Fix -device help and documentation
[qemu/aliguori-queue.git] / hw / mc146818rtc.c
blob571c5931ec1ce496ef53128fecafbcc29ae3fe40
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "apic.h"
29 #include "isa.h"
30 #include "hpet_emul.h"
31 #include "mc146818rtc.h"
33 //#define DEBUG_CMOS
35 #ifdef DEBUG_CMOS
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
37 #else
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
39 #endif
41 #define RTC_REINJECT_ON_ACK_COUNT 20
43 #define RTC_SECONDS 0
44 #define RTC_SECONDS_ALARM 1
45 #define RTC_MINUTES 2
46 #define RTC_MINUTES_ALARM 3
47 #define RTC_HOURS 4
48 #define RTC_HOURS_ALARM 5
49 #define RTC_ALARM_DONT_CARE 0xC0
51 #define RTC_DAY_OF_WEEK 6
52 #define RTC_DAY_OF_MONTH 7
53 #define RTC_MONTH 8
54 #define RTC_YEAR 9
56 #define RTC_REG_A 10
57 #define RTC_REG_B 11
58 #define RTC_REG_C 12
59 #define RTC_REG_D 13
61 #define REG_A_UIP 0x80
63 #define REG_B_SET 0x80
64 #define REG_B_PIE 0x40
65 #define REG_B_AIE 0x20
66 #define REG_B_UIE 0x10
67 #define REG_B_SQWE 0x08
68 #define REG_B_DM 0x04
70 #define REG_C_UF 0x10
71 #define REG_C_IRQF 0x80
72 #define REG_C_PF 0x40
73 #define REG_C_AF 0x20
75 typedef struct RTCState {
76 ISADevice dev;
77 uint8_t cmos_data[128];
78 uint8_t cmos_index;
79 struct tm current_tm;
80 int32_t base_year;
81 qemu_irq irq;
82 qemu_irq sqw_irq;
83 int it_shift;
84 /* periodic timer */
85 QEMUTimer *periodic_timer;
86 int64_t next_periodic_time;
87 /* second update */
88 int64_t next_second_time;
89 uint16_t irq_reinject_on_ack_count;
90 uint32_t irq_coalesced;
91 uint32_t period;
92 QEMUTimer *coalesced_timer;
93 QEMUTimer *second_timer;
94 QEMUTimer *second_timer2;
95 } RTCState;
97 static void rtc_irq_raise(qemu_irq irq)
99 /* When HPET is operating in legacy mode, RTC interrupts are disabled
100 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
101 * mode is established while interrupt is raised. We want it to
102 * be lowered in any case
104 #if defined TARGET_I386
105 if (!hpet_in_legacy_mode())
106 #endif
107 qemu_irq_raise(irq);
110 static void rtc_set_time(RTCState *s);
111 static void rtc_copy_date(RTCState *s);
113 #ifdef TARGET_I386
114 static void rtc_coalesced_timer_update(RTCState *s)
116 if (s->irq_coalesced == 0) {
117 qemu_del_timer(s->coalesced_timer);
118 } else {
119 /* divide each RTC interval to 2 - 8 smaller intervals */
120 int c = MIN(s->irq_coalesced, 7) + 1;
121 int64_t next_clock = qemu_get_clock(rtc_clock) +
122 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
123 qemu_mod_timer(s->coalesced_timer, next_clock);
127 static void rtc_coalesced_timer(void *opaque)
129 RTCState *s = opaque;
131 if (s->irq_coalesced != 0) {
132 apic_reset_irq_delivered();
133 s->cmos_data[RTC_REG_C] |= 0xc0;
134 rtc_irq_raise(s->irq);
135 if (apic_get_irq_delivered()) {
136 s->irq_coalesced--;
140 rtc_coalesced_timer_update(s);
142 #endif
144 static void rtc_timer_update(RTCState *s, int64_t current_time)
146 int period_code, period;
147 int64_t cur_clock, next_irq_clock;
148 int enable_pie;
150 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
151 #if defined TARGET_I386
152 /* disable periodic timer if hpet is in legacy mode, since interrupts are
153 * disabled anyway.
155 enable_pie = !hpet_in_legacy_mode();
156 #else
157 enable_pie = 1;
158 #endif
159 if (period_code != 0
160 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
161 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
162 if (period_code <= 2)
163 period_code += 7;
164 /* period in 32 Khz cycles */
165 period = 1 << (period_code - 1);
166 #ifdef TARGET_I386
167 if(period != s->period)
168 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
169 s->period = period;
170 #endif
171 /* compute 32 khz clock */
172 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
173 next_irq_clock = (cur_clock & ~(period - 1)) + period;
174 s->next_periodic_time =
175 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
176 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
177 } else {
178 #ifdef TARGET_I386
179 s->irq_coalesced = 0;
180 #endif
181 qemu_del_timer(s->periodic_timer);
185 static void rtc_periodic_timer(void *opaque)
187 RTCState *s = opaque;
189 rtc_timer_update(s, s->next_periodic_time);
190 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
191 s->cmos_data[RTC_REG_C] |= 0xc0;
192 #ifdef TARGET_I386
193 if(rtc_td_hack) {
194 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
195 s->irq_reinject_on_ack_count = 0;
196 apic_reset_irq_delivered();
197 rtc_irq_raise(s->irq);
198 if (!apic_get_irq_delivered()) {
199 s->irq_coalesced++;
200 rtc_coalesced_timer_update(s);
202 } else
203 #endif
204 rtc_irq_raise(s->irq);
206 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
207 /* Not square wave at all but we don't want 2048Hz interrupts!
208 Must be seen as a pulse. */
209 qemu_irq_raise(s->sqw_irq);
213 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
215 RTCState *s = opaque;
217 if ((addr & 1) == 0) {
218 s->cmos_index = data & 0x7f;
219 } else {
220 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
221 s->cmos_index, data);
222 switch(s->cmos_index) {
223 case RTC_SECONDS_ALARM:
224 case RTC_MINUTES_ALARM:
225 case RTC_HOURS_ALARM:
226 /* XXX: not supported */
227 s->cmos_data[s->cmos_index] = data;
228 break;
229 case RTC_SECONDS:
230 case RTC_MINUTES:
231 case RTC_HOURS:
232 case RTC_DAY_OF_WEEK:
233 case RTC_DAY_OF_MONTH:
234 case RTC_MONTH:
235 case RTC_YEAR:
236 s->cmos_data[s->cmos_index] = data;
237 /* if in set mode, do not update the time */
238 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
239 rtc_set_time(s);
241 break;
242 case RTC_REG_A:
243 /* UIP bit is read only */
244 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
245 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
246 rtc_timer_update(s, qemu_get_clock(rtc_clock));
247 break;
248 case RTC_REG_B:
249 if (data & REG_B_SET) {
250 /* set mode: reset UIP mode */
251 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
252 data &= ~REG_B_UIE;
253 } else {
254 /* if disabling set mode, update the time */
255 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
256 rtc_set_time(s);
259 s->cmos_data[RTC_REG_B] = data;
260 rtc_timer_update(s, qemu_get_clock(rtc_clock));
261 break;
262 case RTC_REG_C:
263 case RTC_REG_D:
264 /* cannot write to them */
265 break;
266 default:
267 s->cmos_data[s->cmos_index] = data;
268 break;
273 static inline int rtc_to_bcd(RTCState *s, int a)
275 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
276 return a;
277 } else {
278 return ((a / 10) << 4) | (a % 10);
282 static inline int rtc_from_bcd(RTCState *s, int a)
284 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
285 return a;
286 } else {
287 return ((a >> 4) * 10) + (a & 0x0f);
291 static void rtc_set_time(RTCState *s)
293 struct tm *tm = &s->current_tm;
295 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
296 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
297 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
298 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
299 (s->cmos_data[RTC_HOURS] & 0x80)) {
300 tm->tm_hour += 12;
302 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
303 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
304 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
305 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
307 rtc_change_mon_event(tm);
310 static void rtc_copy_date(RTCState *s)
312 const struct tm *tm = &s->current_tm;
313 int year;
315 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
316 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
317 if (s->cmos_data[RTC_REG_B] & 0x02) {
318 /* 24 hour format */
319 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
320 } else {
321 /* 12 hour format */
322 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
323 if (tm->tm_hour >= 12)
324 s->cmos_data[RTC_HOURS] |= 0x80;
326 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
327 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
328 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
329 year = (tm->tm_year - s->base_year) % 100;
330 if (year < 0)
331 year += 100;
332 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
335 /* month is between 0 and 11. */
336 static int get_days_in_month(int month, int year)
338 static const int days_tab[12] = {
339 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
341 int d;
342 if ((unsigned )month >= 12)
343 return 31;
344 d = days_tab[month];
345 if (month == 1) {
346 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
347 d++;
349 return d;
352 /* update 'tm' to the next second */
353 static void rtc_next_second(struct tm *tm)
355 int days_in_month;
357 tm->tm_sec++;
358 if ((unsigned)tm->tm_sec >= 60) {
359 tm->tm_sec = 0;
360 tm->tm_min++;
361 if ((unsigned)tm->tm_min >= 60) {
362 tm->tm_min = 0;
363 tm->tm_hour++;
364 if ((unsigned)tm->tm_hour >= 24) {
365 tm->tm_hour = 0;
366 /* next day */
367 tm->tm_wday++;
368 if ((unsigned)tm->tm_wday >= 7)
369 tm->tm_wday = 0;
370 days_in_month = get_days_in_month(tm->tm_mon,
371 tm->tm_year + 1900);
372 tm->tm_mday++;
373 if (tm->tm_mday < 1) {
374 tm->tm_mday = 1;
375 } else if (tm->tm_mday > days_in_month) {
376 tm->tm_mday = 1;
377 tm->tm_mon++;
378 if (tm->tm_mon >= 12) {
379 tm->tm_mon = 0;
380 tm->tm_year++;
389 static void rtc_update_second(void *opaque)
391 RTCState *s = opaque;
392 int64_t delay;
394 /* if the oscillator is not in normal operation, we do not update */
395 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
396 s->next_second_time += get_ticks_per_sec();
397 qemu_mod_timer(s->second_timer, s->next_second_time);
398 } else {
399 rtc_next_second(&s->current_tm);
401 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
402 /* update in progress bit */
403 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
405 /* should be 244 us = 8 / 32768 seconds, but currently the
406 timers do not have the necessary resolution. */
407 delay = (get_ticks_per_sec() * 1) / 100;
408 if (delay < 1)
409 delay = 1;
410 qemu_mod_timer(s->second_timer2,
411 s->next_second_time + delay);
415 static void rtc_update_second2(void *opaque)
417 RTCState *s = opaque;
419 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
420 rtc_copy_date(s);
423 /* check alarm */
424 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
425 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
426 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
427 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
428 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
429 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
430 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
432 s->cmos_data[RTC_REG_C] |= 0xa0;
433 rtc_irq_raise(s->irq);
437 /* update ended interrupt */
438 s->cmos_data[RTC_REG_C] |= REG_C_UF;
439 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
440 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
441 rtc_irq_raise(s->irq);
444 /* clear update in progress bit */
445 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
447 s->next_second_time += get_ticks_per_sec();
448 qemu_mod_timer(s->second_timer, s->next_second_time);
451 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
453 RTCState *s = opaque;
454 int ret;
455 if ((addr & 1) == 0) {
456 return 0xff;
457 } else {
458 switch(s->cmos_index) {
459 case RTC_SECONDS:
460 case RTC_MINUTES:
461 case RTC_HOURS:
462 case RTC_DAY_OF_WEEK:
463 case RTC_DAY_OF_MONTH:
464 case RTC_MONTH:
465 case RTC_YEAR:
466 ret = s->cmos_data[s->cmos_index];
467 break;
468 case RTC_REG_A:
469 ret = s->cmos_data[s->cmos_index];
470 break;
471 case RTC_REG_C:
472 ret = s->cmos_data[s->cmos_index];
473 qemu_irq_lower(s->irq);
474 #ifdef TARGET_I386
475 if(s->irq_coalesced &&
476 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
477 s->irq_reinject_on_ack_count++;
478 apic_reset_irq_delivered();
479 qemu_irq_raise(s->irq);
480 if (apic_get_irq_delivered())
481 s->irq_coalesced--;
482 break;
484 #endif
486 s->cmos_data[RTC_REG_C] = 0x00;
487 break;
488 default:
489 ret = s->cmos_data[s->cmos_index];
490 break;
492 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
493 s->cmos_index, ret);
494 return ret;
498 void rtc_set_memory(ISADevice *dev, int addr, int val)
500 RTCState *s = DO_UPCAST(RTCState, dev, dev);
501 if (addr >= 0 && addr <= 127)
502 s->cmos_data[addr] = val;
505 void rtc_set_date(ISADevice *dev, const struct tm *tm)
507 RTCState *s = DO_UPCAST(RTCState, dev, dev);
508 s->current_tm = *tm;
509 rtc_copy_date(s);
512 /* PC cmos mappings */
513 #define REG_IBM_CENTURY_BYTE 0x32
514 #define REG_IBM_PS2_CENTURY_BYTE 0x37
516 static void rtc_set_date_from_host(ISADevice *dev)
518 RTCState *s = DO_UPCAST(RTCState, dev, dev);
519 struct tm tm;
520 int val;
522 /* set the CMOS date */
523 qemu_get_timedate(&tm, 0);
524 rtc_set_date(dev, &tm);
526 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
527 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
528 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
531 static int rtc_post_load(void *opaque, int version_id)
533 #ifdef TARGET_I386
534 RTCState *s = opaque;
536 if (version_id >= 2) {
537 if (rtc_td_hack) {
538 rtc_coalesced_timer_update(s);
541 #endif
542 return 0;
545 static const VMStateDescription vmstate_rtc = {
546 .name = "mc146818rtc",
547 .version_id = 2,
548 .minimum_version_id = 1,
549 .minimum_version_id_old = 1,
550 .post_load = rtc_post_load,
551 .fields = (VMStateField []) {
552 VMSTATE_BUFFER(cmos_data, RTCState),
553 VMSTATE_UINT8(cmos_index, RTCState),
554 VMSTATE_INT32(current_tm.tm_sec, RTCState),
555 VMSTATE_INT32(current_tm.tm_min, RTCState),
556 VMSTATE_INT32(current_tm.tm_hour, RTCState),
557 VMSTATE_INT32(current_tm.tm_wday, RTCState),
558 VMSTATE_INT32(current_tm.tm_mday, RTCState),
559 VMSTATE_INT32(current_tm.tm_mon, RTCState),
560 VMSTATE_INT32(current_tm.tm_year, RTCState),
561 VMSTATE_TIMER(periodic_timer, RTCState),
562 VMSTATE_INT64(next_periodic_time, RTCState),
563 VMSTATE_INT64(next_second_time, RTCState),
564 VMSTATE_TIMER(second_timer, RTCState),
565 VMSTATE_TIMER(second_timer2, RTCState),
566 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
567 VMSTATE_UINT32_V(period, RTCState, 2),
568 VMSTATE_END_OF_LIST()
572 static void rtc_reset(void *opaque)
574 RTCState *s = opaque;
576 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
577 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
579 qemu_irq_lower(s->irq);
581 #ifdef TARGET_I386
582 if (rtc_td_hack)
583 s->irq_coalesced = 0;
584 #endif
587 static int rtc_initfn(ISADevice *dev)
589 RTCState *s = DO_UPCAST(RTCState, dev, dev);
590 int base = 0x70;
591 int isairq = 8;
593 isa_init_irq(dev, &s->irq, isairq);
595 s->cmos_data[RTC_REG_A] = 0x26;
596 s->cmos_data[RTC_REG_B] = 0x02;
597 s->cmos_data[RTC_REG_C] = 0x00;
598 s->cmos_data[RTC_REG_D] = 0x80;
600 rtc_set_date_from_host(dev);
602 s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
603 #ifdef TARGET_I386
604 if (rtc_td_hack)
605 s->coalesced_timer =
606 qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
607 #endif
608 s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
609 s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
611 s->next_second_time =
612 qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
613 qemu_mod_timer(s->second_timer2, s->next_second_time);
615 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
616 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
618 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
619 qemu_register_reset(rtc_reset, s);
620 return 0;
623 ISADevice *rtc_init(int base_year)
625 ISADevice *dev;
627 dev = isa_create("mc146818rtc");
628 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
629 qdev_init_nofail(&dev->qdev);
630 return dev;
633 static ISADeviceInfo mc146818rtc_info = {
634 .qdev.name = "mc146818rtc",
635 .qdev.size = sizeof(RTCState),
636 .qdev.no_user = 1,
637 .qdev.vmsd = &vmstate_rtc,
638 .init = rtc_initfn,
639 .qdev.props = (Property[]) {
640 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
641 DEFINE_PROP_END_OF_LIST(),
645 static void mc146818rtc_register(void)
647 isa_qdev_register(&mc146818rtc_info);
649 device_init(mc146818rtc_register)