slirp: Fix guestfwd for incoming data
[qemu/aliguori-queue.git] / kvm-all.c
blob824bb4ccb519d95fa2ee964dec167a79e182bb46
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 int irqchip_in_kernel;
67 int pit_in_kernel;
70 static KVMState *kvm_state;
72 static KVMSlot *kvm_alloc_slot(KVMState *s)
74 int i;
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
92 int i;
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
99 return mem;
103 return NULL;
107 * Find overlapping slot with lowest start address
109 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
113 KVMSlot *found = NULL;
114 int i;
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
121 continue;
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
126 found = mem;
130 return found;
133 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 struct kvm_userspace_memory_region mem;
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141 mem.flags = slot->flags;
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148 static void kvm_reset_vcpu(void *opaque)
150 CPUState *env = opaque;
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154 abort();
158 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
160 if (env == cpu_single_env) {
161 func(data);
162 return;
164 abort();
167 int kvm_irqchip_in_kernel(void)
169 return kvm_state->irqchip_in_kernel;
172 int kvm_pit_in_kernel(void)
174 return kvm_state->pit_in_kernel;
178 int kvm_init_vcpu(CPUState *env)
180 KVMState *s = kvm_state;
181 long mmap_size;
182 int ret;
184 dprintf("kvm_init_vcpu\n");
186 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
187 if (ret < 0) {
188 dprintf("kvm_create_vcpu failed\n");
189 goto err;
192 env->kvm_fd = ret;
193 env->kvm_state = s;
195 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
196 if (mmap_size < 0) {
197 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
198 goto err;
201 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
202 env->kvm_fd, 0);
203 if (env->kvm_run == MAP_FAILED) {
204 ret = -errno;
205 dprintf("mmap'ing vcpu state failed\n");
206 goto err;
209 ret = kvm_arch_init_vcpu(env);
210 if (ret == 0) {
211 qemu_register_reset(kvm_reset_vcpu, env);
212 ret = kvm_arch_put_registers(env);
214 err:
215 return ret;
218 int kvm_put_mp_state(CPUState *env)
220 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
222 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
225 int kvm_get_mp_state(CPUState *env)
227 struct kvm_mp_state mp_state;
228 int ret;
230 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
231 if (ret < 0) {
232 return ret;
234 env->mp_state = mp_state.mp_state;
235 return 0;
239 * dirty pages logging control
241 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
242 ram_addr_t size, int flags, int mask)
244 KVMState *s = kvm_state;
245 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
246 int old_flags;
248 if (mem == NULL) {
249 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
250 TARGET_FMT_plx "\n", __func__, phys_addr,
251 (target_phys_addr_t)(phys_addr + size - 1));
252 return -EINVAL;
255 old_flags = mem->flags;
257 flags = (mem->flags & ~mask) | flags;
258 mem->flags = flags;
260 /* If nothing changed effectively, no need to issue ioctl */
261 if (s->migration_log) {
262 flags |= KVM_MEM_LOG_DIRTY_PAGES;
264 if (flags == old_flags) {
265 return 0;
268 return kvm_set_user_memory_region(s, mem);
271 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
273 return kvm_dirty_pages_log_change(phys_addr, size,
274 KVM_MEM_LOG_DIRTY_PAGES,
275 KVM_MEM_LOG_DIRTY_PAGES);
278 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
280 return kvm_dirty_pages_log_change(phys_addr, size,
282 KVM_MEM_LOG_DIRTY_PAGES);
285 int kvm_set_migration_log(int enable)
287 KVMState *s = kvm_state;
288 KVMSlot *mem;
289 int i, err;
291 s->migration_log = enable;
293 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
294 mem = &s->slots[i];
296 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
297 continue;
299 err = kvm_set_user_memory_region(s, mem);
300 if (err) {
301 return err;
304 return 0;
308 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
309 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
310 * This means all bits are set to dirty.
312 * @start_add: start of logged region.
313 * @end_addr: end of logged region.
315 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
316 target_phys_addr_t end_addr)
318 KVMState *s = kvm_state;
319 unsigned long size, allocated_size = 0;
320 target_phys_addr_t phys_addr;
321 ram_addr_t addr;
322 KVMDirtyLog d;
323 KVMSlot *mem;
324 int ret = 0;
325 int r;
327 d.dirty_bitmap = NULL;
328 while (start_addr < end_addr) {
329 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
330 if (mem == NULL) {
331 break;
334 /* We didn't activate dirty logging? Don't care then. */
335 if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
336 continue;
339 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
340 if (!d.dirty_bitmap) {
341 d.dirty_bitmap = qemu_malloc(size);
342 } else if (size > allocated_size) {
343 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
345 allocated_size = size;
346 memset(d.dirty_bitmap, 0, allocated_size);
348 d.slot = mem->slot;
350 r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
351 if (r == -EINVAL) {
352 dprintf("ioctl failed %d\n", errno);
353 ret = -1;
354 break;
357 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
358 phys_addr < mem->start_addr + mem->memory_size;
359 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
360 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
361 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
362 unsigned word = nr / (sizeof(*bitmap) * 8);
363 unsigned bit = nr % (sizeof(*bitmap) * 8);
365 if ((bitmap[word] >> bit) & 1) {
366 cpu_physical_memory_set_dirty(addr);
367 } else if (r < 0) {
368 /* When our KVM implementation doesn't know about dirty logging
369 * we can just assume it's always dirty and be fine. */
370 cpu_physical_memory_set_dirty(addr);
373 start_addr = phys_addr;
375 qemu_free(d.dirty_bitmap);
377 return ret;
380 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
382 int ret = -ENOSYS;
383 #ifdef KVM_CAP_COALESCED_MMIO
384 KVMState *s = kvm_state;
386 if (s->coalesced_mmio) {
387 struct kvm_coalesced_mmio_zone zone;
389 zone.addr = start;
390 zone.size = size;
392 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
394 #endif
396 return ret;
399 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
401 int ret = -ENOSYS;
402 #ifdef KVM_CAP_COALESCED_MMIO
403 KVMState *s = kvm_state;
405 if (s->coalesced_mmio) {
406 struct kvm_coalesced_mmio_zone zone;
408 zone.addr = start;
409 zone.size = size;
411 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
413 #endif
415 return ret;
418 int kvm_check_extension(KVMState *s, unsigned int extension)
420 int ret;
422 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
423 if (ret < 0) {
424 ret = 0;
427 return ret;
430 int kvm_init(int smp_cpus)
432 static const char upgrade_note[] =
433 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
434 "(see http://sourceforge.net/projects/kvm).\n";
435 KVMState *s;
436 int ret;
437 int i;
439 if (smp_cpus > 1) {
440 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
441 return -EINVAL;
444 s = qemu_mallocz(sizeof(KVMState));
446 #ifdef KVM_CAP_SET_GUEST_DEBUG
447 TAILQ_INIT(&s->kvm_sw_breakpoints);
448 #endif
449 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
450 s->slots[i].slot = i;
452 s->vmfd = -1;
453 s->fd = open("/dev/kvm", O_RDWR);
454 if (s->fd == -1) {
455 fprintf(stderr, "Could not access KVM kernel module: %m\n");
456 ret = -errno;
457 goto err;
460 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
461 if (ret < KVM_API_VERSION) {
462 if (ret > 0)
463 ret = -EINVAL;
464 fprintf(stderr, "kvm version too old\n");
465 goto err;
468 if (ret > KVM_API_VERSION) {
469 ret = -EINVAL;
470 fprintf(stderr, "kvm version not supported\n");
471 goto err;
474 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
475 if (s->vmfd < 0)
476 goto err;
478 /* initially, KVM allocated its own memory and we had to jump through
479 * hooks to make phys_ram_base point to this. Modern versions of KVM
480 * just use a user allocated buffer so we can use regular pages
481 * unmodified. Make sure we have a sufficiently modern version of KVM.
483 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
484 ret = -EINVAL;
485 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
486 upgrade_note);
487 goto err;
490 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
491 * destroyed properly. Since we rely on this capability, refuse to work
492 * with any kernel without this capability. */
493 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
494 ret = -EINVAL;
496 fprintf(stderr,
497 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
498 upgrade_note);
499 goto err;
502 #ifdef KVM_CAP_COALESCED_MMIO
503 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
504 #else
505 s->coalesced_mmio = 0;
506 #endif
508 s->broken_set_mem_region = 1;
509 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
510 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
511 if (ret > 0) {
512 s->broken_set_mem_region = 0;
514 #endif
516 ret = kvm_arch_init(s, smp_cpus);
517 if (ret < 0)
518 goto err;
520 kvm_state = s;
522 return 0;
524 err:
525 if (s) {
526 if (s->vmfd != -1)
527 close(s->vmfd);
528 if (s->fd != -1)
529 close(s->fd);
531 qemu_free(s);
533 return ret;
536 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
537 int direction, int size, uint32_t count)
539 int i;
540 uint8_t *ptr = data;
542 for (i = 0; i < count; i++) {
543 if (direction == KVM_EXIT_IO_IN) {
544 switch (size) {
545 case 1:
546 stb_p(ptr, cpu_inb(env, port));
547 break;
548 case 2:
549 stw_p(ptr, cpu_inw(env, port));
550 break;
551 case 4:
552 stl_p(ptr, cpu_inl(env, port));
553 break;
555 } else {
556 switch (size) {
557 case 1:
558 cpu_outb(env, port, ldub_p(ptr));
559 break;
560 case 2:
561 cpu_outw(env, port, lduw_p(ptr));
562 break;
563 case 4:
564 cpu_outl(env, port, ldl_p(ptr));
565 break;
569 ptr += size;
572 return 1;
575 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
577 #ifdef KVM_CAP_COALESCED_MMIO
578 KVMState *s = kvm_state;
579 if (s->coalesced_mmio) {
580 struct kvm_coalesced_mmio_ring *ring;
582 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
583 while (ring->first != ring->last) {
584 struct kvm_coalesced_mmio *ent;
586 ent = &ring->coalesced_mmio[ring->first];
588 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
589 /* FIXME smp_wmb() */
590 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
593 #endif
596 int kvm_cpu_exec(CPUState *env)
598 struct kvm_run *run = env->kvm_run;
599 int ret;
601 dprintf("kvm_cpu_exec()\n");
603 do {
604 if (env->exit_request) {
605 dprintf("interrupt exit requested\n");
606 ret = 0;
607 break;
610 kvm_arch_pre_run(env, run);
611 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
612 kvm_arch_post_run(env, run);
614 if (ret == -EINTR || ret == -EAGAIN) {
615 dprintf("io window exit\n");
616 ret = 0;
617 break;
620 if (ret < 0) {
621 dprintf("kvm run failed %s\n", strerror(-ret));
622 abort();
625 kvm_run_coalesced_mmio(env, run);
627 ret = 0; /* exit loop */
628 switch (run->exit_reason) {
629 case KVM_EXIT_IO:
630 dprintf("handle_io\n");
631 ret = kvm_handle_io(env, run->io.port,
632 (uint8_t *)run + run->io.data_offset,
633 run->io.direction,
634 run->io.size,
635 run->io.count);
636 break;
637 case KVM_EXIT_MMIO:
638 dprintf("handle_mmio\n");
639 cpu_physical_memory_rw(run->mmio.phys_addr,
640 run->mmio.data,
641 run->mmio.len,
642 run->mmio.is_write);
643 ret = 1;
644 break;
645 case KVM_EXIT_IRQ_WINDOW_OPEN:
646 dprintf("irq_window_open\n");
647 break;
648 case KVM_EXIT_SHUTDOWN:
649 dprintf("shutdown\n");
650 qemu_system_reset_request();
651 ret = 1;
652 break;
653 case KVM_EXIT_UNKNOWN:
654 dprintf("kvm_exit_unknown\n");
655 break;
656 case KVM_EXIT_FAIL_ENTRY:
657 dprintf("kvm_exit_fail_entry\n");
658 break;
659 case KVM_EXIT_EXCEPTION:
660 dprintf("kvm_exit_exception\n");
661 break;
662 case KVM_EXIT_DEBUG:
663 dprintf("kvm_exit_debug\n");
664 #ifdef KVM_CAP_SET_GUEST_DEBUG
665 if (kvm_arch_debug(&run->debug.arch)) {
666 gdb_set_stop_cpu(env);
667 vm_stop(EXCP_DEBUG);
668 env->exception_index = EXCP_DEBUG;
669 return 0;
671 /* re-enter, this exception was guest-internal */
672 ret = 1;
673 #endif /* KVM_CAP_SET_GUEST_DEBUG */
674 break;
675 default:
676 dprintf("kvm_arch_handle_exit\n");
677 ret = kvm_arch_handle_exit(env, run);
678 break;
680 } while (ret > 0);
682 if (env->exit_request) {
683 env->exit_request = 0;
684 env->exception_index = EXCP_INTERRUPT;
687 return ret;
690 void kvm_set_phys_mem(target_phys_addr_t start_addr,
691 ram_addr_t size,
692 ram_addr_t phys_offset)
694 KVMState *s = kvm_state;
695 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
696 KVMSlot *mem, old;
697 int err;
699 if (start_addr & ~TARGET_PAGE_MASK) {
700 if (flags >= IO_MEM_UNASSIGNED) {
701 if (!kvm_lookup_overlapping_slot(s, start_addr,
702 start_addr + size)) {
703 return;
705 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
706 } else {
707 fprintf(stderr, "Only page-aligned memory slots supported\n");
709 abort();
712 /* KVM does not support read-only slots */
713 phys_offset &= ~IO_MEM_ROM;
715 while (1) {
716 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
717 if (!mem) {
718 break;
721 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
722 (start_addr + size <= mem->start_addr + mem->memory_size) &&
723 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
724 /* The new slot fits into the existing one and comes with
725 * identical parameters - nothing to be done. */
726 return;
729 old = *mem;
731 /* unregister the overlapping slot */
732 mem->memory_size = 0;
733 err = kvm_set_user_memory_region(s, mem);
734 if (err) {
735 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
736 __func__, strerror(-err));
737 abort();
740 /* Workaround for older KVM versions: we can't join slots, even not by
741 * unregistering the previous ones and then registering the larger
742 * slot. We have to maintain the existing fragmentation. Sigh.
744 * This workaround assumes that the new slot starts at the same
745 * address as the first existing one. If not or if some overlapping
746 * slot comes around later, we will fail (not seen in practice so far)
747 * - and actually require a recent KVM version. */
748 if (s->broken_set_mem_region &&
749 old.start_addr == start_addr && old.memory_size < size &&
750 flags < IO_MEM_UNASSIGNED) {
751 mem = kvm_alloc_slot(s);
752 mem->memory_size = old.memory_size;
753 mem->start_addr = old.start_addr;
754 mem->phys_offset = old.phys_offset;
755 mem->flags = 0;
757 err = kvm_set_user_memory_region(s, mem);
758 if (err) {
759 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
760 strerror(-err));
761 abort();
764 start_addr += old.memory_size;
765 phys_offset += old.memory_size;
766 size -= old.memory_size;
767 continue;
770 /* register prefix slot */
771 if (old.start_addr < start_addr) {
772 mem = kvm_alloc_slot(s);
773 mem->memory_size = start_addr - old.start_addr;
774 mem->start_addr = old.start_addr;
775 mem->phys_offset = old.phys_offset;
776 mem->flags = 0;
778 err = kvm_set_user_memory_region(s, mem);
779 if (err) {
780 fprintf(stderr, "%s: error registering prefix slot: %s\n",
781 __func__, strerror(-err));
782 abort();
786 /* register suffix slot */
787 if (old.start_addr + old.memory_size > start_addr + size) {
788 ram_addr_t size_delta;
790 mem = kvm_alloc_slot(s);
791 mem->start_addr = start_addr + size;
792 size_delta = mem->start_addr - old.start_addr;
793 mem->memory_size = old.memory_size - size_delta;
794 mem->phys_offset = old.phys_offset + size_delta;
795 mem->flags = 0;
797 err = kvm_set_user_memory_region(s, mem);
798 if (err) {
799 fprintf(stderr, "%s: error registering suffix slot: %s\n",
800 __func__, strerror(-err));
801 abort();
806 /* in case the KVM bug workaround already "consumed" the new slot */
807 if (!size)
808 return;
810 /* KVM does not need to know about this memory */
811 if (flags >= IO_MEM_UNASSIGNED)
812 return;
814 mem = kvm_alloc_slot(s);
815 mem->memory_size = size;
816 mem->start_addr = start_addr;
817 mem->phys_offset = phys_offset;
818 mem->flags = 0;
820 err = kvm_set_user_memory_region(s, mem);
821 if (err) {
822 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
823 strerror(-err));
824 abort();
828 int kvm_ioctl(KVMState *s, int type, ...)
830 int ret;
831 void *arg;
832 va_list ap;
834 va_start(ap, type);
835 arg = va_arg(ap, void *);
836 va_end(ap);
838 ret = ioctl(s->fd, type, arg);
839 if (ret == -1)
840 ret = -errno;
842 return ret;
845 int kvm_vm_ioctl(KVMState *s, int type, ...)
847 int ret;
848 void *arg;
849 va_list ap;
851 va_start(ap, type);
852 arg = va_arg(ap, void *);
853 va_end(ap);
855 ret = ioctl(s->vmfd, type, arg);
856 if (ret == -1)
857 ret = -errno;
859 return ret;
862 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
864 int ret;
865 void *arg;
866 va_list ap;
868 va_start(ap, type);
869 arg = va_arg(ap, void *);
870 va_end(ap);
872 ret = ioctl(env->kvm_fd, type, arg);
873 if (ret == -1)
874 ret = -errno;
876 return ret;
879 int kvm_has_sync_mmu(void)
881 #ifdef KVM_CAP_SYNC_MMU
882 KVMState *s = kvm_state;
884 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
885 #else
886 return 0;
887 #endif
890 void kvm_setup_guest_memory(void *start, size_t size)
892 if (!kvm_has_sync_mmu()) {
893 #ifdef MADV_DONTFORK
894 int ret = madvise(start, size, MADV_DONTFORK);
896 if (ret) {
897 perror("madvice");
898 exit(1);
900 #else
901 fprintf(stderr,
902 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
903 exit(1);
904 #endif
908 #ifdef KVM_CAP_SET_GUEST_DEBUG
909 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
910 target_ulong pc)
912 struct kvm_sw_breakpoint *bp;
914 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
915 if (bp->pc == pc)
916 return bp;
918 return NULL;
921 int kvm_sw_breakpoints_active(CPUState *env)
923 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
926 struct kvm_set_guest_debug_data {
927 struct kvm_guest_debug dbg;
928 CPUState *env;
929 int err;
932 static void kvm_invoke_set_guest_debug(void *data)
934 struct kvm_set_guest_debug_data *dbg_data = data;
935 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
938 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
940 struct kvm_set_guest_debug_data data;
942 data.dbg.control = 0;
943 if (env->singlestep_enabled)
944 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
946 kvm_arch_update_guest_debug(env, &data.dbg);
947 data.dbg.control |= reinject_trap;
948 data.env = env;
950 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
951 return data.err;
954 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
955 target_ulong len, int type)
957 struct kvm_sw_breakpoint *bp;
958 CPUState *env;
959 int err;
961 if (type == GDB_BREAKPOINT_SW) {
962 bp = kvm_find_sw_breakpoint(current_env, addr);
963 if (bp) {
964 bp->use_count++;
965 return 0;
968 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
969 if (!bp)
970 return -ENOMEM;
972 bp->pc = addr;
973 bp->use_count = 1;
974 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
975 if (err) {
976 free(bp);
977 return err;
980 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
981 bp, entry);
982 } else {
983 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
984 if (err)
985 return err;
988 for (env = first_cpu; env != NULL; env = env->next_cpu) {
989 err = kvm_update_guest_debug(env, 0);
990 if (err)
991 return err;
993 return 0;
996 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
997 target_ulong len, int type)
999 struct kvm_sw_breakpoint *bp;
1000 CPUState *env;
1001 int err;
1003 if (type == GDB_BREAKPOINT_SW) {
1004 bp = kvm_find_sw_breakpoint(current_env, addr);
1005 if (!bp)
1006 return -ENOENT;
1008 if (bp->use_count > 1) {
1009 bp->use_count--;
1010 return 0;
1013 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1014 if (err)
1015 return err;
1017 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1018 qemu_free(bp);
1019 } else {
1020 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1021 if (err)
1022 return err;
1025 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1026 err = kvm_update_guest_debug(env, 0);
1027 if (err)
1028 return err;
1030 return 0;
1033 void kvm_remove_all_breakpoints(CPUState *current_env)
1035 struct kvm_sw_breakpoint *bp, *next;
1036 KVMState *s = current_env->kvm_state;
1037 CPUState *env;
1039 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1040 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1041 /* Try harder to find a CPU that currently sees the breakpoint. */
1042 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1043 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1044 break;
1048 kvm_arch_remove_all_hw_breakpoints();
1050 for (env = first_cpu; env != NULL; env = env->next_cpu)
1051 kvm_update_guest_debug(env, 0);
1054 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1056 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1058 return -EINVAL;
1061 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1062 target_ulong len, int type)
1064 return -EINVAL;
1067 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1068 target_ulong len, int type)
1070 return -EINVAL;
1073 void kvm_remove_all_breakpoints(CPUState *current_env)
1076 #endif /* !KVM_CAP_SET_GUEST_DEBUG */