Update OpenBIOS images to r771
[qemu/aliguori-queue.git] / target-sparc / op_helper.c
blobfcfd3f3161916007b2f3e04cb73fdefb8b1e2564
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
5 //#define DEBUG_MMU
6 //#define DEBUG_MXCC
7 //#define DEBUG_UNALIGNED
8 //#define DEBUG_UNASSIGNED
9 //#define DEBUG_ASI
10 //#define DEBUG_PCALL
11 //#define DEBUG_PSTATE
13 #ifdef DEBUG_MMU
14 #define DPRINTF_MMU(fmt, ...) \
15 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 #else
17 #define DPRINTF_MMU(fmt, ...) do {} while (0)
18 #endif
20 #ifdef DEBUG_MXCC
21 #define DPRINTF_MXCC(fmt, ...) \
22 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 #endif
27 #ifdef DEBUG_ASI
28 #define DPRINTF_ASI(fmt, ...) \
29 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 #endif
32 #ifdef DEBUG_PSTATE
33 #define DPRINTF_PSTATE(fmt, ...) \
34 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 #endif
39 #ifdef TARGET_SPARC64
40 #ifndef TARGET_ABI32
41 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 #else
43 #define AM_CHECK(env1) (1)
44 #endif
45 #endif
47 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
48 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
49 int is_asi, int size);
50 #endif
52 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
53 // Calculates TSB pointer value for fault page size 8k or 64k
54 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
55 uint64_t tag_access_register,
56 int page_size)
58 uint64_t tsb_base = tsb_register & ~0x1fffULL;
59 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
60 int tsb_size = tsb_register & 0xf;
62 // discard lower 13 bits which hold tag access context
63 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
65 // now reorder bits
66 uint64_t tsb_base_mask = ~0x1fffULL;
67 uint64_t va = tag_access_va;
69 // move va bits to correct position
70 if (page_size == 8*1024) {
71 va >>= 9;
72 } else if (page_size == 64*1024) {
73 va >>= 12;
76 if (tsb_size) {
77 tsb_base_mask <<= tsb_size;
80 // calculate tsb_base mask and adjust va if split is in use
81 if (tsb_split) {
82 if (page_size == 8*1024) {
83 va &= ~(1ULL << (13 + tsb_size));
84 } else if (page_size == 64*1024) {
85 va |= (1ULL << (13 + tsb_size));
87 tsb_base_mask <<= 1;
90 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
93 // Calculates tag target register value by reordering bits
94 // in tag access register
95 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
97 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
100 static void replace_tlb_entry(SparcTLBEntry *tlb,
101 uint64_t tlb_tag, uint64_t tlb_tte,
102 CPUState *env1)
104 target_ulong mask, size, va, offset;
106 // flush page range if translation is valid
107 if (TTE_IS_VALID(tlb->tte)) {
109 mask = 0xffffffffffffe000ULL;
110 mask <<= 3 * ((tlb->tte >> 61) & 3);
111 size = ~mask + 1;
113 va = tlb->tag & mask;
115 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
116 tlb_flush_page(env1, va + offset);
120 tlb->tag = tlb_tag;
121 tlb->tte = tlb_tte;
124 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
125 const char* strmmu, CPUState *env1)
127 unsigned int i;
128 target_ulong mask;
129 uint64_t context;
131 int is_demap_context = (demap_addr >> 6) & 1;
133 // demap context
134 switch ((demap_addr >> 4) & 3) {
135 case 0: // primary
136 context = env1->dmmu.mmu_primary_context;
137 break;
138 case 1: // secondary
139 context = env1->dmmu.mmu_secondary_context;
140 break;
141 case 2: // nucleus
142 context = 0;
143 break;
144 case 3: // reserved
145 default:
146 return;
149 for (i = 0; i < 64; i++) {
150 if (TTE_IS_VALID(tlb[i].tte)) {
152 if (is_demap_context) {
153 // will remove non-global entries matching context value
154 if (TTE_IS_GLOBAL(tlb[i].tte) ||
155 !tlb_compare_context(&tlb[i], context)) {
156 continue;
158 } else {
159 // demap page
160 // will remove any entry matching VA
161 mask = 0xffffffffffffe000ULL;
162 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
164 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
165 continue;
168 // entry should be global or matching context value
169 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
170 !tlb_compare_context(&tlb[i], context)) {
171 continue;
175 replace_tlb_entry(&tlb[i], 0, 0, env1);
176 #ifdef DEBUG_MMU
177 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
178 dump_mmu(env1);
179 #endif
184 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
185 uint64_t tlb_tag, uint64_t tlb_tte,
186 const char* strmmu, CPUState *env1)
188 unsigned int i, replace_used;
190 // Try replacing invalid entry
191 for (i = 0; i < 64; i++) {
192 if (!TTE_IS_VALID(tlb[i].tte)) {
193 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
194 #ifdef DEBUG_MMU
195 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
196 dump_mmu(env1);
197 #endif
198 return;
202 // All entries are valid, try replacing unlocked entry
204 for (replace_used = 0; replace_used < 2; ++replace_used) {
206 // Used entries are not replaced on first pass
208 for (i = 0; i < 64; i++) {
209 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
211 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
212 #ifdef DEBUG_MMU
213 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
214 strmmu, (replace_used?"used":"unused"), i);
215 dump_mmu(env1);
216 #endif
217 return;
221 // Now reset used bit and search for unused entries again
223 for (i = 0; i < 64; i++) {
224 TTE_SET_UNUSED(tlb[i].tte);
228 #ifdef DEBUG_MMU
229 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
230 #endif
231 // error state?
234 #endif
236 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
238 #ifdef TARGET_SPARC64
239 if (AM_CHECK(env1))
240 addr &= 0xffffffffULL;
241 #endif
242 return addr;
245 static void raise_exception(int tt)
247 env->exception_index = tt;
248 cpu_loop_exit();
251 void HELPER(raise_exception)(int tt)
253 raise_exception(tt);
256 void helper_check_align(target_ulong addr, uint32_t align)
258 if (addr & align) {
259 #ifdef DEBUG_UNALIGNED
260 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
261 "\n", addr, env->pc);
262 #endif
263 raise_exception(TT_UNALIGNED);
267 #define F_HELPER(name, p) void helper_f##name##p(void)
269 #define F_BINOP(name) \
270 float32 helper_f ## name ## s (float32 src1, float32 src2) \
272 return float32_ ## name (src1, src2, &env->fp_status); \
274 F_HELPER(name, d) \
276 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
278 F_HELPER(name, q) \
280 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
283 F_BINOP(add);
284 F_BINOP(sub);
285 F_BINOP(mul);
286 F_BINOP(div);
287 #undef F_BINOP
289 void helper_fsmuld(float32 src1, float32 src2)
291 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
292 float32_to_float64(src2, &env->fp_status),
293 &env->fp_status);
296 void helper_fdmulq(void)
298 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
299 float64_to_float128(DT1, &env->fp_status),
300 &env->fp_status);
303 float32 helper_fnegs(float32 src)
305 return float32_chs(src);
308 #ifdef TARGET_SPARC64
309 F_HELPER(neg, d)
311 DT0 = float64_chs(DT1);
314 F_HELPER(neg, q)
316 QT0 = float128_chs(QT1);
318 #endif
320 /* Integer to float conversion. */
321 float32 helper_fitos(int32_t src)
323 return int32_to_float32(src, &env->fp_status);
326 void helper_fitod(int32_t src)
328 DT0 = int32_to_float64(src, &env->fp_status);
331 void helper_fitoq(int32_t src)
333 QT0 = int32_to_float128(src, &env->fp_status);
336 #ifdef TARGET_SPARC64
337 float32 helper_fxtos(void)
339 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
342 F_HELPER(xto, d)
344 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
347 F_HELPER(xto, q)
349 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
351 #endif
352 #undef F_HELPER
354 /* floating point conversion */
355 float32 helper_fdtos(void)
357 return float64_to_float32(DT1, &env->fp_status);
360 void helper_fstod(float32 src)
362 DT0 = float32_to_float64(src, &env->fp_status);
365 float32 helper_fqtos(void)
367 return float128_to_float32(QT1, &env->fp_status);
370 void helper_fstoq(float32 src)
372 QT0 = float32_to_float128(src, &env->fp_status);
375 void helper_fqtod(void)
377 DT0 = float128_to_float64(QT1, &env->fp_status);
380 void helper_fdtoq(void)
382 QT0 = float64_to_float128(DT1, &env->fp_status);
385 /* Float to integer conversion. */
386 int32_t helper_fstoi(float32 src)
388 return float32_to_int32_round_to_zero(src, &env->fp_status);
391 int32_t helper_fdtoi(void)
393 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
396 int32_t helper_fqtoi(void)
398 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
401 #ifdef TARGET_SPARC64
402 void helper_fstox(float32 src)
404 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
407 void helper_fdtox(void)
409 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
412 void helper_fqtox(void)
414 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
417 void helper_faligndata(void)
419 uint64_t tmp;
421 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
422 /* on many architectures a shift of 64 does nothing */
423 if ((env->gsr & 7) != 0) {
424 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
426 *((uint64_t *)&DT0) = tmp;
429 #ifdef HOST_WORDS_BIGENDIAN
430 #define VIS_B64(n) b[7 - (n)]
431 #define VIS_W64(n) w[3 - (n)]
432 #define VIS_SW64(n) sw[3 - (n)]
433 #define VIS_L64(n) l[1 - (n)]
434 #define VIS_B32(n) b[3 - (n)]
435 #define VIS_W32(n) w[1 - (n)]
436 #else
437 #define VIS_B64(n) b[n]
438 #define VIS_W64(n) w[n]
439 #define VIS_SW64(n) sw[n]
440 #define VIS_L64(n) l[n]
441 #define VIS_B32(n) b[n]
442 #define VIS_W32(n) w[n]
443 #endif
445 typedef union {
446 uint8_t b[8];
447 uint16_t w[4];
448 int16_t sw[4];
449 uint32_t l[2];
450 float64 d;
451 } vis64;
453 typedef union {
454 uint8_t b[4];
455 uint16_t w[2];
456 uint32_t l;
457 float32 f;
458 } vis32;
460 void helper_fpmerge(void)
462 vis64 s, d;
464 s.d = DT0;
465 d.d = DT1;
467 // Reverse calculation order to handle overlap
468 d.VIS_B64(7) = s.VIS_B64(3);
469 d.VIS_B64(6) = d.VIS_B64(3);
470 d.VIS_B64(5) = s.VIS_B64(2);
471 d.VIS_B64(4) = d.VIS_B64(2);
472 d.VIS_B64(3) = s.VIS_B64(1);
473 d.VIS_B64(2) = d.VIS_B64(1);
474 d.VIS_B64(1) = s.VIS_B64(0);
475 //d.VIS_B64(0) = d.VIS_B64(0);
477 DT0 = d.d;
480 void helper_fmul8x16(void)
482 vis64 s, d;
483 uint32_t tmp;
485 s.d = DT0;
486 d.d = DT1;
488 #define PMUL(r) \
489 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
490 if ((tmp & 0xff) > 0x7f) \
491 tmp += 0x100; \
492 d.VIS_W64(r) = tmp >> 8;
494 PMUL(0);
495 PMUL(1);
496 PMUL(2);
497 PMUL(3);
498 #undef PMUL
500 DT0 = d.d;
503 void helper_fmul8x16al(void)
505 vis64 s, d;
506 uint32_t tmp;
508 s.d = DT0;
509 d.d = DT1;
511 #define PMUL(r) \
512 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
513 if ((tmp & 0xff) > 0x7f) \
514 tmp += 0x100; \
515 d.VIS_W64(r) = tmp >> 8;
517 PMUL(0);
518 PMUL(1);
519 PMUL(2);
520 PMUL(3);
521 #undef PMUL
523 DT0 = d.d;
526 void helper_fmul8x16au(void)
528 vis64 s, d;
529 uint32_t tmp;
531 s.d = DT0;
532 d.d = DT1;
534 #define PMUL(r) \
535 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
536 if ((tmp & 0xff) > 0x7f) \
537 tmp += 0x100; \
538 d.VIS_W64(r) = tmp >> 8;
540 PMUL(0);
541 PMUL(1);
542 PMUL(2);
543 PMUL(3);
544 #undef PMUL
546 DT0 = d.d;
549 void helper_fmul8sux16(void)
551 vis64 s, d;
552 uint32_t tmp;
554 s.d = DT0;
555 d.d = DT1;
557 #define PMUL(r) \
558 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
559 if ((tmp & 0xff) > 0x7f) \
560 tmp += 0x100; \
561 d.VIS_W64(r) = tmp >> 8;
563 PMUL(0);
564 PMUL(1);
565 PMUL(2);
566 PMUL(3);
567 #undef PMUL
569 DT0 = d.d;
572 void helper_fmul8ulx16(void)
574 vis64 s, d;
575 uint32_t tmp;
577 s.d = DT0;
578 d.d = DT1;
580 #define PMUL(r) \
581 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
582 if ((tmp & 0xff) > 0x7f) \
583 tmp += 0x100; \
584 d.VIS_W64(r) = tmp >> 8;
586 PMUL(0);
587 PMUL(1);
588 PMUL(2);
589 PMUL(3);
590 #undef PMUL
592 DT0 = d.d;
595 void helper_fmuld8sux16(void)
597 vis64 s, d;
598 uint32_t tmp;
600 s.d = DT0;
601 d.d = DT1;
603 #define PMUL(r) \
604 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
605 if ((tmp & 0xff) > 0x7f) \
606 tmp += 0x100; \
607 d.VIS_L64(r) = tmp;
609 // Reverse calculation order to handle overlap
610 PMUL(1);
611 PMUL(0);
612 #undef PMUL
614 DT0 = d.d;
617 void helper_fmuld8ulx16(void)
619 vis64 s, d;
620 uint32_t tmp;
622 s.d = DT0;
623 d.d = DT1;
625 #define PMUL(r) \
626 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
627 if ((tmp & 0xff) > 0x7f) \
628 tmp += 0x100; \
629 d.VIS_L64(r) = tmp;
631 // Reverse calculation order to handle overlap
632 PMUL(1);
633 PMUL(0);
634 #undef PMUL
636 DT0 = d.d;
639 void helper_fexpand(void)
641 vis32 s;
642 vis64 d;
644 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
645 d.d = DT1;
646 d.VIS_W64(0) = s.VIS_B32(0) << 4;
647 d.VIS_W64(1) = s.VIS_B32(1) << 4;
648 d.VIS_W64(2) = s.VIS_B32(2) << 4;
649 d.VIS_W64(3) = s.VIS_B32(3) << 4;
651 DT0 = d.d;
654 #define VIS_HELPER(name, F) \
655 void name##16(void) \
657 vis64 s, d; \
659 s.d = DT0; \
660 d.d = DT1; \
662 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
663 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
664 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
665 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
667 DT0 = d.d; \
670 uint32_t name##16s(uint32_t src1, uint32_t src2) \
672 vis32 s, d; \
674 s.l = src1; \
675 d.l = src2; \
677 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
678 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
680 return d.l; \
683 void name##32(void) \
685 vis64 s, d; \
687 s.d = DT0; \
688 d.d = DT1; \
690 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
691 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
693 DT0 = d.d; \
696 uint32_t name##32s(uint32_t src1, uint32_t src2) \
698 vis32 s, d; \
700 s.l = src1; \
701 d.l = src2; \
703 d.l = F(d.l, s.l); \
705 return d.l; \
708 #define FADD(a, b) ((a) + (b))
709 #define FSUB(a, b) ((a) - (b))
710 VIS_HELPER(helper_fpadd, FADD)
711 VIS_HELPER(helper_fpsub, FSUB)
713 #define VIS_CMPHELPER(name, F) \
714 void name##16(void) \
716 vis64 s, d; \
718 s.d = DT0; \
719 d.d = DT1; \
721 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
722 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
723 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
724 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
726 DT0 = d.d; \
729 void name##32(void) \
731 vis64 s, d; \
733 s.d = DT0; \
734 d.d = DT1; \
736 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
737 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
739 DT0 = d.d; \
742 #define FCMPGT(a, b) ((a) > (b))
743 #define FCMPEQ(a, b) ((a) == (b))
744 #define FCMPLE(a, b) ((a) <= (b))
745 #define FCMPNE(a, b) ((a) != (b))
747 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
748 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
749 VIS_CMPHELPER(helper_fcmple, FCMPLE)
750 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
751 #endif
753 void helper_check_ieee_exceptions(void)
755 target_ulong status;
757 status = get_float_exception_flags(&env->fp_status);
758 if (status) {
759 /* Copy IEEE 754 flags into FSR */
760 if (status & float_flag_invalid)
761 env->fsr |= FSR_NVC;
762 if (status & float_flag_overflow)
763 env->fsr |= FSR_OFC;
764 if (status & float_flag_underflow)
765 env->fsr |= FSR_UFC;
766 if (status & float_flag_divbyzero)
767 env->fsr |= FSR_DZC;
768 if (status & float_flag_inexact)
769 env->fsr |= FSR_NXC;
771 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
772 /* Unmasked exception, generate a trap */
773 env->fsr |= FSR_FTT_IEEE_EXCP;
774 raise_exception(TT_FP_EXCP);
775 } else {
776 /* Accumulate exceptions */
777 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
782 void helper_clear_float_exceptions(void)
784 set_float_exception_flags(0, &env->fp_status);
787 float32 helper_fabss(float32 src)
789 return float32_abs(src);
792 #ifdef TARGET_SPARC64
793 void helper_fabsd(void)
795 DT0 = float64_abs(DT1);
798 void helper_fabsq(void)
800 QT0 = float128_abs(QT1);
802 #endif
804 float32 helper_fsqrts(float32 src)
806 return float32_sqrt(src, &env->fp_status);
809 void helper_fsqrtd(void)
811 DT0 = float64_sqrt(DT1, &env->fp_status);
814 void helper_fsqrtq(void)
816 QT0 = float128_sqrt(QT1, &env->fp_status);
819 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
820 void glue(helper_, name) (void) \
822 target_ulong new_fsr; \
824 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
825 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
826 case float_relation_unordered: \
827 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
828 if ((env->fsr & FSR_NVM) || TRAP) { \
829 env->fsr |= new_fsr; \
830 env->fsr |= FSR_NVC; \
831 env->fsr |= FSR_FTT_IEEE_EXCP; \
832 raise_exception(TT_FP_EXCP); \
833 } else { \
834 env->fsr |= FSR_NVA; \
836 break; \
837 case float_relation_less: \
838 new_fsr = FSR_FCC0 << FS; \
839 break; \
840 case float_relation_greater: \
841 new_fsr = FSR_FCC1 << FS; \
842 break; \
843 default: \
844 new_fsr = 0; \
845 break; \
847 env->fsr |= new_fsr; \
849 #define GEN_FCMPS(name, size, FS, TRAP) \
850 void glue(helper_, name)(float32 src1, float32 src2) \
852 target_ulong new_fsr; \
854 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
855 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
856 case float_relation_unordered: \
857 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
858 if ((env->fsr & FSR_NVM) || TRAP) { \
859 env->fsr |= new_fsr; \
860 env->fsr |= FSR_NVC; \
861 env->fsr |= FSR_FTT_IEEE_EXCP; \
862 raise_exception(TT_FP_EXCP); \
863 } else { \
864 env->fsr |= FSR_NVA; \
866 break; \
867 case float_relation_less: \
868 new_fsr = FSR_FCC0 << FS; \
869 break; \
870 case float_relation_greater: \
871 new_fsr = FSR_FCC1 << FS; \
872 break; \
873 default: \
874 new_fsr = 0; \
875 break; \
877 env->fsr |= new_fsr; \
880 GEN_FCMPS(fcmps, float32, 0, 0);
881 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
883 GEN_FCMPS(fcmpes, float32, 0, 1);
884 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
886 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
887 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
889 static uint32_t compute_all_flags(void)
891 return env->psr & PSR_ICC;
894 static uint32_t compute_C_flags(void)
896 return env->psr & PSR_CARRY;
899 static inline uint32_t get_NZ_icc(target_ulong dst)
901 uint32_t ret = 0;
903 if (!(dst & 0xffffffffULL))
904 ret |= PSR_ZERO;
905 if ((int32_t) (dst & 0xffffffffULL) < 0)
906 ret |= PSR_NEG;
907 return ret;
910 #ifdef TARGET_SPARC64
911 static uint32_t compute_all_flags_xcc(void)
913 return env->xcc & PSR_ICC;
916 static uint32_t compute_C_flags_xcc(void)
918 return env->xcc & PSR_CARRY;
921 static inline uint32_t get_NZ_xcc(target_ulong dst)
923 uint32_t ret = 0;
925 if (!dst)
926 ret |= PSR_ZERO;
927 if ((int64_t)dst < 0)
928 ret |= PSR_NEG;
929 return ret;
931 #endif
933 static inline uint32_t get_V_div_icc(target_ulong src2)
935 uint32_t ret = 0;
937 if (src2 != 0)
938 ret |= PSR_OVF;
939 return ret;
942 static uint32_t compute_all_div(void)
944 uint32_t ret;
946 ret = get_NZ_icc(CC_DST);
947 ret |= get_V_div_icc(CC_SRC2);
948 return ret;
951 static uint32_t compute_C_div(void)
953 return 0;
956 /* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
957 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
958 target_ulong src2)
960 uint32_t ret = 0;
962 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
963 | ((~(dst & (1ULL << 31)))
964 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
965 ret |= PSR_CARRY;
966 return ret;
969 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
970 target_ulong src2)
972 uint32_t ret = 0;
974 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
975 ret |= PSR_OVF;
976 return ret;
979 #ifdef TARGET_SPARC64
980 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
982 uint32_t ret = 0;
984 if (dst < src1)
985 ret |= PSR_CARRY;
986 return ret;
989 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
990 target_ulong src2)
992 uint32_t ret = 0;
994 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
995 ret |= PSR_OVF;
996 return ret;
999 static uint32_t compute_all_add_xcc(void)
1001 uint32_t ret;
1003 ret = get_NZ_xcc(CC_DST);
1004 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1005 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1006 return ret;
1009 static uint32_t compute_C_add_xcc(void)
1011 return get_C_add_xcc(CC_DST, CC_SRC);
1013 #endif
1015 static uint32_t compute_all_add(void)
1017 uint32_t ret;
1019 ret = get_NZ_icc(CC_DST);
1020 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1021 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1022 return ret;
1025 static uint32_t compute_C_add(void)
1027 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1030 #ifdef TARGET_SPARC64
1031 static uint32_t compute_all_addx_xcc(void)
1033 uint32_t ret;
1035 ret = get_NZ_xcc(CC_DST);
1036 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1037 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1038 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1039 return ret;
1042 static uint32_t compute_C_addx_xcc(void)
1044 uint32_t ret;
1046 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1047 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1048 return ret;
1050 #endif
1052 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1054 uint32_t ret = 0;
1056 if ((src1 | src2) & 0x3)
1057 ret |= PSR_OVF;
1058 return ret;
1061 static uint32_t compute_all_tadd(void)
1063 uint32_t ret;
1065 ret = get_NZ_icc(CC_DST);
1066 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1067 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1068 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1069 return ret;
1072 static uint32_t compute_C_tadd(void)
1074 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1077 static uint32_t compute_all_taddtv(void)
1079 uint32_t ret;
1081 ret = get_NZ_icc(CC_DST);
1082 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1083 return ret;
1086 static uint32_t compute_C_taddtv(void)
1088 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1091 /* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1092 static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1093 target_ulong src2)
1095 uint32_t ret = 0;
1097 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1098 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1099 | (src2 & (1ULL << 31)))))
1100 ret |= PSR_CARRY;
1101 return ret;
1104 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1105 target_ulong src2)
1107 uint32_t ret = 0;
1109 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1110 ret |= PSR_OVF;
1111 return ret;
1115 #ifdef TARGET_SPARC64
1116 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1118 uint32_t ret = 0;
1120 if (src1 < src2)
1121 ret |= PSR_CARRY;
1122 return ret;
1125 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1126 target_ulong src2)
1128 uint32_t ret = 0;
1130 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1131 ret |= PSR_OVF;
1132 return ret;
1135 static uint32_t compute_all_sub_xcc(void)
1137 uint32_t ret;
1139 ret = get_NZ_xcc(CC_DST);
1140 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1141 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1142 return ret;
1145 static uint32_t compute_C_sub_xcc(void)
1147 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1149 #endif
1151 static uint32_t compute_all_sub(void)
1153 uint32_t ret;
1155 ret = get_NZ_icc(CC_DST);
1156 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1157 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1158 return ret;
1161 static uint32_t compute_C_sub(void)
1163 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1166 #ifdef TARGET_SPARC64
1167 static uint32_t compute_all_subx_xcc(void)
1169 uint32_t ret;
1171 ret = get_NZ_xcc(CC_DST);
1172 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1173 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1174 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1175 return ret;
1178 static uint32_t compute_C_subx_xcc(void)
1180 uint32_t ret;
1182 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1183 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1184 return ret;
1186 #endif
1188 static uint32_t compute_all_tsub(void)
1190 uint32_t ret;
1192 ret = get_NZ_icc(CC_DST);
1193 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1194 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1195 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1196 return ret;
1199 static uint32_t compute_C_tsub(void)
1201 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1204 static uint32_t compute_all_tsubtv(void)
1206 uint32_t ret;
1208 ret = get_NZ_icc(CC_DST);
1209 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1210 return ret;
1213 static uint32_t compute_C_tsubtv(void)
1215 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1218 static uint32_t compute_all_logic(void)
1220 return get_NZ_icc(CC_DST);
1223 static uint32_t compute_C_logic(void)
1225 return 0;
1228 #ifdef TARGET_SPARC64
1229 static uint32_t compute_all_logic_xcc(void)
1231 return get_NZ_xcc(CC_DST);
1233 #endif
1235 typedef struct CCTable {
1236 uint32_t (*compute_all)(void); /* return all the flags */
1237 uint32_t (*compute_c)(void); /* return the C flag */
1238 } CCTable;
1240 static const CCTable icc_table[CC_OP_NB] = {
1241 /* CC_OP_DYNAMIC should never happen */
1242 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1243 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1244 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1245 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
1246 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1247 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1248 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1249 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
1250 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1251 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1252 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1255 #ifdef TARGET_SPARC64
1256 static const CCTable xcc_table[CC_OP_NB] = {
1257 /* CC_OP_DYNAMIC should never happen */
1258 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1259 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1260 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1261 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1262 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1263 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1264 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1265 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1266 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1267 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1268 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1270 #endif
1272 void helper_compute_psr(void)
1274 uint32_t new_psr;
1276 new_psr = icc_table[CC_OP].compute_all();
1277 env->psr = new_psr;
1278 #ifdef TARGET_SPARC64
1279 new_psr = xcc_table[CC_OP].compute_all();
1280 env->xcc = new_psr;
1281 #endif
1282 CC_OP = CC_OP_FLAGS;
1285 uint32_t helper_compute_C_icc(void)
1287 uint32_t ret;
1289 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1290 return ret;
1293 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1295 dst[0] = src[0];
1296 dst[1] = src[1];
1297 dst[2] = src[2];
1298 dst[3] = src[3];
1299 dst[4] = src[4];
1300 dst[5] = src[5];
1301 dst[6] = src[6];
1302 dst[7] = src[7];
1305 static void set_cwp(int new_cwp)
1307 /* put the modified wrap registers at their proper location */
1308 if (env->cwp == env->nwindows - 1) {
1309 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1311 env->cwp = new_cwp;
1313 /* put the wrap registers at their temporary location */
1314 if (new_cwp == env->nwindows - 1) {
1315 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1317 env->regwptr = env->regbase + (new_cwp * 16);
1320 void cpu_set_cwp(CPUState *env1, int new_cwp)
1322 CPUState *saved_env;
1324 saved_env = env;
1325 env = env1;
1326 set_cwp(new_cwp);
1327 env = saved_env;
1330 static target_ulong get_psr(void)
1332 helper_compute_psr();
1334 #if !defined (TARGET_SPARC64)
1335 return env->version | (env->psr & PSR_ICC) |
1336 (env->psref? PSR_EF : 0) |
1337 (env->psrpil << 8) |
1338 (env->psrs? PSR_S : 0) |
1339 (env->psrps? PSR_PS : 0) |
1340 (env->psret? PSR_ET : 0) | env->cwp;
1341 #else
1342 return env->version | (env->psr & PSR_ICC) |
1343 (env->psref? PSR_EF : 0) |
1344 (env->psrpil << 8) |
1345 (env->psrs? PSR_S : 0) |
1346 (env->psrps? PSR_PS : 0) | env->cwp;
1347 #endif
1350 target_ulong cpu_get_psr(CPUState *env1)
1352 CPUState *saved_env;
1353 target_ulong ret;
1355 saved_env = env;
1356 env = env1;
1357 ret = get_psr();
1358 env = saved_env;
1359 return ret;
1362 static void put_psr(target_ulong val)
1364 env->psr = val & PSR_ICC;
1365 env->psref = (val & PSR_EF)? 1 : 0;
1366 env->psrpil = (val & PSR_PIL) >> 8;
1367 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1368 cpu_check_irqs(env);
1369 #endif
1370 env->psrs = (val & PSR_S)? 1 : 0;
1371 env->psrps = (val & PSR_PS)? 1 : 0;
1372 #if !defined (TARGET_SPARC64)
1373 env->psret = (val & PSR_ET)? 1 : 0;
1374 #endif
1375 set_cwp(val & PSR_CWP);
1376 env->cc_op = CC_OP_FLAGS;
1379 void cpu_put_psr(CPUState *env1, target_ulong val)
1381 CPUState *saved_env;
1383 saved_env = env;
1384 env = env1;
1385 put_psr(val);
1386 env = saved_env;
1389 static int cwp_inc(int cwp)
1391 if (unlikely(cwp >= env->nwindows)) {
1392 cwp -= env->nwindows;
1394 return cwp;
1397 int cpu_cwp_inc(CPUState *env1, int cwp)
1399 CPUState *saved_env;
1400 target_ulong ret;
1402 saved_env = env;
1403 env = env1;
1404 ret = cwp_inc(cwp);
1405 env = saved_env;
1406 return ret;
1409 static int cwp_dec(int cwp)
1411 if (unlikely(cwp < 0)) {
1412 cwp += env->nwindows;
1414 return cwp;
1417 int cpu_cwp_dec(CPUState *env1, int cwp)
1419 CPUState *saved_env;
1420 target_ulong ret;
1422 saved_env = env;
1423 env = env1;
1424 ret = cwp_dec(cwp);
1425 env = saved_env;
1426 return ret;
1429 #ifdef TARGET_SPARC64
1430 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1431 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1432 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1434 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1435 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1436 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1438 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1439 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1440 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1442 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1443 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1444 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1446 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1447 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1448 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1450 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1451 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1452 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1453 #endif
1454 #undef GEN_FCMPS
1456 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1457 defined(DEBUG_MXCC)
1458 static void dump_mxcc(CPUState *env)
1460 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1461 "\n",
1462 env->mxccdata[0], env->mxccdata[1],
1463 env->mxccdata[2], env->mxccdata[3]);
1464 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1465 "\n"
1466 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1467 "\n",
1468 env->mxccregs[0], env->mxccregs[1],
1469 env->mxccregs[2], env->mxccregs[3],
1470 env->mxccregs[4], env->mxccregs[5],
1471 env->mxccregs[6], env->mxccregs[7]);
1473 #endif
1475 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1476 && defined(DEBUG_ASI)
1477 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1478 uint64_t r1)
1480 switch (size)
1482 case 1:
1483 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1484 addr, asi, r1 & 0xff);
1485 break;
1486 case 2:
1487 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1488 addr, asi, r1 & 0xffff);
1489 break;
1490 case 4:
1491 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1492 addr, asi, r1 & 0xffffffff);
1493 break;
1494 case 8:
1495 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1496 addr, asi, r1);
1497 break;
1500 #endif
1502 #ifndef TARGET_SPARC64
1503 #ifndef CONFIG_USER_ONLY
1504 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1506 uint64_t ret = 0;
1507 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1508 uint32_t last_addr = addr;
1509 #endif
1511 helper_check_align(addr, size - 1);
1512 switch (asi) {
1513 case 2: /* SuperSparc MXCC registers */
1514 switch (addr) {
1515 case 0x01c00a00: /* MXCC control register */
1516 if (size == 8)
1517 ret = env->mxccregs[3];
1518 else
1519 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1520 size);
1521 break;
1522 case 0x01c00a04: /* MXCC control register */
1523 if (size == 4)
1524 ret = env->mxccregs[3];
1525 else
1526 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1527 size);
1528 break;
1529 case 0x01c00c00: /* Module reset register */
1530 if (size == 8) {
1531 ret = env->mxccregs[5];
1532 // should we do something here?
1533 } else
1534 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1535 size);
1536 break;
1537 case 0x01c00f00: /* MBus port address register */
1538 if (size == 8)
1539 ret = env->mxccregs[7];
1540 else
1541 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1542 size);
1543 break;
1544 default:
1545 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1546 size);
1547 break;
1549 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1550 "addr = %08x -> ret = %" PRIx64 ","
1551 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1552 #ifdef DEBUG_MXCC
1553 dump_mxcc(env);
1554 #endif
1555 break;
1556 case 3: /* MMU probe */
1558 int mmulev;
1560 mmulev = (addr >> 8) & 15;
1561 if (mmulev > 4)
1562 ret = 0;
1563 else
1564 ret = mmu_probe(env, addr, mmulev);
1565 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1566 addr, mmulev, ret);
1568 break;
1569 case 4: /* read MMU regs */
1571 int reg = (addr >> 8) & 0x1f;
1573 ret = env->mmuregs[reg];
1574 if (reg == 3) /* Fault status cleared on read */
1575 env->mmuregs[3] = 0;
1576 else if (reg == 0x13) /* Fault status read */
1577 ret = env->mmuregs[3];
1578 else if (reg == 0x14) /* Fault address read */
1579 ret = env->mmuregs[4];
1580 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1582 break;
1583 case 5: // Turbosparc ITLB Diagnostic
1584 case 6: // Turbosparc DTLB Diagnostic
1585 case 7: // Turbosparc IOTLB Diagnostic
1586 break;
1587 case 9: /* Supervisor code access */
1588 switch(size) {
1589 case 1:
1590 ret = ldub_code(addr);
1591 break;
1592 case 2:
1593 ret = lduw_code(addr);
1594 break;
1595 default:
1596 case 4:
1597 ret = ldl_code(addr);
1598 break;
1599 case 8:
1600 ret = ldq_code(addr);
1601 break;
1603 break;
1604 case 0xa: /* User data access */
1605 switch(size) {
1606 case 1:
1607 ret = ldub_user(addr);
1608 break;
1609 case 2:
1610 ret = lduw_user(addr);
1611 break;
1612 default:
1613 case 4:
1614 ret = ldl_user(addr);
1615 break;
1616 case 8:
1617 ret = ldq_user(addr);
1618 break;
1620 break;
1621 case 0xb: /* Supervisor data access */
1622 switch(size) {
1623 case 1:
1624 ret = ldub_kernel(addr);
1625 break;
1626 case 2:
1627 ret = lduw_kernel(addr);
1628 break;
1629 default:
1630 case 4:
1631 ret = ldl_kernel(addr);
1632 break;
1633 case 8:
1634 ret = ldq_kernel(addr);
1635 break;
1637 break;
1638 case 0xc: /* I-cache tag */
1639 case 0xd: /* I-cache data */
1640 case 0xe: /* D-cache tag */
1641 case 0xf: /* D-cache data */
1642 break;
1643 case 0x20: /* MMU passthrough */
1644 switch(size) {
1645 case 1:
1646 ret = ldub_phys(addr);
1647 break;
1648 case 2:
1649 ret = lduw_phys(addr);
1650 break;
1651 default:
1652 case 4:
1653 ret = ldl_phys(addr);
1654 break;
1655 case 8:
1656 ret = ldq_phys(addr);
1657 break;
1659 break;
1660 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1661 switch(size) {
1662 case 1:
1663 ret = ldub_phys((target_phys_addr_t)addr
1664 | ((target_phys_addr_t)(asi & 0xf) << 32));
1665 break;
1666 case 2:
1667 ret = lduw_phys((target_phys_addr_t)addr
1668 | ((target_phys_addr_t)(asi & 0xf) << 32));
1669 break;
1670 default:
1671 case 4:
1672 ret = ldl_phys((target_phys_addr_t)addr
1673 | ((target_phys_addr_t)(asi & 0xf) << 32));
1674 break;
1675 case 8:
1676 ret = ldq_phys((target_phys_addr_t)addr
1677 | ((target_phys_addr_t)(asi & 0xf) << 32));
1678 break;
1680 break;
1681 case 0x30: // Turbosparc secondary cache diagnostic
1682 case 0x31: // Turbosparc RAM snoop
1683 case 0x32: // Turbosparc page table descriptor diagnostic
1684 case 0x39: /* data cache diagnostic register */
1685 ret = 0;
1686 break;
1687 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1689 int reg = (addr >> 8) & 3;
1691 switch(reg) {
1692 case 0: /* Breakpoint Value (Addr) */
1693 ret = env->mmubpregs[reg];
1694 break;
1695 case 1: /* Breakpoint Mask */
1696 ret = env->mmubpregs[reg];
1697 break;
1698 case 2: /* Breakpoint Control */
1699 ret = env->mmubpregs[reg];
1700 break;
1701 case 3: /* Breakpoint Status */
1702 ret = env->mmubpregs[reg];
1703 env->mmubpregs[reg] = 0ULL;
1704 break;
1706 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1707 ret);
1709 break;
1710 case 8: /* User code access, XXX */
1711 default:
1712 do_unassigned_access(addr, 0, 0, asi, size);
1713 ret = 0;
1714 break;
1716 if (sign) {
1717 switch(size) {
1718 case 1:
1719 ret = (int8_t) ret;
1720 break;
1721 case 2:
1722 ret = (int16_t) ret;
1723 break;
1724 case 4:
1725 ret = (int32_t) ret;
1726 break;
1727 default:
1728 break;
1731 #ifdef DEBUG_ASI
1732 dump_asi("read ", last_addr, asi, size, ret);
1733 #endif
1734 return ret;
1737 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1739 helper_check_align(addr, size - 1);
1740 switch(asi) {
1741 case 2: /* SuperSparc MXCC registers */
1742 switch (addr) {
1743 case 0x01c00000: /* MXCC stream data register 0 */
1744 if (size == 8)
1745 env->mxccdata[0] = val;
1746 else
1747 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1748 size);
1749 break;
1750 case 0x01c00008: /* MXCC stream data register 1 */
1751 if (size == 8)
1752 env->mxccdata[1] = val;
1753 else
1754 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1755 size);
1756 break;
1757 case 0x01c00010: /* MXCC stream data register 2 */
1758 if (size == 8)
1759 env->mxccdata[2] = val;
1760 else
1761 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1762 size);
1763 break;
1764 case 0x01c00018: /* MXCC stream data register 3 */
1765 if (size == 8)
1766 env->mxccdata[3] = val;
1767 else
1768 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1769 size);
1770 break;
1771 case 0x01c00100: /* MXCC stream source */
1772 if (size == 8)
1773 env->mxccregs[0] = val;
1774 else
1775 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1776 size);
1777 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1779 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1781 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1782 16);
1783 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1784 24);
1785 break;
1786 case 0x01c00200: /* MXCC stream destination */
1787 if (size == 8)
1788 env->mxccregs[1] = val;
1789 else
1790 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1791 size);
1792 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1793 env->mxccdata[0]);
1794 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1795 env->mxccdata[1]);
1796 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1797 env->mxccdata[2]);
1798 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1799 env->mxccdata[3]);
1800 break;
1801 case 0x01c00a00: /* MXCC control register */
1802 if (size == 8)
1803 env->mxccregs[3] = val;
1804 else
1805 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1806 size);
1807 break;
1808 case 0x01c00a04: /* MXCC control register */
1809 if (size == 4)
1810 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1811 | val;
1812 else
1813 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1814 size);
1815 break;
1816 case 0x01c00e00: /* MXCC error register */
1817 // writing a 1 bit clears the error
1818 if (size == 8)
1819 env->mxccregs[6] &= ~val;
1820 else
1821 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1822 size);
1823 break;
1824 case 0x01c00f00: /* MBus port address register */
1825 if (size == 8)
1826 env->mxccregs[7] = val;
1827 else
1828 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1829 size);
1830 break;
1831 default:
1832 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1833 size);
1834 break;
1836 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1837 asi, size, addr, val);
1838 #ifdef DEBUG_MXCC
1839 dump_mxcc(env);
1840 #endif
1841 break;
1842 case 3: /* MMU flush */
1844 int mmulev;
1846 mmulev = (addr >> 8) & 15;
1847 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1848 switch (mmulev) {
1849 case 0: // flush page
1850 tlb_flush_page(env, addr & 0xfffff000);
1851 break;
1852 case 1: // flush segment (256k)
1853 case 2: // flush region (16M)
1854 case 3: // flush context (4G)
1855 case 4: // flush entire
1856 tlb_flush(env, 1);
1857 break;
1858 default:
1859 break;
1861 #ifdef DEBUG_MMU
1862 dump_mmu(env);
1863 #endif
1865 break;
1866 case 4: /* write MMU regs */
1868 int reg = (addr >> 8) & 0x1f;
1869 uint32_t oldreg;
1871 oldreg = env->mmuregs[reg];
1872 switch(reg) {
1873 case 0: // Control Register
1874 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1875 (val & 0x00ffffff);
1876 // Mappings generated during no-fault mode or MMU
1877 // disabled mode are invalid in normal mode
1878 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1879 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1880 tlb_flush(env, 1);
1881 break;
1882 case 1: // Context Table Pointer Register
1883 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1884 break;
1885 case 2: // Context Register
1886 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1887 if (oldreg != env->mmuregs[reg]) {
1888 /* we flush when the MMU context changes because
1889 QEMU has no MMU context support */
1890 tlb_flush(env, 1);
1892 break;
1893 case 3: // Synchronous Fault Status Register with Clear
1894 case 4: // Synchronous Fault Address Register
1895 break;
1896 case 0x10: // TLB Replacement Control Register
1897 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1898 break;
1899 case 0x13: // Synchronous Fault Status Register with Read and Clear
1900 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1901 break;
1902 case 0x14: // Synchronous Fault Address Register
1903 env->mmuregs[4] = val;
1904 break;
1905 default:
1906 env->mmuregs[reg] = val;
1907 break;
1909 if (oldreg != env->mmuregs[reg]) {
1910 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1911 reg, oldreg, env->mmuregs[reg]);
1913 #ifdef DEBUG_MMU
1914 dump_mmu(env);
1915 #endif
1917 break;
1918 case 5: // Turbosparc ITLB Diagnostic
1919 case 6: // Turbosparc DTLB Diagnostic
1920 case 7: // Turbosparc IOTLB Diagnostic
1921 break;
1922 case 0xa: /* User data access */
1923 switch(size) {
1924 case 1:
1925 stb_user(addr, val);
1926 break;
1927 case 2:
1928 stw_user(addr, val);
1929 break;
1930 default:
1931 case 4:
1932 stl_user(addr, val);
1933 break;
1934 case 8:
1935 stq_user(addr, val);
1936 break;
1938 break;
1939 case 0xb: /* Supervisor data access */
1940 switch(size) {
1941 case 1:
1942 stb_kernel(addr, val);
1943 break;
1944 case 2:
1945 stw_kernel(addr, val);
1946 break;
1947 default:
1948 case 4:
1949 stl_kernel(addr, val);
1950 break;
1951 case 8:
1952 stq_kernel(addr, val);
1953 break;
1955 break;
1956 case 0xc: /* I-cache tag */
1957 case 0xd: /* I-cache data */
1958 case 0xe: /* D-cache tag */
1959 case 0xf: /* D-cache data */
1960 case 0x10: /* I/D-cache flush page */
1961 case 0x11: /* I/D-cache flush segment */
1962 case 0x12: /* I/D-cache flush region */
1963 case 0x13: /* I/D-cache flush context */
1964 case 0x14: /* I/D-cache flush user */
1965 break;
1966 case 0x17: /* Block copy, sta access */
1968 // val = src
1969 // addr = dst
1970 // copy 32 bytes
1971 unsigned int i;
1972 uint32_t src = val & ~3, dst = addr & ~3, temp;
1974 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1975 temp = ldl_kernel(src);
1976 stl_kernel(dst, temp);
1979 break;
1980 case 0x1f: /* Block fill, stda access */
1982 // addr = dst
1983 // fill 32 bytes with val
1984 unsigned int i;
1985 uint32_t dst = addr & 7;
1987 for (i = 0; i < 32; i += 8, dst += 8)
1988 stq_kernel(dst, val);
1990 break;
1991 case 0x20: /* MMU passthrough */
1993 switch(size) {
1994 case 1:
1995 stb_phys(addr, val);
1996 break;
1997 case 2:
1998 stw_phys(addr, val);
1999 break;
2000 case 4:
2001 default:
2002 stl_phys(addr, val);
2003 break;
2004 case 8:
2005 stq_phys(addr, val);
2006 break;
2009 break;
2010 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2012 switch(size) {
2013 case 1:
2014 stb_phys((target_phys_addr_t)addr
2015 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2016 break;
2017 case 2:
2018 stw_phys((target_phys_addr_t)addr
2019 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2020 break;
2021 case 4:
2022 default:
2023 stl_phys((target_phys_addr_t)addr
2024 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2025 break;
2026 case 8:
2027 stq_phys((target_phys_addr_t)addr
2028 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2029 break;
2032 break;
2033 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2034 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2035 // Turbosparc snoop RAM
2036 case 0x32: // store buffer control or Turbosparc page table
2037 // descriptor diagnostic
2038 case 0x36: /* I-cache flash clear */
2039 case 0x37: /* D-cache flash clear */
2040 case 0x4c: /* breakpoint action */
2041 break;
2042 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2044 int reg = (addr >> 8) & 3;
2046 switch(reg) {
2047 case 0: /* Breakpoint Value (Addr) */
2048 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2049 break;
2050 case 1: /* Breakpoint Mask */
2051 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2052 break;
2053 case 2: /* Breakpoint Control */
2054 env->mmubpregs[reg] = (val & 0x7fULL);
2055 break;
2056 case 3: /* Breakpoint Status */
2057 env->mmubpregs[reg] = (val & 0xfULL);
2058 break;
2060 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2061 env->mmuregs[reg]);
2063 break;
2064 case 8: /* User code access, XXX */
2065 case 9: /* Supervisor code access, XXX */
2066 default:
2067 do_unassigned_access(addr, 1, 0, asi, size);
2068 break;
2070 #ifdef DEBUG_ASI
2071 dump_asi("write", addr, asi, size, val);
2072 #endif
2075 #endif /* CONFIG_USER_ONLY */
2076 #else /* TARGET_SPARC64 */
2078 #ifdef CONFIG_USER_ONLY
2079 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2081 uint64_t ret = 0;
2082 #if defined(DEBUG_ASI)
2083 target_ulong last_addr = addr;
2084 #endif
2086 if (asi < 0x80)
2087 raise_exception(TT_PRIV_ACT);
2089 helper_check_align(addr, size - 1);
2090 addr = address_mask(env, addr);
2092 switch (asi) {
2093 case 0x82: // Primary no-fault
2094 case 0x8a: // Primary no-fault LE
2095 if (page_check_range(addr, size, PAGE_READ) == -1) {
2096 #ifdef DEBUG_ASI
2097 dump_asi("read ", last_addr, asi, size, ret);
2098 #endif
2099 return 0;
2101 // Fall through
2102 case 0x80: // Primary
2103 case 0x88: // Primary LE
2105 switch(size) {
2106 case 1:
2107 ret = ldub_raw(addr);
2108 break;
2109 case 2:
2110 ret = lduw_raw(addr);
2111 break;
2112 case 4:
2113 ret = ldl_raw(addr);
2114 break;
2115 default:
2116 case 8:
2117 ret = ldq_raw(addr);
2118 break;
2121 break;
2122 case 0x83: // Secondary no-fault
2123 case 0x8b: // Secondary no-fault LE
2124 if (page_check_range(addr, size, PAGE_READ) == -1) {
2125 #ifdef DEBUG_ASI
2126 dump_asi("read ", last_addr, asi, size, ret);
2127 #endif
2128 return 0;
2130 // Fall through
2131 case 0x81: // Secondary
2132 case 0x89: // Secondary LE
2133 // XXX
2134 break;
2135 default:
2136 break;
2139 /* Convert from little endian */
2140 switch (asi) {
2141 case 0x88: // Primary LE
2142 case 0x89: // Secondary LE
2143 case 0x8a: // Primary no-fault LE
2144 case 0x8b: // Secondary no-fault LE
2145 switch(size) {
2146 case 2:
2147 ret = bswap16(ret);
2148 break;
2149 case 4:
2150 ret = bswap32(ret);
2151 break;
2152 case 8:
2153 ret = bswap64(ret);
2154 break;
2155 default:
2156 break;
2158 default:
2159 break;
2162 /* Convert to signed number */
2163 if (sign) {
2164 switch(size) {
2165 case 1:
2166 ret = (int8_t) ret;
2167 break;
2168 case 2:
2169 ret = (int16_t) ret;
2170 break;
2171 case 4:
2172 ret = (int32_t) ret;
2173 break;
2174 default:
2175 break;
2178 #ifdef DEBUG_ASI
2179 dump_asi("read ", last_addr, asi, size, ret);
2180 #endif
2181 return ret;
2184 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2186 #ifdef DEBUG_ASI
2187 dump_asi("write", addr, asi, size, val);
2188 #endif
2189 if (asi < 0x80)
2190 raise_exception(TT_PRIV_ACT);
2192 helper_check_align(addr, size - 1);
2193 addr = address_mask(env, addr);
2195 /* Convert to little endian */
2196 switch (asi) {
2197 case 0x88: // Primary LE
2198 case 0x89: // Secondary LE
2199 switch(size) {
2200 case 2:
2201 val = bswap16(val);
2202 break;
2203 case 4:
2204 val = bswap32(val);
2205 break;
2206 case 8:
2207 val = bswap64(val);
2208 break;
2209 default:
2210 break;
2212 default:
2213 break;
2216 switch(asi) {
2217 case 0x80: // Primary
2218 case 0x88: // Primary LE
2220 switch(size) {
2221 case 1:
2222 stb_raw(addr, val);
2223 break;
2224 case 2:
2225 stw_raw(addr, val);
2226 break;
2227 case 4:
2228 stl_raw(addr, val);
2229 break;
2230 case 8:
2231 default:
2232 stq_raw(addr, val);
2233 break;
2236 break;
2237 case 0x81: // Secondary
2238 case 0x89: // Secondary LE
2239 // XXX
2240 return;
2242 case 0x82: // Primary no-fault, RO
2243 case 0x83: // Secondary no-fault, RO
2244 case 0x8a: // Primary no-fault LE, RO
2245 case 0x8b: // Secondary no-fault LE, RO
2246 default:
2247 do_unassigned_access(addr, 1, 0, 1, size);
2248 return;
2252 #else /* CONFIG_USER_ONLY */
2254 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2256 uint64_t ret = 0;
2257 #if defined(DEBUG_ASI)
2258 target_ulong last_addr = addr;
2259 #endif
2261 asi &= 0xff;
2263 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2264 || ((env->def->features & CPU_FEATURE_HYPV)
2265 && asi >= 0x30 && asi < 0x80
2266 && !(env->hpstate & HS_PRIV)))
2267 raise_exception(TT_PRIV_ACT);
2269 helper_check_align(addr, size - 1);
2270 switch (asi) {
2271 case 0x82: // Primary no-fault
2272 case 0x8a: // Primary no-fault LE
2273 case 0x83: // Secondary no-fault
2274 case 0x8b: // Secondary no-fault LE
2276 /* secondary space access has lowest asi bit equal to 1 */
2277 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2278 : MMU_KERNEL_SECONDARY_IDX;
2280 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2281 #ifdef DEBUG_ASI
2282 dump_asi("read ", last_addr, asi, size, ret);
2283 #endif
2284 return 0;
2287 // Fall through
2288 case 0x10: // As if user primary
2289 case 0x11: // As if user secondary
2290 case 0x18: // As if user primary LE
2291 case 0x19: // As if user secondary LE
2292 case 0x80: // Primary
2293 case 0x81: // Secondary
2294 case 0x88: // Primary LE
2295 case 0x89: // Secondary LE
2296 case 0xe2: // UA2007 Primary block init
2297 case 0xe3: // UA2007 Secondary block init
2298 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2299 if ((env->def->features & CPU_FEATURE_HYPV)
2300 && env->hpstate & HS_PRIV) {
2301 switch(size) {
2302 case 1:
2303 ret = ldub_hypv(addr);
2304 break;
2305 case 2:
2306 ret = lduw_hypv(addr);
2307 break;
2308 case 4:
2309 ret = ldl_hypv(addr);
2310 break;
2311 default:
2312 case 8:
2313 ret = ldq_hypv(addr);
2314 break;
2316 } else {
2317 /* secondary space access has lowest asi bit equal to 1 */
2318 if (asi & 1) {
2319 switch(size) {
2320 case 1:
2321 ret = ldub_kernel_secondary(addr);
2322 break;
2323 case 2:
2324 ret = lduw_kernel_secondary(addr);
2325 break;
2326 case 4:
2327 ret = ldl_kernel_secondary(addr);
2328 break;
2329 default:
2330 case 8:
2331 ret = ldq_kernel_secondary(addr);
2332 break;
2334 } else {
2335 switch(size) {
2336 case 1:
2337 ret = ldub_kernel(addr);
2338 break;
2339 case 2:
2340 ret = lduw_kernel(addr);
2341 break;
2342 case 4:
2343 ret = ldl_kernel(addr);
2344 break;
2345 default:
2346 case 8:
2347 ret = ldq_kernel(addr);
2348 break;
2352 } else {
2353 /* secondary space access has lowest asi bit equal to 1 */
2354 if (asi & 1) {
2355 switch(size) {
2356 case 1:
2357 ret = ldub_user_secondary(addr);
2358 break;
2359 case 2:
2360 ret = lduw_user_secondary(addr);
2361 break;
2362 case 4:
2363 ret = ldl_user_secondary(addr);
2364 break;
2365 default:
2366 case 8:
2367 ret = ldq_user_secondary(addr);
2368 break;
2370 } else {
2371 switch(size) {
2372 case 1:
2373 ret = ldub_user(addr);
2374 break;
2375 case 2:
2376 ret = lduw_user(addr);
2377 break;
2378 case 4:
2379 ret = ldl_user(addr);
2380 break;
2381 default:
2382 case 8:
2383 ret = ldq_user(addr);
2384 break;
2388 break;
2389 case 0x14: // Bypass
2390 case 0x15: // Bypass, non-cacheable
2391 case 0x1c: // Bypass LE
2392 case 0x1d: // Bypass, non-cacheable LE
2394 switch(size) {
2395 case 1:
2396 ret = ldub_phys(addr);
2397 break;
2398 case 2:
2399 ret = lduw_phys(addr);
2400 break;
2401 case 4:
2402 ret = ldl_phys(addr);
2403 break;
2404 default:
2405 case 8:
2406 ret = ldq_phys(addr);
2407 break;
2409 break;
2411 case 0x24: // Nucleus quad LDD 128 bit atomic
2412 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2413 // Only ldda allowed
2414 raise_exception(TT_ILL_INSN);
2415 return 0;
2416 case 0x04: // Nucleus
2417 case 0x0c: // Nucleus Little Endian (LE)
2419 switch(size) {
2420 case 1:
2421 ret = ldub_nucleus(addr);
2422 break;
2423 case 2:
2424 ret = lduw_nucleus(addr);
2425 break;
2426 case 4:
2427 ret = ldl_nucleus(addr);
2428 break;
2429 default:
2430 case 8:
2431 ret = ldq_nucleus(addr);
2432 break;
2434 break;
2436 case 0x4a: // UPA config
2437 // XXX
2438 break;
2439 case 0x45: // LSU
2440 ret = env->lsu;
2441 break;
2442 case 0x50: // I-MMU regs
2444 int reg = (addr >> 3) & 0xf;
2446 if (reg == 0) {
2447 // I-TSB Tag Target register
2448 ret = ultrasparc_tag_target(env->immu.tag_access);
2449 } else {
2450 ret = env->immuregs[reg];
2453 break;
2455 case 0x51: // I-MMU 8k TSB pointer
2457 // env->immuregs[5] holds I-MMU TSB register value
2458 // env->immuregs[6] holds I-MMU Tag Access register value
2459 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2460 8*1024);
2461 break;
2463 case 0x52: // I-MMU 64k TSB pointer
2465 // env->immuregs[5] holds I-MMU TSB register value
2466 // env->immuregs[6] holds I-MMU Tag Access register value
2467 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2468 64*1024);
2469 break;
2471 case 0x55: // I-MMU data access
2473 int reg = (addr >> 3) & 0x3f;
2475 ret = env->itlb[reg].tte;
2476 break;
2478 case 0x56: // I-MMU tag read
2480 int reg = (addr >> 3) & 0x3f;
2482 ret = env->itlb[reg].tag;
2483 break;
2485 case 0x58: // D-MMU regs
2487 int reg = (addr >> 3) & 0xf;
2489 if (reg == 0) {
2490 // D-TSB Tag Target register
2491 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2492 } else {
2493 ret = env->dmmuregs[reg];
2495 break;
2497 case 0x59: // D-MMU 8k TSB pointer
2499 // env->dmmuregs[5] holds D-MMU TSB register value
2500 // env->dmmuregs[6] holds D-MMU Tag Access register value
2501 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2502 8*1024);
2503 break;
2505 case 0x5a: // D-MMU 64k TSB pointer
2507 // env->dmmuregs[5] holds D-MMU TSB register value
2508 // env->dmmuregs[6] holds D-MMU Tag Access register value
2509 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2510 64*1024);
2511 break;
2513 case 0x5d: // D-MMU data access
2515 int reg = (addr >> 3) & 0x3f;
2517 ret = env->dtlb[reg].tte;
2518 break;
2520 case 0x5e: // D-MMU tag read
2522 int reg = (addr >> 3) & 0x3f;
2524 ret = env->dtlb[reg].tag;
2525 break;
2527 case 0x46: // D-cache data
2528 case 0x47: // D-cache tag access
2529 case 0x4b: // E-cache error enable
2530 case 0x4c: // E-cache asynchronous fault status
2531 case 0x4d: // E-cache asynchronous fault address
2532 case 0x4e: // E-cache tag data
2533 case 0x66: // I-cache instruction access
2534 case 0x67: // I-cache tag access
2535 case 0x6e: // I-cache predecode
2536 case 0x6f: // I-cache LRU etc.
2537 case 0x76: // E-cache tag
2538 case 0x7e: // E-cache tag
2539 break;
2540 case 0x5b: // D-MMU data pointer
2541 case 0x48: // Interrupt dispatch, RO
2542 case 0x49: // Interrupt data receive
2543 case 0x7f: // Incoming interrupt vector, RO
2544 // XXX
2545 break;
2546 case 0x54: // I-MMU data in, WO
2547 case 0x57: // I-MMU demap, WO
2548 case 0x5c: // D-MMU data in, WO
2549 case 0x5f: // D-MMU demap, WO
2550 case 0x77: // Interrupt vector, WO
2551 default:
2552 do_unassigned_access(addr, 0, 0, 1, size);
2553 ret = 0;
2554 break;
2557 /* Convert from little endian */
2558 switch (asi) {
2559 case 0x0c: // Nucleus Little Endian (LE)
2560 case 0x18: // As if user primary LE
2561 case 0x19: // As if user secondary LE
2562 case 0x1c: // Bypass LE
2563 case 0x1d: // Bypass, non-cacheable LE
2564 case 0x88: // Primary LE
2565 case 0x89: // Secondary LE
2566 case 0x8a: // Primary no-fault LE
2567 case 0x8b: // Secondary no-fault LE
2568 switch(size) {
2569 case 2:
2570 ret = bswap16(ret);
2571 break;
2572 case 4:
2573 ret = bswap32(ret);
2574 break;
2575 case 8:
2576 ret = bswap64(ret);
2577 break;
2578 default:
2579 break;
2581 default:
2582 break;
2585 /* Convert to signed number */
2586 if (sign) {
2587 switch(size) {
2588 case 1:
2589 ret = (int8_t) ret;
2590 break;
2591 case 2:
2592 ret = (int16_t) ret;
2593 break;
2594 case 4:
2595 ret = (int32_t) ret;
2596 break;
2597 default:
2598 break;
2601 #ifdef DEBUG_ASI
2602 dump_asi("read ", last_addr, asi, size, ret);
2603 #endif
2604 return ret;
2607 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2609 #ifdef DEBUG_ASI
2610 dump_asi("write", addr, asi, size, val);
2611 #endif
2613 asi &= 0xff;
2615 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2616 || ((env->def->features & CPU_FEATURE_HYPV)
2617 && asi >= 0x30 && asi < 0x80
2618 && !(env->hpstate & HS_PRIV)))
2619 raise_exception(TT_PRIV_ACT);
2621 helper_check_align(addr, size - 1);
2622 /* Convert to little endian */
2623 switch (asi) {
2624 case 0x0c: // Nucleus Little Endian (LE)
2625 case 0x18: // As if user primary LE
2626 case 0x19: // As if user secondary LE
2627 case 0x1c: // Bypass LE
2628 case 0x1d: // Bypass, non-cacheable LE
2629 case 0x88: // Primary LE
2630 case 0x89: // Secondary LE
2631 switch(size) {
2632 case 2:
2633 val = bswap16(val);
2634 break;
2635 case 4:
2636 val = bswap32(val);
2637 break;
2638 case 8:
2639 val = bswap64(val);
2640 break;
2641 default:
2642 break;
2644 default:
2645 break;
2648 switch(asi) {
2649 case 0x10: // As if user primary
2650 case 0x11: // As if user secondary
2651 case 0x18: // As if user primary LE
2652 case 0x19: // As if user secondary LE
2653 case 0x80: // Primary
2654 case 0x81: // Secondary
2655 case 0x88: // Primary LE
2656 case 0x89: // Secondary LE
2657 case 0xe2: // UA2007 Primary block init
2658 case 0xe3: // UA2007 Secondary block init
2659 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2660 if ((env->def->features & CPU_FEATURE_HYPV)
2661 && env->hpstate & HS_PRIV) {
2662 switch(size) {
2663 case 1:
2664 stb_hypv(addr, val);
2665 break;
2666 case 2:
2667 stw_hypv(addr, val);
2668 break;
2669 case 4:
2670 stl_hypv(addr, val);
2671 break;
2672 case 8:
2673 default:
2674 stq_hypv(addr, val);
2675 break;
2677 } else {
2678 /* secondary space access has lowest asi bit equal to 1 */
2679 if (asi & 1) {
2680 switch(size) {
2681 case 1:
2682 stb_kernel_secondary(addr, val);
2683 break;
2684 case 2:
2685 stw_kernel_secondary(addr, val);
2686 break;
2687 case 4:
2688 stl_kernel_secondary(addr, val);
2689 break;
2690 case 8:
2691 default:
2692 stq_kernel_secondary(addr, val);
2693 break;
2695 } else {
2696 switch(size) {
2697 case 1:
2698 stb_kernel(addr, val);
2699 break;
2700 case 2:
2701 stw_kernel(addr, val);
2702 break;
2703 case 4:
2704 stl_kernel(addr, val);
2705 break;
2706 case 8:
2707 default:
2708 stq_kernel(addr, val);
2709 break;
2713 } else {
2714 /* secondary space access has lowest asi bit equal to 1 */
2715 if (asi & 1) {
2716 switch(size) {
2717 case 1:
2718 stb_user_secondary(addr, val);
2719 break;
2720 case 2:
2721 stw_user_secondary(addr, val);
2722 break;
2723 case 4:
2724 stl_user_secondary(addr, val);
2725 break;
2726 case 8:
2727 default:
2728 stq_user_secondary(addr, val);
2729 break;
2731 } else {
2732 switch(size) {
2733 case 1:
2734 stb_user(addr, val);
2735 break;
2736 case 2:
2737 stw_user(addr, val);
2738 break;
2739 case 4:
2740 stl_user(addr, val);
2741 break;
2742 case 8:
2743 default:
2744 stq_user(addr, val);
2745 break;
2749 break;
2750 case 0x14: // Bypass
2751 case 0x15: // Bypass, non-cacheable
2752 case 0x1c: // Bypass LE
2753 case 0x1d: // Bypass, non-cacheable LE
2755 switch(size) {
2756 case 1:
2757 stb_phys(addr, val);
2758 break;
2759 case 2:
2760 stw_phys(addr, val);
2761 break;
2762 case 4:
2763 stl_phys(addr, val);
2764 break;
2765 case 8:
2766 default:
2767 stq_phys(addr, val);
2768 break;
2771 return;
2772 case 0x24: // Nucleus quad LDD 128 bit atomic
2773 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2774 // Only ldda allowed
2775 raise_exception(TT_ILL_INSN);
2776 return;
2777 case 0x04: // Nucleus
2778 case 0x0c: // Nucleus Little Endian (LE)
2780 switch(size) {
2781 case 1:
2782 stb_nucleus(addr, val);
2783 break;
2784 case 2:
2785 stw_nucleus(addr, val);
2786 break;
2787 case 4:
2788 stl_nucleus(addr, val);
2789 break;
2790 default:
2791 case 8:
2792 stq_nucleus(addr, val);
2793 break;
2795 break;
2798 case 0x4a: // UPA config
2799 // XXX
2800 return;
2801 case 0x45: // LSU
2803 uint64_t oldreg;
2805 oldreg = env->lsu;
2806 env->lsu = val & (DMMU_E | IMMU_E);
2807 // Mappings generated during D/I MMU disabled mode are
2808 // invalid in normal mode
2809 if (oldreg != env->lsu) {
2810 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2811 oldreg, env->lsu);
2812 #ifdef DEBUG_MMU
2813 dump_mmu(env);
2814 #endif
2815 tlb_flush(env, 1);
2817 return;
2819 case 0x50: // I-MMU regs
2821 int reg = (addr >> 3) & 0xf;
2822 uint64_t oldreg;
2824 oldreg = env->immuregs[reg];
2825 switch(reg) {
2826 case 0: // RO
2827 return;
2828 case 1: // Not in I-MMU
2829 case 2:
2830 return;
2831 case 3: // SFSR
2832 if ((val & 1) == 0)
2833 val = 0; // Clear SFSR
2834 env->immu.sfsr = val;
2835 break;
2836 case 4: // RO
2837 return;
2838 case 5: // TSB access
2839 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2840 PRIx64 "\n", env->immu.tsb, val);
2841 env->immu.tsb = val;
2842 break;
2843 case 6: // Tag access
2844 env->immu.tag_access = val;
2845 break;
2846 case 7:
2847 case 8:
2848 return;
2849 default:
2850 break;
2853 if (oldreg != env->immuregs[reg]) {
2854 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2855 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2857 #ifdef DEBUG_MMU
2858 dump_mmu(env);
2859 #endif
2860 return;
2862 case 0x54: // I-MMU data in
2863 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2864 return;
2865 case 0x55: // I-MMU data access
2867 // TODO: auto demap
2869 unsigned int i = (addr >> 3) & 0x3f;
2871 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2873 #ifdef DEBUG_MMU
2874 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2875 dump_mmu(env);
2876 #endif
2877 return;
2879 case 0x57: // I-MMU demap
2880 demap_tlb(env->itlb, val, "immu", env);
2881 return;
2882 case 0x58: // D-MMU regs
2884 int reg = (addr >> 3) & 0xf;
2885 uint64_t oldreg;
2887 oldreg = env->dmmuregs[reg];
2888 switch(reg) {
2889 case 0: // RO
2890 case 4:
2891 return;
2892 case 3: // SFSR
2893 if ((val & 1) == 0) {
2894 val = 0; // Clear SFSR, Fault address
2895 env->dmmu.sfar = 0;
2897 env->dmmu.sfsr = val;
2898 break;
2899 case 1: // Primary context
2900 env->dmmu.mmu_primary_context = val;
2901 break;
2902 case 2: // Secondary context
2903 env->dmmu.mmu_secondary_context = val;
2904 break;
2905 case 5: // TSB access
2906 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2907 PRIx64 "\n", env->dmmu.tsb, val);
2908 env->dmmu.tsb = val;
2909 break;
2910 case 6: // Tag access
2911 env->dmmu.tag_access = val;
2912 break;
2913 case 7: // Virtual Watchpoint
2914 case 8: // Physical Watchpoint
2915 default:
2916 env->dmmuregs[reg] = val;
2917 break;
2920 if (oldreg != env->dmmuregs[reg]) {
2921 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2922 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2924 #ifdef DEBUG_MMU
2925 dump_mmu(env);
2926 #endif
2927 return;
2929 case 0x5c: // D-MMU data in
2930 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2931 return;
2932 case 0x5d: // D-MMU data access
2934 unsigned int i = (addr >> 3) & 0x3f;
2936 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2938 #ifdef DEBUG_MMU
2939 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2940 dump_mmu(env);
2941 #endif
2942 return;
2944 case 0x5f: // D-MMU demap
2945 demap_tlb(env->dtlb, val, "dmmu", env);
2946 return;
2947 case 0x49: // Interrupt data receive
2948 // XXX
2949 return;
2950 case 0x46: // D-cache data
2951 case 0x47: // D-cache tag access
2952 case 0x4b: // E-cache error enable
2953 case 0x4c: // E-cache asynchronous fault status
2954 case 0x4d: // E-cache asynchronous fault address
2955 case 0x4e: // E-cache tag data
2956 case 0x66: // I-cache instruction access
2957 case 0x67: // I-cache tag access
2958 case 0x6e: // I-cache predecode
2959 case 0x6f: // I-cache LRU etc.
2960 case 0x76: // E-cache tag
2961 case 0x7e: // E-cache tag
2962 return;
2963 case 0x51: // I-MMU 8k TSB pointer, RO
2964 case 0x52: // I-MMU 64k TSB pointer, RO
2965 case 0x56: // I-MMU tag read, RO
2966 case 0x59: // D-MMU 8k TSB pointer, RO
2967 case 0x5a: // D-MMU 64k TSB pointer, RO
2968 case 0x5b: // D-MMU data pointer, RO
2969 case 0x5e: // D-MMU tag read, RO
2970 case 0x48: // Interrupt dispatch, RO
2971 case 0x7f: // Incoming interrupt vector, RO
2972 case 0x82: // Primary no-fault, RO
2973 case 0x83: // Secondary no-fault, RO
2974 case 0x8a: // Primary no-fault LE, RO
2975 case 0x8b: // Secondary no-fault LE, RO
2976 default:
2977 do_unassigned_access(addr, 1, 0, 1, size);
2978 return;
2981 #endif /* CONFIG_USER_ONLY */
2983 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2985 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2986 || ((env->def->features & CPU_FEATURE_HYPV)
2987 && asi >= 0x30 && asi < 0x80
2988 && !(env->hpstate & HS_PRIV)))
2989 raise_exception(TT_PRIV_ACT);
2991 switch (asi) {
2992 case 0x24: // Nucleus quad LDD 128 bit atomic
2993 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2994 helper_check_align(addr, 0xf);
2995 if (rd == 0) {
2996 env->gregs[1] = ldq_kernel(addr + 8);
2997 if (asi == 0x2c)
2998 bswap64s(&env->gregs[1]);
2999 } else if (rd < 8) {
3000 env->gregs[rd] = ldq_kernel(addr);
3001 env->gregs[rd + 1] = ldq_kernel(addr + 8);
3002 if (asi == 0x2c) {
3003 bswap64s(&env->gregs[rd]);
3004 bswap64s(&env->gregs[rd + 1]);
3006 } else {
3007 env->regwptr[rd] = ldq_kernel(addr);
3008 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
3009 if (asi == 0x2c) {
3010 bswap64s(&env->regwptr[rd]);
3011 bswap64s(&env->regwptr[rd + 1]);
3014 break;
3015 default:
3016 helper_check_align(addr, 0x3);
3017 if (rd == 0)
3018 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3019 else if (rd < 8) {
3020 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3021 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3022 } else {
3023 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3024 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3026 break;
3030 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3032 unsigned int i;
3033 target_ulong val;
3035 helper_check_align(addr, 3);
3036 switch (asi) {
3037 case 0xf0: // Block load primary
3038 case 0xf1: // Block load secondary
3039 case 0xf8: // Block load primary LE
3040 case 0xf9: // Block load secondary LE
3041 if (rd & 7) {
3042 raise_exception(TT_ILL_INSN);
3043 return;
3045 helper_check_align(addr, 0x3f);
3046 for (i = 0; i < 16; i++) {
3047 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3049 addr += 4;
3052 return;
3053 default:
3054 break;
3057 val = helper_ld_asi(addr, asi, size, 0);
3058 switch(size) {
3059 default:
3060 case 4:
3061 *((uint32_t *)&env->fpr[rd]) = val;
3062 break;
3063 case 8:
3064 *((int64_t *)&DT0) = val;
3065 break;
3066 case 16:
3067 // XXX
3068 break;
3072 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3074 unsigned int i;
3075 target_ulong val = 0;
3077 helper_check_align(addr, 3);
3078 switch (asi) {
3079 case 0xe0: // UA2007 Block commit store primary (cache flush)
3080 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3081 case 0xf0: // Block store primary
3082 case 0xf1: // Block store secondary
3083 case 0xf8: // Block store primary LE
3084 case 0xf9: // Block store secondary LE
3085 if (rd & 7) {
3086 raise_exception(TT_ILL_INSN);
3087 return;
3089 helper_check_align(addr, 0x3f);
3090 for (i = 0; i < 16; i++) {
3091 val = *(uint32_t *)&env->fpr[rd++];
3092 helper_st_asi(addr, val, asi & 0x8f, 4);
3093 addr += 4;
3096 return;
3097 default:
3098 break;
3101 switch(size) {
3102 default:
3103 case 4:
3104 val = *((uint32_t *)&env->fpr[rd]);
3105 break;
3106 case 8:
3107 val = *((int64_t *)&DT0);
3108 break;
3109 case 16:
3110 // XXX
3111 break;
3113 helper_st_asi(addr, val, asi, size);
3116 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3117 target_ulong val2, uint32_t asi)
3119 target_ulong ret;
3121 val2 &= 0xffffffffUL;
3122 ret = helper_ld_asi(addr, asi, 4, 0);
3123 ret &= 0xffffffffUL;
3124 if (val2 == ret)
3125 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3126 return ret;
3129 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3130 target_ulong val2, uint32_t asi)
3132 target_ulong ret;
3134 ret = helper_ld_asi(addr, asi, 8, 0);
3135 if (val2 == ret)
3136 helper_st_asi(addr, val1, asi, 8);
3137 return ret;
3139 #endif /* TARGET_SPARC64 */
3141 #ifndef TARGET_SPARC64
3142 void helper_rett(void)
3144 unsigned int cwp;
3146 if (env->psret == 1)
3147 raise_exception(TT_ILL_INSN);
3149 env->psret = 1;
3150 cwp = cwp_inc(env->cwp + 1) ;
3151 if (env->wim & (1 << cwp)) {
3152 raise_exception(TT_WIN_UNF);
3154 set_cwp(cwp);
3155 env->psrs = env->psrps;
3157 #endif
3159 target_ulong helper_udiv(target_ulong a, target_ulong b)
3161 uint64_t x0;
3162 uint32_t x1;
3164 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3165 x1 = b;
3167 if (x1 == 0) {
3168 raise_exception(TT_DIV_ZERO);
3171 x0 = x0 / x1;
3172 if (x0 > 0xffffffff) {
3173 env->cc_src2 = 1;
3174 return 0xffffffff;
3175 } else {
3176 env->cc_src2 = 0;
3177 return x0;
3181 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3183 int64_t x0;
3184 int32_t x1;
3186 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3187 x1 = b;
3189 if (x1 == 0) {
3190 raise_exception(TT_DIV_ZERO);
3193 x0 = x0 / x1;
3194 if ((int32_t) x0 != x0) {
3195 env->cc_src2 = 1;
3196 return x0 < 0? 0x80000000: 0x7fffffff;
3197 } else {
3198 env->cc_src2 = 0;
3199 return x0;
3203 void helper_stdf(target_ulong addr, int mem_idx)
3205 helper_check_align(addr, 7);
3206 #if !defined(CONFIG_USER_ONLY)
3207 switch (mem_idx) {
3208 case 0:
3209 stfq_user(addr, DT0);
3210 break;
3211 case 1:
3212 stfq_kernel(addr, DT0);
3213 break;
3214 #ifdef TARGET_SPARC64
3215 case 2:
3216 stfq_hypv(addr, DT0);
3217 break;
3218 #endif
3219 default:
3220 break;
3222 #else
3223 stfq_raw(address_mask(env, addr), DT0);
3224 #endif
3227 void helper_lddf(target_ulong addr, int mem_idx)
3229 helper_check_align(addr, 7);
3230 #if !defined(CONFIG_USER_ONLY)
3231 switch (mem_idx) {
3232 case 0:
3233 DT0 = ldfq_user(addr);
3234 break;
3235 case 1:
3236 DT0 = ldfq_kernel(addr);
3237 break;
3238 #ifdef TARGET_SPARC64
3239 case 2:
3240 DT0 = ldfq_hypv(addr);
3241 break;
3242 #endif
3243 default:
3244 break;
3246 #else
3247 DT0 = ldfq_raw(address_mask(env, addr));
3248 #endif
3251 void helper_ldqf(target_ulong addr, int mem_idx)
3253 // XXX add 128 bit load
3254 CPU_QuadU u;
3256 helper_check_align(addr, 7);
3257 #if !defined(CONFIG_USER_ONLY)
3258 switch (mem_idx) {
3259 case 0:
3260 u.ll.upper = ldq_user(addr);
3261 u.ll.lower = ldq_user(addr + 8);
3262 QT0 = u.q;
3263 break;
3264 case 1:
3265 u.ll.upper = ldq_kernel(addr);
3266 u.ll.lower = ldq_kernel(addr + 8);
3267 QT0 = u.q;
3268 break;
3269 #ifdef TARGET_SPARC64
3270 case 2:
3271 u.ll.upper = ldq_hypv(addr);
3272 u.ll.lower = ldq_hypv(addr + 8);
3273 QT0 = u.q;
3274 break;
3275 #endif
3276 default:
3277 break;
3279 #else
3280 u.ll.upper = ldq_raw(address_mask(env, addr));
3281 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3282 QT0 = u.q;
3283 #endif
3286 void helper_stqf(target_ulong addr, int mem_idx)
3288 // XXX add 128 bit store
3289 CPU_QuadU u;
3291 helper_check_align(addr, 7);
3292 #if !defined(CONFIG_USER_ONLY)
3293 switch (mem_idx) {
3294 case 0:
3295 u.q = QT0;
3296 stq_user(addr, u.ll.upper);
3297 stq_user(addr + 8, u.ll.lower);
3298 break;
3299 case 1:
3300 u.q = QT0;
3301 stq_kernel(addr, u.ll.upper);
3302 stq_kernel(addr + 8, u.ll.lower);
3303 break;
3304 #ifdef TARGET_SPARC64
3305 case 2:
3306 u.q = QT0;
3307 stq_hypv(addr, u.ll.upper);
3308 stq_hypv(addr + 8, u.ll.lower);
3309 break;
3310 #endif
3311 default:
3312 break;
3314 #else
3315 u.q = QT0;
3316 stq_raw(address_mask(env, addr), u.ll.upper);
3317 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3318 #endif
3321 static inline void set_fsr(void)
3323 int rnd_mode;
3325 switch (env->fsr & FSR_RD_MASK) {
3326 case FSR_RD_NEAREST:
3327 rnd_mode = float_round_nearest_even;
3328 break;
3329 default:
3330 case FSR_RD_ZERO:
3331 rnd_mode = float_round_to_zero;
3332 break;
3333 case FSR_RD_POS:
3334 rnd_mode = float_round_up;
3335 break;
3336 case FSR_RD_NEG:
3337 rnd_mode = float_round_down;
3338 break;
3340 set_float_rounding_mode(rnd_mode, &env->fp_status);
3343 void helper_ldfsr(uint32_t new_fsr)
3345 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3346 set_fsr();
3349 #ifdef TARGET_SPARC64
3350 void helper_ldxfsr(uint64_t new_fsr)
3352 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3353 set_fsr();
3355 #endif
3357 void helper_debug(void)
3359 env->exception_index = EXCP_DEBUG;
3360 cpu_loop_exit();
3363 #ifndef TARGET_SPARC64
3364 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3365 handling ? */
3366 void helper_save(void)
3368 uint32_t cwp;
3370 cwp = cwp_dec(env->cwp - 1);
3371 if (env->wim & (1 << cwp)) {
3372 raise_exception(TT_WIN_OVF);
3374 set_cwp(cwp);
3377 void helper_restore(void)
3379 uint32_t cwp;
3381 cwp = cwp_inc(env->cwp + 1);
3382 if (env->wim & (1 << cwp)) {
3383 raise_exception(TT_WIN_UNF);
3385 set_cwp(cwp);
3388 void helper_wrpsr(target_ulong new_psr)
3390 if ((new_psr & PSR_CWP) >= env->nwindows) {
3391 raise_exception(TT_ILL_INSN);
3392 } else {
3393 cpu_put_psr(env, new_psr);
3397 target_ulong helper_rdpsr(void)
3399 return get_psr();
3402 #else
3403 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3404 handling ? */
3405 void helper_save(void)
3407 uint32_t cwp;
3409 cwp = cwp_dec(env->cwp - 1);
3410 if (env->cansave == 0) {
3411 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3412 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3413 ((env->wstate & 0x7) << 2)));
3414 } else {
3415 if (env->cleanwin - env->canrestore == 0) {
3416 // XXX Clean windows without trap
3417 raise_exception(TT_CLRWIN);
3418 } else {
3419 env->cansave--;
3420 env->canrestore++;
3421 set_cwp(cwp);
3426 void helper_restore(void)
3428 uint32_t cwp;
3430 cwp = cwp_inc(env->cwp + 1);
3431 if (env->canrestore == 0) {
3432 raise_exception(TT_FILL | (env->otherwin != 0 ?
3433 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3434 ((env->wstate & 0x7) << 2)));
3435 } else {
3436 env->cansave++;
3437 env->canrestore--;
3438 set_cwp(cwp);
3442 void helper_flushw(void)
3444 if (env->cansave != env->nwindows - 2) {
3445 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3446 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3447 ((env->wstate & 0x7) << 2)));
3451 void helper_saved(void)
3453 env->cansave++;
3454 if (env->otherwin == 0)
3455 env->canrestore--;
3456 else
3457 env->otherwin--;
3460 void helper_restored(void)
3462 env->canrestore++;
3463 if (env->cleanwin < env->nwindows - 1)
3464 env->cleanwin++;
3465 if (env->otherwin == 0)
3466 env->cansave--;
3467 else
3468 env->otherwin--;
3471 static target_ulong get_ccr(void)
3473 target_ulong psr;
3475 psr = get_psr();
3477 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3480 target_ulong cpu_get_ccr(CPUState *env1)
3482 CPUState *saved_env;
3483 target_ulong ret;
3485 saved_env = env;
3486 env = env1;
3487 ret = get_ccr();
3488 env = saved_env;
3489 return ret;
3492 static void put_ccr(target_ulong val)
3494 target_ulong tmp = val;
3496 env->xcc = (tmp >> 4) << 20;
3497 env->psr = (tmp & 0xf) << 20;
3498 CC_OP = CC_OP_FLAGS;
3501 void cpu_put_ccr(CPUState *env1, target_ulong val)
3503 CPUState *saved_env;
3505 saved_env = env;
3506 env = env1;
3507 put_ccr(val);
3508 env = saved_env;
3511 static target_ulong get_cwp64(void)
3513 return env->nwindows - 1 - env->cwp;
3516 target_ulong cpu_get_cwp64(CPUState *env1)
3518 CPUState *saved_env;
3519 target_ulong ret;
3521 saved_env = env;
3522 env = env1;
3523 ret = get_cwp64();
3524 env = saved_env;
3525 return ret;
3528 static void put_cwp64(int cwp)
3530 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3531 cwp %= env->nwindows;
3533 set_cwp(env->nwindows - 1 - cwp);
3536 void cpu_put_cwp64(CPUState *env1, int cwp)
3538 CPUState *saved_env;
3540 saved_env = env;
3541 env = env1;
3542 put_cwp64(cwp);
3543 env = saved_env;
3546 target_ulong helper_rdccr(void)
3548 return get_ccr();
3551 void helper_wrccr(target_ulong new_ccr)
3553 put_ccr(new_ccr);
3556 // CWP handling is reversed in V9, but we still use the V8 register
3557 // order.
3558 target_ulong helper_rdcwp(void)
3560 return get_cwp64();
3563 void helper_wrcwp(target_ulong new_cwp)
3565 put_cwp64(new_cwp);
3568 // This function uses non-native bit order
3569 #define GET_FIELD(X, FROM, TO) \
3570 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3572 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3573 #define GET_FIELD_SP(X, FROM, TO) \
3574 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3576 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3578 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3579 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3580 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3581 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3582 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3583 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3584 (((pixel_addr >> 55) & 1) << 4) |
3585 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3586 GET_FIELD_SP(pixel_addr, 11, 12);
3589 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3591 uint64_t tmp;
3593 tmp = addr + offset;
3594 env->gsr &= ~7ULL;
3595 env->gsr |= tmp & 7ULL;
3596 return tmp & ~7ULL;
3599 target_ulong helper_popc(target_ulong val)
3601 return ctpop64(val);
3604 static inline uint64_t *get_gregset(uint32_t pstate)
3606 switch (pstate) {
3607 default:
3608 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3609 pstate,
3610 (pstate & PS_IG) ? " IG" : "",
3611 (pstate & PS_MG) ? " MG" : "",
3612 (pstate & PS_AG) ? " AG" : "");
3613 /* pass through to normal set of global registers */
3614 case 0:
3615 return env->bgregs;
3616 case PS_AG:
3617 return env->agregs;
3618 case PS_MG:
3619 return env->mgregs;
3620 case PS_IG:
3621 return env->igregs;
3625 static inline void change_pstate(uint32_t new_pstate)
3627 uint32_t pstate_regs, new_pstate_regs;
3628 uint64_t *src, *dst;
3630 if (env->def->features & CPU_FEATURE_GL) {
3631 // PS_AG is not implemented in this case
3632 new_pstate &= ~PS_AG;
3635 pstate_regs = env->pstate & 0xc01;
3636 new_pstate_regs = new_pstate & 0xc01;
3638 if (new_pstate_regs != pstate_regs) {
3639 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3640 pstate_regs, new_pstate_regs);
3641 // Switch global register bank
3642 src = get_gregset(new_pstate_regs);
3643 dst = get_gregset(pstate_regs);
3644 memcpy32(dst, env->gregs);
3645 memcpy32(env->gregs, src);
3647 else {
3648 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3649 new_pstate_regs);
3651 env->pstate = new_pstate;
3654 void helper_wrpstate(target_ulong new_state)
3656 change_pstate(new_state & 0xf3f);
3658 #if !defined(CONFIG_USER_ONLY)
3659 if (cpu_interrupts_enabled(env)) {
3660 cpu_check_irqs(env);
3662 #endif
3665 void helper_wrpil(target_ulong new_pil)
3667 #if !defined(CONFIG_USER_ONLY)
3668 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3669 env->psrpil, (uint32_t)new_pil);
3671 env->psrpil = new_pil;
3673 if (cpu_interrupts_enabled(env)) {
3674 cpu_check_irqs(env);
3676 #endif
3679 void helper_done(void)
3681 trap_state* tsptr = cpu_tsptr(env);
3683 env->pc = tsptr->tnpc;
3684 env->npc = tsptr->tnpc + 4;
3685 put_ccr(tsptr->tstate >> 32);
3686 env->asi = (tsptr->tstate >> 24) & 0xff;
3687 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3688 put_cwp64(tsptr->tstate & 0xff);
3689 env->tl--;
3691 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3693 #if !defined(CONFIG_USER_ONLY)
3694 if (cpu_interrupts_enabled(env)) {
3695 cpu_check_irqs(env);
3697 #endif
3700 void helper_retry(void)
3702 trap_state* tsptr = cpu_tsptr(env);
3704 env->pc = tsptr->tpc;
3705 env->npc = tsptr->tnpc;
3706 put_ccr(tsptr->tstate >> 32);
3707 env->asi = (tsptr->tstate >> 24) & 0xff;
3708 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3709 put_cwp64(tsptr->tstate & 0xff);
3710 env->tl--;
3712 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3714 #if !defined(CONFIG_USER_ONLY)
3715 if (cpu_interrupts_enabled(env)) {
3716 cpu_check_irqs(env);
3718 #endif
3721 static void do_modify_softint(const char* operation, uint32_t value)
3723 if (env->softint != value) {
3724 env->softint = value;
3725 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3726 #if !defined(CONFIG_USER_ONLY)
3727 if (cpu_interrupts_enabled(env)) {
3728 cpu_check_irqs(env);
3730 #endif
3734 void helper_set_softint(uint64_t value)
3736 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3739 void helper_clear_softint(uint64_t value)
3741 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3744 void helper_write_softint(uint64_t value)
3746 do_modify_softint("helper_write_softint", (uint32_t)value);
3748 #endif
3750 void helper_flush(target_ulong addr)
3752 addr &= ~7;
3753 tb_invalidate_page_range(addr, addr + 8);
3756 #ifdef TARGET_SPARC64
3757 #ifdef DEBUG_PCALL
3758 static const char * const excp_names[0x80] = {
3759 [TT_TFAULT] = "Instruction Access Fault",
3760 [TT_TMISS] = "Instruction Access MMU Miss",
3761 [TT_CODE_ACCESS] = "Instruction Access Error",
3762 [TT_ILL_INSN] = "Illegal Instruction",
3763 [TT_PRIV_INSN] = "Privileged Instruction",
3764 [TT_NFPU_INSN] = "FPU Disabled",
3765 [TT_FP_EXCP] = "FPU Exception",
3766 [TT_TOVF] = "Tag Overflow",
3767 [TT_CLRWIN] = "Clean Windows",
3768 [TT_DIV_ZERO] = "Division By Zero",
3769 [TT_DFAULT] = "Data Access Fault",
3770 [TT_DMISS] = "Data Access MMU Miss",
3771 [TT_DATA_ACCESS] = "Data Access Error",
3772 [TT_DPROT] = "Data Protection Error",
3773 [TT_UNALIGNED] = "Unaligned Memory Access",
3774 [TT_PRIV_ACT] = "Privileged Action",
3775 [TT_EXTINT | 0x1] = "External Interrupt 1",
3776 [TT_EXTINT | 0x2] = "External Interrupt 2",
3777 [TT_EXTINT | 0x3] = "External Interrupt 3",
3778 [TT_EXTINT | 0x4] = "External Interrupt 4",
3779 [TT_EXTINT | 0x5] = "External Interrupt 5",
3780 [TT_EXTINT | 0x6] = "External Interrupt 6",
3781 [TT_EXTINT | 0x7] = "External Interrupt 7",
3782 [TT_EXTINT | 0x8] = "External Interrupt 8",
3783 [TT_EXTINT | 0x9] = "External Interrupt 9",
3784 [TT_EXTINT | 0xa] = "External Interrupt 10",
3785 [TT_EXTINT | 0xb] = "External Interrupt 11",
3786 [TT_EXTINT | 0xc] = "External Interrupt 12",
3787 [TT_EXTINT | 0xd] = "External Interrupt 13",
3788 [TT_EXTINT | 0xe] = "External Interrupt 14",
3789 [TT_EXTINT | 0xf] = "External Interrupt 15",
3791 #endif
3793 trap_state* cpu_tsptr(CPUState* env)
3795 return &env->ts[env->tl & MAXTL_MASK];
3798 void do_interrupt(CPUState *env)
3800 int intno = env->exception_index;
3801 trap_state* tsptr;
3803 #ifdef DEBUG_PCALL
3804 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3805 static int count;
3806 const char *name;
3808 if (intno < 0 || intno >= 0x180)
3809 name = "Unknown";
3810 else if (intno >= 0x100)
3811 name = "Trap Instruction";
3812 else if (intno >= 0xc0)
3813 name = "Window Fill";
3814 else if (intno >= 0x80)
3815 name = "Window Spill";
3816 else {
3817 name = excp_names[intno];
3818 if (!name)
3819 name = "Unknown";
3822 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3823 " SP=%016" PRIx64 "\n",
3824 count, name, intno,
3825 env->pc,
3826 env->npc, env->regwptr[6]);
3827 log_cpu_state(env, 0);
3828 #if 0
3830 int i;
3831 uint8_t *ptr;
3833 qemu_log(" code=");
3834 ptr = (uint8_t *)env->pc;
3835 for(i = 0; i < 16; i++) {
3836 qemu_log(" %02x", ldub(ptr + i));
3838 qemu_log("\n");
3840 #endif
3841 count++;
3843 #endif
3844 #if !defined(CONFIG_USER_ONLY)
3845 if (env->tl >= env->maxtl) {
3846 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3847 " Error state", env->exception_index, env->tl, env->maxtl);
3848 return;
3850 #endif
3851 if (env->tl < env->maxtl - 1) {
3852 env->tl++;
3853 } else {
3854 env->pstate |= PS_RED;
3855 if (env->tl < env->maxtl)
3856 env->tl++;
3858 tsptr = cpu_tsptr(env);
3860 tsptr->tstate = (get_ccr() << 32) |
3861 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3862 get_cwp64();
3863 tsptr->tpc = env->pc;
3864 tsptr->tnpc = env->npc;
3865 tsptr->tt = intno;
3867 switch (intno) {
3868 case TT_IVEC:
3869 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3870 break;
3871 case TT_TFAULT:
3872 case TT_DFAULT:
3873 case TT_TMISS ... TT_TMISS + 3:
3874 case TT_DMISS ... TT_DMISS + 3:
3875 case TT_DPROT ... TT_DPROT + 3:
3876 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3877 break;
3878 default:
3879 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3880 break;
3883 if (intno == TT_CLRWIN) {
3884 set_cwp(cwp_dec(env->cwp - 1));
3885 } else if ((intno & 0x1c0) == TT_SPILL) {
3886 set_cwp(cwp_dec(env->cwp - env->cansave - 2));
3887 } else if ((intno & 0x1c0) == TT_FILL) {
3888 set_cwp(cwp_inc(env->cwp + 1));
3890 env->tbr &= ~0x7fffULL;
3891 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3892 env->pc = env->tbr;
3893 env->npc = env->pc + 4;
3894 env->exception_index = -1;
3896 #else
3897 #ifdef DEBUG_PCALL
3898 static const char * const excp_names[0x80] = {
3899 [TT_TFAULT] = "Instruction Access Fault",
3900 [TT_ILL_INSN] = "Illegal Instruction",
3901 [TT_PRIV_INSN] = "Privileged Instruction",
3902 [TT_NFPU_INSN] = "FPU Disabled",
3903 [TT_WIN_OVF] = "Window Overflow",
3904 [TT_WIN_UNF] = "Window Underflow",
3905 [TT_UNALIGNED] = "Unaligned Memory Access",
3906 [TT_FP_EXCP] = "FPU Exception",
3907 [TT_DFAULT] = "Data Access Fault",
3908 [TT_TOVF] = "Tag Overflow",
3909 [TT_EXTINT | 0x1] = "External Interrupt 1",
3910 [TT_EXTINT | 0x2] = "External Interrupt 2",
3911 [TT_EXTINT | 0x3] = "External Interrupt 3",
3912 [TT_EXTINT | 0x4] = "External Interrupt 4",
3913 [TT_EXTINT | 0x5] = "External Interrupt 5",
3914 [TT_EXTINT | 0x6] = "External Interrupt 6",
3915 [TT_EXTINT | 0x7] = "External Interrupt 7",
3916 [TT_EXTINT | 0x8] = "External Interrupt 8",
3917 [TT_EXTINT | 0x9] = "External Interrupt 9",
3918 [TT_EXTINT | 0xa] = "External Interrupt 10",
3919 [TT_EXTINT | 0xb] = "External Interrupt 11",
3920 [TT_EXTINT | 0xc] = "External Interrupt 12",
3921 [TT_EXTINT | 0xd] = "External Interrupt 13",
3922 [TT_EXTINT | 0xe] = "External Interrupt 14",
3923 [TT_EXTINT | 0xf] = "External Interrupt 15",
3924 [TT_TOVF] = "Tag Overflow",
3925 [TT_CODE_ACCESS] = "Instruction Access Error",
3926 [TT_DATA_ACCESS] = "Data Access Error",
3927 [TT_DIV_ZERO] = "Division By Zero",
3928 [TT_NCP_INSN] = "Coprocessor Disabled",
3930 #endif
3932 void do_interrupt(CPUState *env)
3934 int cwp, intno = env->exception_index;
3936 #ifdef DEBUG_PCALL
3937 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3938 static int count;
3939 const char *name;
3941 if (intno < 0 || intno >= 0x100)
3942 name = "Unknown";
3943 else if (intno >= 0x80)
3944 name = "Trap Instruction";
3945 else {
3946 name = excp_names[intno];
3947 if (!name)
3948 name = "Unknown";
3951 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3952 count, name, intno,
3953 env->pc,
3954 env->npc, env->regwptr[6]);
3955 log_cpu_state(env, 0);
3956 #if 0
3958 int i;
3959 uint8_t *ptr;
3961 qemu_log(" code=");
3962 ptr = (uint8_t *)env->pc;
3963 for(i = 0; i < 16; i++) {
3964 qemu_log(" %02x", ldub(ptr + i));
3966 qemu_log("\n");
3968 #endif
3969 count++;
3971 #endif
3972 #if !defined(CONFIG_USER_ONLY)
3973 if (env->psret == 0) {
3974 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3975 env->exception_index);
3976 return;
3978 #endif
3979 env->psret = 0;
3980 cwp = cwp_dec(env->cwp - 1);
3981 set_cwp(cwp);
3982 env->regwptr[9] = env->pc;
3983 env->regwptr[10] = env->npc;
3984 env->psrps = env->psrs;
3985 env->psrs = 1;
3986 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3987 env->pc = env->tbr;
3988 env->npc = env->pc + 4;
3989 env->exception_index = -1;
3991 #endif
3993 #if !defined(CONFIG_USER_ONLY)
3995 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3996 void *retaddr);
3998 #define MMUSUFFIX _mmu
3999 #define ALIGNED_ONLY
4001 #define SHIFT 0
4002 #include "softmmu_template.h"
4004 #define SHIFT 1
4005 #include "softmmu_template.h"
4007 #define SHIFT 2
4008 #include "softmmu_template.h"
4010 #define SHIFT 3
4011 #include "softmmu_template.h"
4013 /* XXX: make it generic ? */
4014 static void cpu_restore_state2(void *retaddr)
4016 TranslationBlock *tb;
4017 unsigned long pc;
4019 if (retaddr) {
4020 /* now we have a real cpu fault */
4021 pc = (unsigned long)retaddr;
4022 tb = tb_find_pc(pc);
4023 if (tb) {
4024 /* the PC is inside the translated code. It means that we have
4025 a virtual CPU fault */
4026 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4031 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4032 void *retaddr)
4034 #ifdef DEBUG_UNALIGNED
4035 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4036 "\n", addr, env->pc);
4037 #endif
4038 cpu_restore_state2(retaddr);
4039 raise_exception(TT_UNALIGNED);
4042 /* try to fill the TLB and return an exception if error. If retaddr is
4043 NULL, it means that the function was called in C code (i.e. not
4044 from generated code or from helper.c) */
4045 /* XXX: fix it to restore all registers */
4046 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4048 int ret;
4049 CPUState *saved_env;
4051 /* XXX: hack to restore env in all cases, even if not called from
4052 generated code */
4053 saved_env = env;
4054 env = cpu_single_env;
4056 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4057 if (ret) {
4058 cpu_restore_state2(retaddr);
4059 cpu_loop_exit();
4061 env = saved_env;
4064 #endif /* !CONFIG_USER_ONLY */
4066 #ifndef TARGET_SPARC64
4067 #if !defined(CONFIG_USER_ONLY)
4068 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4069 int is_asi, int size)
4071 CPUState *saved_env;
4072 int fault_type;
4074 /* XXX: hack to restore env in all cases, even if not called from
4075 generated code */
4076 saved_env = env;
4077 env = cpu_single_env;
4078 #ifdef DEBUG_UNASSIGNED
4079 if (is_asi)
4080 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4081 " asi 0x%02x from " TARGET_FMT_lx "\n",
4082 is_exec ? "exec" : is_write ? "write" : "read", size,
4083 size == 1 ? "" : "s", addr, is_asi, env->pc);
4084 else
4085 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4086 " from " TARGET_FMT_lx "\n",
4087 is_exec ? "exec" : is_write ? "write" : "read", size,
4088 size == 1 ? "" : "s", addr, env->pc);
4089 #endif
4090 /* Don't overwrite translation and access faults */
4091 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4092 if ((fault_type > 4) || (fault_type == 0)) {
4093 env->mmuregs[3] = 0; /* Fault status register */
4094 if (is_asi)
4095 env->mmuregs[3] |= 1 << 16;
4096 if (env->psrs)
4097 env->mmuregs[3] |= 1 << 5;
4098 if (is_exec)
4099 env->mmuregs[3] |= 1 << 6;
4100 if (is_write)
4101 env->mmuregs[3] |= 1 << 7;
4102 env->mmuregs[3] |= (5 << 2) | 2;
4103 /* SuperSPARC will never place instruction fault addresses in the FAR */
4104 if (!is_exec) {
4105 env->mmuregs[4] = addr; /* Fault address register */
4108 /* overflow (same type fault was not read before another fault) */
4109 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4110 env->mmuregs[3] |= 1;
4113 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4114 if (is_exec)
4115 raise_exception(TT_CODE_ACCESS);
4116 else
4117 raise_exception(TT_DATA_ACCESS);
4120 /* flush neverland mappings created during no-fault mode,
4121 so the sequential MMU faults report proper fault types */
4122 if (env->mmuregs[0] & MMU_NF) {
4123 tlb_flush(env, 1);
4126 env = saved_env;
4128 #endif
4129 #else
4130 #if defined(CONFIG_USER_ONLY)
4131 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4132 int is_asi, int size)
4133 #else
4134 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4135 int is_asi, int size)
4136 #endif
4138 CPUState *saved_env;
4140 /* XXX: hack to restore env in all cases, even if not called from
4141 generated code */
4142 saved_env = env;
4143 env = cpu_single_env;
4145 #ifdef DEBUG_UNASSIGNED
4146 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4147 "\n", addr, env->pc);
4148 #endif
4150 if (is_exec)
4151 raise_exception(TT_CODE_ACCESS);
4152 else
4153 raise_exception(TT_DATA_ACCESS);
4155 env = saved_env;
4157 #endif
4160 #ifdef TARGET_SPARC64
4161 void helper_tick_set_count(void *opaque, uint64_t count)
4163 #if !defined(CONFIG_USER_ONLY)
4164 cpu_tick_set_count(opaque, count);
4165 #endif
4168 uint64_t helper_tick_get_count(void *opaque)
4170 #if !defined(CONFIG_USER_ONLY)
4171 return cpu_tick_get_count(opaque);
4172 #else
4173 return 0;
4174 #endif
4177 void helper_tick_set_limit(void *opaque, uint64_t limit)
4179 #if !defined(CONFIG_USER_ONLY)
4180 cpu_tick_set_limit(opaque, limit);
4181 #endif
4183 #endif