Use quiet-command for building optionrom
[qemu/aliguori-queue.git] / kvm-all.c
blob9a822ed88c3b60bbd95655828ad288e430cc0475
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 int irqchip_in_kernel;
67 int pit_in_kernel;
70 static KVMState *kvm_state;
72 static KVMSlot *kvm_alloc_slot(KVMState *s)
74 int i;
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
92 int i;
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
99 return mem;
103 return NULL;
107 * Find overlapping slot with lowest start address
109 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
113 KVMSlot *found = NULL;
114 int i;
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
121 continue;
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
126 found = mem;
130 return found;
133 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 struct kvm_userspace_memory_region mem;
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141 mem.flags = slot->flags;
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148 static void kvm_reset_vcpu(void *opaque)
150 CPUState *env = opaque;
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154 abort();
158 int kvm_irqchip_in_kernel(void)
160 return kvm_state->irqchip_in_kernel;
163 int kvm_pit_in_kernel(void)
165 return kvm_state->pit_in_kernel;
169 int kvm_init_vcpu(CPUState *env)
171 KVMState *s = kvm_state;
172 long mmap_size;
173 int ret;
175 dprintf("kvm_init_vcpu\n");
177 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
178 if (ret < 0) {
179 dprintf("kvm_create_vcpu failed\n");
180 goto err;
183 env->kvm_fd = ret;
184 env->kvm_state = s;
186 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
187 if (mmap_size < 0) {
188 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
189 goto err;
192 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
193 env->kvm_fd, 0);
194 if (env->kvm_run == MAP_FAILED) {
195 ret = -errno;
196 dprintf("mmap'ing vcpu state failed\n");
197 goto err;
200 ret = kvm_arch_init_vcpu(env);
201 if (ret == 0) {
202 qemu_register_reset(kvm_reset_vcpu, env);
203 ret = kvm_arch_put_registers(env);
205 err:
206 return ret;
209 int kvm_put_mp_state(CPUState *env)
211 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
213 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
216 int kvm_get_mp_state(CPUState *env)
218 struct kvm_mp_state mp_state;
219 int ret;
221 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
222 if (ret < 0) {
223 return ret;
225 env->mp_state = mp_state.mp_state;
226 return 0;
230 * dirty pages logging control
232 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
233 ram_addr_t size, int flags, int mask)
235 KVMState *s = kvm_state;
236 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
237 int old_flags;
239 if (mem == NULL) {
240 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
241 TARGET_FMT_plx "\n", __func__, phys_addr,
242 (target_phys_addr_t)(phys_addr + size - 1));
243 return -EINVAL;
246 old_flags = mem->flags;
248 flags = (mem->flags & ~mask) | flags;
249 mem->flags = flags;
251 /* If nothing changed effectively, no need to issue ioctl */
252 if (s->migration_log) {
253 flags |= KVM_MEM_LOG_DIRTY_PAGES;
255 if (flags == old_flags) {
256 return 0;
259 return kvm_set_user_memory_region(s, mem);
262 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
264 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES,
266 KVM_MEM_LOG_DIRTY_PAGES);
269 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
271 return kvm_dirty_pages_log_change(phys_addr, size,
273 KVM_MEM_LOG_DIRTY_PAGES);
276 int kvm_set_migration_log(int enable)
278 KVMState *s = kvm_state;
279 KVMSlot *mem;
280 int i, err;
282 s->migration_log = enable;
284 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
285 mem = &s->slots[i];
287 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
288 continue;
290 err = kvm_set_user_memory_region(s, mem);
291 if (err) {
292 return err;
295 return 0;
298 static int test_le_bit(unsigned long nr, unsigned char *addr)
300 return (addr[nr >> 3] >> (nr & 7)) & 1;
304 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306 * This means all bits are set to dirty.
308 * @start_add: start of logged region.
309 * @end_addr: end of logged region.
311 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
312 target_phys_addr_t end_addr)
314 KVMState *s = kvm_state;
315 unsigned long size, allocated_size = 0;
316 target_phys_addr_t phys_addr;
317 ram_addr_t addr;
318 KVMDirtyLog d;
319 KVMSlot *mem;
320 int ret = 0;
321 int r;
323 d.dirty_bitmap = NULL;
324 while (start_addr < end_addr) {
325 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
326 if (mem == NULL) {
327 break;
330 /* We didn't activate dirty logging? Don't care then. */
331 if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
332 continue;
335 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
336 if (!d.dirty_bitmap) {
337 d.dirty_bitmap = qemu_malloc(size);
338 } else if (size > allocated_size) {
339 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
341 allocated_size = size;
342 memset(d.dirty_bitmap, 0, allocated_size);
344 d.slot = mem->slot;
346 r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
347 if (r == -EINVAL) {
348 dprintf("ioctl failed %d\n", errno);
349 ret = -1;
350 break;
353 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
354 phys_addr < mem->start_addr + mem->memory_size;
355 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
356 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
357 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
359 if (test_le_bit(nr, bitmap)) {
360 cpu_physical_memory_set_dirty(addr);
361 } else if (r < 0) {
362 /* When our KVM implementation doesn't know about dirty logging
363 * we can just assume it's always dirty and be fine. */
364 cpu_physical_memory_set_dirty(addr);
367 start_addr = phys_addr;
369 qemu_free(d.dirty_bitmap);
371 return ret;
374 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
376 int ret = -ENOSYS;
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState *s = kvm_state;
380 if (s->coalesced_mmio) {
381 struct kvm_coalesced_mmio_zone zone;
383 zone.addr = start;
384 zone.size = size;
386 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
388 #endif
390 return ret;
393 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
395 int ret = -ENOSYS;
396 #ifdef KVM_CAP_COALESCED_MMIO
397 KVMState *s = kvm_state;
399 if (s->coalesced_mmio) {
400 struct kvm_coalesced_mmio_zone zone;
402 zone.addr = start;
403 zone.size = size;
405 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
407 #endif
409 return ret;
412 int kvm_check_extension(KVMState *s, unsigned int extension)
414 int ret;
416 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
417 if (ret < 0) {
418 ret = 0;
421 return ret;
424 int kvm_init(int smp_cpus)
426 static const char upgrade_note[] =
427 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
428 "(see http://sourceforge.net/projects/kvm).\n";
429 KVMState *s;
430 int ret;
431 int i;
433 if (smp_cpus > 1) {
434 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
435 return -EINVAL;
438 s = qemu_mallocz(sizeof(KVMState));
440 #ifdef KVM_CAP_SET_GUEST_DEBUG
441 TAILQ_INIT(&s->kvm_sw_breakpoints);
442 #endif
443 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
444 s->slots[i].slot = i;
446 s->vmfd = -1;
447 s->fd = open("/dev/kvm", O_RDWR);
448 if (s->fd == -1) {
449 fprintf(stderr, "Could not access KVM kernel module: %m\n");
450 ret = -errno;
451 goto err;
454 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
455 if (ret < KVM_API_VERSION) {
456 if (ret > 0)
457 ret = -EINVAL;
458 fprintf(stderr, "kvm version too old\n");
459 goto err;
462 if (ret > KVM_API_VERSION) {
463 ret = -EINVAL;
464 fprintf(stderr, "kvm version not supported\n");
465 goto err;
468 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
469 if (s->vmfd < 0)
470 goto err;
472 /* initially, KVM allocated its own memory and we had to jump through
473 * hooks to make phys_ram_base point to this. Modern versions of KVM
474 * just use a user allocated buffer so we can use regular pages
475 * unmodified. Make sure we have a sufficiently modern version of KVM.
477 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
478 ret = -EINVAL;
479 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
480 upgrade_note);
481 goto err;
484 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
485 * destroyed properly. Since we rely on this capability, refuse to work
486 * with any kernel without this capability. */
487 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
488 ret = -EINVAL;
490 fprintf(stderr,
491 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
492 upgrade_note);
493 goto err;
496 #ifdef KVM_CAP_COALESCED_MMIO
497 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
498 #else
499 s->coalesced_mmio = 0;
500 #endif
502 s->broken_set_mem_region = 1;
503 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
504 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
505 if (ret > 0) {
506 s->broken_set_mem_region = 0;
508 #endif
510 ret = kvm_arch_init(s, smp_cpus);
511 if (ret < 0)
512 goto err;
514 kvm_state = s;
516 return 0;
518 err:
519 if (s) {
520 if (s->vmfd != -1)
521 close(s->vmfd);
522 if (s->fd != -1)
523 close(s->fd);
525 qemu_free(s);
527 return ret;
530 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
531 int direction, int size, uint32_t count)
533 int i;
534 uint8_t *ptr = data;
536 for (i = 0; i < count; i++) {
537 if (direction == KVM_EXIT_IO_IN) {
538 switch (size) {
539 case 1:
540 stb_p(ptr, cpu_inb(env, port));
541 break;
542 case 2:
543 stw_p(ptr, cpu_inw(env, port));
544 break;
545 case 4:
546 stl_p(ptr, cpu_inl(env, port));
547 break;
549 } else {
550 switch (size) {
551 case 1:
552 cpu_outb(env, port, ldub_p(ptr));
553 break;
554 case 2:
555 cpu_outw(env, port, lduw_p(ptr));
556 break;
557 case 4:
558 cpu_outl(env, port, ldl_p(ptr));
559 break;
563 ptr += size;
566 return 1;
569 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
571 #ifdef KVM_CAP_COALESCED_MMIO
572 KVMState *s = kvm_state;
573 if (s->coalesced_mmio) {
574 struct kvm_coalesced_mmio_ring *ring;
576 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
577 while (ring->first != ring->last) {
578 struct kvm_coalesced_mmio *ent;
580 ent = &ring->coalesced_mmio[ring->first];
582 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
583 /* FIXME smp_wmb() */
584 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
587 #endif
590 int kvm_cpu_exec(CPUState *env)
592 struct kvm_run *run = env->kvm_run;
593 int ret;
595 dprintf("kvm_cpu_exec()\n");
597 do {
598 if (env->exit_request) {
599 dprintf("interrupt exit requested\n");
600 ret = 0;
601 break;
604 kvm_arch_pre_run(env, run);
605 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
606 kvm_arch_post_run(env, run);
608 if (ret == -EINTR || ret == -EAGAIN) {
609 dprintf("io window exit\n");
610 ret = 0;
611 break;
614 if (ret < 0) {
615 dprintf("kvm run failed %s\n", strerror(-ret));
616 abort();
619 kvm_run_coalesced_mmio(env, run);
621 ret = 0; /* exit loop */
622 switch (run->exit_reason) {
623 case KVM_EXIT_IO:
624 dprintf("handle_io\n");
625 ret = kvm_handle_io(env, run->io.port,
626 (uint8_t *)run + run->io.data_offset,
627 run->io.direction,
628 run->io.size,
629 run->io.count);
630 break;
631 case KVM_EXIT_MMIO:
632 dprintf("handle_mmio\n");
633 cpu_physical_memory_rw(run->mmio.phys_addr,
634 run->mmio.data,
635 run->mmio.len,
636 run->mmio.is_write);
637 ret = 1;
638 break;
639 case KVM_EXIT_IRQ_WINDOW_OPEN:
640 dprintf("irq_window_open\n");
641 break;
642 case KVM_EXIT_SHUTDOWN:
643 dprintf("shutdown\n");
644 qemu_system_reset_request();
645 ret = 1;
646 break;
647 case KVM_EXIT_UNKNOWN:
648 dprintf("kvm_exit_unknown\n");
649 break;
650 case KVM_EXIT_FAIL_ENTRY:
651 dprintf("kvm_exit_fail_entry\n");
652 break;
653 case KVM_EXIT_EXCEPTION:
654 dprintf("kvm_exit_exception\n");
655 break;
656 case KVM_EXIT_DEBUG:
657 dprintf("kvm_exit_debug\n");
658 #ifdef KVM_CAP_SET_GUEST_DEBUG
659 if (kvm_arch_debug(&run->debug.arch)) {
660 gdb_set_stop_cpu(env);
661 vm_stop(EXCP_DEBUG);
662 env->exception_index = EXCP_DEBUG;
663 return 0;
665 /* re-enter, this exception was guest-internal */
666 ret = 1;
667 #endif /* KVM_CAP_SET_GUEST_DEBUG */
668 break;
669 default:
670 dprintf("kvm_arch_handle_exit\n");
671 ret = kvm_arch_handle_exit(env, run);
672 break;
674 } while (ret > 0);
676 if (env->exit_request) {
677 env->exit_request = 0;
678 env->exception_index = EXCP_INTERRUPT;
681 return ret;
684 void kvm_set_phys_mem(target_phys_addr_t start_addr,
685 ram_addr_t size,
686 ram_addr_t phys_offset)
688 KVMState *s = kvm_state;
689 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
690 KVMSlot *mem, old;
691 int err;
693 if (start_addr & ~TARGET_PAGE_MASK) {
694 if (flags >= IO_MEM_UNASSIGNED) {
695 if (!kvm_lookup_overlapping_slot(s, start_addr,
696 start_addr + size)) {
697 return;
699 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
700 } else {
701 fprintf(stderr, "Only page-aligned memory slots supported\n");
703 abort();
706 /* KVM does not support read-only slots */
707 phys_offset &= ~IO_MEM_ROM;
709 while (1) {
710 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
711 if (!mem) {
712 break;
715 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
716 (start_addr + size <= mem->start_addr + mem->memory_size) &&
717 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
718 /* The new slot fits into the existing one and comes with
719 * identical parameters - nothing to be done. */
720 return;
723 old = *mem;
725 /* unregister the overlapping slot */
726 mem->memory_size = 0;
727 err = kvm_set_user_memory_region(s, mem);
728 if (err) {
729 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
730 __func__, strerror(-err));
731 abort();
734 /* Workaround for older KVM versions: we can't join slots, even not by
735 * unregistering the previous ones and then registering the larger
736 * slot. We have to maintain the existing fragmentation. Sigh.
738 * This workaround assumes that the new slot starts at the same
739 * address as the first existing one. If not or if some overlapping
740 * slot comes around later, we will fail (not seen in practice so far)
741 * - and actually require a recent KVM version. */
742 if (s->broken_set_mem_region &&
743 old.start_addr == start_addr && old.memory_size < size &&
744 flags < IO_MEM_UNASSIGNED) {
745 mem = kvm_alloc_slot(s);
746 mem->memory_size = old.memory_size;
747 mem->start_addr = old.start_addr;
748 mem->phys_offset = old.phys_offset;
749 mem->flags = 0;
751 err = kvm_set_user_memory_region(s, mem);
752 if (err) {
753 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
754 strerror(-err));
755 abort();
758 start_addr += old.memory_size;
759 phys_offset += old.memory_size;
760 size -= old.memory_size;
761 continue;
764 /* register prefix slot */
765 if (old.start_addr < start_addr) {
766 mem = kvm_alloc_slot(s);
767 mem->memory_size = start_addr - old.start_addr;
768 mem->start_addr = old.start_addr;
769 mem->phys_offset = old.phys_offset;
770 mem->flags = 0;
772 err = kvm_set_user_memory_region(s, mem);
773 if (err) {
774 fprintf(stderr, "%s: error registering prefix slot: %s\n",
775 __func__, strerror(-err));
776 abort();
780 /* register suffix slot */
781 if (old.start_addr + old.memory_size > start_addr + size) {
782 ram_addr_t size_delta;
784 mem = kvm_alloc_slot(s);
785 mem->start_addr = start_addr + size;
786 size_delta = mem->start_addr - old.start_addr;
787 mem->memory_size = old.memory_size - size_delta;
788 mem->phys_offset = old.phys_offset + size_delta;
789 mem->flags = 0;
791 err = kvm_set_user_memory_region(s, mem);
792 if (err) {
793 fprintf(stderr, "%s: error registering suffix slot: %s\n",
794 __func__, strerror(-err));
795 abort();
800 /* in case the KVM bug workaround already "consumed" the new slot */
801 if (!size)
802 return;
804 /* KVM does not need to know about this memory */
805 if (flags >= IO_MEM_UNASSIGNED)
806 return;
808 mem = kvm_alloc_slot(s);
809 mem->memory_size = size;
810 mem->start_addr = start_addr;
811 mem->phys_offset = phys_offset;
812 mem->flags = 0;
814 err = kvm_set_user_memory_region(s, mem);
815 if (err) {
816 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
817 strerror(-err));
818 abort();
822 int kvm_ioctl(KVMState *s, int type, ...)
824 int ret;
825 void *arg;
826 va_list ap;
828 va_start(ap, type);
829 arg = va_arg(ap, void *);
830 va_end(ap);
832 ret = ioctl(s->fd, type, arg);
833 if (ret == -1)
834 ret = -errno;
836 return ret;
839 int kvm_vm_ioctl(KVMState *s, int type, ...)
841 int ret;
842 void *arg;
843 va_list ap;
845 va_start(ap, type);
846 arg = va_arg(ap, void *);
847 va_end(ap);
849 ret = ioctl(s->vmfd, type, arg);
850 if (ret == -1)
851 ret = -errno;
853 return ret;
856 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
858 int ret;
859 void *arg;
860 va_list ap;
862 va_start(ap, type);
863 arg = va_arg(ap, void *);
864 va_end(ap);
866 ret = ioctl(env->kvm_fd, type, arg);
867 if (ret == -1)
868 ret = -errno;
870 return ret;
873 int kvm_has_sync_mmu(void)
875 #ifdef KVM_CAP_SYNC_MMU
876 KVMState *s = kvm_state;
878 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
879 #else
880 return 0;
881 #endif
884 void kvm_setup_guest_memory(void *start, size_t size)
886 if (!kvm_has_sync_mmu()) {
887 #ifdef MADV_DONTFORK
888 int ret = madvise(start, size, MADV_DONTFORK);
890 if (ret) {
891 perror("madvice");
892 exit(1);
894 #else
895 fprintf(stderr,
896 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
897 exit(1);
898 #endif
902 #ifdef KVM_CAP_SET_GUEST_DEBUG
903 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
905 if (env == cpu_single_env) {
906 func(data);
907 return;
909 abort();
912 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
913 target_ulong pc)
915 struct kvm_sw_breakpoint *bp;
917 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
918 if (bp->pc == pc)
919 return bp;
921 return NULL;
924 int kvm_sw_breakpoints_active(CPUState *env)
926 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
929 struct kvm_set_guest_debug_data {
930 struct kvm_guest_debug dbg;
931 CPUState *env;
932 int err;
935 static void kvm_invoke_set_guest_debug(void *data)
937 struct kvm_set_guest_debug_data *dbg_data = data;
938 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
941 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
943 struct kvm_set_guest_debug_data data;
945 data.dbg.control = 0;
946 if (env->singlestep_enabled)
947 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
949 kvm_arch_update_guest_debug(env, &data.dbg);
950 data.dbg.control |= reinject_trap;
951 data.env = env;
953 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
954 return data.err;
957 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
958 target_ulong len, int type)
960 struct kvm_sw_breakpoint *bp;
961 CPUState *env;
962 int err;
964 if (type == GDB_BREAKPOINT_SW) {
965 bp = kvm_find_sw_breakpoint(current_env, addr);
966 if (bp) {
967 bp->use_count++;
968 return 0;
971 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
972 if (!bp)
973 return -ENOMEM;
975 bp->pc = addr;
976 bp->use_count = 1;
977 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
978 if (err) {
979 free(bp);
980 return err;
983 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
984 bp, entry);
985 } else {
986 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
987 if (err)
988 return err;
991 for (env = first_cpu; env != NULL; env = env->next_cpu) {
992 err = kvm_update_guest_debug(env, 0);
993 if (err)
994 return err;
996 return 0;
999 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1000 target_ulong len, int type)
1002 struct kvm_sw_breakpoint *bp;
1003 CPUState *env;
1004 int err;
1006 if (type == GDB_BREAKPOINT_SW) {
1007 bp = kvm_find_sw_breakpoint(current_env, addr);
1008 if (!bp)
1009 return -ENOENT;
1011 if (bp->use_count > 1) {
1012 bp->use_count--;
1013 return 0;
1016 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1017 if (err)
1018 return err;
1020 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1021 qemu_free(bp);
1022 } else {
1023 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1024 if (err)
1025 return err;
1028 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1029 err = kvm_update_guest_debug(env, 0);
1030 if (err)
1031 return err;
1033 return 0;
1036 void kvm_remove_all_breakpoints(CPUState *current_env)
1038 struct kvm_sw_breakpoint *bp, *next;
1039 KVMState *s = current_env->kvm_state;
1040 CPUState *env;
1042 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1043 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1044 /* Try harder to find a CPU that currently sees the breakpoint. */
1045 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1046 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1047 break;
1051 kvm_arch_remove_all_hw_breakpoints();
1053 for (env = first_cpu; env != NULL; env = env->next_cpu)
1054 kvm_update_guest_debug(env, 0);
1057 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1059 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1061 return -EINVAL;
1064 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1065 target_ulong len, int type)
1067 return -EINVAL;
1070 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1071 target_ulong len, int type)
1073 return -EINVAL;
1076 void kvm_remove_all_breakpoints(CPUState *current_env)
1079 #endif /* !KVM_CAP_SET_GUEST_DEBUG */