sparc64: trace pstate and global register set changes
[qemu/aliguori-queue.git] / exec.c
blob1190591e936f488d2b2e3573c2be99f07854886d
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 #define TARGET_PHYS_ADDR_SPACE_BITS 32
79 #endif
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
154 typedef struct PhysPageDesc {
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
158 } PhysPageDesc;
160 #define L2_BITS 10
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167 #else
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
169 #endif
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
174 unsigned long qemu_real_host_page_size;
175 unsigned long qemu_host_page_bits;
176 unsigned long qemu_host_page_size;
177 unsigned long qemu_host_page_mask;
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc *l1_map[L1_SIZE];
181 static PhysPageDesc **l1_phys_map;
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
186 /* io memory support */
187 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
189 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
190 static char io_mem_used[IO_MEM_NB_ENTRIES];
191 static int io_mem_watch;
192 #endif
194 /* log support */
195 #ifdef WIN32
196 static const char *logfilename = "qemu.log";
197 #else
198 static const char *logfilename = "/tmp/qemu.log";
199 #endif
200 FILE *logfile;
201 int loglevel;
202 static int log_append = 0;
204 /* statistics */
205 static int tlb_flush_count;
206 static int tb_flush_count;
207 static int tb_phys_invalidate_count;
209 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
210 typedef struct subpage_t {
211 target_phys_addr_t base;
212 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
213 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
214 void *opaque[TARGET_PAGE_SIZE][2][4];
215 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
216 } subpage_t;
218 #ifdef _WIN32
219 static void map_exec(void *addr, long size)
221 DWORD old_protect;
222 VirtualProtect(addr, size,
223 PAGE_EXECUTE_READWRITE, &old_protect);
226 #else
227 static void map_exec(void *addr, long size)
229 unsigned long start, end, page_size;
231 page_size = getpagesize();
232 start = (unsigned long)addr;
233 start &= ~(page_size - 1);
235 end = (unsigned long)addr + size;
236 end += page_size - 1;
237 end &= ~(page_size - 1);
239 mprotect((void *)start, end - start,
240 PROT_READ | PROT_WRITE | PROT_EXEC);
242 #endif
244 static void page_init(void)
246 /* NOTE: we can always suppose that qemu_host_page_size >=
247 TARGET_PAGE_SIZE */
248 #ifdef _WIN32
250 SYSTEM_INFO system_info;
252 GetSystemInfo(&system_info);
253 qemu_real_host_page_size = system_info.dwPageSize;
255 #else
256 qemu_real_host_page_size = getpagesize();
257 #endif
258 if (qemu_host_page_size == 0)
259 qemu_host_page_size = qemu_real_host_page_size;
260 if (qemu_host_page_size < TARGET_PAGE_SIZE)
261 qemu_host_page_size = TARGET_PAGE_SIZE;
262 qemu_host_page_bits = 0;
263 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
264 qemu_host_page_bits++;
265 qemu_host_page_mask = ~(qemu_host_page_size - 1);
266 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
267 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
269 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
271 long long startaddr, endaddr;
272 FILE *f;
273 int n;
275 mmap_lock();
276 last_brk = (unsigned long)sbrk(0);
277 f = fopen("/proc/self/maps", "r");
278 if (f) {
279 do {
280 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
281 if (n == 2) {
282 startaddr = MIN(startaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
284 endaddr = MIN(endaddr,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
286 page_set_flags(startaddr & TARGET_PAGE_MASK,
287 TARGET_PAGE_ALIGN(endaddr),
288 PAGE_RESERVED);
290 } while (!feof(f));
291 fclose(f);
293 mmap_unlock();
295 #endif
298 static inline PageDesc **page_l1_map(target_ulong index)
300 #if TARGET_LONG_BITS > 32
301 /* Host memory outside guest VM. For 32-bit targets we have already
302 excluded high addresses. */
303 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
304 return NULL;
305 #endif
306 return &l1_map[index >> L2_BITS];
309 static inline PageDesc *page_find_alloc(target_ulong index)
311 PageDesc **lp, *p;
312 lp = page_l1_map(index);
313 if (!lp)
314 return NULL;
316 p = *lp;
317 if (!p) {
318 /* allocate if not found */
319 #if defined(CONFIG_USER_ONLY)
320 size_t len = sizeof(PageDesc) * L2_SIZE;
321 /* Don't use qemu_malloc because it may recurse. */
322 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
323 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
324 *lp = p;
325 if (h2g_valid(p)) {
326 unsigned long addr = h2g(p);
327 page_set_flags(addr & TARGET_PAGE_MASK,
328 TARGET_PAGE_ALIGN(addr + len),
329 PAGE_RESERVED);
331 #else
332 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
333 *lp = p;
334 #endif
336 return p + (index & (L2_SIZE - 1));
339 static inline PageDesc *page_find(target_ulong index)
341 PageDesc **lp, *p;
342 lp = page_l1_map(index);
343 if (!lp)
344 return NULL;
346 p = *lp;
347 if (!p) {
348 return NULL;
350 return p + (index & (L2_SIZE - 1));
353 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
355 void **lp, **p;
356 PhysPageDesc *pd;
358 p = (void **)l1_phys_map;
359 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
361 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
362 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
363 #endif
364 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
365 p = *lp;
366 if (!p) {
367 /* allocate if not found */
368 if (!alloc)
369 return NULL;
370 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
371 memset(p, 0, sizeof(void *) * L1_SIZE);
372 *lp = p;
374 #endif
375 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
376 pd = *lp;
377 if (!pd) {
378 int i;
379 /* allocate if not found */
380 if (!alloc)
381 return NULL;
382 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
383 *lp = pd;
384 for (i = 0; i < L2_SIZE; i++) {
385 pd[i].phys_offset = IO_MEM_UNASSIGNED;
386 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
389 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
392 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
394 return phys_page_find_alloc(index, 0);
397 #if !defined(CONFIG_USER_ONLY)
398 static void tlb_protect_code(ram_addr_t ram_addr);
399 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
400 target_ulong vaddr);
401 #define mmap_lock() do { } while(0)
402 #define mmap_unlock() do { } while(0)
403 #endif
405 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
407 #if defined(CONFIG_USER_ONLY)
408 /* Currently it is not recommended to allocate big chunks of data in
409 user mode. It will change when a dedicated libc will be used */
410 #define USE_STATIC_CODE_GEN_BUFFER
411 #endif
413 #ifdef USE_STATIC_CODE_GEN_BUFFER
414 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
415 #endif
417 static void code_gen_alloc(unsigned long tb_size)
419 #ifdef USE_STATIC_CODE_GEN_BUFFER
420 code_gen_buffer = static_code_gen_buffer;
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 map_exec(code_gen_buffer, code_gen_buffer_size);
423 #else
424 code_gen_buffer_size = tb_size;
425 if (code_gen_buffer_size == 0) {
426 #if defined(CONFIG_USER_ONLY)
427 /* in user mode, phys_ram_size is not meaningful */
428 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
429 #else
430 /* XXX: needs adjustments */
431 code_gen_buffer_size = (unsigned long)(ram_size / 4);
432 #endif
434 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
435 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
436 /* The code gen buffer location may have constraints depending on
437 the host cpu and OS */
438 #if defined(__linux__)
440 int flags;
441 void *start = NULL;
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444 #if defined(__x86_64__)
445 flags |= MAP_32BIT;
446 /* Cannot map more than that */
447 if (code_gen_buffer_size > (800 * 1024 * 1024))
448 code_gen_buffer_size = (800 * 1024 * 1024);
449 #elif defined(__sparc_v9__)
450 // Map the buffer below 2G, so we can use direct calls and branches
451 flags |= MAP_FIXED;
452 start = (void *) 0x60000000UL;
453 if (code_gen_buffer_size > (512 * 1024 * 1024))
454 code_gen_buffer_size = (512 * 1024 * 1024);
455 #elif defined(__arm__)
456 /* Map the buffer below 32M, so we can use direct calls and branches */
457 flags |= MAP_FIXED;
458 start = (void *) 0x01000000UL;
459 if (code_gen_buffer_size > 16 * 1024 * 1024)
460 code_gen_buffer_size = 16 * 1024 * 1024;
461 #endif
462 code_gen_buffer = mmap(start, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
470 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
472 int flags;
473 void *addr = NULL;
474 flags = MAP_PRIVATE | MAP_ANONYMOUS;
475 #if defined(__x86_64__)
476 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
477 * 0x40000000 is free */
478 flags |= MAP_FIXED;
479 addr = (void *)0x40000000;
480 /* Cannot map more than that */
481 if (code_gen_buffer_size > (800 * 1024 * 1024))
482 code_gen_buffer_size = (800 * 1024 * 1024);
483 #endif
484 code_gen_buffer = mmap(addr, code_gen_buffer_size,
485 PROT_WRITE | PROT_READ | PROT_EXEC,
486 flags, -1, 0);
487 if (code_gen_buffer == MAP_FAILED) {
488 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
489 exit(1);
492 #else
493 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
494 map_exec(code_gen_buffer, code_gen_buffer_size);
495 #endif
496 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
497 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
498 code_gen_buffer_max_size = code_gen_buffer_size -
499 code_gen_max_block_size();
500 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
501 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
504 /* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
506 size. */
507 void cpu_exec_init_all(unsigned long tb_size)
509 cpu_gen_init();
510 code_gen_alloc(tb_size);
511 code_gen_ptr = code_gen_buffer;
512 page_init();
513 #if !defined(CONFIG_USER_ONLY)
514 io_mem_init();
515 #endif
518 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520 static void cpu_common_pre_save(void *opaque)
522 CPUState *env = opaque;
524 cpu_synchronize_state(env);
527 static int cpu_common_pre_load(void *opaque)
529 CPUState *env = opaque;
531 cpu_synchronize_state(env);
532 return 0;
535 static int cpu_common_post_load(void *opaque, int version_id)
537 CPUState *env = opaque;
539 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
540 version_id is increased. */
541 env->interrupt_request &= ~0x01;
542 tlb_flush(env, 1);
544 return 0;
547 static const VMStateDescription vmstate_cpu_common = {
548 .name = "cpu_common",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .minimum_version_id_old = 1,
552 .pre_save = cpu_common_pre_save,
553 .pre_load = cpu_common_pre_load,
554 .post_load = cpu_common_post_load,
555 .fields = (VMStateField []) {
556 VMSTATE_UINT32(halted, CPUState),
557 VMSTATE_UINT32(interrupt_request, CPUState),
558 VMSTATE_END_OF_LIST()
561 #endif
563 CPUState *qemu_get_cpu(int cpu)
565 CPUState *env = first_cpu;
567 while (env) {
568 if (env->cpu_index == cpu)
569 break;
570 env = env->next_cpu;
573 return env;
576 void cpu_exec_init(CPUState *env)
578 CPUState **penv;
579 int cpu_index;
581 #if defined(CONFIG_USER_ONLY)
582 cpu_list_lock();
583 #endif
584 env->next_cpu = NULL;
585 penv = &first_cpu;
586 cpu_index = 0;
587 while (*penv != NULL) {
588 penv = &(*penv)->next_cpu;
589 cpu_index++;
591 env->cpu_index = cpu_index;
592 env->numa_node = 0;
593 QTAILQ_INIT(&env->breakpoints);
594 QTAILQ_INIT(&env->watchpoints);
595 *penv = env;
596 #if defined(CONFIG_USER_ONLY)
597 cpu_list_unlock();
598 #endif
599 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
600 vmstate_register(cpu_index, &vmstate_cpu_common, env);
601 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
602 cpu_save, cpu_load, env);
603 #endif
606 static inline void invalidate_page_bitmap(PageDesc *p)
608 if (p->code_bitmap) {
609 qemu_free(p->code_bitmap);
610 p->code_bitmap = NULL;
612 p->code_write_count = 0;
615 /* set to NULL all the 'first_tb' fields in all PageDescs */
616 static void page_flush_tb(void)
618 int i, j;
619 PageDesc *p;
621 for(i = 0; i < L1_SIZE; i++) {
622 p = l1_map[i];
623 if (p) {
624 for(j = 0; j < L2_SIZE; j++) {
625 p->first_tb = NULL;
626 invalidate_page_bitmap(p);
627 p++;
633 /* flush all the translation blocks */
634 /* XXX: tb_flush is currently not thread safe */
635 void tb_flush(CPUState *env1)
637 CPUState *env;
638 #if defined(DEBUG_FLUSH)
639 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
640 (unsigned long)(code_gen_ptr - code_gen_buffer),
641 nb_tbs, nb_tbs > 0 ?
642 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
643 #endif
644 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
645 cpu_abort(env1, "Internal error: code buffer overflow\n");
647 nb_tbs = 0;
649 for(env = first_cpu; env != NULL; env = env->next_cpu) {
650 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
653 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
654 page_flush_tb();
656 code_gen_ptr = code_gen_buffer;
657 /* XXX: flush processor icache at this point if cache flush is
658 expensive */
659 tb_flush_count++;
662 #ifdef DEBUG_TB_CHECK
664 static void tb_invalidate_check(target_ulong address)
666 TranslationBlock *tb;
667 int i;
668 address &= TARGET_PAGE_MASK;
669 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
670 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
671 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
672 address >= tb->pc + tb->size)) {
673 printf("ERROR invalidate: address=" TARGET_FMT_lx
674 " PC=%08lx size=%04x\n",
675 address, (long)tb->pc, tb->size);
681 /* verify that all the pages have correct rights for code */
682 static void tb_page_check(void)
684 TranslationBlock *tb;
685 int i, flags1, flags2;
687 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
688 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
689 flags1 = page_get_flags(tb->pc);
690 flags2 = page_get_flags(tb->pc + tb->size - 1);
691 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
692 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
693 (long)tb->pc, tb->size, flags1, flags2);
699 #endif
701 /* invalidate one TB */
702 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
703 int next_offset)
705 TranslationBlock *tb1;
706 for(;;) {
707 tb1 = *ptb;
708 if (tb1 == tb) {
709 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
710 break;
712 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
716 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718 TranslationBlock *tb1;
719 unsigned int n1;
721 for(;;) {
722 tb1 = *ptb;
723 n1 = (long)tb1 & 3;
724 tb1 = (TranslationBlock *)((long)tb1 & ~3);
725 if (tb1 == tb) {
726 *ptb = tb1->page_next[n1];
727 break;
729 ptb = &tb1->page_next[n1];
733 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735 TranslationBlock *tb1, **ptb;
736 unsigned int n1;
738 ptb = &tb->jmp_next[n];
739 tb1 = *ptb;
740 if (tb1) {
741 /* find tb(n) in circular list */
742 for(;;) {
743 tb1 = *ptb;
744 n1 = (long)tb1 & 3;
745 tb1 = (TranslationBlock *)((long)tb1 & ~3);
746 if (n1 == n && tb1 == tb)
747 break;
748 if (n1 == 2) {
749 ptb = &tb1->jmp_first;
750 } else {
751 ptb = &tb1->jmp_next[n1];
754 /* now we can suppress tb(n) from the list */
755 *ptb = tb->jmp_next[n];
757 tb->jmp_next[n] = NULL;
761 /* reset the jump entry 'n' of a TB so that it is not chained to
762 another TB */
763 static inline void tb_reset_jump(TranslationBlock *tb, int n)
765 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
768 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
770 CPUState *env;
771 PageDesc *p;
772 unsigned int h, n1;
773 target_phys_addr_t phys_pc;
774 TranslationBlock *tb1, *tb2;
776 /* remove the TB from the hash list */
777 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
778 h = tb_phys_hash_func(phys_pc);
779 tb_remove(&tb_phys_hash[h], tb,
780 offsetof(TranslationBlock, phys_hash_next));
782 /* remove the TB from the page list */
783 if (tb->page_addr[0] != page_addr) {
784 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
788 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
789 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
794 tb_invalidated_flag = 1;
796 /* remove the TB from the hash list */
797 h = tb_jmp_cache_hash_func(tb->pc);
798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
799 if (env->tb_jmp_cache[h] == tb)
800 env->tb_jmp_cache[h] = NULL;
803 /* suppress this TB from the two jump lists */
804 tb_jmp_remove(tb, 0);
805 tb_jmp_remove(tb, 1);
807 /* suppress any remaining jumps to this TB */
808 tb1 = tb->jmp_first;
809 for(;;) {
810 n1 = (long)tb1 & 3;
811 if (n1 == 2)
812 break;
813 tb1 = (TranslationBlock *)((long)tb1 & ~3);
814 tb2 = tb1->jmp_next[n1];
815 tb_reset_jump(tb1, n1);
816 tb1->jmp_next[n1] = NULL;
817 tb1 = tb2;
819 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
821 tb_phys_invalidate_count++;
824 static inline void set_bits(uint8_t *tab, int start, int len)
826 int end, mask, end1;
828 end = start + len;
829 tab += start >> 3;
830 mask = 0xff << (start & 7);
831 if ((start & ~7) == (end & ~7)) {
832 if (start < end) {
833 mask &= ~(0xff << (end & 7));
834 *tab |= mask;
836 } else {
837 *tab++ |= mask;
838 start = (start + 8) & ~7;
839 end1 = end & ~7;
840 while (start < end1) {
841 *tab++ = 0xff;
842 start += 8;
844 if (start < end) {
845 mask = ~(0xff << (end & 7));
846 *tab |= mask;
851 static void build_page_bitmap(PageDesc *p)
853 int n, tb_start, tb_end;
854 TranslationBlock *tb;
856 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
858 tb = p->first_tb;
859 while (tb != NULL) {
860 n = (long)tb & 3;
861 tb = (TranslationBlock *)((long)tb & ~3);
862 /* NOTE: this is subtle as a TB may span two physical pages */
863 if (n == 0) {
864 /* NOTE: tb_end may be after the end of the page, but
865 it is not a problem */
866 tb_start = tb->pc & ~TARGET_PAGE_MASK;
867 tb_end = tb_start + tb->size;
868 if (tb_end > TARGET_PAGE_SIZE)
869 tb_end = TARGET_PAGE_SIZE;
870 } else {
871 tb_start = 0;
872 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
875 tb = tb->page_next[n];
879 TranslationBlock *tb_gen_code(CPUState *env,
880 target_ulong pc, target_ulong cs_base,
881 int flags, int cflags)
883 TranslationBlock *tb;
884 uint8_t *tc_ptr;
885 target_ulong phys_pc, phys_page2, virt_page2;
886 int code_gen_size;
888 phys_pc = get_phys_addr_code(env, pc);
889 tb = tb_alloc(pc);
890 if (!tb) {
891 /* flush must be done */
892 tb_flush(env);
893 /* cannot fail at this point */
894 tb = tb_alloc(pc);
895 /* Don't forget to invalidate previous TB info. */
896 tb_invalidated_flag = 1;
898 tc_ptr = code_gen_ptr;
899 tb->tc_ptr = tc_ptr;
900 tb->cs_base = cs_base;
901 tb->flags = flags;
902 tb->cflags = cflags;
903 cpu_gen_code(env, tb, &code_gen_size);
904 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
906 /* check next page if needed */
907 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
908 phys_page2 = -1;
909 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
910 phys_page2 = get_phys_addr_code(env, virt_page2);
912 tb_link_phys(tb, phys_pc, phys_page2);
913 return tb;
916 /* invalidate all TBs which intersect with the target physical page
917 starting in range [start;end[. NOTE: start and end must refer to
918 the same physical page. 'is_cpu_write_access' should be true if called
919 from a real cpu write access: the virtual CPU will exit the current
920 TB if code is modified inside this TB. */
921 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
922 int is_cpu_write_access)
924 TranslationBlock *tb, *tb_next, *saved_tb;
925 CPUState *env = cpu_single_env;
926 target_ulong tb_start, tb_end;
927 PageDesc *p;
928 int n;
929 #ifdef TARGET_HAS_PRECISE_SMC
930 int current_tb_not_found = is_cpu_write_access;
931 TranslationBlock *current_tb = NULL;
932 int current_tb_modified = 0;
933 target_ulong current_pc = 0;
934 target_ulong current_cs_base = 0;
935 int current_flags = 0;
936 #endif /* TARGET_HAS_PRECISE_SMC */
938 p = page_find(start >> TARGET_PAGE_BITS);
939 if (!p)
940 return;
941 if (!p->code_bitmap &&
942 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
943 is_cpu_write_access) {
944 /* build code bitmap */
945 build_page_bitmap(p);
948 /* we remove all the TBs in the range [start, end[ */
949 /* XXX: see if in some cases it could be faster to invalidate all the code */
950 tb = p->first_tb;
951 while (tb != NULL) {
952 n = (long)tb & 3;
953 tb = (TranslationBlock *)((long)tb & ~3);
954 tb_next = tb->page_next[n];
955 /* NOTE: this is subtle as a TB may span two physical pages */
956 if (n == 0) {
957 /* NOTE: tb_end may be after the end of the page, but
958 it is not a problem */
959 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
960 tb_end = tb_start + tb->size;
961 } else {
962 tb_start = tb->page_addr[1];
963 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 if (!(tb_end <= start || tb_start >= end)) {
966 #ifdef TARGET_HAS_PRECISE_SMC
967 if (current_tb_not_found) {
968 current_tb_not_found = 0;
969 current_tb = NULL;
970 if (env->mem_io_pc) {
971 /* now we have a real cpu fault */
972 current_tb = tb_find_pc(env->mem_io_pc);
975 if (current_tb == tb &&
976 (current_tb->cflags & CF_COUNT_MASK) != 1) {
977 /* If we are modifying the current TB, we must stop
978 its execution. We could be more precise by checking
979 that the modification is after the current PC, but it
980 would require a specialized function to partially
981 restore the CPU state */
983 current_tb_modified = 1;
984 cpu_restore_state(current_tb, env,
985 env->mem_io_pc, NULL);
986 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
987 &current_flags);
989 #endif /* TARGET_HAS_PRECISE_SMC */
990 /* we need to do that to handle the case where a signal
991 occurs while doing tb_phys_invalidate() */
992 saved_tb = NULL;
993 if (env) {
994 saved_tb = env->current_tb;
995 env->current_tb = NULL;
997 tb_phys_invalidate(tb, -1);
998 if (env) {
999 env->current_tb = saved_tb;
1000 if (env->interrupt_request && env->current_tb)
1001 cpu_interrupt(env, env->interrupt_request);
1004 tb = tb_next;
1006 #if !defined(CONFIG_USER_ONLY)
1007 /* if no code remaining, no need to continue to use slow writes */
1008 if (!p->first_tb) {
1009 invalidate_page_bitmap(p);
1010 if (is_cpu_write_access) {
1011 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1014 #endif
1015 #ifdef TARGET_HAS_PRECISE_SMC
1016 if (current_tb_modified) {
1017 /* we generate a block containing just the instruction
1018 modifying the memory. It will ensure that it cannot modify
1019 itself */
1020 env->current_tb = NULL;
1021 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1022 cpu_resume_from_signal(env, NULL);
1024 #endif
1027 /* len must be <= 8 and start must be a multiple of len */
1028 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1030 PageDesc *p;
1031 int offset, b;
1032 #if 0
1033 if (1) {
1034 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1035 cpu_single_env->mem_io_vaddr, len,
1036 cpu_single_env->eip,
1037 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1039 #endif
1040 p = page_find(start >> TARGET_PAGE_BITS);
1041 if (!p)
1042 return;
1043 if (p->code_bitmap) {
1044 offset = start & ~TARGET_PAGE_MASK;
1045 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1046 if (b & ((1 << len) - 1))
1047 goto do_invalidate;
1048 } else {
1049 do_invalidate:
1050 tb_invalidate_phys_page_range(start, start + len, 1);
1054 #if !defined(CONFIG_SOFTMMU)
1055 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1056 unsigned long pc, void *puc)
1058 TranslationBlock *tb;
1059 PageDesc *p;
1060 int n;
1061 #ifdef TARGET_HAS_PRECISE_SMC
1062 TranslationBlock *current_tb = NULL;
1063 CPUState *env = cpu_single_env;
1064 int current_tb_modified = 0;
1065 target_ulong current_pc = 0;
1066 target_ulong current_cs_base = 0;
1067 int current_flags = 0;
1068 #endif
1070 addr &= TARGET_PAGE_MASK;
1071 p = page_find(addr >> TARGET_PAGE_BITS);
1072 if (!p)
1073 return;
1074 tb = p->first_tb;
1075 #ifdef TARGET_HAS_PRECISE_SMC
1076 if (tb && pc != 0) {
1077 current_tb = tb_find_pc(pc);
1079 #endif
1080 while (tb != NULL) {
1081 n = (long)tb & 3;
1082 tb = (TranslationBlock *)((long)tb & ~3);
1083 #ifdef TARGET_HAS_PRECISE_SMC
1084 if (current_tb == tb &&
1085 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1086 /* If we are modifying the current TB, we must stop
1087 its execution. We could be more precise by checking
1088 that the modification is after the current PC, but it
1089 would require a specialized function to partially
1090 restore the CPU state */
1092 current_tb_modified = 1;
1093 cpu_restore_state(current_tb, env, pc, puc);
1094 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1095 &current_flags);
1097 #endif /* TARGET_HAS_PRECISE_SMC */
1098 tb_phys_invalidate(tb, addr);
1099 tb = tb->page_next[n];
1101 p->first_tb = NULL;
1102 #ifdef TARGET_HAS_PRECISE_SMC
1103 if (current_tb_modified) {
1104 /* we generate a block containing just the instruction
1105 modifying the memory. It will ensure that it cannot modify
1106 itself */
1107 env->current_tb = NULL;
1108 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1109 cpu_resume_from_signal(env, puc);
1111 #endif
1113 #endif
1115 /* add the tb in the target page and protect it if necessary */
1116 static inline void tb_alloc_page(TranslationBlock *tb,
1117 unsigned int n, target_ulong page_addr)
1119 PageDesc *p;
1120 TranslationBlock *last_first_tb;
1122 tb->page_addr[n] = page_addr;
1123 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1124 tb->page_next[n] = p->first_tb;
1125 last_first_tb = p->first_tb;
1126 p->first_tb = (TranslationBlock *)((long)tb | n);
1127 invalidate_page_bitmap(p);
1129 #if defined(TARGET_HAS_SMC) || 1
1131 #if defined(CONFIG_USER_ONLY)
1132 if (p->flags & PAGE_WRITE) {
1133 target_ulong addr;
1134 PageDesc *p2;
1135 int prot;
1137 /* force the host page as non writable (writes will have a
1138 page fault + mprotect overhead) */
1139 page_addr &= qemu_host_page_mask;
1140 prot = 0;
1141 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1142 addr += TARGET_PAGE_SIZE) {
1144 p2 = page_find (addr >> TARGET_PAGE_BITS);
1145 if (!p2)
1146 continue;
1147 prot |= p2->flags;
1148 p2->flags &= ~PAGE_WRITE;
1149 page_get_flags(addr);
1151 mprotect(g2h(page_addr), qemu_host_page_size,
1152 (prot & PAGE_BITS) & ~PAGE_WRITE);
1153 #ifdef DEBUG_TB_INVALIDATE
1154 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1155 page_addr);
1156 #endif
1158 #else
1159 /* if some code is already present, then the pages are already
1160 protected. So we handle the case where only the first TB is
1161 allocated in a physical page */
1162 if (!last_first_tb) {
1163 tlb_protect_code(page_addr);
1165 #endif
1167 #endif /* TARGET_HAS_SMC */
1170 /* Allocate a new translation block. Flush the translation buffer if
1171 too many translation blocks or too much generated code. */
1172 TranslationBlock *tb_alloc(target_ulong pc)
1174 TranslationBlock *tb;
1176 if (nb_tbs >= code_gen_max_blocks ||
1177 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1178 return NULL;
1179 tb = &tbs[nb_tbs++];
1180 tb->pc = pc;
1181 tb->cflags = 0;
1182 return tb;
1185 void tb_free(TranslationBlock *tb)
1187 /* In practice this is mostly used for single use temporary TB
1188 Ignore the hard cases and just back up if this TB happens to
1189 be the last one generated. */
1190 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1191 code_gen_ptr = tb->tc_ptr;
1192 nb_tbs--;
1196 /* add a new TB and link it to the physical page tables. phys_page2 is
1197 (-1) to indicate that only one page contains the TB. */
1198 void tb_link_phys(TranslationBlock *tb,
1199 target_ulong phys_pc, target_ulong phys_page2)
1201 unsigned int h;
1202 TranslationBlock **ptb;
1204 /* Grab the mmap lock to stop another thread invalidating this TB
1205 before we are done. */
1206 mmap_lock();
1207 /* add in the physical hash table */
1208 h = tb_phys_hash_func(phys_pc);
1209 ptb = &tb_phys_hash[h];
1210 tb->phys_hash_next = *ptb;
1211 *ptb = tb;
1213 /* add in the page list */
1214 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1215 if (phys_page2 != -1)
1216 tb_alloc_page(tb, 1, phys_page2);
1217 else
1218 tb->page_addr[1] = -1;
1220 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1221 tb->jmp_next[0] = NULL;
1222 tb->jmp_next[1] = NULL;
1224 /* init original jump addresses */
1225 if (tb->tb_next_offset[0] != 0xffff)
1226 tb_reset_jump(tb, 0);
1227 if (tb->tb_next_offset[1] != 0xffff)
1228 tb_reset_jump(tb, 1);
1230 #ifdef DEBUG_TB_CHECK
1231 tb_page_check();
1232 #endif
1233 mmap_unlock();
1236 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1237 tb[1].tc_ptr. Return NULL if not found */
1238 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1240 int m_min, m_max, m;
1241 unsigned long v;
1242 TranslationBlock *tb;
1244 if (nb_tbs <= 0)
1245 return NULL;
1246 if (tc_ptr < (unsigned long)code_gen_buffer ||
1247 tc_ptr >= (unsigned long)code_gen_ptr)
1248 return NULL;
1249 /* binary search (cf Knuth) */
1250 m_min = 0;
1251 m_max = nb_tbs - 1;
1252 while (m_min <= m_max) {
1253 m = (m_min + m_max) >> 1;
1254 tb = &tbs[m];
1255 v = (unsigned long)tb->tc_ptr;
1256 if (v == tc_ptr)
1257 return tb;
1258 else if (tc_ptr < v) {
1259 m_max = m - 1;
1260 } else {
1261 m_min = m + 1;
1264 return &tbs[m_max];
1267 static void tb_reset_jump_recursive(TranslationBlock *tb);
1269 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271 TranslationBlock *tb1, *tb_next, **ptb;
1272 unsigned int n1;
1274 tb1 = tb->jmp_next[n];
1275 if (tb1 != NULL) {
1276 /* find head of list */
1277 for(;;) {
1278 n1 = (long)tb1 & 3;
1279 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1280 if (n1 == 2)
1281 break;
1282 tb1 = tb1->jmp_next[n1];
1284 /* we are now sure now that tb jumps to tb1 */
1285 tb_next = tb1;
1287 /* remove tb from the jmp_first list */
1288 ptb = &tb_next->jmp_first;
1289 for(;;) {
1290 tb1 = *ptb;
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == n && tb1 == tb)
1294 break;
1295 ptb = &tb1->jmp_next[n1];
1297 *ptb = tb->jmp_next[n];
1298 tb->jmp_next[n] = NULL;
1300 /* suppress the jump to next tb in generated code */
1301 tb_reset_jump(tb, n);
1303 /* suppress jumps in the tb on which we could have jumped */
1304 tb_reset_jump_recursive(tb_next);
1308 static void tb_reset_jump_recursive(TranslationBlock *tb)
1310 tb_reset_jump_recursive2(tb, 0);
1311 tb_reset_jump_recursive2(tb, 1);
1314 #if defined(TARGET_HAS_ICE)
1315 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317 target_phys_addr_t addr;
1318 target_ulong pd;
1319 ram_addr_t ram_addr;
1320 PhysPageDesc *p;
1322 addr = cpu_get_phys_page_debug(env, pc);
1323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 pd = IO_MEM_UNASSIGNED;
1326 } else {
1327 pd = p->phys_offset;
1329 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1330 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1332 #endif
1334 /* Add a watchpoint. */
1335 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags, CPUWatchpoint **watchpoint)
1338 target_ulong len_mask = ~(len - 1);
1339 CPUWatchpoint *wp;
1341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1342 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1343 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1344 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1345 return -EINVAL;
1347 wp = qemu_malloc(sizeof(*wp));
1349 wp->vaddr = addr;
1350 wp->len_mask = len_mask;
1351 wp->flags = flags;
1353 /* keep all GDB-injected watchpoints in front */
1354 if (flags & BP_GDB)
1355 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1356 else
1357 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1359 tlb_flush_page(env, addr);
1361 if (watchpoint)
1362 *watchpoint = wp;
1363 return 0;
1366 /* Remove a specific watchpoint. */
1367 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1368 int flags)
1370 target_ulong len_mask = ~(len - 1);
1371 CPUWatchpoint *wp;
1373 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1374 if (addr == wp->vaddr && len_mask == wp->len_mask
1375 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1376 cpu_watchpoint_remove_by_ref(env, wp);
1377 return 0;
1380 return -ENOENT;
1383 /* Remove a specific watchpoint by reference. */
1384 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1388 tlb_flush_page(env, watchpoint->vaddr);
1390 qemu_free(watchpoint);
1393 /* Remove all matching watchpoints. */
1394 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396 CPUWatchpoint *wp, *next;
1398 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1399 if (wp->flags & mask)
1400 cpu_watchpoint_remove_by_ref(env, wp);
1404 /* Add a breakpoint. */
1405 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1406 CPUBreakpoint **breakpoint)
1408 #if defined(TARGET_HAS_ICE)
1409 CPUBreakpoint *bp;
1411 bp = qemu_malloc(sizeof(*bp));
1413 bp->pc = pc;
1414 bp->flags = flags;
1416 /* keep all GDB-injected breakpoints in front */
1417 if (flags & BP_GDB)
1418 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1419 else
1420 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1422 breakpoint_invalidate(env, pc);
1424 if (breakpoint)
1425 *breakpoint = bp;
1426 return 0;
1427 #else
1428 return -ENOSYS;
1429 #endif
1432 /* Remove a specific breakpoint. */
1433 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435 #if defined(TARGET_HAS_ICE)
1436 CPUBreakpoint *bp;
1438 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1439 if (bp->pc == pc && bp->flags == flags) {
1440 cpu_breakpoint_remove_by_ref(env, bp);
1441 return 0;
1444 return -ENOENT;
1445 #else
1446 return -ENOSYS;
1447 #endif
1450 /* Remove a specific breakpoint by reference. */
1451 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1453 #if defined(TARGET_HAS_ICE)
1454 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1456 breakpoint_invalidate(env, breakpoint->pc);
1458 qemu_free(breakpoint);
1459 #endif
1462 /* Remove all matching breakpoints. */
1463 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465 #if defined(TARGET_HAS_ICE)
1466 CPUBreakpoint *bp, *next;
1468 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1469 if (bp->flags & mask)
1470 cpu_breakpoint_remove_by_ref(env, bp);
1472 #endif
1475 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1476 CPU loop after each instruction */
1477 void cpu_single_step(CPUState *env, int enabled)
1479 #if defined(TARGET_HAS_ICE)
1480 if (env->singlestep_enabled != enabled) {
1481 env->singlestep_enabled = enabled;
1482 if (kvm_enabled())
1483 kvm_update_guest_debug(env, 0);
1484 else {
1485 /* must flush all the translated code to avoid inconsistencies */
1486 /* XXX: only flush what is necessary */
1487 tb_flush(env);
1490 #endif
1493 /* enable or disable low levels log */
1494 void cpu_set_log(int log_flags)
1496 loglevel = log_flags;
1497 if (loglevel && !logfile) {
1498 logfile = fopen(logfilename, log_append ? "a" : "w");
1499 if (!logfile) {
1500 perror(logfilename);
1501 _exit(1);
1503 #if !defined(CONFIG_SOFTMMU)
1504 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 static char logfile_buf[4096];
1507 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 #elif !defined(_WIN32)
1510 /* Win32 doesn't support line-buffering and requires size >= 2 */
1511 setvbuf(logfile, NULL, _IOLBF, 0);
1512 #endif
1513 log_append = 1;
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
1521 void cpu_set_log_filename(const char *filename)
1523 logfilename = strdup(filename);
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1528 cpu_set_log(loglevel);
1531 static void cpu_unlink_tb(CPUState *env)
1533 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1534 problem and hope the cpu will stop of its own accord. For userspace
1535 emulation this often isn't actually as bad as it sounds. Often
1536 signals are used primarily to interrupt blocking syscalls. */
1537 TranslationBlock *tb;
1538 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1540 tb = env->current_tb;
1541 /* if the cpu is currently executing code, we must unlink it and
1542 all the potentially executing TB */
1543 if (tb) {
1544 spin_lock(&interrupt_lock);
1545 env->current_tb = NULL;
1546 tb_reset_jump_recursive(tb);
1547 spin_unlock(&interrupt_lock);
1551 /* mask must never be zero, except for A20 change call */
1552 void cpu_interrupt(CPUState *env, int mask)
1554 int old_mask;
1556 old_mask = env->interrupt_request;
1557 env->interrupt_request |= mask;
1559 #ifndef CONFIG_USER_ONLY
1561 * If called from iothread context, wake the target cpu in
1562 * case its halted.
1564 if (!qemu_cpu_self(env)) {
1565 qemu_cpu_kick(env);
1566 return;
1568 #endif
1570 if (use_icount) {
1571 env->icount_decr.u16.high = 0xffff;
1572 #ifndef CONFIG_USER_ONLY
1573 if (!can_do_io(env)
1574 && (mask & ~old_mask) != 0) {
1575 cpu_abort(env, "Raised interrupt while not in I/O function");
1577 #endif
1578 } else {
1579 cpu_unlink_tb(env);
1583 void cpu_reset_interrupt(CPUState *env, int mask)
1585 env->interrupt_request &= ~mask;
1588 void cpu_exit(CPUState *env)
1590 env->exit_request = 1;
1591 cpu_unlink_tb(env);
1594 const CPULogItem cpu_log_items[] = {
1595 { CPU_LOG_TB_OUT_ASM, "out_asm",
1596 "show generated host assembly code for each compiled TB" },
1597 { CPU_LOG_TB_IN_ASM, "in_asm",
1598 "show target assembly code for each compiled TB" },
1599 { CPU_LOG_TB_OP, "op",
1600 "show micro ops for each compiled TB" },
1601 { CPU_LOG_TB_OP_OPT, "op_opt",
1602 "show micro ops "
1603 #ifdef TARGET_I386
1604 "before eflags optimization and "
1605 #endif
1606 "after liveness analysis" },
1607 { CPU_LOG_INT, "int",
1608 "show interrupts/exceptions in short format" },
1609 { CPU_LOG_EXEC, "exec",
1610 "show trace before each executed TB (lots of logs)" },
1611 { CPU_LOG_TB_CPU, "cpu",
1612 "show CPU state before block translation" },
1613 #ifdef TARGET_I386
1614 { CPU_LOG_PCALL, "pcall",
1615 "show protected mode far calls/returns/exceptions" },
1616 { CPU_LOG_RESET, "cpu_reset",
1617 "show CPU state before CPU resets" },
1618 #endif
1619 #ifdef DEBUG_IOPORT
1620 { CPU_LOG_IOPORT, "ioport",
1621 "show all i/o ports accesses" },
1622 #endif
1623 { 0, NULL, NULL },
1626 static int cmp1(const char *s1, int n, const char *s2)
1628 if (strlen(s2) != n)
1629 return 0;
1630 return memcmp(s1, s2, n) == 0;
1633 /* takes a comma separated list of log masks. Return 0 if error. */
1634 int cpu_str_to_log_mask(const char *str)
1636 const CPULogItem *item;
1637 int mask;
1638 const char *p, *p1;
1640 p = str;
1641 mask = 0;
1642 for(;;) {
1643 p1 = strchr(p, ',');
1644 if (!p1)
1645 p1 = p + strlen(p);
1646 if(cmp1(p,p1-p,"all")) {
1647 for(item = cpu_log_items; item->mask != 0; item++) {
1648 mask |= item->mask;
1650 } else {
1651 for(item = cpu_log_items; item->mask != 0; item++) {
1652 if (cmp1(p, p1 - p, item->name))
1653 goto found;
1655 return 0;
1657 found:
1658 mask |= item->mask;
1659 if (*p1 != ',')
1660 break;
1661 p = p1 + 1;
1663 return mask;
1666 void cpu_abort(CPUState *env, const char *fmt, ...)
1668 va_list ap;
1669 va_list ap2;
1671 va_start(ap, fmt);
1672 va_copy(ap2, ap);
1673 fprintf(stderr, "qemu: fatal: ");
1674 vfprintf(stderr, fmt, ap);
1675 fprintf(stderr, "\n");
1676 #ifdef TARGET_I386
1677 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1678 #else
1679 cpu_dump_state(env, stderr, fprintf, 0);
1680 #endif
1681 if (qemu_log_enabled()) {
1682 qemu_log("qemu: fatal: ");
1683 qemu_log_vprintf(fmt, ap2);
1684 qemu_log("\n");
1685 #ifdef TARGET_I386
1686 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1687 #else
1688 log_cpu_state(env, 0);
1689 #endif
1690 qemu_log_flush();
1691 qemu_log_close();
1693 va_end(ap2);
1694 va_end(ap);
1695 abort();
1698 CPUState *cpu_copy(CPUState *env)
1700 CPUState *new_env = cpu_init(env->cpu_model_str);
1701 CPUState *next_cpu = new_env->next_cpu;
1702 int cpu_index = new_env->cpu_index;
1703 #if defined(TARGET_HAS_ICE)
1704 CPUBreakpoint *bp;
1705 CPUWatchpoint *wp;
1706 #endif
1708 memcpy(new_env, env, sizeof(CPUState));
1710 /* Preserve chaining and index. */
1711 new_env->next_cpu = next_cpu;
1712 new_env->cpu_index = cpu_index;
1714 /* Clone all break/watchpoints.
1715 Note: Once we support ptrace with hw-debug register access, make sure
1716 BP_CPU break/watchpoints are handled correctly on clone. */
1717 QTAILQ_INIT(&env->breakpoints);
1718 QTAILQ_INIT(&env->watchpoints);
1719 #if defined(TARGET_HAS_ICE)
1720 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1721 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1723 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1724 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1725 wp->flags, NULL);
1727 #endif
1729 return new_env;
1732 #if !defined(CONFIG_USER_ONLY)
1734 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1736 unsigned int i;
1738 /* Discard jump cache entries for any tb which might potentially
1739 overlap the flushed page. */
1740 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1741 memset (&env->tb_jmp_cache[i], 0,
1742 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1744 i = tb_jmp_cache_hash_page(addr);
1745 memset (&env->tb_jmp_cache[i], 0,
1746 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749 static CPUTLBEntry s_cputlb_empty_entry = {
1750 .addr_read = -1,
1751 .addr_write = -1,
1752 .addr_code = -1,
1753 .addend = -1,
1756 /* NOTE: if flush_global is true, also flush global entries (not
1757 implemented yet) */
1758 void tlb_flush(CPUState *env, int flush_global)
1760 int i;
1762 #if defined(DEBUG_TLB)
1763 printf("tlb_flush:\n");
1764 #endif
1765 /* must reset current TB so that interrupts cannot modify the
1766 links while we are modifying them */
1767 env->current_tb = NULL;
1769 for(i = 0; i < CPU_TLB_SIZE; i++) {
1770 int mmu_idx;
1771 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1772 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1778 tlb_flush_count++;
1781 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1783 if (addr == (tlb_entry->addr_read &
1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1785 addr == (tlb_entry->addr_write &
1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1787 addr == (tlb_entry->addr_code &
1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1789 *tlb_entry = s_cputlb_empty_entry;
1793 void tlb_flush_page(CPUState *env, target_ulong addr)
1795 int i;
1796 int mmu_idx;
1798 #if defined(DEBUG_TLB)
1799 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1800 #endif
1801 /* must reset current TB so that interrupts cannot modify the
1802 links while we are modifying them */
1803 env->current_tb = NULL;
1805 addr &= TARGET_PAGE_MASK;
1806 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1807 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1808 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1810 tlb_flush_jmp_cache(env, addr);
1813 /* update the TLBs so that writes to code in the virtual page 'addr'
1814 can be detected */
1815 static void tlb_protect_code(ram_addr_t ram_addr)
1817 cpu_physical_memory_reset_dirty(ram_addr,
1818 ram_addr + TARGET_PAGE_SIZE,
1819 CODE_DIRTY_FLAG);
1822 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1823 tested for self modifying code */
1824 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1825 target_ulong vaddr)
1827 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1830 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1831 unsigned long start, unsigned long length)
1833 unsigned long addr;
1834 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1835 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1836 if ((addr - start) < length) {
1837 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1842 /* Note: start and end must be within the same ram block. */
1843 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1844 int dirty_flags)
1846 CPUState *env;
1847 unsigned long length, start1;
1848 int i, mask, len;
1849 uint8_t *p;
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 len = length >> TARGET_PAGE_BITS;
1858 mask = ~dirty_flags;
1859 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1860 for(i = 0; i < len; i++)
1861 p[i] &= mask;
1863 /* we modify the TLB cache so that the dirty bit will be set again
1864 when accessing the range */
1865 start1 = (unsigned long)qemu_get_ram_ptr(start);
1866 /* Chek that we don't span multiple blocks - this breaks the
1867 address comparisons below. */
1868 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1869 != (end - 1) - start) {
1870 abort();
1873 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1876 for(i = 0; i < CPU_TLB_SIZE; i++)
1877 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1878 start1, length);
1883 int cpu_physical_memory_set_dirty_tracking(int enable)
1885 in_migration = enable;
1886 if (kvm_enabled()) {
1887 return kvm_set_migration_log(enable);
1889 return 0;
1892 int cpu_physical_memory_get_dirty_tracking(void)
1894 return in_migration;
1897 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1898 target_phys_addr_t end_addr)
1900 int ret = 0;
1902 if (kvm_enabled())
1903 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1904 return ret;
1907 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1909 ram_addr_t ram_addr;
1910 void *p;
1912 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1913 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1914 + tlb_entry->addend);
1915 ram_addr = qemu_ram_addr_from_host(p);
1916 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1917 tlb_entry->addr_write |= TLB_NOTDIRTY;
1922 /* update the TLB according to the current state of the dirty bits */
1923 void cpu_tlb_update_dirty(CPUState *env)
1925 int i;
1926 int mmu_idx;
1927 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1928 for(i = 0; i < CPU_TLB_SIZE; i++)
1929 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1933 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1935 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1936 tlb_entry->addr_write = vaddr;
1939 /* update the TLB corresponding to virtual page vaddr
1940 so that it is no longer dirty */
1941 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1943 int i;
1944 int mmu_idx;
1946 vaddr &= TARGET_PAGE_MASK;
1947 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1948 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1949 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1952 /* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
1956 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1957 target_phys_addr_t paddr, int prot,
1958 int mmu_idx, int is_softmmu)
1960 PhysPageDesc *p;
1961 unsigned long pd;
1962 unsigned int index;
1963 target_ulong address;
1964 target_ulong code_address;
1965 target_phys_addr_t addend;
1966 int ret;
1967 CPUTLBEntry *te;
1968 CPUWatchpoint *wp;
1969 target_phys_addr_t iotlb;
1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
1974 } else {
1975 pd = p->phys_offset;
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1980 #endif
1982 ret = 0;
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1988 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
1997 /* IO handlers are currently passed a physical address.
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
2014 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
2046 } else {
2047 te->addr_write = address;
2049 } else {
2050 te->addr_write = -1;
2052 return ret;
2055 #else
2057 void tlb_flush(CPUState *env, int flush_global)
2061 void tlb_flush_page(CPUState *env, target_ulong addr)
2065 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2066 target_phys_addr_t paddr, int prot,
2067 int mmu_idx, int is_softmmu)
2069 return 0;
2073 * Walks guest process memory "regions" one by one
2074 * and calls callback function 'fn' for each region.
2076 int walk_memory_regions(void *priv,
2077 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2079 unsigned long start, end;
2080 PageDesc *p = NULL;
2081 int i, j, prot, prot1;
2082 int rc = 0;
2084 start = end = -1;
2085 prot = 0;
2087 for (i = 0; i <= L1_SIZE; i++) {
2088 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2089 for (j = 0; j < L2_SIZE; j++) {
2090 prot1 = (p == NULL) ? 0 : p[j].flags;
2092 * "region" is one continuous chunk of memory
2093 * that has same protection flags set.
2095 if (prot1 != prot) {
2096 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2097 if (start != -1) {
2098 rc = (*fn)(priv, start, end, prot);
2099 /* callback can stop iteration by returning != 0 */
2100 if (rc != 0)
2101 return (rc);
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2109 if (p == NULL)
2110 break;
2113 return (rc);
2116 static int dump_region(void *priv, unsigned long start,
2117 unsigned long end, unsigned long prot)
2119 FILE *f = (FILE *)priv;
2121 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2122 start, end, end - start,
2123 ((prot & PAGE_READ) ? 'r' : '-'),
2124 ((prot & PAGE_WRITE) ? 'w' : '-'),
2125 ((prot & PAGE_EXEC) ? 'x' : '-'));
2127 return (0);
2130 /* dump memory mappings */
2131 void page_dump(FILE *f)
2133 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2134 "start", "end", "size", "prot");
2135 walk_memory_regions(f, dump_region);
2138 int page_get_flags(target_ulong address)
2140 PageDesc *p;
2142 p = page_find(address >> TARGET_PAGE_BITS);
2143 if (!p)
2144 return 0;
2145 return p->flags;
2148 /* modify the flags of a page and invalidate the code if
2149 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2150 depending on PAGE_WRITE */
2151 void page_set_flags(target_ulong start, target_ulong end, int flags)
2153 PageDesc *p;
2154 target_ulong addr;
2156 /* mmap_lock should already be held. */
2157 start = start & TARGET_PAGE_MASK;
2158 end = TARGET_PAGE_ALIGN(end);
2159 if (flags & PAGE_WRITE)
2160 flags |= PAGE_WRITE_ORG;
2161 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2162 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2163 /* We may be called for host regions that are outside guest
2164 address space. */
2165 if (!p)
2166 return;
2167 /* if the write protection is set, then we invalidate the code
2168 inside */
2169 if (!(p->flags & PAGE_WRITE) &&
2170 (flags & PAGE_WRITE) &&
2171 p->first_tb) {
2172 tb_invalidate_phys_page(addr, 0, NULL);
2174 p->flags = flags;
2178 int page_check_range(target_ulong start, target_ulong len, int flags)
2180 PageDesc *p;
2181 target_ulong end;
2182 target_ulong addr;
2184 if (start + len < start)
2185 /* we've wrapped around */
2186 return -1;
2188 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2189 start = start & TARGET_PAGE_MASK;
2191 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2192 p = page_find(addr >> TARGET_PAGE_BITS);
2193 if( !p )
2194 return -1;
2195 if( !(p->flags & PAGE_VALID) )
2196 return -1;
2198 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2199 return -1;
2200 if (flags & PAGE_WRITE) {
2201 if (!(p->flags & PAGE_WRITE_ORG))
2202 return -1;
2203 /* unprotect the page if it was put read-only because it
2204 contains translated code */
2205 if (!(p->flags & PAGE_WRITE)) {
2206 if (!page_unprotect(addr, 0, NULL))
2207 return -1;
2209 return 0;
2212 return 0;
2215 /* called from signal handler: invalidate the code and unprotect the
2216 page. Return TRUE if the fault was successfully handled. */
2217 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2219 unsigned int page_index, prot, pindex;
2220 PageDesc *p, *p1;
2221 target_ulong host_start, host_end, addr;
2223 /* Technically this isn't safe inside a signal handler. However we
2224 know this only ever happens in a synchronous SEGV handler, so in
2225 practice it seems to be ok. */
2226 mmap_lock();
2228 host_start = address & qemu_host_page_mask;
2229 page_index = host_start >> TARGET_PAGE_BITS;
2230 p1 = page_find(page_index);
2231 if (!p1) {
2232 mmap_unlock();
2233 return 0;
2235 host_end = host_start + qemu_host_page_size;
2236 p = p1;
2237 prot = 0;
2238 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2239 prot |= p->flags;
2240 p++;
2242 /* if the page was really writable, then we change its
2243 protection back to writable */
2244 if (prot & PAGE_WRITE_ORG) {
2245 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2246 if (!(p1[pindex].flags & PAGE_WRITE)) {
2247 mprotect((void *)g2h(host_start), qemu_host_page_size,
2248 (prot & PAGE_BITS) | PAGE_WRITE);
2249 p1[pindex].flags |= PAGE_WRITE;
2250 /* and since the content will be modified, we must invalidate
2251 the corresponding translated code. */
2252 tb_invalidate_phys_page(address, pc, puc);
2253 #ifdef DEBUG_TB_CHECK
2254 tb_invalidate_check(address);
2255 #endif
2256 mmap_unlock();
2257 return 1;
2260 mmap_unlock();
2261 return 0;
2264 static inline void tlb_set_dirty(CPUState *env,
2265 unsigned long addr, target_ulong vaddr)
2268 #endif /* defined(CONFIG_USER_ONLY) */
2270 #if !defined(CONFIG_USER_ONLY)
2272 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2273 ram_addr_t memory, ram_addr_t region_offset);
2274 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2275 ram_addr_t orig_memory, ram_addr_t region_offset);
2276 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2277 need_subpage) \
2278 do { \
2279 if (addr > start_addr) \
2280 start_addr2 = 0; \
2281 else { \
2282 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2283 if (start_addr2 > 0) \
2284 need_subpage = 1; \
2287 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2288 end_addr2 = TARGET_PAGE_SIZE - 1; \
2289 else { \
2290 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2291 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2292 need_subpage = 1; \
2294 } while (0)
2296 /* register physical memory.
2297 For RAM, 'size' must be a multiple of the target page size.
2298 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2299 io memory page. The address used when calling the IO function is
2300 the offset from the start of the region, plus region_offset. Both
2301 start_addr and region_offset are rounded down to a page boundary
2302 before calculating this offset. This should not be a problem unless
2303 the low bits of start_addr and region_offset differ. */
2304 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2305 ram_addr_t size,
2306 ram_addr_t phys_offset,
2307 ram_addr_t region_offset)
2309 target_phys_addr_t addr, end_addr;
2310 PhysPageDesc *p;
2311 CPUState *env;
2312 ram_addr_t orig_size = size;
2313 void *subpage;
2315 if (kvm_enabled())
2316 kvm_set_phys_mem(start_addr, size, phys_offset);
2318 if (phys_offset == IO_MEM_UNASSIGNED) {
2319 region_offset = start_addr;
2321 region_offset &= TARGET_PAGE_MASK;
2322 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2323 end_addr = start_addr + (target_phys_addr_t)size;
2324 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2325 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2326 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2327 ram_addr_t orig_memory = p->phys_offset;
2328 target_phys_addr_t start_addr2, end_addr2;
2329 int need_subpage = 0;
2331 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2332 need_subpage);
2333 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2334 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2335 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2336 &p->phys_offset, orig_memory,
2337 p->region_offset);
2338 } else {
2339 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2340 >> IO_MEM_SHIFT];
2342 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2343 region_offset);
2344 p->region_offset = 0;
2345 } else {
2346 p->phys_offset = phys_offset;
2347 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2348 (phys_offset & IO_MEM_ROMD))
2349 phys_offset += TARGET_PAGE_SIZE;
2351 } else {
2352 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2353 p->phys_offset = phys_offset;
2354 p->region_offset = region_offset;
2355 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2356 (phys_offset & IO_MEM_ROMD)) {
2357 phys_offset += TARGET_PAGE_SIZE;
2358 } else {
2359 target_phys_addr_t start_addr2, end_addr2;
2360 int need_subpage = 0;
2362 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2363 end_addr2, need_subpage);
2365 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2366 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2367 &p->phys_offset, IO_MEM_UNASSIGNED,
2368 addr & TARGET_PAGE_MASK);
2369 subpage_register(subpage, start_addr2, end_addr2,
2370 phys_offset, region_offset);
2371 p->region_offset = 0;
2375 region_offset += TARGET_PAGE_SIZE;
2378 /* since each CPU stores ram addresses in its TLB cache, we must
2379 reset the modified entries */
2380 /* XXX: slow ! */
2381 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2382 tlb_flush(env, 1);
2386 /* XXX: temporary until new memory mapping API */
2387 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2389 PhysPageDesc *p;
2391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2392 if (!p)
2393 return IO_MEM_UNASSIGNED;
2394 return p->phys_offset;
2397 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2399 if (kvm_enabled())
2400 kvm_coalesce_mmio_region(addr, size);
2403 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2405 if (kvm_enabled())
2406 kvm_uncoalesce_mmio_region(addr, size);
2409 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2411 RAMBlock *new_block;
2413 size = TARGET_PAGE_ALIGN(size);
2414 new_block = qemu_malloc(sizeof(*new_block));
2416 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2417 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2418 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2419 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2420 #else
2421 new_block->host = qemu_vmalloc(size);
2422 #endif
2423 #ifdef MADV_MERGEABLE
2424 madvise(new_block->host, size, MADV_MERGEABLE);
2425 #endif
2426 new_block->offset = last_ram_offset;
2427 new_block->length = size;
2429 new_block->next = ram_blocks;
2430 ram_blocks = new_block;
2432 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2433 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2434 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2435 0xff, size >> TARGET_PAGE_BITS);
2437 last_ram_offset += size;
2439 if (kvm_enabled())
2440 kvm_setup_guest_memory(new_block->host, size);
2442 return new_block->offset;
2445 void qemu_ram_free(ram_addr_t addr)
2447 /* TODO: implement this. */
2450 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2451 With the exception of the softmmu code in this file, this should
2452 only be used for local memory (e.g. video ram) that the device owns,
2453 and knows it isn't going to access beyond the end of the block.
2455 It should not be used for general purpose DMA.
2456 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2458 void *qemu_get_ram_ptr(ram_addr_t addr)
2460 RAMBlock *prev;
2461 RAMBlock **prevp;
2462 RAMBlock *block;
2464 prev = NULL;
2465 prevp = &ram_blocks;
2466 block = ram_blocks;
2467 while (block && (block->offset > addr
2468 || block->offset + block->length <= addr)) {
2469 if (prev)
2470 prevp = &prev->next;
2471 prev = block;
2472 block = block->next;
2474 if (!block) {
2475 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2476 abort();
2478 /* Move this entry to to start of the list. */
2479 if (prev) {
2480 prev->next = block->next;
2481 block->next = *prevp;
2482 *prevp = block;
2484 return block->host + (addr - block->offset);
2487 /* Some of the softmmu routines need to translate from a host pointer
2488 (typically a TLB entry) back to a ram offset. */
2489 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2491 RAMBlock *prev;
2492 RAMBlock **prevp;
2493 RAMBlock *block;
2494 uint8_t *host = ptr;
2496 prev = NULL;
2497 prevp = &ram_blocks;
2498 block = ram_blocks;
2499 while (block && (block->host > host
2500 || block->host + block->length <= host)) {
2501 if (prev)
2502 prevp = &prev->next;
2503 prev = block;
2504 block = block->next;
2506 if (!block) {
2507 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2508 abort();
2510 return block->offset + (host - block->host);
2513 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2515 #ifdef DEBUG_UNASSIGNED
2516 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2517 #endif
2518 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2519 do_unassigned_access(addr, 0, 0, 0, 1);
2520 #endif
2521 return 0;
2524 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2526 #ifdef DEBUG_UNASSIGNED
2527 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2528 #endif
2529 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2530 do_unassigned_access(addr, 0, 0, 0, 2);
2531 #endif
2532 return 0;
2535 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2537 #ifdef DEBUG_UNASSIGNED
2538 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2539 #endif
2540 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2541 do_unassigned_access(addr, 0, 0, 0, 4);
2542 #endif
2543 return 0;
2546 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2548 #ifdef DEBUG_UNASSIGNED
2549 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2550 #endif
2551 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2552 do_unassigned_access(addr, 1, 0, 0, 1);
2553 #endif
2556 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2558 #ifdef DEBUG_UNASSIGNED
2559 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2560 #endif
2561 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2562 do_unassigned_access(addr, 1, 0, 0, 2);
2563 #endif
2566 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2568 #ifdef DEBUG_UNASSIGNED
2569 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2570 #endif
2571 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2572 do_unassigned_access(addr, 1, 0, 0, 4);
2573 #endif
2576 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2577 unassigned_mem_readb,
2578 unassigned_mem_readw,
2579 unassigned_mem_readl,
2582 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2583 unassigned_mem_writeb,
2584 unassigned_mem_writew,
2585 unassigned_mem_writel,
2588 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2589 uint32_t val)
2591 int dirty_flags;
2592 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2593 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2594 #if !defined(CONFIG_USER_ONLY)
2595 tb_invalidate_phys_page_fast(ram_addr, 1);
2596 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2597 #endif
2599 stb_p(qemu_get_ram_ptr(ram_addr), val);
2600 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2601 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2602 /* we remove the notdirty callback only if the code has been
2603 flushed */
2604 if (dirty_flags == 0xff)
2605 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2608 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2609 uint32_t val)
2611 int dirty_flags;
2612 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2613 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2614 #if !defined(CONFIG_USER_ONLY)
2615 tb_invalidate_phys_page_fast(ram_addr, 2);
2616 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2617 #endif
2619 stw_p(qemu_get_ram_ptr(ram_addr), val);
2620 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2621 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2622 /* we remove the notdirty callback only if the code has been
2623 flushed */
2624 if (dirty_flags == 0xff)
2625 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2628 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2629 uint32_t val)
2631 int dirty_flags;
2632 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2633 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2634 #if !defined(CONFIG_USER_ONLY)
2635 tb_invalidate_phys_page_fast(ram_addr, 4);
2636 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2637 #endif
2639 stl_p(qemu_get_ram_ptr(ram_addr), val);
2640 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2641 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2642 /* we remove the notdirty callback only if the code has been
2643 flushed */
2644 if (dirty_flags == 0xff)
2645 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2648 static CPUReadMemoryFunc * const error_mem_read[3] = {
2649 NULL, /* never used */
2650 NULL, /* never used */
2651 NULL, /* never used */
2654 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2655 notdirty_mem_writeb,
2656 notdirty_mem_writew,
2657 notdirty_mem_writel,
2660 /* Generate a debug exception if a watchpoint has been hit. */
2661 static void check_watchpoint(int offset, int len_mask, int flags)
2663 CPUState *env = cpu_single_env;
2664 target_ulong pc, cs_base;
2665 TranslationBlock *tb;
2666 target_ulong vaddr;
2667 CPUWatchpoint *wp;
2668 int cpu_flags;
2670 if (env->watchpoint_hit) {
2671 /* We re-entered the check after replacing the TB. Now raise
2672 * the debug interrupt so that is will trigger after the
2673 * current instruction. */
2674 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2675 return;
2677 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2678 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2679 if ((vaddr == (wp->vaddr & len_mask) ||
2680 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2681 wp->flags |= BP_WATCHPOINT_HIT;
2682 if (!env->watchpoint_hit) {
2683 env->watchpoint_hit = wp;
2684 tb = tb_find_pc(env->mem_io_pc);
2685 if (!tb) {
2686 cpu_abort(env, "check_watchpoint: could not find TB for "
2687 "pc=%p", (void *)env->mem_io_pc);
2689 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2690 tb_phys_invalidate(tb, -1);
2691 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2692 env->exception_index = EXCP_DEBUG;
2693 } else {
2694 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2695 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2697 cpu_resume_from_signal(env, NULL);
2699 } else {
2700 wp->flags &= ~BP_WATCHPOINT_HIT;
2705 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2706 so these check for a hit then pass through to the normal out-of-line
2707 phys routines. */
2708 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2710 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2711 return ldub_phys(addr);
2714 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2716 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2717 return lduw_phys(addr);
2720 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2722 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2723 return ldl_phys(addr);
2726 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2727 uint32_t val)
2729 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2730 stb_phys(addr, val);
2733 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2734 uint32_t val)
2736 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2737 stw_phys(addr, val);
2740 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2741 uint32_t val)
2743 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2744 stl_phys(addr, val);
2747 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2748 watch_mem_readb,
2749 watch_mem_readw,
2750 watch_mem_readl,
2753 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2754 watch_mem_writeb,
2755 watch_mem_writew,
2756 watch_mem_writel,
2759 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2760 unsigned int len)
2762 uint32_t ret;
2763 unsigned int idx;
2765 idx = SUBPAGE_IDX(addr);
2766 #if defined(DEBUG_SUBPAGE)
2767 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2768 mmio, len, addr, idx);
2769 #endif
2770 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2771 addr + mmio->region_offset[idx][0][len]);
2773 return ret;
2776 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2777 uint32_t value, unsigned int len)
2779 unsigned int idx;
2781 idx = SUBPAGE_IDX(addr);
2782 #if defined(DEBUG_SUBPAGE)
2783 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2784 mmio, len, addr, idx, value);
2785 #endif
2786 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2787 addr + mmio->region_offset[idx][1][len],
2788 value);
2791 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2793 #if defined(DEBUG_SUBPAGE)
2794 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2795 #endif
2797 return subpage_readlen(opaque, addr, 0);
2800 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2801 uint32_t value)
2803 #if defined(DEBUG_SUBPAGE)
2804 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2805 #endif
2806 subpage_writelen(opaque, addr, value, 0);
2809 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2811 #if defined(DEBUG_SUBPAGE)
2812 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2813 #endif
2815 return subpage_readlen(opaque, addr, 1);
2818 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2819 uint32_t value)
2821 #if defined(DEBUG_SUBPAGE)
2822 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2823 #endif
2824 subpage_writelen(opaque, addr, value, 1);
2827 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2829 #if defined(DEBUG_SUBPAGE)
2830 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2831 #endif
2833 return subpage_readlen(opaque, addr, 2);
2836 static void subpage_writel (void *opaque,
2837 target_phys_addr_t addr, uint32_t value)
2839 #if defined(DEBUG_SUBPAGE)
2840 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2841 #endif
2842 subpage_writelen(opaque, addr, value, 2);
2845 static CPUReadMemoryFunc * const subpage_read[] = {
2846 &subpage_readb,
2847 &subpage_readw,
2848 &subpage_readl,
2851 static CPUWriteMemoryFunc * const subpage_write[] = {
2852 &subpage_writeb,
2853 &subpage_writew,
2854 &subpage_writel,
2857 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2858 ram_addr_t memory, ram_addr_t region_offset)
2860 int idx, eidx;
2861 unsigned int i;
2863 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2864 return -1;
2865 idx = SUBPAGE_IDX(start);
2866 eidx = SUBPAGE_IDX(end);
2867 #if defined(DEBUG_SUBPAGE)
2868 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2869 mmio, start, end, idx, eidx, memory);
2870 #endif
2871 memory >>= IO_MEM_SHIFT;
2872 for (; idx <= eidx; idx++) {
2873 for (i = 0; i < 4; i++) {
2874 if (io_mem_read[memory][i]) {
2875 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2876 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2877 mmio->region_offset[idx][0][i] = region_offset;
2879 if (io_mem_write[memory][i]) {
2880 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2881 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2882 mmio->region_offset[idx][1][i] = region_offset;
2887 return 0;
2890 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2891 ram_addr_t orig_memory, ram_addr_t region_offset)
2893 subpage_t *mmio;
2894 int subpage_memory;
2896 mmio = qemu_mallocz(sizeof(subpage_t));
2898 mmio->base = base;
2899 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2900 #if defined(DEBUG_SUBPAGE)
2901 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2902 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2903 #endif
2904 *phys = subpage_memory | IO_MEM_SUBPAGE;
2905 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2906 region_offset);
2908 return mmio;
2911 static int get_free_io_mem_idx(void)
2913 int i;
2915 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2916 if (!io_mem_used[i]) {
2917 io_mem_used[i] = 1;
2918 return i;
2920 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
2921 return -1;
2924 /* mem_read and mem_write are arrays of functions containing the
2925 function to access byte (index 0), word (index 1) and dword (index
2926 2). Functions can be omitted with a NULL function pointer.
2927 If io_index is non zero, the corresponding io zone is
2928 modified. If it is zero, a new io zone is allocated. The return
2929 value can be used with cpu_register_physical_memory(). (-1) is
2930 returned if error. */
2931 static int cpu_register_io_memory_fixed(int io_index,
2932 CPUReadMemoryFunc * const *mem_read,
2933 CPUWriteMemoryFunc * const *mem_write,
2934 void *opaque)
2936 int i, subwidth = 0;
2938 if (io_index <= 0) {
2939 io_index = get_free_io_mem_idx();
2940 if (io_index == -1)
2941 return io_index;
2942 } else {
2943 io_index >>= IO_MEM_SHIFT;
2944 if (io_index >= IO_MEM_NB_ENTRIES)
2945 return -1;
2948 for(i = 0;i < 3; i++) {
2949 if (!mem_read[i] || !mem_write[i])
2950 subwidth = IO_MEM_SUBWIDTH;
2951 io_mem_read[io_index][i] = mem_read[i];
2952 io_mem_write[io_index][i] = mem_write[i];
2954 io_mem_opaque[io_index] = opaque;
2955 return (io_index << IO_MEM_SHIFT) | subwidth;
2958 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2959 CPUWriteMemoryFunc * const *mem_write,
2960 void *opaque)
2962 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2965 void cpu_unregister_io_memory(int io_table_address)
2967 int i;
2968 int io_index = io_table_address >> IO_MEM_SHIFT;
2970 for (i=0;i < 3; i++) {
2971 io_mem_read[io_index][i] = unassigned_mem_read[i];
2972 io_mem_write[io_index][i] = unassigned_mem_write[i];
2974 io_mem_opaque[io_index] = NULL;
2975 io_mem_used[io_index] = 0;
2978 static void io_mem_init(void)
2980 int i;
2982 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2983 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2984 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2985 for (i=0; i<5; i++)
2986 io_mem_used[i] = 1;
2988 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2989 watch_mem_write, NULL);
2992 #endif /* !defined(CONFIG_USER_ONLY) */
2994 /* physical memory access (slow version, mainly for debug) */
2995 #if defined(CONFIG_USER_ONLY)
2996 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2997 int len, int is_write)
2999 int l, flags;
3000 target_ulong page;
3001 void * p;
3003 while (len > 0) {
3004 page = addr & TARGET_PAGE_MASK;
3005 l = (page + TARGET_PAGE_SIZE) - addr;
3006 if (l > len)
3007 l = len;
3008 flags = page_get_flags(page);
3009 if (!(flags & PAGE_VALID))
3010 return;
3011 if (is_write) {
3012 if (!(flags & PAGE_WRITE))
3013 return;
3014 /* XXX: this code should not depend on lock_user */
3015 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3016 /* FIXME - should this return an error rather than just fail? */
3017 return;
3018 memcpy(p, buf, l);
3019 unlock_user(p, addr, l);
3020 } else {
3021 if (!(flags & PAGE_READ))
3022 return;
3023 /* XXX: this code should not depend on lock_user */
3024 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3025 /* FIXME - should this return an error rather than just fail? */
3026 return;
3027 memcpy(buf, p, l);
3028 unlock_user(p, addr, 0);
3030 len -= l;
3031 buf += l;
3032 addr += l;
3036 #else
3037 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3038 int len, int is_write)
3040 int l, io_index;
3041 uint8_t *ptr;
3042 uint32_t val;
3043 target_phys_addr_t page;
3044 unsigned long pd;
3045 PhysPageDesc *p;
3047 while (len > 0) {
3048 page = addr & TARGET_PAGE_MASK;
3049 l = (page + TARGET_PAGE_SIZE) - addr;
3050 if (l > len)
3051 l = len;
3052 p = phys_page_find(page >> TARGET_PAGE_BITS);
3053 if (!p) {
3054 pd = IO_MEM_UNASSIGNED;
3055 } else {
3056 pd = p->phys_offset;
3059 if (is_write) {
3060 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3061 target_phys_addr_t addr1 = addr;
3062 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3063 if (p)
3064 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3065 /* XXX: could force cpu_single_env to NULL to avoid
3066 potential bugs */
3067 if (l >= 4 && ((addr1 & 3) == 0)) {
3068 /* 32 bit write access */
3069 val = ldl_p(buf);
3070 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3071 l = 4;
3072 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3073 /* 16 bit write access */
3074 val = lduw_p(buf);
3075 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3076 l = 2;
3077 } else {
3078 /* 8 bit write access */
3079 val = ldub_p(buf);
3080 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3081 l = 1;
3083 } else {
3084 unsigned long addr1;
3085 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3086 /* RAM case */
3087 ptr = qemu_get_ram_ptr(addr1);
3088 memcpy(ptr, buf, l);
3089 if (!cpu_physical_memory_is_dirty(addr1)) {
3090 /* invalidate code */
3091 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3092 /* set dirty bit */
3093 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3094 (0xff & ~CODE_DIRTY_FLAG);
3097 } else {
3098 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3099 !(pd & IO_MEM_ROMD)) {
3100 target_phys_addr_t addr1 = addr;
3101 /* I/O case */
3102 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3103 if (p)
3104 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3105 if (l >= 4 && ((addr1 & 3) == 0)) {
3106 /* 32 bit read access */
3107 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3108 stl_p(buf, val);
3109 l = 4;
3110 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3111 /* 16 bit read access */
3112 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3113 stw_p(buf, val);
3114 l = 2;
3115 } else {
3116 /* 8 bit read access */
3117 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3118 stb_p(buf, val);
3119 l = 1;
3121 } else {
3122 /* RAM case */
3123 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3124 (addr & ~TARGET_PAGE_MASK);
3125 memcpy(buf, ptr, l);
3128 len -= l;
3129 buf += l;
3130 addr += l;
3134 /* used for ROM loading : can write in RAM and ROM */
3135 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3136 const uint8_t *buf, int len)
3138 int l;
3139 uint8_t *ptr;
3140 target_phys_addr_t page;
3141 unsigned long pd;
3142 PhysPageDesc *p;
3144 while (len > 0) {
3145 page = addr & TARGET_PAGE_MASK;
3146 l = (page + TARGET_PAGE_SIZE) - addr;
3147 if (l > len)
3148 l = len;
3149 p = phys_page_find(page >> TARGET_PAGE_BITS);
3150 if (!p) {
3151 pd = IO_MEM_UNASSIGNED;
3152 } else {
3153 pd = p->phys_offset;
3156 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3157 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3158 !(pd & IO_MEM_ROMD)) {
3159 /* do nothing */
3160 } else {
3161 unsigned long addr1;
3162 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3163 /* ROM/RAM case */
3164 ptr = qemu_get_ram_ptr(addr1);
3165 memcpy(ptr, buf, l);
3167 len -= l;
3168 buf += l;
3169 addr += l;
3173 typedef struct {
3174 void *buffer;
3175 target_phys_addr_t addr;
3176 target_phys_addr_t len;
3177 } BounceBuffer;
3179 static BounceBuffer bounce;
3181 typedef struct MapClient {
3182 void *opaque;
3183 void (*callback)(void *opaque);
3184 QLIST_ENTRY(MapClient) link;
3185 } MapClient;
3187 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3188 = QLIST_HEAD_INITIALIZER(map_client_list);
3190 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3192 MapClient *client = qemu_malloc(sizeof(*client));
3194 client->opaque = opaque;
3195 client->callback = callback;
3196 QLIST_INSERT_HEAD(&map_client_list, client, link);
3197 return client;
3200 void cpu_unregister_map_client(void *_client)
3202 MapClient *client = (MapClient *)_client;
3204 QLIST_REMOVE(client, link);
3205 qemu_free(client);
3208 static void cpu_notify_map_clients(void)
3210 MapClient *client;
3212 while (!QLIST_EMPTY(&map_client_list)) {
3213 client = QLIST_FIRST(&map_client_list);
3214 client->callback(client->opaque);
3215 cpu_unregister_map_client(client);
3219 /* Map a physical memory region into a host virtual address.
3220 * May map a subset of the requested range, given by and returned in *plen.
3221 * May return NULL if resources needed to perform the mapping are exhausted.
3222 * Use only for reads OR writes - not for read-modify-write operations.
3223 * Use cpu_register_map_client() to know when retrying the map operation is
3224 * likely to succeed.
3226 void *cpu_physical_memory_map(target_phys_addr_t addr,
3227 target_phys_addr_t *plen,
3228 int is_write)
3230 target_phys_addr_t len = *plen;
3231 target_phys_addr_t done = 0;
3232 int l;
3233 uint8_t *ret = NULL;
3234 uint8_t *ptr;
3235 target_phys_addr_t page;
3236 unsigned long pd;
3237 PhysPageDesc *p;
3238 unsigned long addr1;
3240 while (len > 0) {
3241 page = addr & TARGET_PAGE_MASK;
3242 l = (page + TARGET_PAGE_SIZE) - addr;
3243 if (l > len)
3244 l = len;
3245 p = phys_page_find(page >> TARGET_PAGE_BITS);
3246 if (!p) {
3247 pd = IO_MEM_UNASSIGNED;
3248 } else {
3249 pd = p->phys_offset;
3252 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3253 if (done || bounce.buffer) {
3254 break;
3256 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3257 bounce.addr = addr;
3258 bounce.len = l;
3259 if (!is_write) {
3260 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3262 ptr = bounce.buffer;
3263 } else {
3264 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3265 ptr = qemu_get_ram_ptr(addr1);
3267 if (!done) {
3268 ret = ptr;
3269 } else if (ret + done != ptr) {
3270 break;
3273 len -= l;
3274 addr += l;
3275 done += l;
3277 *plen = done;
3278 return ret;
3281 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3282 * Will also mark the memory as dirty if is_write == 1. access_len gives
3283 * the amount of memory that was actually read or written by the caller.
3285 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3286 int is_write, target_phys_addr_t access_len)
3288 if (buffer != bounce.buffer) {
3289 if (is_write) {
3290 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3291 while (access_len) {
3292 unsigned l;
3293 l = TARGET_PAGE_SIZE;
3294 if (l > access_len)
3295 l = access_len;
3296 if (!cpu_physical_memory_is_dirty(addr1)) {
3297 /* invalidate code */
3298 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3299 /* set dirty bit */
3300 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3301 (0xff & ~CODE_DIRTY_FLAG);
3303 addr1 += l;
3304 access_len -= l;
3307 return;
3309 if (is_write) {
3310 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3312 qemu_free(bounce.buffer);
3313 bounce.buffer = NULL;
3314 cpu_notify_map_clients();
3317 /* warning: addr must be aligned */
3318 uint32_t ldl_phys(target_phys_addr_t addr)
3320 int io_index;
3321 uint8_t *ptr;
3322 uint32_t val;
3323 unsigned long pd;
3324 PhysPageDesc *p;
3326 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3327 if (!p) {
3328 pd = IO_MEM_UNASSIGNED;
3329 } else {
3330 pd = p->phys_offset;
3333 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3334 !(pd & IO_MEM_ROMD)) {
3335 /* I/O case */
3336 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3337 if (p)
3338 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3339 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3340 } else {
3341 /* RAM case */
3342 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3343 (addr & ~TARGET_PAGE_MASK);
3344 val = ldl_p(ptr);
3346 return val;
3349 /* warning: addr must be aligned */
3350 uint64_t ldq_phys(target_phys_addr_t addr)
3352 int io_index;
3353 uint8_t *ptr;
3354 uint64_t val;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3359 if (!p) {
3360 pd = IO_MEM_UNASSIGNED;
3361 } else {
3362 pd = p->phys_offset;
3365 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3366 !(pd & IO_MEM_ROMD)) {
3367 /* I/O case */
3368 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3369 if (p)
3370 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3371 #ifdef TARGET_WORDS_BIGENDIAN
3372 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3373 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3374 #else
3375 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3376 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3377 #endif
3378 } else {
3379 /* RAM case */
3380 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3381 (addr & ~TARGET_PAGE_MASK);
3382 val = ldq_p(ptr);
3384 return val;
3387 /* XXX: optimize */
3388 uint32_t ldub_phys(target_phys_addr_t addr)
3390 uint8_t val;
3391 cpu_physical_memory_read(addr, &val, 1);
3392 return val;
3395 /* XXX: optimize */
3396 uint32_t lduw_phys(target_phys_addr_t addr)
3398 uint16_t val;
3399 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3400 return tswap16(val);
3403 /* warning: addr must be aligned. The ram page is not masked as dirty
3404 and the code inside is not invalidated. It is useful if the dirty
3405 bits are used to track modified PTEs */
3406 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3408 int io_index;
3409 uint8_t *ptr;
3410 unsigned long pd;
3411 PhysPageDesc *p;
3413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3414 if (!p) {
3415 pd = IO_MEM_UNASSIGNED;
3416 } else {
3417 pd = p->phys_offset;
3420 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3421 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3422 if (p)
3423 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3424 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3425 } else {
3426 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3427 ptr = qemu_get_ram_ptr(addr1);
3428 stl_p(ptr, val);
3430 if (unlikely(in_migration)) {
3431 if (!cpu_physical_memory_is_dirty(addr1)) {
3432 /* invalidate code */
3433 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3434 /* set dirty bit */
3435 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3436 (0xff & ~CODE_DIRTY_FLAG);
3442 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3444 int io_index;
3445 uint8_t *ptr;
3446 unsigned long pd;
3447 PhysPageDesc *p;
3449 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3450 if (!p) {
3451 pd = IO_MEM_UNASSIGNED;
3452 } else {
3453 pd = p->phys_offset;
3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3457 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3458 if (p)
3459 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3460 #ifdef TARGET_WORDS_BIGENDIAN
3461 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3462 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3463 #else
3464 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3465 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3466 #endif
3467 } else {
3468 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3469 (addr & ~TARGET_PAGE_MASK);
3470 stq_p(ptr, val);
3474 /* warning: addr must be aligned */
3475 void stl_phys(target_phys_addr_t addr, uint32_t val)
3477 int io_index;
3478 uint8_t *ptr;
3479 unsigned long pd;
3480 PhysPageDesc *p;
3482 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3483 if (!p) {
3484 pd = IO_MEM_UNASSIGNED;
3485 } else {
3486 pd = p->phys_offset;
3489 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3490 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3491 if (p)
3492 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3493 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3494 } else {
3495 unsigned long addr1;
3496 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3497 /* RAM case */
3498 ptr = qemu_get_ram_ptr(addr1);
3499 stl_p(ptr, val);
3500 if (!cpu_physical_memory_is_dirty(addr1)) {
3501 /* invalidate code */
3502 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3503 /* set dirty bit */
3504 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3505 (0xff & ~CODE_DIRTY_FLAG);
3510 /* XXX: optimize */
3511 void stb_phys(target_phys_addr_t addr, uint32_t val)
3513 uint8_t v = val;
3514 cpu_physical_memory_write(addr, &v, 1);
3517 /* XXX: optimize */
3518 void stw_phys(target_phys_addr_t addr, uint32_t val)
3520 uint16_t v = tswap16(val);
3521 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3524 /* XXX: optimize */
3525 void stq_phys(target_phys_addr_t addr, uint64_t val)
3527 val = tswap64(val);
3528 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3531 #endif
3533 /* virtual memory access for debug (includes writing to ROM) */
3534 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3535 uint8_t *buf, int len, int is_write)
3537 int l;
3538 target_phys_addr_t phys_addr;
3539 target_ulong page;
3541 while (len > 0) {
3542 page = addr & TARGET_PAGE_MASK;
3543 phys_addr = cpu_get_phys_page_debug(env, page);
3544 /* if no physical page mapped, return an error */
3545 if (phys_addr == -1)
3546 return -1;
3547 l = (page + TARGET_PAGE_SIZE) - addr;
3548 if (l > len)
3549 l = len;
3550 phys_addr += (addr & ~TARGET_PAGE_MASK);
3551 #if !defined(CONFIG_USER_ONLY)
3552 if (is_write)
3553 cpu_physical_memory_write_rom(phys_addr, buf, l);
3554 else
3555 #endif
3556 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3557 len -= l;
3558 buf += l;
3559 addr += l;
3561 return 0;
3564 /* in deterministic execution mode, instructions doing device I/Os
3565 must be at the end of the TB */
3566 void cpu_io_recompile(CPUState *env, void *retaddr)
3568 TranslationBlock *tb;
3569 uint32_t n, cflags;
3570 target_ulong pc, cs_base;
3571 uint64_t flags;
3573 tb = tb_find_pc((unsigned long)retaddr);
3574 if (!tb) {
3575 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3576 retaddr);
3578 n = env->icount_decr.u16.low + tb->icount;
3579 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3580 /* Calculate how many instructions had been executed before the fault
3581 occurred. */
3582 n = n - env->icount_decr.u16.low;
3583 /* Generate a new TB ending on the I/O insn. */
3584 n++;
3585 /* On MIPS and SH, delay slot instructions can only be restarted if
3586 they were already the first instruction in the TB. If this is not
3587 the first instruction in a TB then re-execute the preceding
3588 branch. */
3589 #if defined(TARGET_MIPS)
3590 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3591 env->active_tc.PC -= 4;
3592 env->icount_decr.u16.low++;
3593 env->hflags &= ~MIPS_HFLAG_BMASK;
3595 #elif defined(TARGET_SH4)
3596 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3597 && n > 1) {
3598 env->pc -= 2;
3599 env->icount_decr.u16.low++;
3600 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3602 #endif
3603 /* This should never happen. */
3604 if (n > CF_COUNT_MASK)
3605 cpu_abort(env, "TB too big during recompile");
3607 cflags = n | CF_LAST_IO;
3608 pc = tb->pc;
3609 cs_base = tb->cs_base;
3610 flags = tb->flags;
3611 tb_phys_invalidate(tb, -1);
3612 /* FIXME: In theory this could raise an exception. In practice
3613 we have already translated the block once so it's probably ok. */
3614 tb_gen_code(env, pc, cs_base, flags, cflags);
3615 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3616 the first in the TB) then we end up generating a whole new TB and
3617 repeating the fault, which is horribly inefficient.
3618 Better would be to execute just this insn uncached, or generate a
3619 second new TB. */
3620 cpu_resume_from_signal(env, NULL);
3623 void dump_exec_info(FILE *f,
3624 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3626 int i, target_code_size, max_target_code_size;
3627 int direct_jmp_count, direct_jmp2_count, cross_page;
3628 TranslationBlock *tb;
3630 target_code_size = 0;
3631 max_target_code_size = 0;
3632 cross_page = 0;
3633 direct_jmp_count = 0;
3634 direct_jmp2_count = 0;
3635 for(i = 0; i < nb_tbs; i++) {
3636 tb = &tbs[i];
3637 target_code_size += tb->size;
3638 if (tb->size > max_target_code_size)
3639 max_target_code_size = tb->size;
3640 if (tb->page_addr[1] != -1)
3641 cross_page++;
3642 if (tb->tb_next_offset[0] != 0xffff) {
3643 direct_jmp_count++;
3644 if (tb->tb_next_offset[1] != 0xffff) {
3645 direct_jmp2_count++;
3649 /* XXX: avoid using doubles ? */
3650 cpu_fprintf(f, "Translation buffer state:\n");
3651 cpu_fprintf(f, "gen code size %ld/%ld\n",
3652 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3653 cpu_fprintf(f, "TB count %d/%d\n",
3654 nb_tbs, code_gen_max_blocks);
3655 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3656 nb_tbs ? target_code_size / nb_tbs : 0,
3657 max_target_code_size);
3658 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3659 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3660 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3661 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3662 cross_page,
3663 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3664 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3665 direct_jmp_count,
3666 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3667 direct_jmp2_count,
3668 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3669 cpu_fprintf(f, "\nStatistics:\n");
3670 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3671 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3672 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3673 tcg_dump_info(f, cpu_fprintf);
3676 #if !defined(CONFIG_USER_ONLY)
3678 #define MMUSUFFIX _cmmu
3679 #define GETPC() NULL
3680 #define env cpu_single_env
3681 #define SOFTMMU_CODE_ACCESS
3683 #define SHIFT 0
3684 #include "softmmu_template.h"
3686 #define SHIFT 1
3687 #include "softmmu_template.h"
3689 #define SHIFT 2
3690 #include "softmmu_template.h"
3692 #define SHIFT 3
3693 #include "softmmu_template.h"
3695 #undef env
3697 #endif