */
1000 unsigned long pc = regs[1];
1001 #else
1002 #ifdef __linux__
1003 struct sigcontext *sc = puc;
1004 unsigned long pc = sc->sigc_regs.tpc;
1005 void *sigmask = (void *)sc->sigc_mask;
1006 #elif defined(__OpenBSD__)
1007 struct sigcontext *uc = puc;
1008 unsigned long pc = uc->sc_pc;
1009 void *sigmask = (void *)(long)uc->sc_mask;
1010 #endif
1011 #endif
1013 /* XXX: need kernel patch to get write flag faster */
1014 is_write = 0;
1015 insn = *(uint32_t *)pc;
1016 if ((insn >> 30) == 3) {
1017 switch((insn >> 19) & 0x3f) {
1018 case 0x05: // stb
1019 case 0x15: // stba
1020 case 0x06: // sth
1021 case 0x16: // stha
1022 case 0x04: // st
1023 case 0x14: // sta
1024 case 0x07: // std
1025 case 0x17: // stda
1026 case 0x0e: // stx
1027 case 0x1e: // stxa
1028 case 0x24: // stf
1029 case 0x34: // stfa
1030 case 0x27: // stdf
1031 case 0x37: // stdfa
1032 case 0x26: // stqf
1033 case 0x36: // stqfa
1034 case 0x25: // stfsr
1035 case 0x3c: // casa
1036 case 0x3e: // casxa
1037 is_write = 1;
1038 break;
1041 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1042 is_write, sigmask, NULL);
1045 #elif defined(__arm__)
1047 int cpu_signal_handler(int host_signum, void *pinfo,
1048 void *puc)
1050 siginfo_t *info = pinfo;
1051 struct ucontext *uc = puc;
1052 unsigned long pc;
1053 int is_write;
1055 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1056 pc = uc->uc_mcontext.gregs[R15];
1057 #else
1058 pc = uc->uc_mcontext.arm_pc;
1059 #endif
1060 /* XXX: compute is_write */
1061 is_write = 0;
1062 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1063 is_write,
1064 &uc->uc_sigmask, puc);
1067 #elif defined(__mc68000)
1069 int cpu_signal_handler(int host_signum, void *pinfo,
1070 void *puc)
1072 siginfo_t *info = pinfo;
1073 struct ucontext *uc = puc;
1074 unsigned long pc;
1075 int is_write;
1077 pc = uc->uc_mcontext.gregs[16];
1078 /* XXX: compute is_write */
1079 is_write = 0;
1080 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1081 is_write,
1082 &uc->uc_sigmask, puc);
1085 #elif defined(__ia64)
1087 #ifndef __ISR_VALID
1088 /* This ought to be in <bits/siginfo.h>... */
1089 # define __ISR_VALID 1
1090 #endif
1092 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1094 siginfo_t *info = pinfo;
1095 struct ucontext *uc = puc;
1096 unsigned long ip;
1097 int is_write = 0;
1099 ip = uc->uc_mcontext.sc_ip;
1100 switch (host_signum) {
1101 case SIGILL:
1102 case SIGFPE:
1103 case SIGSEGV:
1104 case SIGBUS:
1105 case SIGTRAP:
1106 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1107 /* ISR.W (write-access) is bit 33: */
1108 is_write = (info->si_isr >> 33) & 1;
1109 break;
1111 default:
1112 break;
1114 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1115 is_write,
1116 &uc->uc_sigmask, puc);
1119 #elif defined(__s390__)
1121 int cpu_signal_handler(int host_signum, void *pinfo,
1122 void *puc)
1124 siginfo_t *info = pinfo;
1125 struct ucontext *uc = puc;
1126 unsigned long pc;
1127 int is_write;
1129 pc = uc->uc_mcontext.psw.addr;
1130 /* XXX: compute is_write */
1131 is_write = 0;
1132 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1133 is_write, &uc->uc_sigmask, puc);
1136 #elif defined(__mips__)
1138 int cpu_signal_handler(int host_signum, void *pinfo,
1139 void *puc)
1141 siginfo_t *info = pinfo;
1142 struct ucontext *uc = puc;
1143 greg_t pc = uc->uc_mcontext.pc;
1144 int is_write;
1146 /* XXX: compute is_write */
1147 is_write = 0;
1148 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1149 is_write, &uc->uc_sigmask, puc);
1152 #elif defined(__hppa__)
1154 int cpu_signal_handler(int host_signum, void *pinfo,
1155 void *puc)
1157 struct siginfo *info = pinfo;
1158 struct ucontext *uc = puc;
1159 unsigned long pc;
1160 int is_write;
1162 pc = uc->uc_mcontext.sc_iaoq[0];
1163 /* FIXME: compute is_write */
1164 is_write = 0;
1165 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1166 is_write,
1167 &uc->uc_sigmask, puc);
1170 #else
1172 #error host CPU specific signal handler needed
1174 #endif
1176 #endif /* !defined(CONFIG_SOFTMMU) */