4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
26 #include "host-utils.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define dprintf(fmt, ...) \
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
51 struct kvm_cpuid2
*cpuid
;
54 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
55 cpuid
= (struct kvm_cpuid2
*)qemu_mallocz(size
);
57 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
58 if (r
== 0 && cpuid
->nent
>= max
) {
66 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
74 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
, int reg
)
76 struct kvm_cpuid2
*cpuid
;
81 if (!kvm_check_extension(env
->kvm_state
, KVM_CAP_EXT_CPUID
)) {
86 while ((cpuid
= try_get_cpuid(env
->kvm_state
, max
)) == NULL
) {
90 for (i
= 0; i
< cpuid
->nent
; ++i
) {
91 if (cpuid
->entries
[i
].function
== function
) {
94 ret
= cpuid
->entries
[i
].eax
;
97 ret
= cpuid
->entries
[i
].ebx
;
100 ret
= cpuid
->entries
[i
].ecx
;
103 ret
= cpuid
->entries
[i
].edx
;
106 /* KVM before 2.6.30 misreports the following features */
107 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx
= kvm_arch_get_supported_cpuid(env
, 1, R_EDX
);
114 ret
|= cpuid_1_edx
& 0xdfeff7ff;
129 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
, int reg
)
136 static void kvm_trim_features(uint32_t *features
, uint32_t supported
)
141 for (i
= 0; i
< 32; ++i
) {
143 if ((*features
& mask
) && !(supported
& mask
)) {
149 #ifdef CONFIG_KVM_PARA
150 struct kvm_para_features
{
153 } para_features
[] = {
154 #ifdef KVM_CAP_CLOCKSOURCE
155 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
157 #ifdef KVM_CAP_NOP_IO_DELAY
158 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
160 #ifdef KVM_CAP_PV_MMU
161 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
166 static int get_para_features(CPUState
*env
)
170 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
171 if (kvm_check_extension(env
->kvm_state
, para_features
[i
].cap
))
172 features
|= (1 << para_features
[i
].feature
);
179 int kvm_arch_init_vcpu(CPUState
*env
)
182 struct kvm_cpuid2 cpuid
;
183 struct kvm_cpuid_entry2 entries
[100];
184 } __attribute__((packed
)) cpuid_data
;
185 uint32_t limit
, i
, j
, cpuid_i
;
187 struct kvm_cpuid_entry2
*c
;
188 #ifdef KVM_CPUID_SIGNATURE
189 uint32_t signature
[3];
192 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
194 kvm_trim_features(&env
->cpuid_features
,
195 kvm_arch_get_supported_cpuid(env
, 1, R_EDX
));
197 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
198 kvm_trim_features(&env
->cpuid_ext_features
,
199 kvm_arch_get_supported_cpuid(env
, 1, R_ECX
));
200 env
->cpuid_ext_features
|= i
;
202 kvm_trim_features(&env
->cpuid_ext2_features
,
203 kvm_arch_get_supported_cpuid(env
, 0x80000001, R_EDX
));
204 kvm_trim_features(&env
->cpuid_ext3_features
,
205 kvm_arch_get_supported_cpuid(env
, 0x80000001, R_ECX
));
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
212 c
= &cpuid_data
.entries
[cpuid_i
++];
213 memset(c
, 0, sizeof(*c
));
214 c
->function
= KVM_CPUID_SIGNATURE
;
216 c
->ebx
= signature
[0];
217 c
->ecx
= signature
[1];
218 c
->edx
= signature
[2];
220 c
= &cpuid_data
.entries
[cpuid_i
++];
221 memset(c
, 0, sizeof(*c
));
222 c
->function
= KVM_CPUID_FEATURES
;
223 c
->eax
= env
->cpuid_kvm_features
& get_para_features(env
);
226 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
228 for (i
= 0; i
<= limit
; i
++) {
229 c
= &cpuid_data
.entries
[cpuid_i
++];
233 /* Keep reading function 2 till all the input is received */
237 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
238 KVM_CPUID_FLAG_STATE_READ_NEXT
;
239 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
240 times
= c
->eax
& 0xff;
242 for (j
= 1; j
< times
; ++j
) {
243 c
= &cpuid_data
.entries
[cpuid_i
++];
245 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
246 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
255 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
257 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
259 if (i
== 4 && c
->eax
== 0)
261 if (i
== 0xb && !(c
->ecx
& 0xff00))
263 if (i
== 0xd && c
->eax
== 0)
266 c
= &cpuid_data
.entries
[cpuid_i
++];
272 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
276 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
278 for (i
= 0x80000000; i
<= limit
; i
++) {
279 c
= &cpuid_data
.entries
[cpuid_i
++];
283 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
286 cpuid_data
.cpuid
.nent
= cpuid_i
;
288 return kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
291 void kvm_arch_reset_vcpu(CPUState
*env
)
293 env
->exception_injected
= -1;
294 env
->interrupt_injected
= -1;
295 env
->nmi_injected
= 0;
296 env
->nmi_pending
= 0;
299 static int kvm_has_msr_star(CPUState
*env
)
301 static int has_msr_star
;
305 if (has_msr_star
== 0) {
306 struct kvm_msr_list msr_list
, *kvm_msr_list
;
310 /* Obtain MSR list from KVM. These are the MSRs that we must
313 ret
= kvm_ioctl(env
->kvm_state
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
314 if (ret
< 0 && ret
!= -E2BIG
) {
317 /* Old kernel modules had a bug and could write beyond the provided
318 memory. Allocate at least a safe amount of 1K. */
319 kvm_msr_list
= qemu_mallocz(MAX(1024, sizeof(msr_list
) +
321 sizeof(msr_list
.indices
[0])));
323 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
324 ret
= kvm_ioctl(env
->kvm_state
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
328 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
329 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
339 if (has_msr_star
== 1)
344 int kvm_arch_init(KVMState
*s
, int smp_cpus
)
348 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
349 * directly. In order to use vm86 mode, a TSS is needed. Since this
350 * must be part of guest physical memory, we need to allocate it. Older
351 * versions of KVM just assumed that it would be at the end of physical
352 * memory but that doesn't work with more than 4GB of memory. We simply
353 * refuse to work with those older versions of KVM. */
354 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_SET_TSS_ADDR
);
356 fprintf(stderr
, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
360 /* this address is 3 pages before the bios, and the bios should present
361 * as unavaible memory. FIXME, need to ensure the e820 map deals with
365 * Tell fw_cfg to notify the BIOS to reserve the range.
367 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED
) < 0) {
368 perror("e820_add_entry() table is full");
371 return kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, 0xfffbd000);
374 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
376 lhs
->selector
= rhs
->selector
;
377 lhs
->base
= rhs
->base
;
378 lhs
->limit
= rhs
->limit
;
390 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
392 unsigned flags
= rhs
->flags
;
393 lhs
->selector
= rhs
->selector
;
394 lhs
->base
= rhs
->base
;
395 lhs
->limit
= rhs
->limit
;
396 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
397 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
398 lhs
->dpl
= rhs
->selector
& 3;
399 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
400 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
401 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
402 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
403 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
407 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
409 lhs
->selector
= rhs
->selector
;
410 lhs
->base
= rhs
->base
;
411 lhs
->limit
= rhs
->limit
;
413 (rhs
->type
<< DESC_TYPE_SHIFT
)
414 | (rhs
->present
* DESC_P_MASK
)
415 | (rhs
->dpl
<< DESC_DPL_SHIFT
)
416 | (rhs
->db
<< DESC_B_SHIFT
)
417 | (rhs
->s
* DESC_S_MASK
)
418 | (rhs
->l
<< DESC_L_SHIFT
)
419 | (rhs
->g
* DESC_G_MASK
)
420 | (rhs
->avl
* DESC_AVL_MASK
);
423 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
426 *kvm_reg
= *qemu_reg
;
428 *qemu_reg
= *kvm_reg
;
431 static int kvm_getput_regs(CPUState
*env
, int set
)
433 struct kvm_regs regs
;
437 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
442 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
443 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
444 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
445 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
446 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
447 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
448 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
449 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
451 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
452 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
453 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
454 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
455 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
456 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
457 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
458 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
461 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
462 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
465 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
470 static int kvm_put_fpu(CPUState
*env
)
475 memset(&fpu
, 0, sizeof fpu
);
476 fpu
.fsw
= env
->fpus
& ~(7 << 11);
477 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
479 for (i
= 0; i
< 8; ++i
)
480 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
481 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
482 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
483 fpu
.mxcsr
= env
->mxcsr
;
485 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
488 static int kvm_put_sregs(CPUState
*env
)
490 struct kvm_sregs sregs
;
492 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
493 if (env
->interrupt_injected
>= 0) {
494 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
495 (uint64_t)1 << (env
->interrupt_injected
% 64);
498 if ((env
->eflags
& VM_MASK
)) {
499 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
500 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
501 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
502 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
503 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
504 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
506 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
507 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
508 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
509 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
510 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
511 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
513 if (env
->cr
[0] & CR0_PE_MASK
) {
514 /* force ss cpl to cs cpl */
515 sregs
.ss
.selector
= (sregs
.ss
.selector
& ~3) |
516 (sregs
.cs
.selector
& 3);
517 sregs
.ss
.dpl
= sregs
.ss
.selector
& 3;
521 set_seg(&sregs
.tr
, &env
->tr
);
522 set_seg(&sregs
.ldt
, &env
->ldt
);
524 sregs
.idt
.limit
= env
->idt
.limit
;
525 sregs
.idt
.base
= env
->idt
.base
;
526 sregs
.gdt
.limit
= env
->gdt
.limit
;
527 sregs
.gdt
.base
= env
->gdt
.base
;
529 sregs
.cr0
= env
->cr
[0];
530 sregs
.cr2
= env
->cr
[2];
531 sregs
.cr3
= env
->cr
[3];
532 sregs
.cr4
= env
->cr
[4];
534 sregs
.cr8
= cpu_get_apic_tpr(env
);
535 sregs
.apic_base
= cpu_get_apic_base(env
);
537 sregs
.efer
= env
->efer
;
539 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
542 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
543 uint32_t index
, uint64_t value
)
545 entry
->index
= index
;
549 static int kvm_put_msrs(CPUState
*env
, int level
)
552 struct kvm_msrs info
;
553 struct kvm_msr_entry entries
[100];
555 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
558 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
559 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
560 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
561 if (kvm_has_msr_star(env
))
562 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
564 /* FIXME if lm capable */
565 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
566 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
567 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
568 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
570 if (level
== KVM_PUT_FULL_STATE
) {
571 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
572 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
573 env
->system_time_msr
);
574 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
577 msr_data
.info
.nmsrs
= n
;
579 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
584 static int kvm_get_fpu(CPUState
*env
)
589 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
593 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
596 for (i
= 0; i
< 8; ++i
)
597 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
598 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
599 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
600 env
->mxcsr
= fpu
.mxcsr
;
605 static int kvm_get_sregs(CPUState
*env
)
607 struct kvm_sregs sregs
;
611 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
615 /* There can only be one pending IRQ set in the bitmap at a time, so try
616 to find it and save its number instead (-1 for none). */
617 env
->interrupt_injected
= -1;
618 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
619 if (sregs
.interrupt_bitmap
[i
]) {
620 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
621 env
->interrupt_injected
= i
* 64 + bit
;
626 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
627 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
628 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
629 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
630 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
631 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
633 get_seg(&env
->tr
, &sregs
.tr
);
634 get_seg(&env
->ldt
, &sregs
.ldt
);
636 env
->idt
.limit
= sregs
.idt
.limit
;
637 env
->idt
.base
= sregs
.idt
.base
;
638 env
->gdt
.limit
= sregs
.gdt
.limit
;
639 env
->gdt
.base
= sregs
.gdt
.base
;
641 env
->cr
[0] = sregs
.cr0
;
642 env
->cr
[2] = sregs
.cr2
;
643 env
->cr
[3] = sregs
.cr3
;
644 env
->cr
[4] = sregs
.cr4
;
646 cpu_set_apic_base(env
, sregs
.apic_base
);
648 env
->efer
= sregs
.efer
;
649 //cpu_set_apic_tpr(env, sregs.cr8);
651 #define HFLAG_COPY_MASK ~( \
652 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
653 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
654 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
655 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
659 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
660 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
661 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
662 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
663 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
664 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
665 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
667 if (env
->efer
& MSR_EFER_LMA
) {
668 hflags
|= HF_LMA_MASK
;
671 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
672 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
674 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
675 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
676 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
677 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
678 if (!(env
->cr
[0] & CR0_PE_MASK
) ||
679 (env
->eflags
& VM_MASK
) ||
680 !(hflags
& HF_CS32_MASK
)) {
681 hflags
|= HF_ADDSEG_MASK
;
683 hflags
|= ((env
->segs
[R_DS
].base
|
684 env
->segs
[R_ES
].base
|
685 env
->segs
[R_SS
].base
) != 0) <<
689 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
694 static int kvm_get_msrs(CPUState
*env
)
697 struct kvm_msrs info
;
698 struct kvm_msr_entry entries
[100];
700 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
704 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
705 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
706 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
707 if (kvm_has_msr_star(env
))
708 msrs
[n
++].index
= MSR_STAR
;
709 msrs
[n
++].index
= MSR_IA32_TSC
;
711 /* FIXME lm_capable_kernel */
712 msrs
[n
++].index
= MSR_CSTAR
;
713 msrs
[n
++].index
= MSR_KERNELGSBASE
;
714 msrs
[n
++].index
= MSR_FMASK
;
715 msrs
[n
++].index
= MSR_LSTAR
;
717 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
718 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
720 msr_data
.info
.nmsrs
= n
;
721 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
725 for (i
= 0; i
< ret
; i
++) {
726 switch (msrs
[i
].index
) {
727 case MSR_IA32_SYSENTER_CS
:
728 env
->sysenter_cs
= msrs
[i
].data
;
730 case MSR_IA32_SYSENTER_ESP
:
731 env
->sysenter_esp
= msrs
[i
].data
;
733 case MSR_IA32_SYSENTER_EIP
:
734 env
->sysenter_eip
= msrs
[i
].data
;
737 env
->star
= msrs
[i
].data
;
741 env
->cstar
= msrs
[i
].data
;
743 case MSR_KERNELGSBASE
:
744 env
->kernelgsbase
= msrs
[i
].data
;
747 env
->fmask
= msrs
[i
].data
;
750 env
->lstar
= msrs
[i
].data
;
754 env
->tsc
= msrs
[i
].data
;
756 case MSR_KVM_SYSTEM_TIME
:
757 env
->system_time_msr
= msrs
[i
].data
;
759 case MSR_KVM_WALL_CLOCK
:
760 env
->wall_clock_msr
= msrs
[i
].data
;
768 static int kvm_put_mp_state(CPUState
*env
)
770 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
772 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
775 static int kvm_get_mp_state(CPUState
*env
)
777 struct kvm_mp_state mp_state
;
780 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
784 env
->mp_state
= mp_state
.mp_state
;
788 static int kvm_put_vcpu_events(CPUState
*env
, int level
)
790 #ifdef KVM_CAP_VCPU_EVENTS
791 struct kvm_vcpu_events events
;
793 if (!kvm_has_vcpu_events()) {
797 events
.exception
.injected
= (env
->exception_injected
>= 0);
798 events
.exception
.nr
= env
->exception_injected
;
799 events
.exception
.has_error_code
= env
->has_error_code
;
800 events
.exception
.error_code
= env
->error_code
;
802 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
803 events
.interrupt
.nr
= env
->interrupt_injected
;
804 events
.interrupt
.soft
= env
->soft_interrupt
;
806 events
.nmi
.injected
= env
->nmi_injected
;
807 events
.nmi
.pending
= env
->nmi_pending
;
808 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
810 events
.sipi_vector
= env
->sipi_vector
;
813 if (level
>= KVM_PUT_RESET_STATE
) {
815 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
818 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
824 static int kvm_get_vcpu_events(CPUState
*env
)
826 #ifdef KVM_CAP_VCPU_EVENTS
827 struct kvm_vcpu_events events
;
830 if (!kvm_has_vcpu_events()) {
834 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
838 env
->exception_injected
=
839 events
.exception
.injected
? events
.exception
.nr
: -1;
840 env
->has_error_code
= events
.exception
.has_error_code
;
841 env
->error_code
= events
.exception
.error_code
;
843 env
->interrupt_injected
=
844 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
845 env
->soft_interrupt
= events
.interrupt
.soft
;
847 env
->nmi_injected
= events
.nmi
.injected
;
848 env
->nmi_pending
= events
.nmi
.pending
;
849 if (events
.nmi
.masked
) {
850 env
->hflags2
|= HF2_NMI_MASK
;
852 env
->hflags2
&= ~HF2_NMI_MASK
;
855 env
->sipi_vector
= events
.sipi_vector
;
861 static int kvm_guest_debug_workarounds(CPUState
*env
)
864 #ifdef KVM_CAP_SET_GUEST_DEBUG
865 unsigned long reinject_trap
= 0;
867 if (!kvm_has_vcpu_events()) {
868 if (env
->exception_injected
== 1) {
869 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
870 } else if (env
->exception_injected
== 3) {
871 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
873 env
->exception_injected
= -1;
877 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
878 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
879 * by updating the debug state once again if single-stepping is on.
880 * Another reason to call kvm_update_guest_debug here is a pending debug
881 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
882 * reinject them via SET_GUEST_DEBUG.
885 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
886 ret
= kvm_update_guest_debug(env
, reinject_trap
);
888 #endif /* KVM_CAP_SET_GUEST_DEBUG */
892 int kvm_arch_put_registers(CPUState
*env
, int level
)
896 ret
= kvm_getput_regs(env
, 1);
900 ret
= kvm_put_fpu(env
);
904 ret
= kvm_put_sregs(env
);
908 ret
= kvm_put_msrs(env
, level
);
912 if (level
>= KVM_PUT_RESET_STATE
) {
913 ret
= kvm_put_mp_state(env
);
918 ret
= kvm_put_vcpu_events(env
, level
);
923 ret
= kvm_guest_debug_workarounds(env
);
930 int kvm_arch_get_registers(CPUState
*env
)
934 ret
= kvm_getput_regs(env
, 0);
938 ret
= kvm_get_fpu(env
);
942 ret
= kvm_get_sregs(env
);
946 ret
= kvm_get_msrs(env
);
950 ret
= kvm_get_mp_state(env
);
954 ret
= kvm_get_vcpu_events(env
);
961 int kvm_arch_pre_run(CPUState
*env
, struct kvm_run
*run
)
963 /* Try to inject an interrupt if the guest can accept it */
964 if (run
->ready_for_interrupt_injection
&&
965 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
966 (env
->eflags
& IF_MASK
)) {
969 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
970 irq
= cpu_get_pic_interrupt(env
);
972 struct kvm_interrupt intr
;
975 dprintf("injected interrupt %d\n", irq
);
976 kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
980 /* If we have an interrupt but the guest is not ready to receive an
981 * interrupt, request an interrupt window exit. This will
982 * cause a return to userspace as soon as the guest is ready to
983 * receive interrupts. */
984 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
))
985 run
->request_interrupt_window
= 1;
987 run
->request_interrupt_window
= 0;
989 dprintf("setting tpr\n");
990 run
->cr8
= cpu_get_apic_tpr(env
);
995 int kvm_arch_post_run(CPUState
*env
, struct kvm_run
*run
)
998 env
->eflags
|= IF_MASK
;
1000 env
->eflags
&= ~IF_MASK
;
1002 cpu_set_apic_tpr(env
, run
->cr8
);
1003 cpu_set_apic_base(env
, run
->apic_base
);
1008 static int kvm_handle_halt(CPUState
*env
)
1010 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1011 (env
->eflags
& IF_MASK
)) &&
1012 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1014 env
->exception_index
= EXCP_HLT
;
1021 int kvm_arch_handle_exit(CPUState
*env
, struct kvm_run
*run
)
1025 switch (run
->exit_reason
) {
1027 dprintf("handle_hlt\n");
1028 ret
= kvm_handle_halt(env
);
1035 #ifdef KVM_CAP_SET_GUEST_DEBUG
1036 int kvm_arch_insert_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1038 static const uint8_t int3
= 0xcc;
1040 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1041 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1))
1046 int kvm_arch_remove_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1050 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1051 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1))
1062 static int nb_hw_breakpoint
;
1064 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1068 for (n
= 0; n
< nb_hw_breakpoint
; n
++)
1069 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1070 (hw_breakpoint
[n
].len
== len
|| len
== -1))
1075 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1076 target_ulong len
, int type
)
1079 case GDB_BREAKPOINT_HW
:
1082 case GDB_WATCHPOINT_WRITE
:
1083 case GDB_WATCHPOINT_ACCESS
:
1090 if (addr
& (len
- 1))
1101 if (nb_hw_breakpoint
== 4)
1104 if (find_hw_breakpoint(addr
, len
, type
) >= 0)
1107 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1108 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1109 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1115 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1116 target_ulong len
, int type
)
1120 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1125 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1130 void kvm_arch_remove_all_hw_breakpoints(void)
1132 nb_hw_breakpoint
= 0;
1135 static CPUWatchpoint hw_watchpoint
;
1137 int kvm_arch_debug(struct kvm_debug_exit_arch
*arch_info
)
1142 if (arch_info
->exception
== 1) {
1143 if (arch_info
->dr6
& (1 << 14)) {
1144 if (cpu_single_env
->singlestep_enabled
)
1147 for (n
= 0; n
< 4; n
++)
1148 if (arch_info
->dr6
& (1 << n
))
1149 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1155 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1156 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1157 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1161 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1162 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1163 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1167 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
))
1171 cpu_synchronize_state(cpu_single_env
);
1172 assert(cpu_single_env
->exception_injected
== -1);
1174 cpu_single_env
->exception_injected
= arch_info
->exception
;
1175 cpu_single_env
->has_error_code
= 0;
1181 void kvm_arch_update_guest_debug(CPUState
*env
, struct kvm_guest_debug
*dbg
)
1183 const uint8_t type_code
[] = {
1184 [GDB_BREAKPOINT_HW
] = 0x0,
1185 [GDB_WATCHPOINT_WRITE
] = 0x1,
1186 [GDB_WATCHPOINT_ACCESS
] = 0x3
1188 const uint8_t len_code
[] = {
1189 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1193 if (kvm_sw_breakpoints_active(env
))
1194 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1196 if (nb_hw_breakpoint
> 0) {
1197 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1198 dbg
->arch
.debugreg
[7] = 0x0600;
1199 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1200 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1201 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1202 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1203 (len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1207 #endif /* KVM_CAP_SET_GUEST_DEBUG */