Update OpenBIOS images to r771
[qemu/aliguori-queue.git] / exec.c
blob3416aed08b3400cd254894abe6965cb742921137
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
79 #define SMC_BITMAP_USE_THRESHOLD 10
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
215 static void io_mem_init(void);
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
250 #else
251 static void map_exec(void *addr, long size)
253 unsigned long start, end, page_size;
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
266 #endif
268 static void page_init(void)
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
274 SYSTEM_INFO system_info;
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
291 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
319 free(freep);
320 mmap_unlock();
322 #else
323 FILE *f;
325 last_brk = (unsigned long)sbrk(0);
327 f = fopen("/compat/linux/proc/self/maps", "r");
328 if (f) {
329 mmap_lock();
331 do {
332 unsigned long startaddr, endaddr;
333 int n;
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
347 } while (!feof(f));
349 fclose(f);
350 mmap_unlock();
352 #endif
354 #endif
357 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
359 PageDesc *pd;
360 void **lp;
361 int i;
363 #if defined(CONFIG_USER_ONLY)
364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
365 # define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
369 } while (0)
370 #else
371 # define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
373 #endif
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
402 #undef ALLOC
404 return pd + (index & (L2_SIZE - 1));
407 static inline PageDesc *page_find(tb_page_addr_t index)
409 return page_find_alloc(index, 0);
412 #if !defined(CONFIG_USER_ONLY)
413 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
415 PhysPageDesc *pd;
416 void **lp;
417 int i;
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
434 pd = *lp;
435 if (pd == NULL) {
436 int i;
438 if (!alloc) {
439 return NULL;
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
444 for (i = 0; i < L2_SIZE; i++) {
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
450 return pd + (index & (L2_SIZE - 1));
453 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
455 return phys_page_find_alloc(index, 0);
458 static void tlb_protect_code(ram_addr_t ram_addr);
459 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
460 target_ulong vaddr);
461 #define mmap_lock() do { } while(0)
462 #define mmap_unlock() do { } while(0)
463 #endif
465 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
467 #if defined(CONFIG_USER_ONLY)
468 /* Currently it is not recommended to allocate big chunks of data in
469 user mode. It will change when a dedicated libc will be used */
470 #define USE_STATIC_CODE_GEN_BUFFER
471 #endif
473 #ifdef USE_STATIC_CODE_GEN_BUFFER
474 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
476 #endif
478 static void code_gen_alloc(unsigned long tb_size)
480 #ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484 #else
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
487 #if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490 #else
491 /* XXX: needs adjustments */
492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
493 #endif
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499 #if defined(__linux__)
501 int flags;
502 void *start = NULL;
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505 #if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
510 #elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
516 #elif defined(__arm__)
517 /* Map the buffer below 32M, so we can use direct calls and branches */
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
522 #endif
523 code_gen_buffer = mmap(start, code_gen_buffer_size,
524 PROT_WRITE | PROT_READ | PROT_EXEC,
525 flags, -1, 0);
526 if (code_gen_buffer == MAP_FAILED) {
527 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
528 exit(1);
531 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
533 int flags;
534 void *addr = NULL;
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536 #if defined(__x86_64__)
537 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
538 * 0x40000000 is free */
539 flags |= MAP_FIXED;
540 addr = (void *)0x40000000;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
553 #else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556 #endif
557 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 code_gen_max_block_size();
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
565 /* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568 void cpu_exec_init_all(unsigned long tb_size)
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
573 page_init();
574 #if !defined(CONFIG_USER_ONLY)
575 io_mem_init();
576 #endif
579 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581 static int cpu_common_post_load(void *opaque, int version_id)
583 CPUState *env = opaque;
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
588 tlb_flush(env, 1);
590 return 0;
593 static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
605 #endif
607 CPUState *qemu_get_cpu(int cpu)
609 CPUState *env = first_cpu;
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
617 return env;
620 void cpu_exec_init(CPUState *env)
622 CPUState **penv;
623 int cpu_index;
625 #if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627 #endif
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
632 penv = &(*penv)->next_cpu;
633 cpu_index++;
635 env->cpu_index = cpu_index;
636 env->numa_node = 0;
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
639 *penv = env;
640 #if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642 #endif
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647 #endif
650 static inline void invalidate_page_bitmap(PageDesc *p)
652 if (p->code_bitmap) {
653 qemu_free(p->code_bitmap);
654 p->code_bitmap = NULL;
656 p->code_write_count = 0;
659 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
661 static void page_flush_tb_1 (int level, void **lp)
663 int i;
665 if (*lp == NULL) {
666 return;
668 if (level == 0) {
669 PageDesc *pd = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
674 } else {
675 void **pp = *lp;
676 for (i = 0; i < L2_SIZE; ++i) {
677 page_flush_tb_1 (level - 1, pp + i);
682 static void page_flush_tb(void)
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
690 /* flush all the translation blocks */
691 /* XXX: tb_flush is currently not thread safe */
692 void tb_flush(CPUState *env1)
694 CPUState *env;
695 #if defined(DEBUG_FLUSH)
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
700 #endif
701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
704 nb_tbs = 0;
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
711 page_flush_tb();
713 code_gen_ptr = code_gen_buffer;
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
716 tb_flush_count++;
719 #ifdef DEBUG_TB_CHECK
721 static void tb_invalidate_check(target_ulong address)
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
732 address, (long)tb->pc, tb->size);
738 /* verify that all the pages have correct rights for code */
739 static void tb_page_check(void)
741 TranslationBlock *tb;
742 int i, flags1, flags2;
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
750 (long)tb->pc, tb->size, flags1, flags2);
756 #endif
758 /* invalidate one TB */
759 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
773 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775 TranslationBlock *tb1;
776 unsigned int n1;
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
786 ptb = &tb1->page_next[n1];
790 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
814 tb->jmp_next[n] = NULL;
818 /* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820 static inline void tb_reset_jump(TranslationBlock *tb, int n)
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
825 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
827 CPUState *env;
828 PageDesc *p;
829 unsigned int h, n1;
830 tb_page_addr_t phys_pc;
831 TranslationBlock *tb1, *tb2;
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
836 tb_remove(&tb_phys_hash[h], tb,
837 offsetof(TranslationBlock, phys_hash_next));
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
851 tb_invalidated_flag = 1;
853 /* remove the TB from the hash list */
854 h = tb_jmp_cache_hash_func(tb->pc);
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
878 tb_phys_invalidate_count++;
881 static inline void set_bits(uint8_t *tab, int start, int len)
883 int end, mask, end1;
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
908 static void build_page_bitmap(PageDesc *p)
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
936 TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
944 int code_gen_size;
946 phys_pc = get_page_addr_code(env, pc);
947 tb = tb_alloc(pc);
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
952 tb = tb_alloc(pc);
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
961 cpu_gen_code(env, tb, &code_gen_size);
962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
964 /* check next page if needed */
965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
966 phys_page2 = -1;
967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
968 phys_page2 = get_page_addr_code(env, virt_page2);
970 tb_link_page(tb, phys_pc, phys_page2);
971 return tb;
974 /* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
980 int is_cpu_write_access)
982 TranslationBlock *tb, *tb_next, *saved_tb;
983 CPUState *env = cpu_single_env;
984 tb_page_addr_t tb_start, tb_end;
985 PageDesc *p;
986 int n;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994 #endif /* TARGET_HAS_PRECISE_SMC */
996 p = page_find(start >> TARGET_PAGE_BITS);
997 if (!p)
998 return;
999 if (!p->code_bitmap &&
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 if (!(tb_end <= start || tb_start >= end)) {
1024 #ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
1028 if (env->mem_io_pc) {
1029 /* now we have a real cpu fault */
1030 current_tb = tb_find_pc(env->mem_io_pc);
1033 if (current_tb == tb &&
1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
1041 current_tb_modified = 1;
1042 cpu_restore_state(current_tb, env,
1043 env->mem_io_pc, NULL);
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
1047 #endif /* TARGET_HAS_PRECISE_SMC */
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1055 tb_phys_invalidate(tb, -1);
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1062 tb = tb_next;
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
1068 if (is_cpu_write_access) {
1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1072 #endif
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
1078 env->current_tb = NULL;
1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1080 cpu_resume_from_signal(env, NULL);
1082 #endif
1085 /* len must be <= 8 and start must be a multiple of len */
1086 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1088 PageDesc *p;
1089 int offset, b;
1090 #if 0
1091 if (1) {
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1097 #endif
1098 p = page_find(start >> TARGET_PAGE_BITS);
1099 if (!p)
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
1108 tb_invalidate_phys_page_range(start, start + len, 1);
1112 #if !defined(CONFIG_SOFTMMU)
1113 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1114 unsigned long pc, void *puc)
1116 TranslationBlock *tb;
1117 PageDesc *p;
1118 int n;
1119 #ifdef TARGET_HAS_PRECISE_SMC
1120 TranslationBlock *current_tb = NULL;
1121 CPUState *env = cpu_single_env;
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
1126 #endif
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 tb = p->first_tb;
1133 #ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1137 #endif
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
1141 #ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
1155 #endif /* TARGET_HAS_PRECISE_SMC */
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1159 p->first_tb = NULL;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
1165 env->current_tb = NULL;
1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1167 cpu_resume_from_signal(env, puc);
1169 #endif
1171 #endif
1173 /* add the tb in the target page and protect it if necessary */
1174 static inline void tb_alloc_page(TranslationBlock *tb,
1175 unsigned int n, tb_page_addr_t page_addr)
1177 PageDesc *p;
1178 TranslationBlock *last_first_tb;
1180 tb->page_addr[n] = page_addr;
1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
1187 #if defined(TARGET_HAS_SMC) || 1
1189 #if defined(CONFIG_USER_ONLY)
1190 if (p->flags & PAGE_WRITE) {
1191 target_ulong addr;
1192 PageDesc *p2;
1193 int prot;
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
1197 page_addr &= qemu_host_page_mask;
1198 prot = 0;
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
1208 mprotect(g2h(page_addr), qemu_host_page_size,
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210 #ifdef DEBUG_TB_INVALIDATE
1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1212 page_addr);
1213 #endif
1215 #else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
1220 tlb_protect_code(page_addr);
1222 #endif
1224 #endif /* TARGET_HAS_SMC */
1227 /* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
1229 TranslationBlock *tb_alloc(target_ulong pc)
1231 TranslationBlock *tb;
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1235 return NULL;
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
1238 tb->cflags = 0;
1239 return tb;
1242 void tb_free(TranslationBlock *tb)
1244 /* In practice this is mostly used for single use temporary TB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1253 /* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
1255 void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1258 unsigned int h;
1259 TranslationBlock **ptb;
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
1270 /* add in the page list */
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
1287 #ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289 #endif
1290 mmap_unlock();
1293 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1321 return &tbs[m_max];
1324 static void tb_reset_jump_recursive(TranslationBlock *tb);
1326 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1360 /* suppress jumps in the tb on which we could have jumped */
1361 tb_reset_jump_recursive(tb_next);
1365 static void tb_reset_jump_recursive(TranslationBlock *tb)
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1371 #if defined(TARGET_HAS_ICE)
1372 #if defined(CONFIG_USER_ONLY)
1373 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1377 #else
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 target_phys_addr_t addr;
1381 target_ulong pd;
1382 ram_addr_t ram_addr;
1383 PhysPageDesc *p;
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1395 #endif
1396 #endif /* TARGET_HAS_ICE */
1398 #if defined(CONFIG_USER_ONLY)
1399 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1407 return -ENOSYS;
1409 #else
1410 /* Add a watchpoint. */
1411 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
1414 target_ulong len_mask = ~(len - 1);
1415 CPUWatchpoint *wp;
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1423 wp = qemu_malloc(sizeof(*wp));
1425 wp->vaddr = addr;
1426 wp->len_mask = len_mask;
1427 wp->flags = flags;
1429 /* keep all GDB-injected watchpoints in front */
1430 if (flags & BP_GDB)
1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1432 else
1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1435 tlb_flush_page(env, addr);
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
1442 /* Remove a specific watchpoint. */
1443 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
1446 target_ulong len_mask = ~(len - 1);
1447 CPUWatchpoint *wp;
1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1450 if (addr == wp->vaddr && len_mask == wp->len_mask
1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 return 0;
1456 return -ENOENT;
1459 /* Remove a specific watchpoint by reference. */
1460 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1464 tlb_flush_page(env, watchpoint->vaddr);
1466 qemu_free(watchpoint);
1469 /* Remove all matching watchpoints. */
1470 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1472 CPUWatchpoint *wp, *next;
1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
1479 #endif
1481 /* Add a breakpoint. */
1482 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
1485 #if defined(TARGET_HAS_ICE)
1486 CPUBreakpoint *bp;
1488 bp = qemu_malloc(sizeof(*bp));
1490 bp->pc = pc;
1491 bp->flags = flags;
1493 /* keep all GDB-injected breakpoints in front */
1494 if (flags & BP_GDB)
1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1496 else
1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1499 breakpoint_invalidate(env, pc);
1501 if (breakpoint)
1502 *breakpoint = bp;
1503 return 0;
1504 #else
1505 return -ENOSYS;
1506 #endif
1509 /* Remove a specific breakpoint. */
1510 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1521 return -ENOENT;
1522 #else
1523 return -ENOSYS;
1524 #endif
1527 /* Remove a specific breakpoint by reference. */
1528 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1530 #if defined(TARGET_HAS_ICE)
1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1533 breakpoint_invalidate(env, breakpoint->pc);
1535 qemu_free(breakpoint);
1536 #endif
1539 /* Remove all matching breakpoints. */
1540 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1542 #if defined(TARGET_HAS_ICE)
1543 CPUBreakpoint *bp, *next;
1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
1549 #endif
1552 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554 void cpu_single_step(CPUState *env, int enabled)
1556 #if defined(TARGET_HAS_ICE)
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
1562 /* must flush all the translated code to avoid inconsistencies */
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1567 #endif
1570 /* enable or disable low levels log */
1571 void cpu_set_log(int log_flags)
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
1575 logfile = fopen(logfilename, log_append ? "a" : "w");
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1580 #if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 static char logfile_buf[4096];
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1586 #elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
1588 setvbuf(logfile, NULL, _IOLBF, 0);
1589 #endif
1590 log_append = 1;
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
1598 void cpu_set_log_filename(const char *filename)
1600 logfilename = strdup(filename);
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1605 cpu_set_log(loglevel);
1608 static void cpu_unlink_tb(CPUState *env)
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
1614 TranslationBlock *tb;
1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1617 spin_lock(&interrupt_lock);
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
1621 if (tb) {
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
1625 spin_unlock(&interrupt_lock);
1628 /* mask must never be zero, except for A20 change call */
1629 void cpu_interrupt(CPUState *env, int mask)
1631 int old_mask;
1633 old_mask = env->interrupt_request;
1634 env->interrupt_request |= mask;
1636 #ifndef CONFIG_USER_ONLY
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1645 #endif
1647 if (use_icount) {
1648 env->icount_decr.u16.high = 0xffff;
1649 #ifndef CONFIG_USER_ONLY
1650 if (!can_do_io(env)
1651 && (mask & ~old_mask) != 0) {
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 #endif
1655 } else {
1656 cpu_unlink_tb(env);
1660 void cpu_reset_interrupt(CPUState *env, int mask)
1662 env->interrupt_request &= ~mask;
1665 void cpu_exit(CPUState *env)
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1671 const CPULogItem cpu_log_items[] = {
1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
1676 { CPU_LOG_TB_OP, "op",
1677 "show micro ops for each compiled TB" },
1678 { CPU_LOG_TB_OP_OPT, "op_opt",
1679 "show micro ops "
1680 #ifdef TARGET_I386
1681 "before eflags optimization and "
1682 #endif
1683 "after liveness analysis" },
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
1688 { CPU_LOG_TB_CPU, "cpu",
1689 "show CPU state before block translation" },
1690 #ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
1695 #endif
1696 #ifdef DEBUG_IOPORT
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
1699 #endif
1700 { 0, NULL, NULL },
1703 #ifndef CONFIG_USER_ONLY
1704 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1707 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1717 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1726 return 0;
1729 static int cpu_notify_migration_log(int enable)
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1737 return 0;
1740 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
1743 int i;
1745 if (*lp == NULL) {
1746 return;
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
1750 for (i = 0; i < L2_SIZE; ++i) {
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
1756 } else {
1757 void **pp = *lp;
1758 for (i = 0; i < L2_SIZE; ++i) {
1759 phys_page_for_each_1(client, level - 1, pp + i);
1764 static void phys_page_for_each(CPUPhysMemoryClient *client)
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
1773 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1779 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1781 QLIST_REMOVE(client, list);
1783 #endif
1785 static int cmp1(const char *s1, int n, const char *s2)
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1792 /* takes a comma separated list of log masks. Return 0 if error. */
1793 int cpu_str_to_log_mask(const char *str)
1795 const CPULogItem *item;
1796 int mask;
1797 const char *p, *p1;
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1809 } else {
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1814 return 0;
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1822 return mask;
1825 void cpu_abort(CPUState *env, const char *fmt, ...)
1827 va_list ap;
1828 va_list ap2;
1830 va_start(ap, fmt);
1831 va_copy(ap2, ap);
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835 #ifdef TARGET_I386
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837 #else
1838 cpu_dump_state(env, stderr, fprintf, 0);
1839 #endif
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
1844 #ifdef TARGET_I386
1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1846 #else
1847 log_cpu_state(env, 0);
1848 #endif
1849 qemu_log_flush();
1850 qemu_log_close();
1852 va_end(ap2);
1853 va_end(ap);
1854 #if defined(CONFIG_USER_ONLY)
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1861 #endif
1862 abort();
1865 CPUState *cpu_copy(CPUState *env)
1867 CPUState *new_env = cpu_init(env->cpu_model_str);
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
1870 #if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873 #endif
1875 memcpy(new_env, env, sizeof(CPUState));
1877 /* Preserve chaining and index. */
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
1886 #if defined(TARGET_HAS_ICE)
1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1894 #endif
1896 return new_env;
1899 #if !defined(CONFIG_USER_ONLY)
1901 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1903 unsigned int i;
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1916 static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1923 /* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925 void tlb_flush(CPUState *env, int flush_global)
1927 int i;
1929 #if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931 #endif
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
1947 tlb_flush_count++;
1950 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1952 if (addr == (tlb_entry->addr_read &
1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1954 addr == (tlb_entry->addr_write &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_code &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1958 *tlb_entry = s_cputlb_empty_entry;
1962 void tlb_flush_page(CPUState *env, target_ulong addr)
1964 int i;
1965 int mmu_idx;
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1969 #endif
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976 #endif
1977 tlb_flush(env, 1);
1978 return;
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1989 tlb_flush_jmp_cache(env, addr);
1992 /* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
1994 static void tlb_protect_code(ram_addr_t ram_addr)
1996 cpu_physical_memory_reset_dirty(ram_addr,
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
2001 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2002 tested for self modifying code */
2003 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2004 target_ulong vaddr)
2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2009 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2010 unsigned long start, unsigned long length)
2012 unsigned long addr;
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2015 if ((addr - start) < length) {
2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2021 /* Note: start and end must be within the same ram block. */
2022 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2023 int dirty_flags)
2025 CPUState *env;
2026 unsigned long length, start1;
2027 int i;
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2032 length = end - start;
2033 if (length == 0)
2034 return;
2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2057 int cpu_physical_memory_set_dirty_tracking(int enable)
2059 int ret = 0;
2060 in_migration = enable;
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
2065 int cpu_physical_memory_get_dirty_tracking(void)
2067 return in_migration;
2070 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2073 int ret;
2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2076 return ret;
2079 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081 ram_addr_t ram_addr;
2082 void *p;
2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
2094 /* update the TLB according to the current state of the dirty bits */
2095 void cpu_tlb_update_dirty(CPUState *env)
2097 int i;
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2105 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
2111 /* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2115 int i;
2116 int mmu_idx;
2118 vaddr &= TARGET_PAGE_MASK;
2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2124 /* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2129 target_ulong mask = ~(size - 1);
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2147 /* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150 void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
2154 PhysPageDesc *p;
2155 unsigned long pd;
2156 unsigned int index;
2157 target_ulong address;
2158 target_ulong code_address;
2159 unsigned long addend;
2160 CPUTLBEntry *te;
2161 CPUWatchpoint *wp;
2162 target_phys_addr_t iotlb;
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
2171 } else {
2172 pd = p->phys_offset;
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2177 #endif
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
2193 /* IO handlers are currently passed a physical address.
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
2242 } else {
2243 te->addr_write = address;
2245 } else {
2246 te->addr_write = -1;
2250 #else
2252 void tlb_flush(CPUState *env, int flush_global)
2256 void tlb_flush_page(CPUState *env, target_ulong addr)
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2265 struct walk_memory_regions_data
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2273 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2274 abi_ulong end, int new_prot)
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2286 return 0;
2289 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2290 abi_ulong base, int level, void **lp)
2292 abi_ulong pa;
2293 int i, rc;
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
2301 for (i = 0; i < L2_SIZE; ++i) {
2302 int prot = pd[i].flags;
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
2312 } else {
2313 void **pp = *lp;
2314 for (i = 0; i < L2_SIZE; ++i) {
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2324 return 0;
2327 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2337 for (i = 0; i < V_L1_SIZE; i++) {
2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
2345 return walk_memory_regions_end(&data, 0, 0);
2348 static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
2351 FILE *f = (FILE *)priv;
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2360 return (0);
2363 /* dump memory mappings */
2364 void page_dump(FILE *f)
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
2371 int page_get_flags(target_ulong address)
2373 PageDesc *p;
2375 p = page_find(address >> TARGET_PAGE_BITS);
2376 if (!p)
2377 return 0;
2378 return p->flags;
2381 /* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
2384 void page_set_flags(target_ulong start, target_ulong end, int flags)
2386 target_ulong addr, len;
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
2391 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2393 #endif
2394 assert(start < end);
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
2399 if (flags & PAGE_WRITE) {
2400 flags |= PAGE_WRITE_ORG;
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
2410 if (!(p->flags & PAGE_WRITE) &&
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
2413 tb_invalidate_phys_page(addr, 0, NULL);
2415 p->flags = flags;
2419 int page_check_range(target_ulong start, target_ulong len, int flags)
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
2428 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2430 #endif
2432 if (len == 0) {
2433 return 0;
2435 if (start + len - 1 < start) {
2436 /* We've wrapped around. */
2437 return -1;
2440 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2441 start = start & TARGET_PAGE_MASK;
2443 for (addr = start, len = end - start;
2444 len != 0;
2445 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2446 p = page_find(addr >> TARGET_PAGE_BITS);
2447 if( !p )
2448 return -1;
2449 if( !(p->flags & PAGE_VALID) )
2450 return -1;
2452 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2453 return -1;
2454 if (flags & PAGE_WRITE) {
2455 if (!(p->flags & PAGE_WRITE_ORG))
2456 return -1;
2457 /* unprotect the page if it was put read-only because it
2458 contains translated code */
2459 if (!(p->flags & PAGE_WRITE)) {
2460 if (!page_unprotect(addr, 0, NULL))
2461 return -1;
2463 return 0;
2466 return 0;
2469 /* called from signal handler: invalidate the code and unprotect the
2470 page. Return TRUE if the fault was successfully handled. */
2471 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2473 unsigned int prot;
2474 PageDesc *p;
2475 target_ulong host_start, host_end, addr;
2477 /* Technically this isn't safe inside a signal handler. However we
2478 know this only ever happens in a synchronous SEGV handler, so in
2479 practice it seems to be ok. */
2480 mmap_lock();
2482 p = page_find(address >> TARGET_PAGE_BITS);
2483 if (!p) {
2484 mmap_unlock();
2485 return 0;
2488 /* if the page was really writable, then we change its
2489 protection back to writable */
2490 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2491 host_start = address & qemu_host_page_mask;
2492 host_end = host_start + qemu_host_page_size;
2494 prot = 0;
2495 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2496 p = page_find(addr >> TARGET_PAGE_BITS);
2497 p->flags |= PAGE_WRITE;
2498 prot |= p->flags;
2500 /* and since the content will be modified, we must invalidate
2501 the corresponding translated code. */
2502 tb_invalidate_phys_page(addr, pc, puc);
2503 #ifdef DEBUG_TB_CHECK
2504 tb_invalidate_check(addr);
2505 #endif
2507 mprotect((void *)g2h(host_start), qemu_host_page_size,
2508 prot & PAGE_BITS);
2510 mmap_unlock();
2511 return 1;
2513 mmap_unlock();
2514 return 0;
2517 static inline void tlb_set_dirty(CPUState *env,
2518 unsigned long addr, target_ulong vaddr)
2521 #endif /* defined(CONFIG_USER_ONLY) */
2523 #if !defined(CONFIG_USER_ONLY)
2525 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2526 typedef struct subpage_t {
2527 target_phys_addr_t base;
2528 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2529 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2530 } subpage_t;
2532 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2533 ram_addr_t memory, ram_addr_t region_offset);
2534 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2535 ram_addr_t orig_memory,
2536 ram_addr_t region_offset);
2537 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2538 need_subpage) \
2539 do { \
2540 if (addr > start_addr) \
2541 start_addr2 = 0; \
2542 else { \
2543 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2544 if (start_addr2 > 0) \
2545 need_subpage = 1; \
2548 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2549 end_addr2 = TARGET_PAGE_SIZE - 1; \
2550 else { \
2551 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2552 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2553 need_subpage = 1; \
2555 } while (0)
2557 /* register physical memory.
2558 For RAM, 'size' must be a multiple of the target page size.
2559 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2560 io memory page. The address used when calling the IO function is
2561 the offset from the start of the region, plus region_offset. Both
2562 start_addr and region_offset are rounded down to a page boundary
2563 before calculating this offset. This should not be a problem unless
2564 the low bits of start_addr and region_offset differ. */
2565 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2566 ram_addr_t size,
2567 ram_addr_t phys_offset,
2568 ram_addr_t region_offset)
2570 target_phys_addr_t addr, end_addr;
2571 PhysPageDesc *p;
2572 CPUState *env;
2573 ram_addr_t orig_size = size;
2574 subpage_t *subpage;
2576 cpu_notify_set_memory(start_addr, size, phys_offset);
2578 if (phys_offset == IO_MEM_UNASSIGNED) {
2579 region_offset = start_addr;
2581 region_offset &= TARGET_PAGE_MASK;
2582 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2583 end_addr = start_addr + (target_phys_addr_t)size;
2584 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2586 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2587 ram_addr_t orig_memory = p->phys_offset;
2588 target_phys_addr_t start_addr2, end_addr2;
2589 int need_subpage = 0;
2591 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2592 need_subpage);
2593 if (need_subpage) {
2594 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2595 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2596 &p->phys_offset, orig_memory,
2597 p->region_offset);
2598 } else {
2599 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2600 >> IO_MEM_SHIFT];
2602 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2603 region_offset);
2604 p->region_offset = 0;
2605 } else {
2606 p->phys_offset = phys_offset;
2607 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2608 (phys_offset & IO_MEM_ROMD))
2609 phys_offset += TARGET_PAGE_SIZE;
2611 } else {
2612 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2613 p->phys_offset = phys_offset;
2614 p->region_offset = region_offset;
2615 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2616 (phys_offset & IO_MEM_ROMD)) {
2617 phys_offset += TARGET_PAGE_SIZE;
2618 } else {
2619 target_phys_addr_t start_addr2, end_addr2;
2620 int need_subpage = 0;
2622 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2623 end_addr2, need_subpage);
2625 if (need_subpage) {
2626 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2627 &p->phys_offset, IO_MEM_UNASSIGNED,
2628 addr & TARGET_PAGE_MASK);
2629 subpage_register(subpage, start_addr2, end_addr2,
2630 phys_offset, region_offset);
2631 p->region_offset = 0;
2635 region_offset += TARGET_PAGE_SIZE;
2638 /* since each CPU stores ram addresses in its TLB cache, we must
2639 reset the modified entries */
2640 /* XXX: slow ! */
2641 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2642 tlb_flush(env, 1);
2646 /* XXX: temporary until new memory mapping API */
2647 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2649 PhysPageDesc *p;
2651 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2652 if (!p)
2653 return IO_MEM_UNASSIGNED;
2654 return p->phys_offset;
2657 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2659 if (kvm_enabled())
2660 kvm_coalesce_mmio_region(addr, size);
2663 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2665 if (kvm_enabled())
2666 kvm_uncoalesce_mmio_region(addr, size);
2669 void qemu_flush_coalesced_mmio_buffer(void)
2671 if (kvm_enabled())
2672 kvm_flush_coalesced_mmio_buffer();
2675 #if defined(__linux__) && !defined(TARGET_S390X)
2677 #include <sys/vfs.h>
2679 #define HUGETLBFS_MAGIC 0x958458f6
2681 static long gethugepagesize(const char *path)
2683 struct statfs fs;
2684 int ret;
2686 do {
2687 ret = statfs(path, &fs);
2688 } while (ret != 0 && errno == EINTR);
2690 if (ret != 0) {
2691 perror(path);
2692 return 0;
2695 if (fs.f_type != HUGETLBFS_MAGIC)
2696 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2698 return fs.f_bsize;
2701 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2703 char *filename;
2704 void *area;
2705 int fd;
2706 #ifdef MAP_POPULATE
2707 int flags;
2708 #endif
2709 unsigned long hpagesize;
2711 hpagesize = gethugepagesize(path);
2712 if (!hpagesize) {
2713 return NULL;
2716 if (memory < hpagesize) {
2717 return NULL;
2720 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2721 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2722 return NULL;
2725 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2726 return NULL;
2729 fd = mkstemp(filename);
2730 if (fd < 0) {
2731 perror("unable to create backing store for hugepages");
2732 free(filename);
2733 return NULL;
2735 unlink(filename);
2736 free(filename);
2738 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2741 * ftruncate is not supported by hugetlbfs in older
2742 * hosts, so don't bother bailing out on errors.
2743 * If anything goes wrong with it under other filesystems,
2744 * mmap will fail.
2746 if (ftruncate(fd, memory))
2747 perror("ftruncate");
2749 #ifdef MAP_POPULATE
2750 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2751 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2752 * to sidestep this quirk.
2754 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2755 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2756 #else
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2758 #endif
2759 if (area == MAP_FAILED) {
2760 perror("file_ram_alloc: can't mmap RAM pages");
2761 close(fd);
2762 return (NULL);
2764 return area;
2766 #endif
2768 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2770 RAMBlock *new_block;
2772 size = TARGET_PAGE_ALIGN(size);
2773 new_block = qemu_malloc(sizeof(*new_block));
2775 if (mem_path) {
2776 #if defined (__linux__) && !defined(TARGET_S390X)
2777 new_block->host = file_ram_alloc(size, mem_path);
2778 if (!new_block->host)
2779 exit(1);
2780 #else
2781 fprintf(stderr, "-mem-path option unsupported\n");
2782 exit(1);
2783 #endif
2784 } else {
2785 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2786 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2787 new_block->host = mmap((void*)0x1000000, size,
2788 PROT_EXEC|PROT_READ|PROT_WRITE,
2789 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2790 #else
2791 new_block->host = qemu_vmalloc(size);
2792 #endif
2793 #ifdef MADV_MERGEABLE
2794 madvise(new_block->host, size, MADV_MERGEABLE);
2795 #endif
2797 new_block->offset = last_ram_offset;
2798 new_block->length = size;
2800 new_block->next = ram_blocks;
2801 ram_blocks = new_block;
2803 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2804 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2805 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2806 0xff, size >> TARGET_PAGE_BITS);
2808 last_ram_offset += size;
2810 if (kvm_enabled())
2811 kvm_setup_guest_memory(new_block->host, size);
2813 return new_block->offset;
2816 void qemu_ram_free(ram_addr_t addr)
2818 /* TODO: implement this. */
2821 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2822 With the exception of the softmmu code in this file, this should
2823 only be used for local memory (e.g. video ram) that the device owns,
2824 and knows it isn't going to access beyond the end of the block.
2826 It should not be used for general purpose DMA.
2827 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2829 void *qemu_get_ram_ptr(ram_addr_t addr)
2831 RAMBlock *prev;
2832 RAMBlock **prevp;
2833 RAMBlock *block;
2835 prev = NULL;
2836 prevp = &ram_blocks;
2837 block = ram_blocks;
2838 while (block && (block->offset > addr
2839 || block->offset + block->length <= addr)) {
2840 if (prev)
2841 prevp = &prev->next;
2842 prev = block;
2843 block = block->next;
2845 if (!block) {
2846 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2847 abort();
2849 /* Move this entry to to start of the list. */
2850 if (prev) {
2851 prev->next = block->next;
2852 block->next = *prevp;
2853 *prevp = block;
2855 return block->host + (addr - block->offset);
2858 /* Some of the softmmu routines need to translate from a host pointer
2859 (typically a TLB entry) back to a ram offset. */
2860 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2862 RAMBlock *block;
2863 uint8_t *host = ptr;
2865 block = ram_blocks;
2866 while (block && (block->host > host
2867 || block->host + block->length <= host)) {
2868 block = block->next;
2870 if (!block) {
2871 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2872 abort();
2874 return block->offset + (host - block->host);
2877 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2879 #ifdef DEBUG_UNASSIGNED
2880 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2881 #endif
2882 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2883 do_unassigned_access(addr, 0, 0, 0, 1);
2884 #endif
2885 return 0;
2888 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2890 #ifdef DEBUG_UNASSIGNED
2891 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2892 #endif
2893 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2894 do_unassigned_access(addr, 0, 0, 0, 2);
2895 #endif
2896 return 0;
2899 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2901 #ifdef DEBUG_UNASSIGNED
2902 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2903 #endif
2904 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2905 do_unassigned_access(addr, 0, 0, 0, 4);
2906 #endif
2907 return 0;
2910 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2912 #ifdef DEBUG_UNASSIGNED
2913 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2914 #endif
2915 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2916 do_unassigned_access(addr, 1, 0, 0, 1);
2917 #endif
2920 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2922 #ifdef DEBUG_UNASSIGNED
2923 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2924 #endif
2925 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2926 do_unassigned_access(addr, 1, 0, 0, 2);
2927 #endif
2930 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2932 #ifdef DEBUG_UNASSIGNED
2933 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2934 #endif
2935 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2936 do_unassigned_access(addr, 1, 0, 0, 4);
2937 #endif
2940 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2941 unassigned_mem_readb,
2942 unassigned_mem_readw,
2943 unassigned_mem_readl,
2946 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2947 unassigned_mem_writeb,
2948 unassigned_mem_writew,
2949 unassigned_mem_writel,
2952 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2953 uint32_t val)
2955 int dirty_flags;
2956 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2957 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2958 #if !defined(CONFIG_USER_ONLY)
2959 tb_invalidate_phys_page_fast(ram_addr, 1);
2960 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2961 #endif
2963 stb_p(qemu_get_ram_ptr(ram_addr), val);
2964 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2965 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2966 /* we remove the notdirty callback only if the code has been
2967 flushed */
2968 if (dirty_flags == 0xff)
2969 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2972 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2973 uint32_t val)
2975 int dirty_flags;
2976 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2977 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2978 #if !defined(CONFIG_USER_ONLY)
2979 tb_invalidate_phys_page_fast(ram_addr, 2);
2980 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2981 #endif
2983 stw_p(qemu_get_ram_ptr(ram_addr), val);
2984 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2985 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2986 /* we remove the notdirty callback only if the code has been
2987 flushed */
2988 if (dirty_flags == 0xff)
2989 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2992 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2993 uint32_t val)
2995 int dirty_flags;
2996 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2997 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2998 #if !defined(CONFIG_USER_ONLY)
2999 tb_invalidate_phys_page_fast(ram_addr, 4);
3000 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3001 #endif
3003 stl_p(qemu_get_ram_ptr(ram_addr), val);
3004 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3005 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3006 /* we remove the notdirty callback only if the code has been
3007 flushed */
3008 if (dirty_flags == 0xff)
3009 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3012 static CPUReadMemoryFunc * const error_mem_read[3] = {
3013 NULL, /* never used */
3014 NULL, /* never used */
3015 NULL, /* never used */
3018 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3019 notdirty_mem_writeb,
3020 notdirty_mem_writew,
3021 notdirty_mem_writel,
3024 /* Generate a debug exception if a watchpoint has been hit. */
3025 static void check_watchpoint(int offset, int len_mask, int flags)
3027 CPUState *env = cpu_single_env;
3028 target_ulong pc, cs_base;
3029 TranslationBlock *tb;
3030 target_ulong vaddr;
3031 CPUWatchpoint *wp;
3032 int cpu_flags;
3034 if (env->watchpoint_hit) {
3035 /* We re-entered the check after replacing the TB. Now raise
3036 * the debug interrupt so that is will trigger after the
3037 * current instruction. */
3038 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3039 return;
3041 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3042 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3043 if ((vaddr == (wp->vaddr & len_mask) ||
3044 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3045 wp->flags |= BP_WATCHPOINT_HIT;
3046 if (!env->watchpoint_hit) {
3047 env->watchpoint_hit = wp;
3048 tb = tb_find_pc(env->mem_io_pc);
3049 if (!tb) {
3050 cpu_abort(env, "check_watchpoint: could not find TB for "
3051 "pc=%p", (void *)env->mem_io_pc);
3053 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3054 tb_phys_invalidate(tb, -1);
3055 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3056 env->exception_index = EXCP_DEBUG;
3057 } else {
3058 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3059 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3061 cpu_resume_from_signal(env, NULL);
3063 } else {
3064 wp->flags &= ~BP_WATCHPOINT_HIT;
3069 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3070 so these check for a hit then pass through to the normal out-of-line
3071 phys routines. */
3072 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3074 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3075 return ldub_phys(addr);
3078 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3080 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3081 return lduw_phys(addr);
3084 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3086 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3087 return ldl_phys(addr);
3090 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3091 uint32_t val)
3093 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3094 stb_phys(addr, val);
3097 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3098 uint32_t val)
3100 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3101 stw_phys(addr, val);
3104 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3105 uint32_t val)
3107 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3108 stl_phys(addr, val);
3111 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3112 watch_mem_readb,
3113 watch_mem_readw,
3114 watch_mem_readl,
3117 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3118 watch_mem_writeb,
3119 watch_mem_writew,
3120 watch_mem_writel,
3123 static inline uint32_t subpage_readlen (subpage_t *mmio,
3124 target_phys_addr_t addr,
3125 unsigned int len)
3127 unsigned int idx = SUBPAGE_IDX(addr);
3128 #if defined(DEBUG_SUBPAGE)
3129 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3130 mmio, len, addr, idx);
3131 #endif
3133 addr += mmio->region_offset[idx];
3134 idx = mmio->sub_io_index[idx];
3135 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3138 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3139 uint32_t value, unsigned int len)
3141 unsigned int idx = SUBPAGE_IDX(addr);
3142 #if defined(DEBUG_SUBPAGE)
3143 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3144 __func__, mmio, len, addr, idx, value);
3145 #endif
3147 addr += mmio->region_offset[idx];
3148 idx = mmio->sub_io_index[idx];
3149 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3152 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3154 return subpage_readlen(opaque, addr, 0);
3157 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3158 uint32_t value)
3160 subpage_writelen(opaque, addr, value, 0);
3163 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3165 return subpage_readlen(opaque, addr, 1);
3168 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3169 uint32_t value)
3171 subpage_writelen(opaque, addr, value, 1);
3174 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3176 return subpage_readlen(opaque, addr, 2);
3179 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3180 uint32_t value)
3182 subpage_writelen(opaque, addr, value, 2);
3185 static CPUReadMemoryFunc * const subpage_read[] = {
3186 &subpage_readb,
3187 &subpage_readw,
3188 &subpage_readl,
3191 static CPUWriteMemoryFunc * const subpage_write[] = {
3192 &subpage_writeb,
3193 &subpage_writew,
3194 &subpage_writel,
3197 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3198 ram_addr_t memory, ram_addr_t region_offset)
3200 int idx, eidx;
3202 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3203 return -1;
3204 idx = SUBPAGE_IDX(start);
3205 eidx = SUBPAGE_IDX(end);
3206 #if defined(DEBUG_SUBPAGE)
3207 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3208 mmio, start, end, idx, eidx, memory);
3209 #endif
3210 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3211 for (; idx <= eidx; idx++) {
3212 mmio->sub_io_index[idx] = memory;
3213 mmio->region_offset[idx] = region_offset;
3216 return 0;
3219 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3220 ram_addr_t orig_memory,
3221 ram_addr_t region_offset)
3223 subpage_t *mmio;
3224 int subpage_memory;
3226 mmio = qemu_mallocz(sizeof(subpage_t));
3228 mmio->base = base;
3229 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3230 #if defined(DEBUG_SUBPAGE)
3231 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3232 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3233 #endif
3234 *phys = subpage_memory | IO_MEM_SUBPAGE;
3235 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3237 return mmio;
3240 static int get_free_io_mem_idx(void)
3242 int i;
3244 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3245 if (!io_mem_used[i]) {
3246 io_mem_used[i] = 1;
3247 return i;
3249 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3250 return -1;
3253 /* mem_read and mem_write are arrays of functions containing the
3254 function to access byte (index 0), word (index 1) and dword (index
3255 2). Functions can be omitted with a NULL function pointer.
3256 If io_index is non zero, the corresponding io zone is
3257 modified. If it is zero, a new io zone is allocated. The return
3258 value can be used with cpu_register_physical_memory(). (-1) is
3259 returned if error. */
3260 static int cpu_register_io_memory_fixed(int io_index,
3261 CPUReadMemoryFunc * const *mem_read,
3262 CPUWriteMemoryFunc * const *mem_write,
3263 void *opaque)
3265 int i;
3267 if (io_index <= 0) {
3268 io_index = get_free_io_mem_idx();
3269 if (io_index == -1)
3270 return io_index;
3271 } else {
3272 io_index >>= IO_MEM_SHIFT;
3273 if (io_index >= IO_MEM_NB_ENTRIES)
3274 return -1;
3277 for (i = 0; i < 3; ++i) {
3278 io_mem_read[io_index][i]
3279 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3281 for (i = 0; i < 3; ++i) {
3282 io_mem_write[io_index][i]
3283 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3285 io_mem_opaque[io_index] = opaque;
3287 return (io_index << IO_MEM_SHIFT);
3290 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3291 CPUWriteMemoryFunc * const *mem_write,
3292 void *opaque)
3294 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3297 void cpu_unregister_io_memory(int io_table_address)
3299 int i;
3300 int io_index = io_table_address >> IO_MEM_SHIFT;
3302 for (i=0;i < 3; i++) {
3303 io_mem_read[io_index][i] = unassigned_mem_read[i];
3304 io_mem_write[io_index][i] = unassigned_mem_write[i];
3306 io_mem_opaque[io_index] = NULL;
3307 io_mem_used[io_index] = 0;
3310 static void io_mem_init(void)
3312 int i;
3314 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3315 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3316 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3317 for (i=0; i<5; i++)
3318 io_mem_used[i] = 1;
3320 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3321 watch_mem_write, NULL);
3324 #endif /* !defined(CONFIG_USER_ONLY) */
3326 /* physical memory access (slow version, mainly for debug) */
3327 #if defined(CONFIG_USER_ONLY)
3328 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3329 uint8_t *buf, int len, int is_write)
3331 int l, flags;
3332 target_ulong page;
3333 void * p;
3335 while (len > 0) {
3336 page = addr & TARGET_PAGE_MASK;
3337 l = (page + TARGET_PAGE_SIZE) - addr;
3338 if (l > len)
3339 l = len;
3340 flags = page_get_flags(page);
3341 if (!(flags & PAGE_VALID))
3342 return -1;
3343 if (is_write) {
3344 if (!(flags & PAGE_WRITE))
3345 return -1;
3346 /* XXX: this code should not depend on lock_user */
3347 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3348 return -1;
3349 memcpy(p, buf, l);
3350 unlock_user(p, addr, l);
3351 } else {
3352 if (!(flags & PAGE_READ))
3353 return -1;
3354 /* XXX: this code should not depend on lock_user */
3355 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3356 return -1;
3357 memcpy(buf, p, l);
3358 unlock_user(p, addr, 0);
3360 len -= l;
3361 buf += l;
3362 addr += l;
3364 return 0;
3367 #else
3368 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3369 int len, int is_write)
3371 int l, io_index;
3372 uint8_t *ptr;
3373 uint32_t val;
3374 target_phys_addr_t page;
3375 unsigned long pd;
3376 PhysPageDesc *p;
3378 while (len > 0) {
3379 page = addr & TARGET_PAGE_MASK;
3380 l = (page + TARGET_PAGE_SIZE) - addr;
3381 if (l > len)
3382 l = len;
3383 p = phys_page_find(page >> TARGET_PAGE_BITS);
3384 if (!p) {
3385 pd = IO_MEM_UNASSIGNED;
3386 } else {
3387 pd = p->phys_offset;
3390 if (is_write) {
3391 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3392 target_phys_addr_t addr1 = addr;
3393 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3394 if (p)
3395 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3396 /* XXX: could force cpu_single_env to NULL to avoid
3397 potential bugs */
3398 if (l >= 4 && ((addr1 & 3) == 0)) {
3399 /* 32 bit write access */
3400 val = ldl_p(buf);
3401 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3402 l = 4;
3403 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3404 /* 16 bit write access */
3405 val = lduw_p(buf);
3406 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3407 l = 2;
3408 } else {
3409 /* 8 bit write access */
3410 val = ldub_p(buf);
3411 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3412 l = 1;
3414 } else {
3415 unsigned long addr1;
3416 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3417 /* RAM case */
3418 ptr = qemu_get_ram_ptr(addr1);
3419 memcpy(ptr, buf, l);
3420 if (!cpu_physical_memory_is_dirty(addr1)) {
3421 /* invalidate code */
3422 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3423 /* set dirty bit */
3424 cpu_physical_memory_set_dirty_flags(
3425 addr1, (0xff & ~CODE_DIRTY_FLAG));
3428 } else {
3429 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3430 !(pd & IO_MEM_ROMD)) {
3431 target_phys_addr_t addr1 = addr;
3432 /* I/O case */
3433 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3434 if (p)
3435 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3436 if (l >= 4 && ((addr1 & 3) == 0)) {
3437 /* 32 bit read access */
3438 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3439 stl_p(buf, val);
3440 l = 4;
3441 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3442 /* 16 bit read access */
3443 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3444 stw_p(buf, val);
3445 l = 2;
3446 } else {
3447 /* 8 bit read access */
3448 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3449 stb_p(buf, val);
3450 l = 1;
3452 } else {
3453 /* RAM case */
3454 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3455 (addr & ~TARGET_PAGE_MASK);
3456 memcpy(buf, ptr, l);
3459 len -= l;
3460 buf += l;
3461 addr += l;
3465 /* used for ROM loading : can write in RAM and ROM */
3466 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3467 const uint8_t *buf, int len)
3469 int l;
3470 uint8_t *ptr;
3471 target_phys_addr_t page;
3472 unsigned long pd;
3473 PhysPageDesc *p;
3475 while (len > 0) {
3476 page = addr & TARGET_PAGE_MASK;
3477 l = (page + TARGET_PAGE_SIZE) - addr;
3478 if (l > len)
3479 l = len;
3480 p = phys_page_find(page >> TARGET_PAGE_BITS);
3481 if (!p) {
3482 pd = IO_MEM_UNASSIGNED;
3483 } else {
3484 pd = p->phys_offset;
3487 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3488 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3489 !(pd & IO_MEM_ROMD)) {
3490 /* do nothing */
3491 } else {
3492 unsigned long addr1;
3493 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3494 /* ROM/RAM case */
3495 ptr = qemu_get_ram_ptr(addr1);
3496 memcpy(ptr, buf, l);
3498 len -= l;
3499 buf += l;
3500 addr += l;
3504 typedef struct {
3505 void *buffer;
3506 target_phys_addr_t addr;
3507 target_phys_addr_t len;
3508 } BounceBuffer;
3510 static BounceBuffer bounce;
3512 typedef struct MapClient {
3513 void *opaque;
3514 void (*callback)(void *opaque);
3515 QLIST_ENTRY(MapClient) link;
3516 } MapClient;
3518 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3519 = QLIST_HEAD_INITIALIZER(map_client_list);
3521 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3523 MapClient *client = qemu_malloc(sizeof(*client));
3525 client->opaque = opaque;
3526 client->callback = callback;
3527 QLIST_INSERT_HEAD(&map_client_list, client, link);
3528 return client;
3531 void cpu_unregister_map_client(void *_client)
3533 MapClient *client = (MapClient *)_client;
3535 QLIST_REMOVE(client, link);
3536 qemu_free(client);
3539 static void cpu_notify_map_clients(void)
3541 MapClient *client;
3543 while (!QLIST_EMPTY(&map_client_list)) {
3544 client = QLIST_FIRST(&map_client_list);
3545 client->callback(client->opaque);
3546 cpu_unregister_map_client(client);
3550 /* Map a physical memory region into a host virtual address.
3551 * May map a subset of the requested range, given by and returned in *plen.
3552 * May return NULL if resources needed to perform the mapping are exhausted.
3553 * Use only for reads OR writes - not for read-modify-write operations.
3554 * Use cpu_register_map_client() to know when retrying the map operation is
3555 * likely to succeed.
3557 void *cpu_physical_memory_map(target_phys_addr_t addr,
3558 target_phys_addr_t *plen,
3559 int is_write)
3561 target_phys_addr_t len = *plen;
3562 target_phys_addr_t done = 0;
3563 int l;
3564 uint8_t *ret = NULL;
3565 uint8_t *ptr;
3566 target_phys_addr_t page;
3567 unsigned long pd;
3568 PhysPageDesc *p;
3569 unsigned long addr1;
3571 while (len > 0) {
3572 page = addr & TARGET_PAGE_MASK;
3573 l = (page + TARGET_PAGE_SIZE) - addr;
3574 if (l > len)
3575 l = len;
3576 p = phys_page_find(page >> TARGET_PAGE_BITS);
3577 if (!p) {
3578 pd = IO_MEM_UNASSIGNED;
3579 } else {
3580 pd = p->phys_offset;
3583 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3584 if (done || bounce.buffer) {
3585 break;
3587 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3588 bounce.addr = addr;
3589 bounce.len = l;
3590 if (!is_write) {
3591 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3593 ptr = bounce.buffer;
3594 } else {
3595 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3596 ptr = qemu_get_ram_ptr(addr1);
3598 if (!done) {
3599 ret = ptr;
3600 } else if (ret + done != ptr) {
3601 break;
3604 len -= l;
3605 addr += l;
3606 done += l;
3608 *plen = done;
3609 return ret;
3612 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3613 * Will also mark the memory as dirty if is_write == 1. access_len gives
3614 * the amount of memory that was actually read or written by the caller.
3616 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3617 int is_write, target_phys_addr_t access_len)
3619 if (buffer != bounce.buffer) {
3620 if (is_write) {
3621 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3622 while (access_len) {
3623 unsigned l;
3624 l = TARGET_PAGE_SIZE;
3625 if (l > access_len)
3626 l = access_len;
3627 if (!cpu_physical_memory_is_dirty(addr1)) {
3628 /* invalidate code */
3629 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3630 /* set dirty bit */
3631 cpu_physical_memory_set_dirty_flags(
3632 addr1, (0xff & ~CODE_DIRTY_FLAG));
3634 addr1 += l;
3635 access_len -= l;
3638 return;
3640 if (is_write) {
3641 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3643 qemu_vfree(bounce.buffer);
3644 bounce.buffer = NULL;
3645 cpu_notify_map_clients();
3648 /* warning: addr must be aligned */
3649 uint32_t ldl_phys(target_phys_addr_t addr)
3651 int io_index;
3652 uint8_t *ptr;
3653 uint32_t val;
3654 unsigned long pd;
3655 PhysPageDesc *p;
3657 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3658 if (!p) {
3659 pd = IO_MEM_UNASSIGNED;
3660 } else {
3661 pd = p->phys_offset;
3664 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3665 !(pd & IO_MEM_ROMD)) {
3666 /* I/O case */
3667 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3668 if (p)
3669 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3670 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3671 } else {
3672 /* RAM case */
3673 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3674 (addr & ~TARGET_PAGE_MASK);
3675 val = ldl_p(ptr);
3677 return val;
3680 /* warning: addr must be aligned */
3681 uint64_t ldq_phys(target_phys_addr_t addr)
3683 int io_index;
3684 uint8_t *ptr;
3685 uint64_t val;
3686 unsigned long pd;
3687 PhysPageDesc *p;
3689 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3690 if (!p) {
3691 pd = IO_MEM_UNASSIGNED;
3692 } else {
3693 pd = p->phys_offset;
3696 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3697 !(pd & IO_MEM_ROMD)) {
3698 /* I/O case */
3699 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3700 if (p)
3701 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3702 #ifdef TARGET_WORDS_BIGENDIAN
3703 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3704 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3705 #else
3706 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3707 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3708 #endif
3709 } else {
3710 /* RAM case */
3711 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3712 (addr & ~TARGET_PAGE_MASK);
3713 val = ldq_p(ptr);
3715 return val;
3718 /* XXX: optimize */
3719 uint32_t ldub_phys(target_phys_addr_t addr)
3721 uint8_t val;
3722 cpu_physical_memory_read(addr, &val, 1);
3723 return val;
3726 /* warning: addr must be aligned */
3727 uint32_t lduw_phys(target_phys_addr_t addr)
3729 int io_index;
3730 uint8_t *ptr;
3731 uint64_t val;
3732 unsigned long pd;
3733 PhysPageDesc *p;
3735 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3736 if (!p) {
3737 pd = IO_MEM_UNASSIGNED;
3738 } else {
3739 pd = p->phys_offset;
3742 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3743 !(pd & IO_MEM_ROMD)) {
3744 /* I/O case */
3745 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3746 if (p)
3747 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3748 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3749 } else {
3750 /* RAM case */
3751 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3752 (addr & ~TARGET_PAGE_MASK);
3753 val = lduw_p(ptr);
3755 return val;
3758 /* warning: addr must be aligned. The ram page is not masked as dirty
3759 and the code inside is not invalidated. It is useful if the dirty
3760 bits are used to track modified PTEs */
3761 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3763 int io_index;
3764 uint8_t *ptr;
3765 unsigned long pd;
3766 PhysPageDesc *p;
3768 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3769 if (!p) {
3770 pd = IO_MEM_UNASSIGNED;
3771 } else {
3772 pd = p->phys_offset;
3775 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3776 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3777 if (p)
3778 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3779 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3780 } else {
3781 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3782 ptr = qemu_get_ram_ptr(addr1);
3783 stl_p(ptr, val);
3785 if (unlikely(in_migration)) {
3786 if (!cpu_physical_memory_is_dirty(addr1)) {
3787 /* invalidate code */
3788 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3789 /* set dirty bit */
3790 cpu_physical_memory_set_dirty_flags(
3791 addr1, (0xff & ~CODE_DIRTY_FLAG));
3797 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3799 int io_index;
3800 uint8_t *ptr;
3801 unsigned long pd;
3802 PhysPageDesc *p;
3804 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3805 if (!p) {
3806 pd = IO_MEM_UNASSIGNED;
3807 } else {
3808 pd = p->phys_offset;
3811 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3812 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3813 if (p)
3814 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3815 #ifdef TARGET_WORDS_BIGENDIAN
3816 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3817 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3818 #else
3819 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3821 #endif
3822 } else {
3823 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3824 (addr & ~TARGET_PAGE_MASK);
3825 stq_p(ptr, val);
3829 /* warning: addr must be aligned */
3830 void stl_phys(target_phys_addr_t addr, uint32_t val)
3832 int io_index;
3833 uint8_t *ptr;
3834 unsigned long pd;
3835 PhysPageDesc *p;
3837 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3838 if (!p) {
3839 pd = IO_MEM_UNASSIGNED;
3840 } else {
3841 pd = p->phys_offset;
3844 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3845 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3846 if (p)
3847 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3848 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3849 } else {
3850 unsigned long addr1;
3851 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3852 /* RAM case */
3853 ptr = qemu_get_ram_ptr(addr1);
3854 stl_p(ptr, val);
3855 if (!cpu_physical_memory_is_dirty(addr1)) {
3856 /* invalidate code */
3857 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3858 /* set dirty bit */
3859 cpu_physical_memory_set_dirty_flags(addr1,
3860 (0xff & ~CODE_DIRTY_FLAG));
3865 /* XXX: optimize */
3866 void stb_phys(target_phys_addr_t addr, uint32_t val)
3868 uint8_t v = val;
3869 cpu_physical_memory_write(addr, &v, 1);
3872 /* warning: addr must be aligned */
3873 void stw_phys(target_phys_addr_t addr, uint32_t val)
3875 int io_index;
3876 uint8_t *ptr;
3877 unsigned long pd;
3878 PhysPageDesc *p;
3880 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3881 if (!p) {
3882 pd = IO_MEM_UNASSIGNED;
3883 } else {
3884 pd = p->phys_offset;
3887 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3888 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3889 if (p)
3890 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3891 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3892 } else {
3893 unsigned long addr1;
3894 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3895 /* RAM case */
3896 ptr = qemu_get_ram_ptr(addr1);
3897 stw_p(ptr, val);
3898 if (!cpu_physical_memory_is_dirty(addr1)) {
3899 /* invalidate code */
3900 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3901 /* set dirty bit */
3902 cpu_physical_memory_set_dirty_flags(addr1,
3903 (0xff & ~CODE_DIRTY_FLAG));
3908 /* XXX: optimize */
3909 void stq_phys(target_phys_addr_t addr, uint64_t val)
3911 val = tswap64(val);
3912 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3915 /* virtual memory access for debug (includes writing to ROM) */
3916 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3917 uint8_t *buf, int len, int is_write)
3919 int l;
3920 target_phys_addr_t phys_addr;
3921 target_ulong page;
3923 while (len > 0) {
3924 page = addr & TARGET_PAGE_MASK;
3925 phys_addr = cpu_get_phys_page_debug(env, page);
3926 /* if no physical page mapped, return an error */
3927 if (phys_addr == -1)
3928 return -1;
3929 l = (page + TARGET_PAGE_SIZE) - addr;
3930 if (l > len)
3931 l = len;
3932 phys_addr += (addr & ~TARGET_PAGE_MASK);
3933 if (is_write)
3934 cpu_physical_memory_write_rom(phys_addr, buf, l);
3935 else
3936 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3937 len -= l;
3938 buf += l;
3939 addr += l;
3941 return 0;
3943 #endif
3945 /* in deterministic execution mode, instructions doing device I/Os
3946 must be at the end of the TB */
3947 void cpu_io_recompile(CPUState *env, void *retaddr)
3949 TranslationBlock *tb;
3950 uint32_t n, cflags;
3951 target_ulong pc, cs_base;
3952 uint64_t flags;
3954 tb = tb_find_pc((unsigned long)retaddr);
3955 if (!tb) {
3956 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3957 retaddr);
3959 n = env->icount_decr.u16.low + tb->icount;
3960 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3961 /* Calculate how many instructions had been executed before the fault
3962 occurred. */
3963 n = n - env->icount_decr.u16.low;
3964 /* Generate a new TB ending on the I/O insn. */
3965 n++;
3966 /* On MIPS and SH, delay slot instructions can only be restarted if
3967 they were already the first instruction in the TB. If this is not
3968 the first instruction in a TB then re-execute the preceding
3969 branch. */
3970 #if defined(TARGET_MIPS)
3971 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3972 env->active_tc.PC -= 4;
3973 env->icount_decr.u16.low++;
3974 env->hflags &= ~MIPS_HFLAG_BMASK;
3976 #elif defined(TARGET_SH4)
3977 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3978 && n > 1) {
3979 env->pc -= 2;
3980 env->icount_decr.u16.low++;
3981 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3983 #endif
3984 /* This should never happen. */
3985 if (n > CF_COUNT_MASK)
3986 cpu_abort(env, "TB too big during recompile");
3988 cflags = n | CF_LAST_IO;
3989 pc = tb->pc;
3990 cs_base = tb->cs_base;
3991 flags = tb->flags;
3992 tb_phys_invalidate(tb, -1);
3993 /* FIXME: In theory this could raise an exception. In practice
3994 we have already translated the block once so it's probably ok. */
3995 tb_gen_code(env, pc, cs_base, flags, cflags);
3996 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3997 the first in the TB) then we end up generating a whole new TB and
3998 repeating the fault, which is horribly inefficient.
3999 Better would be to execute just this insn uncached, or generate a
4000 second new TB. */
4001 cpu_resume_from_signal(env, NULL);
4004 #if !defined(CONFIG_USER_ONLY)
4006 void dump_exec_info(FILE *f,
4007 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4009 int i, target_code_size, max_target_code_size;
4010 int direct_jmp_count, direct_jmp2_count, cross_page;
4011 TranslationBlock *tb;
4013 target_code_size = 0;
4014 max_target_code_size = 0;
4015 cross_page = 0;
4016 direct_jmp_count = 0;
4017 direct_jmp2_count = 0;
4018 for(i = 0; i < nb_tbs; i++) {
4019 tb = &tbs[i];
4020 target_code_size += tb->size;
4021 if (tb->size > max_target_code_size)
4022 max_target_code_size = tb->size;
4023 if (tb->page_addr[1] != -1)
4024 cross_page++;
4025 if (tb->tb_next_offset[0] != 0xffff) {
4026 direct_jmp_count++;
4027 if (tb->tb_next_offset[1] != 0xffff) {
4028 direct_jmp2_count++;
4032 /* XXX: avoid using doubles ? */
4033 cpu_fprintf(f, "Translation buffer state:\n");
4034 cpu_fprintf(f, "gen code size %ld/%ld\n",
4035 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4036 cpu_fprintf(f, "TB count %d/%d\n",
4037 nb_tbs, code_gen_max_blocks);
4038 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4039 nb_tbs ? target_code_size / nb_tbs : 0,
4040 max_target_code_size);
4041 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4042 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4043 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4044 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4045 cross_page,
4046 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4047 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4048 direct_jmp_count,
4049 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4050 direct_jmp2_count,
4051 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4052 cpu_fprintf(f, "\nStatistics:\n");
4053 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4054 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4055 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4056 tcg_dump_info(f, cpu_fprintf);
4059 #define MMUSUFFIX _cmmu
4060 #define GETPC() NULL
4061 #define env cpu_single_env
4062 #define SOFTMMU_CODE_ACCESS
4064 #define SHIFT 0
4065 #include "softmmu_template.h"
4067 #define SHIFT 1
4068 #include "softmmu_template.h"
4070 #define SHIFT 2
4071 #include "softmmu_template.h"
4073 #define SHIFT 3
4074 #include "softmmu_template.h"
4076 #undef env
4078 #endif