4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
118 int qemu_main(int argc
, char **argv
, char **envp
);
119 int main(int argc
, char **argv
)
121 qemu_main(argc
, argv
, NULL
);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
175 //#define DEBUG_SLIRP
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
181 # define LOG_IOPORT(...) do { } while (0)
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir
;
196 const char *bios_name
= NULL
;
197 static void *ioport_opaque
[MAX_IOPORTS
];
198 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
199 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table
[MAX_DRIVES
+1];
204 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
205 static DisplayState
*display_state
;
206 DisplayType display_type
= DT_DEFAULT
;
207 const char* keyboard_layout
= NULL
;
208 int64_t ticks_per_sec
;
211 NICInfo nd_table
[MAX_NICS
];
213 static int autostart
;
214 static int rtc_utc
= 1;
215 static int rtc_date_offset
= -1; /* -1 means no change */
216 int cirrus_vga_enabled
= 1;
217 int std_vga_enabled
= 0;
218 int vmsvga_enabled
= 0;
219 int xenfb_enabled
= 0;
221 int graphic_width
= 1024;
222 int graphic_height
= 768;
223 int graphic_depth
= 8;
225 int graphic_width
= 800;
226 int graphic_height
= 600;
227 int graphic_depth
= 15;
229 static int full_screen
= 0;
231 static int no_frame
= 0;
234 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
235 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
236 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
238 int win2k_install_hack
= 0;
244 const char *vnc_display
;
245 int acpi_enabled
= 1;
247 int no_virtio_balloon
= 0;
252 int graphic_rotate
= 0;
256 WatchdogTimerModel
*watchdog
= NULL
;
257 int watchdog_action
= WDT_RESET
;
258 const char *option_rom
[MAX_OPTION_ROMS
];
260 int semihosting_enabled
= 0;
264 const char *qemu_name
;
266 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
267 unsigned int nb_prom_envs
= 0;
268 const char *prom_envs
[MAX_PROM_ENVS
];
271 struct drive_opt drives_opt
[MAX_DRIVES
];
274 uint64_t node_mem
[MAX_NODES
];
275 uint64_t node_cpumask
[MAX_NODES
];
277 static CPUState
*cur_cpu
;
278 static CPUState
*next_cpu
;
279 static int timer_alarm_pending
= 1;
280 /* Conversion factor from emulated instructions to virtual clock ticks. */
281 static int icount_time_shift
;
282 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
283 #define MAX_ICOUNT_SHIFT 10
284 /* Compensate for varying guest execution speed. */
285 static int64_t qemu_icount_bias
;
286 static QEMUTimer
*icount_rt_timer
;
287 static QEMUTimer
*icount_vm_timer
;
288 static QEMUTimer
*nographic_timer
;
290 uint8_t qemu_uuid
[16];
292 /***********************************************************/
293 /* x86 ISA bus support */
295 target_phys_addr_t isa_mem_base
= 0;
298 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
299 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
301 static uint32_t ioport_read(int index
, uint32_t address
)
303 static IOPortReadFunc
*default_func
[3] = {
304 default_ioport_readb
,
305 default_ioport_readw
,
308 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
310 func
= default_func
[index
];
311 return func(ioport_opaque
[address
], address
);
314 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
316 static IOPortWriteFunc
*default_func
[3] = {
317 default_ioport_writeb
,
318 default_ioport_writew
,
319 default_ioport_writel
321 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
323 func
= default_func
[index
];
324 func(ioport_opaque
[address
], address
, data
);
327 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
329 #ifdef DEBUG_UNUSED_IOPORT
330 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
335 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
337 #ifdef DEBUG_UNUSED_IOPORT
338 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
342 /* default is to make two byte accesses */
343 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
346 data
= ioport_read(0, address
);
347 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
348 data
|= ioport_read(0, address
) << 8;
352 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
354 ioport_write(0, address
, data
& 0xff);
355 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
356 ioport_write(0, address
, (data
>> 8) & 0xff);
359 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
361 #ifdef DEBUG_UNUSED_IOPORT
362 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
367 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
369 #ifdef DEBUG_UNUSED_IOPORT
370 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
374 /* size is the word size in byte */
375 int register_ioport_read(int start
, int length
, int size
,
376 IOPortReadFunc
*func
, void *opaque
)
382 } else if (size
== 2) {
384 } else if (size
== 4) {
387 hw_error("register_ioport_read: invalid size");
390 for(i
= start
; i
< start
+ length
; i
+= size
) {
391 ioport_read_table
[bsize
][i
] = func
;
392 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
393 hw_error("register_ioport_read: invalid opaque");
394 ioport_opaque
[i
] = opaque
;
399 /* size is the word size in byte */
400 int register_ioport_write(int start
, int length
, int size
,
401 IOPortWriteFunc
*func
, void *opaque
)
407 } else if (size
== 2) {
409 } else if (size
== 4) {
412 hw_error("register_ioport_write: invalid size");
415 for(i
= start
; i
< start
+ length
; i
+= size
) {
416 ioport_write_table
[bsize
][i
] = func
;
417 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
418 hw_error("register_ioport_write: invalid opaque");
419 ioport_opaque
[i
] = opaque
;
424 void isa_unassign_ioport(int start
, int length
)
428 for(i
= start
; i
< start
+ length
; i
++) {
429 ioport_read_table
[0][i
] = default_ioport_readb
;
430 ioport_read_table
[1][i
] = default_ioport_readw
;
431 ioport_read_table
[2][i
] = default_ioport_readl
;
433 ioport_write_table
[0][i
] = default_ioport_writeb
;
434 ioport_write_table
[1][i
] = default_ioport_writew
;
435 ioport_write_table
[2][i
] = default_ioport_writel
;
437 ioport_opaque
[i
] = NULL
;
441 /***********************************************************/
443 void cpu_outb(CPUState
*env
, int addr
, int val
)
445 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
446 ioport_write(0, addr
, val
);
449 env
->last_io_time
= cpu_get_time_fast();
453 void cpu_outw(CPUState
*env
, int addr
, int val
)
455 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
456 ioport_write(1, addr
, val
);
459 env
->last_io_time
= cpu_get_time_fast();
463 void cpu_outl(CPUState
*env
, int addr
, int val
)
465 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
466 ioport_write(2, addr
, val
);
469 env
->last_io_time
= cpu_get_time_fast();
473 int cpu_inb(CPUState
*env
, int addr
)
476 val
= ioport_read(0, addr
);
477 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
480 env
->last_io_time
= cpu_get_time_fast();
485 int cpu_inw(CPUState
*env
, int addr
)
488 val
= ioport_read(1, addr
);
489 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
492 env
->last_io_time
= cpu_get_time_fast();
497 int cpu_inl(CPUState
*env
, int addr
)
500 val
= ioport_read(2, addr
);
501 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
504 env
->last_io_time
= cpu_get_time_fast();
509 /***********************************************************/
510 void hw_error(const char *fmt
, ...)
516 fprintf(stderr
, "qemu: hardware error: ");
517 vfprintf(stderr
, fmt
, ap
);
518 fprintf(stderr
, "\n");
519 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
520 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
522 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
524 cpu_dump_state(env
, stderr
, fprintf
, 0);
534 static QEMUBalloonEvent
*qemu_balloon_event
;
535 void *qemu_balloon_event_opaque
;
537 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
539 qemu_balloon_event
= func
;
540 qemu_balloon_event_opaque
= opaque
;
543 void qemu_balloon(ram_addr_t target
)
545 if (qemu_balloon_event
)
546 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
549 ram_addr_t
qemu_balloon_status(void)
551 if (qemu_balloon_event
)
552 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
556 /***********************************************************/
559 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
560 static void *qemu_put_kbd_event_opaque
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
562 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
564 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
566 qemu_put_kbd_event_opaque
= opaque
;
567 qemu_put_kbd_event
= func
;
570 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
571 void *opaque
, int absolute
,
574 QEMUPutMouseEntry
*s
, *cursor
;
576 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
578 s
->qemu_put_mouse_event
= func
;
579 s
->qemu_put_mouse_event_opaque
= opaque
;
580 s
->qemu_put_mouse_event_absolute
= absolute
;
581 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
584 if (!qemu_put_mouse_event_head
) {
585 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
589 cursor
= qemu_put_mouse_event_head
;
590 while (cursor
->next
!= NULL
)
591 cursor
= cursor
->next
;
594 qemu_put_mouse_event_current
= s
;
599 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
601 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
603 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
606 cursor
= qemu_put_mouse_event_head
;
607 while (cursor
!= NULL
&& cursor
!= entry
) {
609 cursor
= cursor
->next
;
612 if (cursor
== NULL
) // does not exist or list empty
614 else if (prev
== NULL
) { // entry is head
615 qemu_put_mouse_event_head
= cursor
->next
;
616 if (qemu_put_mouse_event_current
== entry
)
617 qemu_put_mouse_event_current
= cursor
->next
;
618 qemu_free(entry
->qemu_put_mouse_event_name
);
623 prev
->next
= entry
->next
;
625 if (qemu_put_mouse_event_current
== entry
)
626 qemu_put_mouse_event_current
= prev
;
628 qemu_free(entry
->qemu_put_mouse_event_name
);
632 void kbd_put_keycode(int keycode
)
634 if (qemu_put_kbd_event
) {
635 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
639 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
641 QEMUPutMouseEvent
*mouse_event
;
642 void *mouse_event_opaque
;
645 if (!qemu_put_mouse_event_current
) {
650 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
652 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
655 if (graphic_rotate
) {
656 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
659 width
= graphic_width
- 1;
660 mouse_event(mouse_event_opaque
,
661 width
- dy
, dx
, dz
, buttons_state
);
663 mouse_event(mouse_event_opaque
,
664 dx
, dy
, dz
, buttons_state
);
668 int kbd_mouse_is_absolute(void)
670 if (!qemu_put_mouse_event_current
)
673 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
676 void do_info_mice(Monitor
*mon
)
678 QEMUPutMouseEntry
*cursor
;
681 if (!qemu_put_mouse_event_head
) {
682 monitor_printf(mon
, "No mouse devices connected\n");
686 monitor_printf(mon
, "Mouse devices available:\n");
687 cursor
= qemu_put_mouse_event_head
;
688 while (cursor
!= NULL
) {
689 monitor_printf(mon
, "%c Mouse #%d: %s\n",
690 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
691 index
, cursor
->qemu_put_mouse_event_name
);
693 cursor
= cursor
->next
;
697 void do_mouse_set(Monitor
*mon
, int index
)
699 QEMUPutMouseEntry
*cursor
;
702 if (!qemu_put_mouse_event_head
) {
703 monitor_printf(mon
, "No mouse devices connected\n");
707 cursor
= qemu_put_mouse_event_head
;
708 while (cursor
!= NULL
&& index
!= i
) {
710 cursor
= cursor
->next
;
714 qemu_put_mouse_event_current
= cursor
;
716 monitor_printf(mon
, "Mouse at given index not found\n");
719 /* compute with 96 bit intermediate result: (a*b)/c */
720 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
725 #ifdef WORDS_BIGENDIAN
735 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
736 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
739 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
743 /***********************************************************/
744 /* real time host monotonic timer */
746 #define QEMU_TIMER_BASE 1000000000LL
750 static int64_t clock_freq
;
752 static void init_get_clock(void)
756 ret
= QueryPerformanceFrequency(&freq
);
758 fprintf(stderr
, "Could not calibrate ticks\n");
761 clock_freq
= freq
.QuadPart
;
764 static int64_t get_clock(void)
767 QueryPerformanceCounter(&ti
);
768 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
773 static int use_rt_clock
;
775 static void init_get_clock(void)
778 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
779 || defined(__DragonFly__)
782 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
789 static int64_t get_clock(void)
791 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
792 || defined(__DragonFly__)
795 clock_gettime(CLOCK_MONOTONIC
, &ts
);
796 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
800 /* XXX: using gettimeofday leads to problems if the date
801 changes, so it should be avoided. */
803 gettimeofday(&tv
, NULL
);
804 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
809 /* Return the virtual CPU time, based on the instruction counter. */
810 static int64_t cpu_get_icount(void)
813 CPUState
*env
= cpu_single_env
;;
814 icount
= qemu_icount
;
817 fprintf(stderr
, "Bad clock read\n");
818 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
820 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
823 /***********************************************************/
824 /* guest cycle counter */
826 static int64_t cpu_ticks_prev
;
827 static int64_t cpu_ticks_offset
;
828 static int64_t cpu_clock_offset
;
829 static int cpu_ticks_enabled
;
831 /* return the host CPU cycle counter and handle stop/restart */
832 int64_t cpu_get_ticks(void)
835 return cpu_get_icount();
837 if (!cpu_ticks_enabled
) {
838 return cpu_ticks_offset
;
841 ticks
= cpu_get_real_ticks();
842 if (cpu_ticks_prev
> ticks
) {
843 /* Note: non increasing ticks may happen if the host uses
845 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
847 cpu_ticks_prev
= ticks
;
848 return ticks
+ cpu_ticks_offset
;
852 /* return the host CPU monotonic timer and handle stop/restart */
853 static int64_t cpu_get_clock(void)
856 if (!cpu_ticks_enabled
) {
857 return cpu_clock_offset
;
860 return ti
+ cpu_clock_offset
;
864 /* enable cpu_get_ticks() */
865 void cpu_enable_ticks(void)
867 if (!cpu_ticks_enabled
) {
868 cpu_ticks_offset
-= cpu_get_real_ticks();
869 cpu_clock_offset
-= get_clock();
870 cpu_ticks_enabled
= 1;
874 /* disable cpu_get_ticks() : the clock is stopped. You must not call
875 cpu_get_ticks() after that. */
876 void cpu_disable_ticks(void)
878 if (cpu_ticks_enabled
) {
879 cpu_ticks_offset
= cpu_get_ticks();
880 cpu_clock_offset
= cpu_get_clock();
881 cpu_ticks_enabled
= 0;
885 /***********************************************************/
888 #define QEMU_TIMER_REALTIME 0
889 #define QEMU_TIMER_VIRTUAL 1
893 /* XXX: add frequency */
901 struct QEMUTimer
*next
;
904 struct qemu_alarm_timer
{
908 int (*start
)(struct qemu_alarm_timer
*t
);
909 void (*stop
)(struct qemu_alarm_timer
*t
);
910 void (*rearm
)(struct qemu_alarm_timer
*t
);
914 #define ALARM_FLAG_DYNTICKS 0x1
915 #define ALARM_FLAG_EXPIRED 0x2
917 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
919 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
922 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
924 if (!alarm_has_dynticks(t
))
930 /* TODO: MIN_TIMER_REARM_US should be optimized */
931 #define MIN_TIMER_REARM_US 250
933 static struct qemu_alarm_timer
*alarm_timer
;
937 struct qemu_alarm_win32
{
940 } alarm_win32_data
= {0, -1};
942 static int win32_start_timer(struct qemu_alarm_timer
*t
);
943 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
944 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
948 static int unix_start_timer(struct qemu_alarm_timer
*t
);
949 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
953 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
955 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
957 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
958 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
960 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
961 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
963 #endif /* __linux__ */
967 /* Correlation between real and virtual time is always going to be
968 fairly approximate, so ignore small variation.
969 When the guest is idle real and virtual time will be aligned in
971 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
973 static void icount_adjust(void)
978 static int64_t last_delta
;
979 /* If the VM is not running, then do nothing. */
983 cur_time
= cpu_get_clock();
984 cur_icount
= qemu_get_clock(vm_clock
);
985 delta
= cur_icount
- cur_time
;
986 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
988 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
989 && icount_time_shift
> 0) {
990 /* The guest is getting too far ahead. Slow time down. */
994 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
995 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
996 /* The guest is getting too far behind. Speed time up. */
1000 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1003 static void icount_adjust_rt(void * opaque
)
1005 qemu_mod_timer(icount_rt_timer
,
1006 qemu_get_clock(rt_clock
) + 1000);
1010 static void icount_adjust_vm(void * opaque
)
1012 qemu_mod_timer(icount_vm_timer
,
1013 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1017 static void init_icount_adjust(void)
1019 /* Have both realtime and virtual time triggers for speed adjustment.
1020 The realtime trigger catches emulated time passing too slowly,
1021 the virtual time trigger catches emulated time passing too fast.
1022 Realtime triggers occur even when idle, so use them less frequently
1023 than VM triggers. */
1024 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1025 qemu_mod_timer(icount_rt_timer
,
1026 qemu_get_clock(rt_clock
) + 1000);
1027 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1028 qemu_mod_timer(icount_vm_timer
,
1029 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1032 static struct qemu_alarm_timer alarm_timers
[] = {
1035 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1036 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1037 /* HPET - if available - is preferred */
1038 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1039 /* ...otherwise try RTC */
1040 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1042 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1044 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1045 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1046 {"win32", 0, win32_start_timer
,
1047 win32_stop_timer
, NULL
, &alarm_win32_data
},
1052 static void show_available_alarms(void)
1056 printf("Available alarm timers, in order of precedence:\n");
1057 for (i
= 0; alarm_timers
[i
].name
; i
++)
1058 printf("%s\n", alarm_timers
[i
].name
);
1061 static void configure_alarms(char const *opt
)
1065 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1068 struct qemu_alarm_timer tmp
;
1070 if (!strcmp(opt
, "?")) {
1071 show_available_alarms();
1077 /* Reorder the array */
1078 name
= strtok(arg
, ",");
1080 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1081 if (!strcmp(alarm_timers
[i
].name
, name
))
1086 fprintf(stderr
, "Unknown clock %s\n", name
);
1095 tmp
= alarm_timers
[i
];
1096 alarm_timers
[i
] = alarm_timers
[cur
];
1097 alarm_timers
[cur
] = tmp
;
1101 name
= strtok(NULL
, ",");
1107 /* Disable remaining timers */
1108 for (i
= cur
; i
< count
; i
++)
1109 alarm_timers
[i
].name
= NULL
;
1111 show_available_alarms();
1116 QEMUClock
*rt_clock
;
1117 QEMUClock
*vm_clock
;
1119 static QEMUTimer
*active_timers
[2];
1121 static QEMUClock
*qemu_new_clock(int type
)
1124 clock
= qemu_mallocz(sizeof(QEMUClock
));
1129 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1133 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1136 ts
->opaque
= opaque
;
1140 void qemu_free_timer(QEMUTimer
*ts
)
1145 /* stop a timer, but do not dealloc it */
1146 void qemu_del_timer(QEMUTimer
*ts
)
1150 /* NOTE: this code must be signal safe because
1151 qemu_timer_expired() can be called from a signal. */
1152 pt
= &active_timers
[ts
->clock
->type
];
1165 /* modify the current timer so that it will be fired when current_time
1166 >= expire_time. The corresponding callback will be called. */
1167 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1173 /* add the timer in the sorted list */
1174 /* NOTE: this code must be signal safe because
1175 qemu_timer_expired() can be called from a signal. */
1176 pt
= &active_timers
[ts
->clock
->type
];
1181 if (t
->expire_time
> expire_time
)
1185 ts
->expire_time
= expire_time
;
1189 /* Rearm if necessary */
1190 if (pt
== &active_timers
[ts
->clock
->type
]) {
1191 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1192 qemu_rearm_alarm_timer(alarm_timer
);
1194 /* Interrupt execution to force deadline recalculation. */
1196 qemu_notify_event();
1200 int qemu_timer_pending(QEMUTimer
*ts
)
1203 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1210 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1214 return (timer_head
->expire_time
<= current_time
);
1217 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1223 if (!ts
|| ts
->expire_time
> current_time
)
1225 /* remove timer from the list before calling the callback */
1226 *ptimer_head
= ts
->next
;
1229 /* run the callback (the timer list can be modified) */
1234 int64_t qemu_get_clock(QEMUClock
*clock
)
1236 switch(clock
->type
) {
1237 case QEMU_TIMER_REALTIME
:
1238 return get_clock() / 1000000;
1240 case QEMU_TIMER_VIRTUAL
:
1242 return cpu_get_icount();
1244 return cpu_get_clock();
1249 static void init_timers(void)
1252 ticks_per_sec
= QEMU_TIMER_BASE
;
1253 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1254 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1258 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1260 uint64_t expire_time
;
1262 if (qemu_timer_pending(ts
)) {
1263 expire_time
= ts
->expire_time
;
1267 qemu_put_be64(f
, expire_time
);
1270 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1272 uint64_t expire_time
;
1274 expire_time
= qemu_get_be64(f
);
1275 if (expire_time
!= -1) {
1276 qemu_mod_timer(ts
, expire_time
);
1282 static void timer_save(QEMUFile
*f
, void *opaque
)
1284 if (cpu_ticks_enabled
) {
1285 hw_error("cannot save state if virtual timers are running");
1287 qemu_put_be64(f
, cpu_ticks_offset
);
1288 qemu_put_be64(f
, ticks_per_sec
);
1289 qemu_put_be64(f
, cpu_clock_offset
);
1292 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1294 if (version_id
!= 1 && version_id
!= 2)
1296 if (cpu_ticks_enabled
) {
1299 cpu_ticks_offset
=qemu_get_be64(f
);
1300 ticks_per_sec
=qemu_get_be64(f
);
1301 if (version_id
== 2) {
1302 cpu_clock_offset
=qemu_get_be64(f
);
1307 static void qemu_event_increment(void);
1310 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1311 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1314 static void host_alarm_handler(int host_signum
)
1318 #define DISP_FREQ 1000
1320 static int64_t delta_min
= INT64_MAX
;
1321 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1323 ti
= qemu_get_clock(vm_clock
);
1324 if (last_clock
!= 0) {
1325 delta
= ti
- last_clock
;
1326 if (delta
< delta_min
)
1328 if (delta
> delta_max
)
1331 if (++count
== DISP_FREQ
) {
1332 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1333 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1335 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1336 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1338 delta_min
= INT64_MAX
;
1346 if (alarm_has_dynticks(alarm_timer
) ||
1348 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1349 qemu_get_clock(vm_clock
))) ||
1350 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1351 qemu_get_clock(rt_clock
))) {
1352 qemu_event_increment();
1353 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1355 #ifndef CONFIG_IOTHREAD
1357 /* stop the currently executing cpu because a timer occured */
1360 if (next_cpu
->kqemu_enabled
) {
1361 kqemu_cpu_interrupt(next_cpu
);
1366 timer_alarm_pending
= 1;
1367 qemu_notify_event();
1371 static int64_t qemu_next_deadline(void)
1375 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1376 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1377 qemu_get_clock(vm_clock
);
1379 /* To avoid problems with overflow limit this to 2^32. */
1389 #if defined(__linux__) || defined(_WIN32)
1390 static uint64_t qemu_next_deadline_dyntick(void)
1398 delta
= (qemu_next_deadline() + 999) / 1000;
1400 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1401 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1402 qemu_get_clock(rt_clock
))*1000;
1403 if (rtdelta
< delta
)
1407 if (delta
< MIN_TIMER_REARM_US
)
1408 delta
= MIN_TIMER_REARM_US
;
1416 /* Sets a specific flag */
1417 static int fcntl_setfl(int fd
, int flag
)
1421 flags
= fcntl(fd
, F_GETFL
);
1425 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1431 #if defined(__linux__)
1433 #define RTC_FREQ 1024
1435 static void enable_sigio_timer(int fd
)
1437 struct sigaction act
;
1440 sigfillset(&act
.sa_mask
);
1442 act
.sa_handler
= host_alarm_handler
;
1444 sigaction(SIGIO
, &act
, NULL
);
1445 fcntl_setfl(fd
, O_ASYNC
);
1446 fcntl(fd
, F_SETOWN
, getpid());
1449 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1451 struct hpet_info info
;
1454 fd
= open("/dev/hpet", O_RDONLY
);
1459 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1461 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1462 "error, but for better emulation accuracy type:\n"
1463 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1467 /* Check capabilities */
1468 r
= ioctl(fd
, HPET_INFO
, &info
);
1472 /* Enable periodic mode */
1473 r
= ioctl(fd
, HPET_EPI
, 0);
1474 if (info
.hi_flags
&& (r
< 0))
1477 /* Enable interrupt */
1478 r
= ioctl(fd
, HPET_IE_ON
, 0);
1482 enable_sigio_timer(fd
);
1483 t
->priv
= (void *)(long)fd
;
1491 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1493 int fd
= (long)t
->priv
;
1498 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1501 unsigned long current_rtc_freq
= 0;
1503 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1506 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1507 if (current_rtc_freq
!= RTC_FREQ
&&
1508 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1509 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1510 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1511 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1514 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1520 enable_sigio_timer(rtc_fd
);
1522 t
->priv
= (void *)(long)rtc_fd
;
1527 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1529 int rtc_fd
= (long)t
->priv
;
1534 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1538 struct sigaction act
;
1540 sigfillset(&act
.sa_mask
);
1542 act
.sa_handler
= host_alarm_handler
;
1544 sigaction(SIGALRM
, &act
, NULL
);
1547 * Initialize ev struct to 0 to avoid valgrind complaining
1548 * about uninitialized data in timer_create call
1550 memset(&ev
, 0, sizeof(ev
));
1551 ev
.sigev_value
.sival_int
= 0;
1552 ev
.sigev_notify
= SIGEV_SIGNAL
;
1553 ev
.sigev_signo
= SIGALRM
;
1555 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1556 perror("timer_create");
1558 /* disable dynticks */
1559 fprintf(stderr
, "Dynamic Ticks disabled\n");
1564 t
->priv
= (void *)(long)host_timer
;
1569 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1571 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1573 timer_delete(host_timer
);
1576 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1578 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1579 struct itimerspec timeout
;
1580 int64_t nearest_delta_us
= INT64_MAX
;
1583 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1584 !active_timers
[QEMU_TIMER_VIRTUAL
])
1587 nearest_delta_us
= qemu_next_deadline_dyntick();
1589 /* check whether a timer is already running */
1590 if (timer_gettime(host_timer
, &timeout
)) {
1592 fprintf(stderr
, "Internal timer error: aborting\n");
1595 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1596 if (current_us
&& current_us
<= nearest_delta_us
)
1599 timeout
.it_interval
.tv_sec
= 0;
1600 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1601 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1602 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1603 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1605 fprintf(stderr
, "Internal timer error: aborting\n");
1610 #endif /* defined(__linux__) */
1612 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1614 struct sigaction act
;
1615 struct itimerval itv
;
1619 sigfillset(&act
.sa_mask
);
1621 act
.sa_handler
= host_alarm_handler
;
1623 sigaction(SIGALRM
, &act
, NULL
);
1625 itv
.it_interval
.tv_sec
= 0;
1626 /* for i386 kernel 2.6 to get 1 ms */
1627 itv
.it_interval
.tv_usec
= 999;
1628 itv
.it_value
.tv_sec
= 0;
1629 itv
.it_value
.tv_usec
= 10 * 1000;
1631 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1638 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1640 struct itimerval itv
;
1642 memset(&itv
, 0, sizeof(itv
));
1643 setitimer(ITIMER_REAL
, &itv
, NULL
);
1646 #endif /* !defined(_WIN32) */
1651 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1654 struct qemu_alarm_win32
*data
= t
->priv
;
1657 memset(&tc
, 0, sizeof(tc
));
1658 timeGetDevCaps(&tc
, sizeof(tc
));
1660 if (data
->period
< tc
.wPeriodMin
)
1661 data
->period
= tc
.wPeriodMin
;
1663 timeBeginPeriod(data
->period
);
1665 flags
= TIME_CALLBACK_FUNCTION
;
1666 if (alarm_has_dynticks(t
))
1667 flags
|= TIME_ONESHOT
;
1669 flags
|= TIME_PERIODIC
;
1671 data
->timerId
= timeSetEvent(1, // interval (ms)
1672 data
->period
, // resolution
1673 host_alarm_handler
, // function
1674 (DWORD
)t
, // parameter
1677 if (!data
->timerId
) {
1678 perror("Failed to initialize win32 alarm timer");
1679 timeEndPeriod(data
->period
);
1686 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1688 struct qemu_alarm_win32
*data
= t
->priv
;
1690 timeKillEvent(data
->timerId
);
1691 timeEndPeriod(data
->period
);
1694 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1696 struct qemu_alarm_win32
*data
= t
->priv
;
1697 uint64_t nearest_delta_us
;
1699 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1700 !active_timers
[QEMU_TIMER_VIRTUAL
])
1703 nearest_delta_us
= qemu_next_deadline_dyntick();
1704 nearest_delta_us
/= 1000;
1706 timeKillEvent(data
->timerId
);
1708 data
->timerId
= timeSetEvent(1,
1712 TIME_ONESHOT
| TIME_PERIODIC
);
1714 if (!data
->timerId
) {
1715 perror("Failed to re-arm win32 alarm timer");
1717 timeEndPeriod(data
->period
);
1724 static int init_timer_alarm(void)
1726 struct qemu_alarm_timer
*t
= NULL
;
1729 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1730 t
= &alarm_timers
[i
];
1750 static void quit_timers(void)
1752 alarm_timer
->stop(alarm_timer
);
1756 /***********************************************************/
1757 /* host time/date access */
1758 void qemu_get_timedate(struct tm
*tm
, int offset
)
1765 if (rtc_date_offset
== -1) {
1769 ret
= localtime(&ti
);
1771 ti
-= rtc_date_offset
;
1775 memcpy(tm
, ret
, sizeof(struct tm
));
1778 int qemu_timedate_diff(struct tm
*tm
)
1782 if (rtc_date_offset
== -1)
1784 seconds
= mktimegm(tm
);
1786 seconds
= mktime(tm
);
1788 seconds
= mktimegm(tm
) + rtc_date_offset
;
1790 return seconds
- time(NULL
);
1794 static void socket_cleanup(void)
1799 static int socket_init(void)
1804 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1806 err
= WSAGetLastError();
1807 fprintf(stderr
, "WSAStartup: %d\n", err
);
1810 atexit(socket_cleanup
);
1815 int get_param_value(char *buf
, int buf_size
,
1816 const char *tag
, const char *str
)
1823 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1827 if (!strcmp(tag
, option
)) {
1828 (void)get_opt_value(buf
, buf_size
, p
);
1831 p
= get_opt_value(NULL
, 0, p
);
1840 int check_params(char *buf
, int buf_size
,
1841 const char * const *params
, const char *str
)
1847 while (*p
!= '\0') {
1848 p
= get_opt_name(buf
, buf_size
, p
, '=');
1853 for (i
= 0; params
[i
] != NULL
; i
++) {
1854 if (!strcmp(params
[i
], buf
)) {
1858 if (params
[i
] == NULL
) {
1861 p
= get_opt_value(NULL
, 0, p
);
1870 /***********************************************************/
1871 /* Bluetooth support */
1874 static struct HCIInfo
*hci_table
[MAX_NICS
];
1876 static struct bt_vlan_s
{
1877 struct bt_scatternet_s net
;
1879 struct bt_vlan_s
*next
;
1882 /* find or alloc a new bluetooth "VLAN" */
1883 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1885 struct bt_vlan_s
**pvlan
, *vlan
;
1886 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1890 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1892 pvlan
= &first_bt_vlan
;
1893 while (*pvlan
!= NULL
)
1894 pvlan
= &(*pvlan
)->next
;
1899 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1903 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1908 static struct HCIInfo null_hci
= {
1909 .cmd_send
= null_hci_send
,
1910 .sco_send
= null_hci_send
,
1911 .acl_send
= null_hci_send
,
1912 .bdaddr_set
= null_hci_addr_set
,
1915 struct HCIInfo
*qemu_next_hci(void)
1917 if (cur_hci
== nb_hcis
)
1920 return hci_table
[cur_hci
++];
1923 static struct HCIInfo
*hci_init(const char *str
)
1926 struct bt_scatternet_s
*vlan
= 0;
1928 if (!strcmp(str
, "null"))
1931 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1933 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1934 else if (!strncmp(str
, "hci", 3)) {
1937 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1938 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1943 vlan
= qemu_find_bt_vlan(0);
1945 return bt_new_hci(vlan
);
1948 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1953 static int bt_hci_parse(const char *str
)
1955 struct HCIInfo
*hci
;
1958 if (nb_hcis
>= MAX_NICS
) {
1959 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1963 hci
= hci_init(str
);
1972 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1973 hci
->bdaddr_set(hci
, bdaddr
.b
);
1975 hci_table
[nb_hcis
++] = hci
;
1980 static void bt_vhci_add(int vlan_id
)
1982 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1985 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1986 "an empty scatternet %i\n", vlan_id
);
1988 bt_vhci_init(bt_new_hci(vlan
));
1991 static struct bt_device_s
*bt_device_add(const char *opt
)
1993 struct bt_scatternet_s
*vlan
;
1995 char *endp
= strstr(opt
, ",vlan=");
1996 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
1999 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2002 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2004 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2009 vlan
= qemu_find_bt_vlan(vlan_id
);
2012 fprintf(stderr
, "qemu: warning: adding a slave device to "
2013 "an empty scatternet %i\n", vlan_id
);
2015 if (!strcmp(devname
, "keyboard"))
2016 return bt_keyboard_init(vlan
);
2018 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2022 static int bt_parse(const char *opt
)
2024 const char *endp
, *p
;
2027 if (strstart(opt
, "hci", &endp
)) {
2028 if (!*endp
|| *endp
== ',') {
2030 if (!strstart(endp
, ",vlan=", 0))
2033 return bt_hci_parse(opt
);
2035 } else if (strstart(opt
, "vhci", &endp
)) {
2036 if (!*endp
|| *endp
== ',') {
2038 if (strstart(endp
, ",vlan=", &p
)) {
2039 vlan
= strtol(p
, (char **) &endp
, 0);
2041 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2045 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2054 } else if (strstart(opt
, "device:", &endp
))
2055 return !bt_device_add(endp
);
2057 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2061 /***********************************************************/
2062 /* QEMU Block devices */
2064 #define HD_ALIAS "index=%d,media=disk"
2065 #define CDROM_ALIAS "index=2,media=cdrom"
2066 #define FD_ALIAS "index=%d,if=floppy"
2067 #define PFLASH_ALIAS "if=pflash"
2068 #define MTD_ALIAS "if=mtd"
2069 #define SD_ALIAS "index=0,if=sd"
2071 static int drive_opt_get_free_idx(void)
2075 for (index
= 0; index
< MAX_DRIVES
; index
++)
2076 if (!drives_opt
[index
].used
) {
2077 drives_opt
[index
].used
= 1;
2084 static int drive_get_free_idx(void)
2088 for (index
= 0; index
< MAX_DRIVES
; index
++)
2089 if (!drives_table
[index
].used
) {
2090 drives_table
[index
].used
= 1;
2097 int drive_add(const char *file
, const char *fmt
, ...)
2100 int index
= drive_opt_get_free_idx();
2102 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2103 fprintf(stderr
, "qemu: too many drives\n");
2107 drives_opt
[index
].file
= file
;
2109 vsnprintf(drives_opt
[index
].opt
,
2110 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2117 void drive_remove(int index
)
2119 drives_opt
[index
].used
= 0;
2123 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2127 /* seek interface, bus and unit */
2129 for (index
= 0; index
< MAX_DRIVES
; index
++)
2130 if (drives_table
[index
].type
== type
&&
2131 drives_table
[index
].bus
== bus
&&
2132 drives_table
[index
].unit
== unit
&&
2133 drives_table
[index
].used
)
2139 int drive_get_max_bus(BlockInterfaceType type
)
2145 for (index
= 0; index
< nb_drives
; index
++) {
2146 if(drives_table
[index
].type
== type
&&
2147 drives_table
[index
].bus
> max_bus
)
2148 max_bus
= drives_table
[index
].bus
;
2153 const char *drive_get_serial(BlockDriverState
*bdrv
)
2157 for (index
= 0; index
< nb_drives
; index
++)
2158 if (drives_table
[index
].bdrv
== bdrv
)
2159 return drives_table
[index
].serial
;
2164 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2168 for (index
= 0; index
< nb_drives
; index
++)
2169 if (drives_table
[index
].bdrv
== bdrv
)
2170 return drives_table
[index
].onerror
;
2172 return BLOCK_ERR_STOP_ENOSPC
;
2175 static void bdrv_format_print(void *opaque
, const char *name
)
2177 fprintf(stderr
, " %s", name
);
2180 void drive_uninit(BlockDriverState
*bdrv
)
2184 for (i
= 0; i
< MAX_DRIVES
; i
++)
2185 if (drives_table
[i
].bdrv
== bdrv
) {
2186 drives_table
[i
].bdrv
= NULL
;
2187 drives_table
[i
].used
= 0;
2188 drive_remove(drives_table
[i
].drive_opt_idx
);
2194 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2200 const char *mediastr
= "";
2201 BlockInterfaceType type
;
2202 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2203 int bus_id
, unit_id
;
2204 int cyls
, heads
, secs
, translation
;
2205 BlockDriverState
*bdrv
;
2206 BlockDriver
*drv
= NULL
;
2207 QEMUMachine
*machine
= opaque
;
2211 int bdrv_flags
, onerror
;
2212 int drives_table_idx
;
2213 char *str
= arg
->opt
;
2214 static const char * const params
[] = { "bus", "unit", "if", "index",
2215 "cyls", "heads", "secs", "trans",
2216 "media", "snapshot", "file",
2217 "cache", "format", "serial", "werror",
2220 if (check_params(buf
, sizeof(buf
), params
, str
) < 0) {
2221 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2227 cyls
= heads
= secs
= 0;
2230 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2234 if (machine
->use_scsi
) {
2236 max_devs
= MAX_SCSI_DEVS
;
2237 pstrcpy(devname
, sizeof(devname
), "scsi");
2240 max_devs
= MAX_IDE_DEVS
;
2241 pstrcpy(devname
, sizeof(devname
), "ide");
2245 /* extract parameters */
2247 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2248 bus_id
= strtol(buf
, NULL
, 0);
2250 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2255 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2256 unit_id
= strtol(buf
, NULL
, 0);
2258 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2263 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2264 pstrcpy(devname
, sizeof(devname
), buf
);
2265 if (!strcmp(buf
, "ide")) {
2267 max_devs
= MAX_IDE_DEVS
;
2268 } else if (!strcmp(buf
, "scsi")) {
2270 max_devs
= MAX_SCSI_DEVS
;
2271 } else if (!strcmp(buf
, "floppy")) {
2274 } else if (!strcmp(buf
, "pflash")) {
2277 } else if (!strcmp(buf
, "mtd")) {
2280 } else if (!strcmp(buf
, "sd")) {
2283 } else if (!strcmp(buf
, "virtio")) {
2286 } else if (!strcmp(buf
, "xen")) {
2290 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2295 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2296 index
= strtol(buf
, NULL
, 0);
2298 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2303 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2304 cyls
= strtol(buf
, NULL
, 0);
2307 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2308 heads
= strtol(buf
, NULL
, 0);
2311 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2312 secs
= strtol(buf
, NULL
, 0);
2315 if (cyls
|| heads
|| secs
) {
2316 if (cyls
< 1 || cyls
> 16383) {
2317 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2320 if (heads
< 1 || heads
> 16) {
2321 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2324 if (secs
< 1 || secs
> 63) {
2325 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2330 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2333 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2337 if (!strcmp(buf
, "none"))
2338 translation
= BIOS_ATA_TRANSLATION_NONE
;
2339 else if (!strcmp(buf
, "lba"))
2340 translation
= BIOS_ATA_TRANSLATION_LBA
;
2341 else if (!strcmp(buf
, "auto"))
2342 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2344 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2349 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2350 if (!strcmp(buf
, "disk")) {
2352 } else if (!strcmp(buf
, "cdrom")) {
2353 if (cyls
|| secs
|| heads
) {
2355 "qemu: '%s' invalid physical CHS format\n", str
);
2358 media
= MEDIA_CDROM
;
2360 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2365 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2366 if (!strcmp(buf
, "on"))
2368 else if (!strcmp(buf
, "off"))
2371 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2376 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2377 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2379 else if (!strcmp(buf
, "writethrough"))
2381 else if (!strcmp(buf
, "writeback"))
2384 fprintf(stderr
, "qemu: invalid cache option\n");
2389 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2390 if (strcmp(buf
, "?") == 0) {
2391 fprintf(stderr
, "qemu: Supported formats:");
2392 bdrv_iterate_format(bdrv_format_print
, NULL
);
2393 fprintf(stderr
, "\n");
2396 drv
= bdrv_find_format(buf
);
2398 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2403 if (arg
->file
== NULL
)
2404 get_param_value(file
, sizeof(file
), "file", str
);
2406 pstrcpy(file
, sizeof(file
), arg
->file
);
2408 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2409 memset(serial
, 0, sizeof(serial
));
2411 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2412 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2413 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2414 fprintf(stderr
, "werror is no supported by this format\n");
2417 if (!strcmp(buf
, "ignore"))
2418 onerror
= BLOCK_ERR_IGNORE
;
2419 else if (!strcmp(buf
, "enospc"))
2420 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2421 else if (!strcmp(buf
, "stop"))
2422 onerror
= BLOCK_ERR_STOP_ANY
;
2423 else if (!strcmp(buf
, "report"))
2424 onerror
= BLOCK_ERR_REPORT
;
2426 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2431 /* compute bus and unit according index */
2434 if (bus_id
!= 0 || unit_id
!= -1) {
2436 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2444 unit_id
= index
% max_devs
;
2445 bus_id
= index
/ max_devs
;
2449 /* if user doesn't specify a unit_id,
2450 * try to find the first free
2453 if (unit_id
== -1) {
2455 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2457 if (max_devs
&& unit_id
>= max_devs
) {
2458 unit_id
-= max_devs
;
2466 if (max_devs
&& unit_id
>= max_devs
) {
2467 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2468 str
, unit_id
, max_devs
- 1);
2473 * ignore multiple definitions
2476 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2481 if (type
== IF_IDE
|| type
== IF_SCSI
)
2482 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2484 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2485 devname
, bus_id
, mediastr
, unit_id
);
2487 snprintf(buf
, sizeof(buf
), "%s%s%i",
2488 devname
, mediastr
, unit_id
);
2489 bdrv
= bdrv_new(buf
);
2490 drives_table_idx
= drive_get_free_idx();
2491 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2492 drives_table
[drives_table_idx
].type
= type
;
2493 drives_table
[drives_table_idx
].bus
= bus_id
;
2494 drives_table
[drives_table_idx
].unit
= unit_id
;
2495 drives_table
[drives_table_idx
].onerror
= onerror
;
2496 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2497 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2507 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2508 bdrv_set_translation_hint(bdrv
, translation
);
2512 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2517 /* FIXME: This isn't really a floppy, but it's a reasonable
2520 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2533 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2534 cache
= 2; /* always use write-back with snapshot */
2536 if (cache
== 0) /* no caching */
2537 bdrv_flags
|= BDRV_O_NOCACHE
;
2538 else if (cache
== 2) /* write-back */
2539 bdrv_flags
|= BDRV_O_CACHE_WB
;
2540 else if (cache
== 3) /* not specified */
2541 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2542 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2543 fprintf(stderr
, "qemu: could not open disk image %s\n",
2547 if (bdrv_key_required(bdrv
))
2549 return drives_table_idx
;
2552 static void numa_add(const char *optarg
)
2556 unsigned long long value
, endvalue
;
2559 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2560 if (!strcmp(option
, "node")) {
2561 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2562 nodenr
= nb_numa_nodes
;
2564 nodenr
= strtoull(option
, NULL
, 10);
2567 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2568 node_mem
[nodenr
] = 0;
2570 value
= strtoull(option
, &endptr
, 0);
2572 case 0: case 'M': case 'm':
2579 node_mem
[nodenr
] = value
;
2581 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2582 node_cpumask
[nodenr
] = 0;
2584 value
= strtoull(option
, &endptr
, 10);
2587 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2589 if (*endptr
== '-') {
2590 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2591 if (endvalue
>= 63) {
2594 "only 63 CPUs in NUMA mode supported.\n");
2596 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2601 node_cpumask
[nodenr
] = value
;
2608 /***********************************************************/
2611 static USBPort
*used_usb_ports
;
2612 static USBPort
*free_usb_ports
;
2614 /* ??? Maybe change this to register a hub to keep track of the topology. */
2615 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2616 usb_attachfn attach
)
2618 port
->opaque
= opaque
;
2619 port
->index
= index
;
2620 port
->attach
= attach
;
2621 port
->next
= free_usb_ports
;
2622 free_usb_ports
= port
;
2625 int usb_device_add_dev(USBDevice
*dev
)
2629 /* Find a USB port to add the device to. */
2630 port
= free_usb_ports
;
2634 /* Create a new hub and chain it on. */
2635 free_usb_ports
= NULL
;
2636 port
->next
= used_usb_ports
;
2637 used_usb_ports
= port
;
2639 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2640 usb_attach(port
, hub
);
2641 port
= free_usb_ports
;
2644 free_usb_ports
= port
->next
;
2645 port
->next
= used_usb_ports
;
2646 used_usb_ports
= port
;
2647 usb_attach(port
, dev
);
2651 static void usb_msd_password_cb(void *opaque
, int err
)
2653 USBDevice
*dev
= opaque
;
2656 usb_device_add_dev(dev
);
2658 dev
->handle_destroy(dev
);
2661 static int usb_device_add(const char *devname
, int is_hotplug
)
2666 if (!free_usb_ports
)
2669 if (strstart(devname
, "host:", &p
)) {
2670 dev
= usb_host_device_open(p
);
2671 } else if (!strcmp(devname
, "mouse")) {
2672 dev
= usb_mouse_init();
2673 } else if (!strcmp(devname
, "tablet")) {
2674 dev
= usb_tablet_init();
2675 } else if (!strcmp(devname
, "keyboard")) {
2676 dev
= usb_keyboard_init();
2677 } else if (strstart(devname
, "disk:", &p
)) {
2678 BlockDriverState
*bs
;
2680 dev
= usb_msd_init(p
);
2683 bs
= usb_msd_get_bdrv(dev
);
2684 if (bdrv_key_required(bs
)) {
2687 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2692 } else if (!strcmp(devname
, "wacom-tablet")) {
2693 dev
= usb_wacom_init();
2694 } else if (strstart(devname
, "serial:", &p
)) {
2695 dev
= usb_serial_init(p
);
2696 #ifdef CONFIG_BRLAPI
2697 } else if (!strcmp(devname
, "braille")) {
2698 dev
= usb_baum_init();
2700 } else if (strstart(devname
, "net:", &p
)) {
2703 if (net_client_init(NULL
, "nic", p
) < 0)
2705 nd_table
[nic
].model
= "usb";
2706 dev
= usb_net_init(&nd_table
[nic
]);
2707 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2708 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2709 bt_new_hci(qemu_find_bt_vlan(0)));
2716 return usb_device_add_dev(dev
);
2719 int usb_device_del_addr(int bus_num
, int addr
)
2725 if (!used_usb_ports
)
2731 lastp
= &used_usb_ports
;
2732 port
= used_usb_ports
;
2733 while (port
&& port
->dev
->addr
!= addr
) {
2734 lastp
= &port
->next
;
2742 *lastp
= port
->next
;
2743 usb_attach(port
, NULL
);
2744 dev
->handle_destroy(dev
);
2745 port
->next
= free_usb_ports
;
2746 free_usb_ports
= port
;
2750 static int usb_device_del(const char *devname
)
2755 if (strstart(devname
, "host:", &p
))
2756 return usb_host_device_close(p
);
2758 if (!used_usb_ports
)
2761 p
= strchr(devname
, '.');
2764 bus_num
= strtoul(devname
, NULL
, 0);
2765 addr
= strtoul(p
+ 1, NULL
, 0);
2767 return usb_device_del_addr(bus_num
, addr
);
2770 void do_usb_add(Monitor
*mon
, const char *devname
)
2772 usb_device_add(devname
, 1);
2775 void do_usb_del(Monitor
*mon
, const char *devname
)
2777 usb_device_del(devname
);
2780 void usb_info(Monitor
*mon
)
2784 const char *speed_str
;
2787 monitor_printf(mon
, "USB support not enabled\n");
2791 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2795 switch(dev
->speed
) {
2799 case USB_SPEED_FULL
:
2802 case USB_SPEED_HIGH
:
2809 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2810 0, dev
->addr
, speed_str
, dev
->devname
);
2814 /***********************************************************/
2815 /* PCMCIA/Cardbus */
2817 static struct pcmcia_socket_entry_s
{
2818 PCMCIASocket
*socket
;
2819 struct pcmcia_socket_entry_s
*next
;
2820 } *pcmcia_sockets
= 0;
2822 void pcmcia_socket_register(PCMCIASocket
*socket
)
2824 struct pcmcia_socket_entry_s
*entry
;
2826 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2827 entry
->socket
= socket
;
2828 entry
->next
= pcmcia_sockets
;
2829 pcmcia_sockets
= entry
;
2832 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2834 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2836 ptr
= &pcmcia_sockets
;
2837 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2838 if (entry
->socket
== socket
) {
2844 void pcmcia_info(Monitor
*mon
)
2846 struct pcmcia_socket_entry_s
*iter
;
2848 if (!pcmcia_sockets
)
2849 monitor_printf(mon
, "No PCMCIA sockets\n");
2851 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2852 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2853 iter
->socket
->attached
? iter
->socket
->card_string
:
2857 /***********************************************************/
2858 /* register display */
2860 struct DisplayAllocator default_allocator
= {
2861 defaultallocator_create_displaysurface
,
2862 defaultallocator_resize_displaysurface
,
2863 defaultallocator_free_displaysurface
2866 void register_displaystate(DisplayState
*ds
)
2876 DisplayState
*get_displaystate(void)
2878 return display_state
;
2881 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2883 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2884 return ds
->allocator
;
2889 static void dumb_display_init(void)
2891 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2892 ds
->allocator
= &default_allocator
;
2893 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2894 register_displaystate(ds
);
2897 /***********************************************************/
2900 typedef struct IOHandlerRecord
{
2902 IOCanRWHandler
*fd_read_poll
;
2904 IOHandler
*fd_write
;
2907 /* temporary data */
2909 struct IOHandlerRecord
*next
;
2912 static IOHandlerRecord
*first_io_handler
;
2914 /* XXX: fd_read_poll should be suppressed, but an API change is
2915 necessary in the character devices to suppress fd_can_read(). */
2916 int qemu_set_fd_handler2(int fd
,
2917 IOCanRWHandler
*fd_read_poll
,
2919 IOHandler
*fd_write
,
2922 IOHandlerRecord
**pioh
, *ioh
;
2924 if (!fd_read
&& !fd_write
) {
2925 pioh
= &first_io_handler
;
2930 if (ioh
->fd
== fd
) {
2937 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2941 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2942 ioh
->next
= first_io_handler
;
2943 first_io_handler
= ioh
;
2946 ioh
->fd_read_poll
= fd_read_poll
;
2947 ioh
->fd_read
= fd_read
;
2948 ioh
->fd_write
= fd_write
;
2949 ioh
->opaque
= opaque
;
2955 int qemu_set_fd_handler(int fd
,
2957 IOHandler
*fd_write
,
2960 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2964 /***********************************************************/
2965 /* Polling handling */
2967 typedef struct PollingEntry
{
2970 struct PollingEntry
*next
;
2973 static PollingEntry
*first_polling_entry
;
2975 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2977 PollingEntry
**ppe
, *pe
;
2978 pe
= qemu_mallocz(sizeof(PollingEntry
));
2980 pe
->opaque
= opaque
;
2981 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2986 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2988 PollingEntry
**ppe
, *pe
;
2989 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
2991 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
2999 /***********************************************************/
3000 /* Wait objects support */
3001 typedef struct WaitObjects
{
3003 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3004 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3005 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3008 static WaitObjects wait_objects
= {0};
3010 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3012 WaitObjects
*w
= &wait_objects
;
3014 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3016 w
->events
[w
->num
] = handle
;
3017 w
->func
[w
->num
] = func
;
3018 w
->opaque
[w
->num
] = opaque
;
3023 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3026 WaitObjects
*w
= &wait_objects
;
3029 for (i
= 0; i
< w
->num
; i
++) {
3030 if (w
->events
[i
] == handle
)
3033 w
->events
[i
] = w
->events
[i
+ 1];
3034 w
->func
[i
] = w
->func
[i
+ 1];
3035 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3043 /***********************************************************/
3044 /* ram save/restore */
3046 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3050 v
= qemu_get_byte(f
);
3053 if (qemu_get_buffer(f
, buf
, len
) != len
)
3057 v
= qemu_get_byte(f
);
3058 memset(buf
, v
, len
);
3064 if (qemu_file_has_error(f
))
3070 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3075 if (qemu_get_be32(f
) != last_ram_offset
)
3077 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3078 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3085 #define BDRV_HASH_BLOCK_SIZE 1024
3086 #define IOBUF_SIZE 4096
3087 #define RAM_CBLOCK_MAGIC 0xfabe
3089 typedef struct RamDecompressState
{
3092 uint8_t buf
[IOBUF_SIZE
];
3093 } RamDecompressState
;
3095 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3098 memset(s
, 0, sizeof(*s
));
3100 ret
= inflateInit(&s
->zstream
);
3106 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3110 s
->zstream
.avail_out
= len
;
3111 s
->zstream
.next_out
= buf
;
3112 while (s
->zstream
.avail_out
> 0) {
3113 if (s
->zstream
.avail_in
== 0) {
3114 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3116 clen
= qemu_get_be16(s
->f
);
3117 if (clen
> IOBUF_SIZE
)
3119 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3120 s
->zstream
.avail_in
= clen
;
3121 s
->zstream
.next_in
= s
->buf
;
3123 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3124 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3131 static void ram_decompress_close(RamDecompressState
*s
)
3133 inflateEnd(&s
->zstream
);
3136 #define RAM_SAVE_FLAG_FULL 0x01
3137 #define RAM_SAVE_FLAG_COMPRESS 0x02
3138 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3139 #define RAM_SAVE_FLAG_PAGE 0x08
3140 #define RAM_SAVE_FLAG_EOS 0x10
3142 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3144 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3145 uint32_t *array
= (uint32_t *)page
;
3148 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3149 if (array
[i
] != val
)
3156 static int ram_save_block(QEMUFile
*f
)
3158 static ram_addr_t current_addr
= 0;
3159 ram_addr_t saved_addr
= current_addr
;
3160 ram_addr_t addr
= 0;
3163 while (addr
< last_ram_offset
) {
3164 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3167 cpu_physical_memory_reset_dirty(current_addr
,
3168 current_addr
+ TARGET_PAGE_SIZE
,
3169 MIGRATION_DIRTY_FLAG
);
3171 p
= qemu_get_ram_ptr(current_addr
);
3173 if (is_dup_page(p
, *p
)) {
3174 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3175 qemu_put_byte(f
, *p
);
3177 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3178 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3184 addr
+= TARGET_PAGE_SIZE
;
3185 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3191 static ram_addr_t ram_save_threshold
= 10;
3192 static uint64_t bytes_transferred
= 0;
3194 static ram_addr_t
ram_save_remaining(void)
3197 ram_addr_t count
= 0;
3199 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3200 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3207 uint64_t ram_bytes_remaining(void)
3209 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3212 uint64_t ram_bytes_transferred(void)
3214 return bytes_transferred
;
3217 uint64_t ram_bytes_total(void)
3219 return last_ram_offset
;
3222 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3226 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3227 qemu_file_set_error(f
);
3232 /* Make sure all dirty bits are set */
3233 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3234 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3235 cpu_physical_memory_set_dirty(addr
);
3238 /* Enable dirty memory tracking */
3239 cpu_physical_memory_set_dirty_tracking(1);
3241 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3244 while (!qemu_file_rate_limit(f
)) {
3247 ret
= ram_save_block(f
);
3248 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3249 if (ret
== 0) /* no more blocks */
3253 /* try transferring iterative blocks of memory */
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f
) != 0) {
3259 bytes_transferred
+= TARGET_PAGE_SIZE
;
3261 cpu_physical_memory_set_dirty_tracking(0);
3264 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3266 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3269 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3271 RamDecompressState s1
, *s
= &s1
;
3275 if (ram_decompress_open(s
, f
) < 0)
3277 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3278 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3279 fprintf(stderr
, "Error while reading ram block header\n");
3283 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3284 BDRV_HASH_BLOCK_SIZE
) < 0) {
3285 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3290 printf("Error block header\n");
3294 ram_decompress_close(s
);
3299 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3304 if (version_id
== 1)
3305 return ram_load_v1(f
, opaque
);
3307 if (version_id
== 2) {
3308 if (qemu_get_be32(f
) != last_ram_offset
)
3310 return ram_load_dead(f
, opaque
);
3313 if (version_id
!= 3)
3317 addr
= qemu_get_be64(f
);
3319 flags
= addr
& ~TARGET_PAGE_MASK
;
3320 addr
&= TARGET_PAGE_MASK
;
3322 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3323 if (addr
!= last_ram_offset
)
3327 if (flags
& RAM_SAVE_FLAG_FULL
) {
3328 if (ram_load_dead(f
, opaque
) < 0)
3332 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3333 uint8_t ch
= qemu_get_byte(f
);
3334 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3335 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3336 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3337 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3342 void qemu_service_io(void)
3344 qemu_notify_event();
3347 /***********************************************************/
3348 /* bottom halves (can be seen as timers which expire ASAP) */
3359 static QEMUBH
*first_bh
= NULL
;
3361 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3364 bh
= qemu_mallocz(sizeof(QEMUBH
));
3366 bh
->opaque
= opaque
;
3367 bh
->next
= first_bh
;
3372 int qemu_bh_poll(void)
3378 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3379 if (!bh
->deleted
&& bh
->scheduled
) {
3388 /* remove deleted bhs */
3402 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3410 void qemu_bh_schedule(QEMUBH
*bh
)
3416 /* stop the currently executing CPU to execute the BH ASAP */
3417 qemu_notify_event();
3420 void qemu_bh_cancel(QEMUBH
*bh
)
3425 void qemu_bh_delete(QEMUBH
*bh
)
3431 static void qemu_bh_update_timeout(int *timeout
)
3435 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3436 if (!bh
->deleted
&& bh
->scheduled
) {
3438 /* idle bottom halves will be polled at least
3440 *timeout
= MIN(10, *timeout
);
3442 /* non-idle bottom halves will be executed
3451 /***********************************************************/
3452 /* machine registration */
3454 static QEMUMachine
*first_machine
= NULL
;
3455 QEMUMachine
*current_machine
= NULL
;
3457 int qemu_register_machine(QEMUMachine
*m
)
3460 pm
= &first_machine
;
3468 static QEMUMachine
*find_machine(const char *name
)
3472 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3473 if (!strcmp(m
->name
, name
))
3479 static QEMUMachine
*find_default_machine(void)
3483 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3484 if (m
->is_default
) {
3491 /***********************************************************/
3492 /* main execution loop */
3494 static void gui_update(void *opaque
)
3496 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3497 DisplayState
*ds
= opaque
;
3498 DisplayChangeListener
*dcl
= ds
->listeners
;
3502 while (dcl
!= NULL
) {
3503 if (dcl
->gui_timer_interval
&&
3504 dcl
->gui_timer_interval
< interval
)
3505 interval
= dcl
->gui_timer_interval
;
3508 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3511 static void nographic_update(void *opaque
)
3513 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3515 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3518 struct vm_change_state_entry
{
3519 VMChangeStateHandler
*cb
;
3521 LIST_ENTRY (vm_change_state_entry
) entries
;
3524 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3526 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3529 VMChangeStateEntry
*e
;
3531 e
= qemu_mallocz(sizeof (*e
));
3535 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3539 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3541 LIST_REMOVE (e
, entries
);
3545 static void vm_state_notify(int running
, int reason
)
3547 VMChangeStateEntry
*e
;
3549 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3550 e
->cb(e
->opaque
, running
, reason
);
3554 static void resume_all_vcpus(void);
3555 static void pause_all_vcpus(void);
3562 vm_state_notify(1, 0);
3563 qemu_rearm_alarm_timer(alarm_timer
);
3568 /* reset/shutdown handler */
3570 typedef struct QEMUResetEntry
{
3571 QEMUResetHandler
*func
;
3574 struct QEMUResetEntry
*next
;
3577 static QEMUResetEntry
*first_reset_entry
;
3578 static int reset_requested
;
3579 static int shutdown_requested
;
3580 static int powerdown_requested
;
3581 static int debug_requested
;
3582 static int vmstop_requested
;
3584 int qemu_shutdown_requested(void)
3586 int r
= shutdown_requested
;
3587 shutdown_requested
= 0;
3591 int qemu_reset_requested(void)
3593 int r
= reset_requested
;
3594 reset_requested
= 0;
3598 int qemu_powerdown_requested(void)
3600 int r
= powerdown_requested
;
3601 powerdown_requested
= 0;
3605 static int qemu_debug_requested(void)
3607 int r
= debug_requested
;
3608 debug_requested
= 0;
3612 static int qemu_vmstop_requested(void)
3614 int r
= vmstop_requested
;
3615 vmstop_requested
= 0;
3619 static void do_vm_stop(int reason
)
3622 cpu_disable_ticks();
3625 vm_state_notify(0, reason
);
3629 void qemu_register_reset(QEMUResetHandler
*func
, int order
, void *opaque
)
3631 QEMUResetEntry
**pre
, *re
;
3633 pre
= &first_reset_entry
;
3634 while (*pre
!= NULL
&& (*pre
)->order
>= order
) {
3635 pre
= &(*pre
)->next
;
3637 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3639 re
->opaque
= opaque
;
3645 void qemu_system_reset(void)
3649 /* reset all devices */
3650 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3651 re
->func(re
->opaque
);
3655 void qemu_system_reset_request(void)
3658 shutdown_requested
= 1;
3660 reset_requested
= 1;
3662 qemu_notify_event();
3665 void qemu_system_shutdown_request(void)
3667 shutdown_requested
= 1;
3668 qemu_notify_event();
3671 void qemu_system_powerdown_request(void)
3673 powerdown_requested
= 1;
3674 qemu_notify_event();
3677 #ifdef CONFIG_IOTHREAD
3678 static void qemu_system_vmstop_request(int reason
)
3680 vmstop_requested
= reason
;
3681 qemu_notify_event();
3686 static int io_thread_fd
= -1;
3688 static void qemu_event_increment(void)
3690 static const char byte
= 0;
3692 if (io_thread_fd
== -1)
3695 write(io_thread_fd
, &byte
, sizeof(byte
));
3698 static void qemu_event_read(void *opaque
)
3700 int fd
= (unsigned long)opaque
;
3703 /* Drain the notify pipe */
3706 len
= read(fd
, buffer
, sizeof(buffer
));
3707 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3710 static int qemu_event_init(void)
3719 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3723 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3727 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3728 (void *)(unsigned long)fds
[0]);
3730 io_thread_fd
= fds
[1];
3739 HANDLE qemu_event_handle
;
3741 static void dummy_event_handler(void *opaque
)
3745 static int qemu_event_init(void)
3747 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3748 if (!qemu_event_handle
) {
3749 perror("Failed CreateEvent");
3752 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3756 static void qemu_event_increment(void)
3758 SetEvent(qemu_event_handle
);
3762 static int cpu_can_run(CPUState
*env
)
3771 #ifndef CONFIG_IOTHREAD
3772 static int qemu_init_main_loop(void)
3774 return qemu_event_init();
3777 void qemu_init_vcpu(void *_env
)
3779 CPUState
*env
= _env
;
3786 int qemu_cpu_self(void *env
)
3791 static void resume_all_vcpus(void)
3795 static void pause_all_vcpus(void)
3799 void qemu_cpu_kick(void *env
)
3804 void qemu_notify_event(void)
3806 CPUState
*env
= cpu_single_env
;
3811 if (env
->kqemu_enabled
)
3812 kqemu_cpu_interrupt(env
);
3817 #define qemu_mutex_lock_iothread() do { } while (0)
3818 #define qemu_mutex_unlock_iothread() do { } while (0)
3820 void vm_stop(int reason
)
3825 #else /* CONFIG_IOTHREAD */
3827 #include "qemu-thread.h"
3829 QemuMutex qemu_global_mutex
;
3830 static QemuMutex qemu_fair_mutex
;
3832 static QemuThread io_thread
;
3834 static QemuThread
*tcg_cpu_thread
;
3835 static QemuCond
*tcg_halt_cond
;
3837 static int qemu_system_ready
;
3839 static QemuCond qemu_cpu_cond
;
3841 static QemuCond qemu_system_cond
;
3842 static QemuCond qemu_pause_cond
;
3844 static void block_io_signals(void);
3845 static void unblock_io_signals(void);
3846 static int tcg_has_work(void);
3848 static int qemu_init_main_loop(void)
3852 ret
= qemu_event_init();
3856 qemu_cond_init(&qemu_pause_cond
);
3857 qemu_mutex_init(&qemu_fair_mutex
);
3858 qemu_mutex_init(&qemu_global_mutex
);
3859 qemu_mutex_lock(&qemu_global_mutex
);
3861 unblock_io_signals();
3862 qemu_thread_self(&io_thread
);
3867 static void qemu_wait_io_event(CPUState
*env
)
3869 while (!tcg_has_work())
3870 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3872 qemu_mutex_unlock(&qemu_global_mutex
);
3875 * Users of qemu_global_mutex can be starved, having no chance
3876 * to acquire it since this path will get to it first.
3877 * So use another lock to provide fairness.
3879 qemu_mutex_lock(&qemu_fair_mutex
);
3880 qemu_mutex_unlock(&qemu_fair_mutex
);
3882 qemu_mutex_lock(&qemu_global_mutex
);
3886 qemu_cond_signal(&qemu_pause_cond
);
3890 static int qemu_cpu_exec(CPUState
*env
);
3892 static void *kvm_cpu_thread_fn(void *arg
)
3894 CPUState
*env
= arg
;
3897 qemu_thread_self(env
->thread
);
3899 /* signal CPU creation */
3900 qemu_mutex_lock(&qemu_global_mutex
);
3902 qemu_cond_signal(&qemu_cpu_cond
);
3904 /* and wait for machine initialization */
3905 while (!qemu_system_ready
)
3906 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3909 if (cpu_can_run(env
))
3911 qemu_wait_io_event(env
);
3917 static void tcg_cpu_exec(void);
3919 static void *tcg_cpu_thread_fn(void *arg
)
3921 CPUState
*env
= arg
;
3924 qemu_thread_self(env
->thread
);
3926 /* signal CPU creation */
3927 qemu_mutex_lock(&qemu_global_mutex
);
3928 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3930 qemu_cond_signal(&qemu_cpu_cond
);
3932 /* and wait for machine initialization */
3933 while (!qemu_system_ready
)
3934 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3938 qemu_wait_io_event(cur_cpu
);
3944 void qemu_cpu_kick(void *_env
)
3946 CPUState
*env
= _env
;
3947 qemu_cond_broadcast(env
->halt_cond
);
3949 qemu_thread_signal(env
->thread
, SIGUSR1
);
3952 int qemu_cpu_self(void *env
)
3954 return (cpu_single_env
!= NULL
);
3957 static void cpu_signal(int sig
)
3960 cpu_exit(cpu_single_env
);
3963 static void block_io_signals(void)
3966 struct sigaction sigact
;
3969 sigaddset(&set
, SIGUSR2
);
3970 sigaddset(&set
, SIGIO
);
3971 sigaddset(&set
, SIGALRM
);
3972 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3975 sigaddset(&set
, SIGUSR1
);
3976 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3978 memset(&sigact
, 0, sizeof(sigact
));
3979 sigact
.sa_handler
= cpu_signal
;
3980 sigaction(SIGUSR1
, &sigact
, NULL
);
3983 static void unblock_io_signals(void)
3988 sigaddset(&set
, SIGUSR2
);
3989 sigaddset(&set
, SIGIO
);
3990 sigaddset(&set
, SIGALRM
);
3991 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3994 sigaddset(&set
, SIGUSR1
);
3995 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3998 static void qemu_signal_lock(unsigned int msecs
)
4000 qemu_mutex_lock(&qemu_fair_mutex
);
4002 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4003 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4004 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4007 qemu_mutex_unlock(&qemu_fair_mutex
);
4010 static void qemu_mutex_lock_iothread(void)
4012 if (kvm_enabled()) {
4013 qemu_mutex_lock(&qemu_fair_mutex
);
4014 qemu_mutex_lock(&qemu_global_mutex
);
4015 qemu_mutex_unlock(&qemu_fair_mutex
);
4017 qemu_signal_lock(100);
4020 static void qemu_mutex_unlock_iothread(void)
4022 qemu_mutex_unlock(&qemu_global_mutex
);
4025 static int all_vcpus_paused(void)
4027 CPUState
*penv
= first_cpu
;
4032 penv
= (CPUState
*)penv
->next_cpu
;
4038 static void pause_all_vcpus(void)
4040 CPUState
*penv
= first_cpu
;
4044 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4045 qemu_cpu_kick(penv
);
4046 penv
= (CPUState
*)penv
->next_cpu
;
4049 while (!all_vcpus_paused()) {
4050 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4053 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4054 penv
= (CPUState
*)penv
->next_cpu
;
4059 static void resume_all_vcpus(void)
4061 CPUState
*penv
= first_cpu
;
4066 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4067 qemu_cpu_kick(penv
);
4068 penv
= (CPUState
*)penv
->next_cpu
;
4072 static void tcg_init_vcpu(void *_env
)
4074 CPUState
*env
= _env
;
4075 /* share a single thread for all cpus with TCG */
4076 if (!tcg_cpu_thread
) {
4077 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4078 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4079 qemu_cond_init(env
->halt_cond
);
4080 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4081 while (env
->created
== 0)
4082 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4083 tcg_cpu_thread
= env
->thread
;
4084 tcg_halt_cond
= env
->halt_cond
;
4086 env
->thread
= tcg_cpu_thread
;
4087 env
->halt_cond
= tcg_halt_cond
;
4091 static void kvm_start_vcpu(CPUState
*env
)
4094 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4095 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4096 qemu_cond_init(env
->halt_cond
);
4097 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4098 while (env
->created
== 0)
4099 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4102 void qemu_init_vcpu(void *_env
)
4104 CPUState
*env
= _env
;
4107 kvm_start_vcpu(env
);
4112 void qemu_notify_event(void)
4114 qemu_event_increment();
4117 void vm_stop(int reason
)
4120 qemu_thread_self(&me
);
4122 if (!qemu_thread_equal(&me
, &io_thread
)) {
4123 qemu_system_vmstop_request(reason
);
4125 * FIXME: should not return to device code in case
4126 * vm_stop() has been requested.
4128 if (cpu_single_env
) {
4129 cpu_exit(cpu_single_env
);
4130 cpu_single_env
->stop
= 1;
4141 static void host_main_loop_wait(int *timeout
)
4147 /* XXX: need to suppress polling by better using win32 events */
4149 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4150 ret
|= pe
->func(pe
->opaque
);
4154 WaitObjects
*w
= &wait_objects
;
4156 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4157 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4158 if (w
->func
[ret
- WAIT_OBJECT_0
])
4159 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4161 /* Check for additional signaled events */
4162 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4164 /* Check if event is signaled */
4165 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4166 if(ret2
== WAIT_OBJECT_0
) {
4168 w
->func
[i
](w
->opaque
[i
]);
4169 } else if (ret2
== WAIT_TIMEOUT
) {
4171 err
= GetLastError();
4172 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4175 } else if (ret
== WAIT_TIMEOUT
) {
4177 err
= GetLastError();
4178 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4185 static void host_main_loop_wait(int *timeout
)
4190 void main_loop_wait(int timeout
)
4192 IOHandlerRecord
*ioh
;
4193 fd_set rfds
, wfds
, xfds
;
4197 qemu_bh_update_timeout(&timeout
);
4199 host_main_loop_wait(&timeout
);
4201 /* poll any events */
4202 /* XXX: separate device handlers from system ones */
4207 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4211 (!ioh
->fd_read_poll
||
4212 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4213 FD_SET(ioh
->fd
, &rfds
);
4217 if (ioh
->fd_write
) {
4218 FD_SET(ioh
->fd
, &wfds
);
4224 tv
.tv_sec
= timeout
/ 1000;
4225 tv
.tv_usec
= (timeout
% 1000) * 1000;
4227 #if defined(CONFIG_SLIRP)
4228 if (slirp_is_inited()) {
4229 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4232 qemu_mutex_unlock_iothread();
4233 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4234 qemu_mutex_lock_iothread();
4236 IOHandlerRecord
**pioh
;
4238 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4239 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4240 ioh
->fd_read(ioh
->opaque
);
4242 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4243 ioh
->fd_write(ioh
->opaque
);
4247 /* remove deleted IO handlers */
4248 pioh
= &first_io_handler
;
4258 #if defined(CONFIG_SLIRP)
4259 if (slirp_is_inited()) {
4265 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4269 /* rearm timer, if not periodic */
4270 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4271 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4272 qemu_rearm_alarm_timer(alarm_timer
);
4275 /* vm time timers */
4277 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4278 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4279 qemu_get_clock(vm_clock
));
4282 /* real time timers */
4283 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4284 qemu_get_clock(rt_clock
));
4286 /* Check bottom-halves last in case any of the earlier events triggered
4292 static int qemu_cpu_exec(CPUState
*env
)
4295 #ifdef CONFIG_PROFILER
4299 #ifdef CONFIG_PROFILER
4300 ti
= profile_getclock();
4305 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4306 env
->icount_decr
.u16
.low
= 0;
4307 env
->icount_extra
= 0;
4308 count
= qemu_next_deadline();
4309 count
= (count
+ (1 << icount_time_shift
) - 1)
4310 >> icount_time_shift
;
4311 qemu_icount
+= count
;
4312 decr
= (count
> 0xffff) ? 0xffff : count
;
4314 env
->icount_decr
.u16
.low
= decr
;
4315 env
->icount_extra
= count
;
4317 ret
= cpu_exec(env
);
4318 #ifdef CONFIG_PROFILER
4319 qemu_time
+= profile_getclock() - ti
;
4322 /* Fold pending instructions back into the
4323 instruction counter, and clear the interrupt flag. */
4324 qemu_icount
-= (env
->icount_decr
.u16
.low
4325 + env
->icount_extra
);
4326 env
->icount_decr
.u32
= 0;
4327 env
->icount_extra
= 0;
4332 static void tcg_cpu_exec(void)
4336 if (next_cpu
== NULL
)
4337 next_cpu
= first_cpu
;
4338 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4339 CPUState
*env
= cur_cpu
= next_cpu
;
4343 if (timer_alarm_pending
) {
4344 timer_alarm_pending
= 0;
4347 if (cpu_can_run(env
))
4348 ret
= qemu_cpu_exec(env
);
4349 if (ret
== EXCP_DEBUG
) {
4350 gdb_set_stop_cpu(env
);
4351 debug_requested
= 1;
4357 static int cpu_has_work(CPUState
*env
)
4365 if (qemu_cpu_has_work(env
))
4370 static int tcg_has_work(void)
4374 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4375 if (cpu_has_work(env
))
4380 static int qemu_calculate_timeout(void)
4382 #ifndef CONFIG_IOTHREAD
4387 else if (tcg_has_work())
4389 else if (!use_icount
)
4392 /* XXX: use timeout computed from timers */
4395 /* Advance virtual time to the next event. */
4396 if (use_icount
== 1) {
4397 /* When not using an adaptive execution frequency
4398 we tend to get badly out of sync with real time,
4399 so just delay for a reasonable amount of time. */
4402 delta
= cpu_get_icount() - cpu_get_clock();
4405 /* If virtual time is ahead of real time then just
4407 timeout
= (delta
/ 1000000) + 1;
4409 /* Wait for either IO to occur or the next
4411 add
= qemu_next_deadline();
4412 /* We advance the timer before checking for IO.
4413 Limit the amount we advance so that early IO
4414 activity won't get the guest too far ahead. */
4418 add
= (add
+ (1 << icount_time_shift
) - 1)
4419 >> icount_time_shift
;
4421 timeout
= delta
/ 1000000;
4428 #else /* CONFIG_IOTHREAD */
4433 static int vm_can_run(void)
4435 if (powerdown_requested
)
4437 if (reset_requested
)
4439 if (shutdown_requested
)
4441 if (debug_requested
)
4446 static void main_loop(void)
4450 #ifdef CONFIG_IOTHREAD
4451 qemu_system_ready
= 1;
4452 qemu_cond_broadcast(&qemu_system_cond
);
4457 #ifdef CONFIG_PROFILER
4460 #ifndef CONFIG_IOTHREAD
4463 #ifdef CONFIG_PROFILER
4464 ti
= profile_getclock();
4466 main_loop_wait(qemu_calculate_timeout());
4467 #ifdef CONFIG_PROFILER
4468 dev_time
+= profile_getclock() - ti
;
4470 } while (vm_can_run());
4472 if (qemu_debug_requested())
4473 vm_stop(EXCP_DEBUG
);
4474 if (qemu_shutdown_requested()) {
4481 if (qemu_reset_requested()) {
4483 qemu_system_reset();
4486 if (qemu_powerdown_requested())
4487 qemu_system_powerdown();
4488 if ((r
= qemu_vmstop_requested()))
4494 static void version(void)
4496 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4499 static void help(int exitcode
)
4502 printf("usage: %s [options] [disk_image]\n"
4504 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4506 #define DEF(option, opt_arg, opt_enum, opt_help) \
4508 #define DEFHEADING(text) stringify(text) "\n"
4509 #include "qemu-options.h"
4514 "During emulation, the following keys are useful:\n"
4515 "ctrl-alt-f toggle full screen\n"
4516 "ctrl-alt-n switch to virtual console 'n'\n"
4517 "ctrl-alt toggle mouse and keyboard grab\n"
4519 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4524 DEFAULT_NETWORK_SCRIPT
,
4525 DEFAULT_NETWORK_DOWN_SCRIPT
,
4527 DEFAULT_GDBSTUB_PORT
,
4532 #define HAS_ARG 0x0001
4535 #define DEF(option, opt_arg, opt_enum, opt_help) \
4537 #define DEFHEADING(text)
4538 #include "qemu-options.h"
4544 typedef struct QEMUOption
{
4550 static const QEMUOption qemu_options
[] = {
4551 { "h", 0, QEMU_OPTION_h
},
4552 #define DEF(option, opt_arg, opt_enum, opt_help) \
4553 { option, opt_arg, opt_enum },
4554 #define DEFHEADING(text)
4555 #include "qemu-options.h"
4563 struct soundhw soundhw
[] = {
4564 #ifdef HAS_AUDIO_CHOICE
4565 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4571 { .init_isa
= pcspk_audio_init
}
4578 "Creative Sound Blaster 16",
4581 { .init_isa
= SB16_init
}
4585 #ifdef CONFIG_CS4231A
4591 { .init_isa
= cs4231a_init
}
4599 "Yamaha YMF262 (OPL3)",
4601 "Yamaha YM3812 (OPL2)",
4605 { .init_isa
= Adlib_init
}
4612 "Gravis Ultrasound GF1",
4615 { .init_isa
= GUS_init
}
4622 "Intel 82801AA AC97 Audio",
4625 { .init_pci
= ac97_init
}
4629 #ifdef CONFIG_ES1370
4632 "ENSONIQ AudioPCI ES1370",
4635 { .init_pci
= es1370_init
}
4639 #endif /* HAS_AUDIO_CHOICE */
4641 { NULL
, NULL
, 0, 0, { NULL
} }
4644 static void select_soundhw (const char *optarg
)
4648 if (*optarg
== '?') {
4651 printf ("Valid sound card names (comma separated):\n");
4652 for (c
= soundhw
; c
->name
; ++c
) {
4653 printf ("%-11s %s\n", c
->name
, c
->descr
);
4655 printf ("\n-soundhw all will enable all of the above\n");
4656 exit (*optarg
!= '?');
4664 if (!strcmp (optarg
, "all")) {
4665 for (c
= soundhw
; c
->name
; ++c
) {
4673 e
= strchr (p
, ',');
4674 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4676 for (c
= soundhw
; c
->name
; ++c
) {
4677 if (!strncmp (c
->name
, p
, l
)) {
4686 "Unknown sound card name (too big to show)\n");
4689 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4694 p
+= l
+ (e
!= NULL
);
4698 goto show_valid_cards
;
4703 static void select_vgahw (const char *p
)
4707 cirrus_vga_enabled
= 0;
4708 std_vga_enabled
= 0;
4711 if (strstart(p
, "std", &opts
)) {
4712 std_vga_enabled
= 1;
4713 } else if (strstart(p
, "cirrus", &opts
)) {
4714 cirrus_vga_enabled
= 1;
4715 } else if (strstart(p
, "vmware", &opts
)) {
4717 } else if (strstart(p
, "xenfb", &opts
)) {
4719 } else if (!strstart(p
, "none", &opts
)) {
4721 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4725 const char *nextopt
;
4727 if (strstart(opts
, ",retrace=", &nextopt
)) {
4729 if (strstart(opts
, "dumb", &nextopt
))
4730 vga_retrace_method
= VGA_RETRACE_DUMB
;
4731 else if (strstart(opts
, "precise", &nextopt
))
4732 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4733 else goto invalid_vga
;
4734 } else goto invalid_vga
;
4740 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4742 exit(STATUS_CONTROL_C_EXIT
);
4747 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4751 if(strlen(str
) != 36)
4754 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4755 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4756 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4762 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4768 #define MAX_NET_CLIENTS 32
4772 static void termsig_handler(int signal
)
4774 qemu_system_shutdown_request();
4777 static void sigchld_handler(int signal
)
4779 waitpid(-1, NULL
, WNOHANG
);
4782 static void sighandler_setup(void)
4784 struct sigaction act
;
4786 memset(&act
, 0, sizeof(act
));
4787 act
.sa_handler
= termsig_handler
;
4788 sigaction(SIGINT
, &act
, NULL
);
4789 sigaction(SIGHUP
, &act
, NULL
);
4790 sigaction(SIGTERM
, &act
, NULL
);
4792 act
.sa_handler
= sigchld_handler
;
4793 act
.sa_flags
= SA_NOCLDSTOP
;
4794 sigaction(SIGCHLD
, &act
, NULL
);
4800 /* Look for support files in the same directory as the executable. */
4801 static char *find_datadir(const char *argv0
)
4807 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4814 while (p
!= buf
&& *p
!= '\\')
4817 if (access(buf
, R_OK
) == 0) {
4818 return qemu_strdup(buf
);
4824 /* Find a likely location for support files using the location of the binary.
4825 For installed binaries this will be "$bindir/../share/qemu". When
4826 running from the build tree this will be "$bindir/../pc-bios". */
4827 #define SHARE_SUFFIX "/share/qemu"
4828 #define BUILD_SUFFIX "/pc-bios"
4829 static char *find_datadir(const char *argv0
)
4839 #if defined(__linux__)
4842 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4848 #elif defined(__FreeBSD__)
4851 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4858 /* If we don't have any way of figuring out the actual executable
4859 location then try argv[0]. */
4864 p
= realpath(argv0
, p
);
4872 max_len
= strlen(dir
) +
4873 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1;
4874 res
= qemu_mallocz(max_len
);
4875 snprintf(res
, max_len
, "%s%s", dir
, SHARE_SUFFIX
);
4876 if (access(res
, R_OK
)) {
4877 snprintf(res
, max_len
, "%s%s", dir
, BUILD_SUFFIX
);
4878 if (access(res
, R_OK
)) {
4892 char *qemu_find_file(int type
, const char *name
)
4898 /* If name contains path separators then try it as a straight path. */
4899 if ((strchr(name
, '/') || strchr(name
, '\\'))
4900 && access(name
, R_OK
) == 0) {
4901 return strdup(name
);
4904 case QEMU_FILE_TYPE_BIOS
:
4907 case QEMU_FILE_TYPE_KEYMAP
:
4908 subdir
= "keymaps/";
4913 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4914 buf
= qemu_mallocz(len
);
4915 snprintf(buf
, len
, "%s/%s%s", data_dir
, subdir
, name
);
4916 if (access(buf
, R_OK
)) {
4923 int main(int argc
, char **argv
, char **envp
)
4925 const char *gdbstub_dev
= NULL
;
4926 uint32_t boot_devices_bitmap
= 0;
4928 int snapshot
, linux_boot
, net_boot
;
4929 const char *initrd_filename
;
4930 const char *kernel_filename
, *kernel_cmdline
;
4931 const char *boot_devices
= "";
4933 DisplayChangeListener
*dcl
;
4934 int cyls
, heads
, secs
, translation
;
4935 const char *net_clients
[MAX_NET_CLIENTS
];
4937 const char *bt_opts
[MAX_BT_CMDLINE
];
4941 const char *r
, *optarg
;
4942 CharDriverState
*monitor_hd
= NULL
;
4943 const char *monitor_device
;
4944 const char *serial_devices
[MAX_SERIAL_PORTS
];
4945 int serial_device_index
;
4946 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4947 int parallel_device_index
;
4948 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4949 int virtio_console_index
;
4950 const char *loadvm
= NULL
;
4951 QEMUMachine
*machine
;
4952 const char *cpu_model
;
4953 const char *usb_devices
[MAX_USB_CMDLINE
];
4954 int usb_devices_index
;
4959 const char *pid_file
= NULL
;
4960 const char *incoming
= NULL
;
4963 struct passwd
*pwd
= NULL
;
4964 const char *chroot_dir
= NULL
;
4965 const char *run_as
= NULL
;
4968 int show_vnc_port
= 0;
4970 qemu_cache_utils_init(envp
);
4972 LIST_INIT (&vm_change_state_head
);
4975 struct sigaction act
;
4976 sigfillset(&act
.sa_mask
);
4978 act
.sa_handler
= SIG_IGN
;
4979 sigaction(SIGPIPE
, &act
, NULL
);
4982 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4983 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4984 QEMU to run on a single CPU */
4989 h
= GetCurrentProcess();
4990 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4991 for(i
= 0; i
< 32; i
++) {
4992 if (mask
& (1 << i
))
4997 SetProcessAffinityMask(h
, mask
);
5003 module_call_init(MODULE_INIT_MACHINE
);
5004 machine
= find_default_machine();
5006 initrd_filename
= NULL
;
5009 kernel_filename
= NULL
;
5010 kernel_cmdline
= "";
5011 cyls
= heads
= secs
= 0;
5012 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5013 monitor_device
= "vc:80Cx24C";
5015 serial_devices
[0] = "vc:80Cx24C";
5016 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
5017 serial_devices
[i
] = NULL
;
5018 serial_device_index
= 0;
5020 parallel_devices
[0] = "vc:80Cx24C";
5021 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
5022 parallel_devices
[i
] = NULL
;
5023 parallel_device_index
= 0;
5025 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
5026 virtio_consoles
[i
] = NULL
;
5027 virtio_console_index
= 0;
5029 for (i
= 0; i
< MAX_NODES
; i
++) {
5031 node_cpumask
[i
] = 0;
5034 usb_devices_index
= 0;
5048 register_watchdogs();
5056 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
5058 const QEMUOption
*popt
;
5061 /* Treat --foo the same as -foo. */
5064 popt
= qemu_options
;
5067 fprintf(stderr
, "%s: invalid option -- '%s'\n",
5071 if (!strcmp(popt
->name
, r
+ 1))
5075 if (popt
->flags
& HAS_ARG
) {
5076 if (optind
>= argc
) {
5077 fprintf(stderr
, "%s: option '%s' requires an argument\n",
5081 optarg
= argv
[optind
++];
5086 switch(popt
->index
) {
5088 machine
= find_machine(optarg
);
5091 printf("Supported machines are:\n");
5092 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
5093 printf("%-10s %s%s\n",
5095 m
->is_default
? " (default)" : "");
5097 exit(*optarg
!= '?');
5100 case QEMU_OPTION_cpu
:
5101 /* hw initialization will check this */
5102 if (*optarg
== '?') {
5103 /* XXX: implement xxx_cpu_list for targets that still miss it */
5104 #if defined(cpu_list)
5105 cpu_list(stdout
, &fprintf
);
5112 case QEMU_OPTION_initrd
:
5113 initrd_filename
= optarg
;
5115 case QEMU_OPTION_hda
:
5117 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
5119 hda_index
= drive_add(optarg
, HD_ALIAS
5120 ",cyls=%d,heads=%d,secs=%d%s",
5121 0, cyls
, heads
, secs
,
5122 translation
== BIOS_ATA_TRANSLATION_LBA
?
5124 translation
== BIOS_ATA_TRANSLATION_NONE
?
5125 ",trans=none" : "");
5127 case QEMU_OPTION_hdb
:
5128 case QEMU_OPTION_hdc
:
5129 case QEMU_OPTION_hdd
:
5130 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5132 case QEMU_OPTION_drive
:
5133 drive_add(NULL
, "%s", optarg
);
5135 case QEMU_OPTION_mtdblock
:
5136 drive_add(optarg
, MTD_ALIAS
);
5138 case QEMU_OPTION_sd
:
5139 drive_add(optarg
, SD_ALIAS
);
5141 case QEMU_OPTION_pflash
:
5142 drive_add(optarg
, PFLASH_ALIAS
);
5144 case QEMU_OPTION_snapshot
:
5147 case QEMU_OPTION_hdachs
:
5151 cyls
= strtol(p
, (char **)&p
, 0);
5152 if (cyls
< 1 || cyls
> 16383)
5157 heads
= strtol(p
, (char **)&p
, 0);
5158 if (heads
< 1 || heads
> 16)
5163 secs
= strtol(p
, (char **)&p
, 0);
5164 if (secs
< 1 || secs
> 63)
5168 if (!strcmp(p
, "none"))
5169 translation
= BIOS_ATA_TRANSLATION_NONE
;
5170 else if (!strcmp(p
, "lba"))
5171 translation
= BIOS_ATA_TRANSLATION_LBA
;
5172 else if (!strcmp(p
, "auto"))
5173 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5176 } else if (*p
!= '\0') {
5178 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5181 if (hda_index
!= -1)
5182 snprintf(drives_opt
[hda_index
].opt
,
5183 sizeof(drives_opt
[hda_index
].opt
),
5184 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5185 0, cyls
, heads
, secs
,
5186 translation
== BIOS_ATA_TRANSLATION_LBA
?
5188 translation
== BIOS_ATA_TRANSLATION_NONE
?
5189 ",trans=none" : "");
5192 case QEMU_OPTION_numa
:
5193 if (nb_numa_nodes
>= MAX_NODES
) {
5194 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5199 case QEMU_OPTION_nographic
:
5200 display_type
= DT_NOGRAPHIC
;
5202 #ifdef CONFIG_CURSES
5203 case QEMU_OPTION_curses
:
5204 display_type
= DT_CURSES
;
5207 case QEMU_OPTION_portrait
:
5210 case QEMU_OPTION_kernel
:
5211 kernel_filename
= optarg
;
5213 case QEMU_OPTION_append
:
5214 kernel_cmdline
= optarg
;
5216 case QEMU_OPTION_cdrom
:
5217 drive_add(optarg
, CDROM_ALIAS
);
5219 case QEMU_OPTION_boot
:
5220 boot_devices
= optarg
;
5221 /* We just do some generic consistency checks */
5223 /* Could easily be extended to 64 devices if needed */
5226 boot_devices_bitmap
= 0;
5227 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5228 /* Allowed boot devices are:
5229 * a b : floppy disk drives
5230 * c ... f : IDE disk drives
5231 * g ... m : machine implementation dependant drives
5232 * n ... p : network devices
5233 * It's up to each machine implementation to check
5234 * if the given boot devices match the actual hardware
5235 * implementation and firmware features.
5237 if (*p
< 'a' || *p
> 'q') {
5238 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5241 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5243 "Boot device '%c' was given twice\n",*p
);
5246 boot_devices_bitmap
|= 1 << (*p
- 'a');
5250 case QEMU_OPTION_fda
:
5251 case QEMU_OPTION_fdb
:
5252 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5255 case QEMU_OPTION_no_fd_bootchk
:
5259 case QEMU_OPTION_net
:
5260 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5261 fprintf(stderr
, "qemu: too many network clients\n");
5264 net_clients
[nb_net_clients
] = optarg
;
5268 case QEMU_OPTION_tftp
:
5269 tftp_prefix
= optarg
;
5271 case QEMU_OPTION_bootp
:
5272 bootp_filename
= optarg
;
5275 case QEMU_OPTION_smb
:
5276 net_slirp_smb(optarg
);
5279 case QEMU_OPTION_redir
:
5280 net_slirp_redir(NULL
, optarg
, NULL
);
5283 case QEMU_OPTION_bt
:
5284 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5285 fprintf(stderr
, "qemu: too many bluetooth options\n");
5288 bt_opts
[nb_bt_opts
++] = optarg
;
5291 case QEMU_OPTION_audio_help
:
5295 case QEMU_OPTION_soundhw
:
5296 select_soundhw (optarg
);
5302 case QEMU_OPTION_version
:
5306 case QEMU_OPTION_m
: {
5310 value
= strtoul(optarg
, &ptr
, 10);
5312 case 0: case 'M': case 'm':
5319 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5323 /* On 32-bit hosts, QEMU is limited by virtual address space */
5324 if (value
> (2047 << 20)
5325 #ifndef CONFIG_KQEMU
5326 && HOST_LONG_BITS
== 32
5329 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5332 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5333 fprintf(stderr
, "qemu: ram size too large\n");
5342 const CPULogItem
*item
;
5344 mask
= cpu_str_to_log_mask(optarg
);
5346 printf("Log items (comma separated):\n");
5347 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5348 printf("%-10s %s\n", item
->name
, item
->help
);
5356 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5358 case QEMU_OPTION_gdb
:
5359 gdbstub_dev
= optarg
;
5364 case QEMU_OPTION_bios
:
5367 case QEMU_OPTION_singlestep
:
5375 keyboard_layout
= optarg
;
5378 case QEMU_OPTION_localtime
:
5381 case QEMU_OPTION_vga
:
5382 select_vgahw (optarg
);
5384 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5390 w
= strtol(p
, (char **)&p
, 10);
5393 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5399 h
= strtol(p
, (char **)&p
, 10);
5404 depth
= strtol(p
, (char **)&p
, 10);
5405 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5406 depth
!= 24 && depth
!= 32)
5408 } else if (*p
== '\0') {
5409 depth
= graphic_depth
;
5416 graphic_depth
= depth
;
5420 case QEMU_OPTION_echr
:
5423 term_escape_char
= strtol(optarg
, &r
, 0);
5425 printf("Bad argument to echr\n");
5428 case QEMU_OPTION_monitor
:
5429 monitor_device
= optarg
;
5431 case QEMU_OPTION_serial
:
5432 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5433 fprintf(stderr
, "qemu: too many serial ports\n");
5436 serial_devices
[serial_device_index
] = optarg
;
5437 serial_device_index
++;
5439 case QEMU_OPTION_watchdog
:
5440 i
= select_watchdog(optarg
);
5442 exit (i
== 1 ? 1 : 0);
5444 case QEMU_OPTION_watchdog_action
:
5445 if (select_watchdog_action(optarg
) == -1) {
5446 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5450 case QEMU_OPTION_virtiocon
:
5451 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5452 fprintf(stderr
, "qemu: too many virtio consoles\n");
5455 virtio_consoles
[virtio_console_index
] = optarg
;
5456 virtio_console_index
++;
5458 case QEMU_OPTION_parallel
:
5459 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5460 fprintf(stderr
, "qemu: too many parallel ports\n");
5463 parallel_devices
[parallel_device_index
] = optarg
;
5464 parallel_device_index
++;
5466 case QEMU_OPTION_loadvm
:
5469 case QEMU_OPTION_full_screen
:
5473 case QEMU_OPTION_no_frame
:
5476 case QEMU_OPTION_alt_grab
:
5479 case QEMU_OPTION_no_quit
:
5482 case QEMU_OPTION_sdl
:
5483 display_type
= DT_SDL
;
5486 case QEMU_OPTION_pidfile
:
5490 case QEMU_OPTION_win2k_hack
:
5491 win2k_install_hack
= 1;
5493 case QEMU_OPTION_rtc_td_hack
:
5496 case QEMU_OPTION_acpitable
:
5497 if(acpi_table_add(optarg
) < 0) {
5498 fprintf(stderr
, "Wrong acpi table provided\n");
5502 case QEMU_OPTION_smbios
:
5503 if(smbios_entry_add(optarg
) < 0) {
5504 fprintf(stderr
, "Wrong smbios provided\n");
5510 case QEMU_OPTION_no_kqemu
:
5513 case QEMU_OPTION_kernel_kqemu
:
5518 case QEMU_OPTION_enable_kvm
:
5525 case QEMU_OPTION_usb
:
5528 case QEMU_OPTION_usbdevice
:
5530 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5531 fprintf(stderr
, "Too many USB devices\n");
5534 usb_devices
[usb_devices_index
] = optarg
;
5535 usb_devices_index
++;
5537 case QEMU_OPTION_smp
:
5538 smp_cpus
= atoi(optarg
);
5540 fprintf(stderr
, "Invalid number of CPUs\n");
5544 case QEMU_OPTION_vnc
:
5545 display_type
= DT_VNC
;
5546 vnc_display
= optarg
;
5549 case QEMU_OPTION_no_acpi
:
5552 case QEMU_OPTION_no_hpet
:
5555 case QEMU_OPTION_no_virtio_balloon
:
5556 no_virtio_balloon
= 1;
5559 case QEMU_OPTION_no_reboot
:
5562 case QEMU_OPTION_no_shutdown
:
5565 case QEMU_OPTION_show_cursor
:
5568 case QEMU_OPTION_uuid
:
5569 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5570 fprintf(stderr
, "Fail to parse UUID string."
5571 " Wrong format.\n");
5576 case QEMU_OPTION_daemonize
:
5580 case QEMU_OPTION_option_rom
:
5581 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5582 fprintf(stderr
, "Too many option ROMs\n");
5585 option_rom
[nb_option_roms
] = optarg
;
5588 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5589 case QEMU_OPTION_semihosting
:
5590 semihosting_enabled
= 1;
5593 case QEMU_OPTION_name
:
5596 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5597 case QEMU_OPTION_prom_env
:
5598 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5599 fprintf(stderr
, "Too many prom variables\n");
5602 prom_envs
[nb_prom_envs
] = optarg
;
5607 case QEMU_OPTION_old_param
:
5611 case QEMU_OPTION_clock
:
5612 configure_alarms(optarg
);
5614 case QEMU_OPTION_startdate
:
5617 time_t rtc_start_date
;
5618 if (!strcmp(optarg
, "now")) {
5619 rtc_date_offset
= -1;
5621 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5629 } else if (sscanf(optarg
, "%d-%d-%d",
5632 &tm
.tm_mday
) == 3) {
5641 rtc_start_date
= mktimegm(&tm
);
5642 if (rtc_start_date
== -1) {
5644 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5645 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5648 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5652 case QEMU_OPTION_tb_size
:
5653 tb_size
= strtol(optarg
, NULL
, 0);
5657 case QEMU_OPTION_icount
:
5659 if (strcmp(optarg
, "auto") == 0) {
5660 icount_time_shift
= -1;
5662 icount_time_shift
= strtol(optarg
, NULL
, 0);
5665 case QEMU_OPTION_incoming
:
5669 case QEMU_OPTION_chroot
:
5670 chroot_dir
= optarg
;
5672 case QEMU_OPTION_runas
:
5677 case QEMU_OPTION_xen_domid
:
5678 xen_domid
= atoi(optarg
);
5680 case QEMU_OPTION_xen_create
:
5681 xen_mode
= XEN_CREATE
;
5683 case QEMU_OPTION_xen_attach
:
5684 xen_mode
= XEN_ATTACH
;
5691 /* If no data_dir is specified then try to find it relative to the
5694 data_dir
= find_datadir(argv
[0]);
5696 /* If all else fails use the install patch specified when building. */
5698 data_dir
= CONFIG_QEMU_SHAREDIR
;
5701 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5702 if (kvm_allowed
&& kqemu_allowed
) {
5704 "You can not enable both KVM and kqemu at the same time\n");
5709 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5710 if (smp_cpus
> machine
->max_cpus
) {
5711 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5712 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5717 if (display_type
== DT_NOGRAPHIC
) {
5718 if (serial_device_index
== 0)
5719 serial_devices
[0] = "stdio";
5720 if (parallel_device_index
== 0)
5721 parallel_devices
[0] = "null";
5722 if (strncmp(monitor_device
, "vc", 2) == 0)
5723 monitor_device
= "stdio";
5730 if (pipe(fds
) == -1)
5741 len
= read(fds
[0], &status
, 1);
5742 if (len
== -1 && (errno
== EINTR
))
5747 else if (status
== 1) {
5748 fprintf(stderr
, "Could not acquire pidfile\n");
5765 signal(SIGTSTP
, SIG_IGN
);
5766 signal(SIGTTOU
, SIG_IGN
);
5767 signal(SIGTTIN
, SIG_IGN
);
5770 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5773 write(fds
[1], &status
, 1);
5775 fprintf(stderr
, "Could not acquire pid file\n");
5784 if (qemu_init_main_loop()) {
5785 fprintf(stderr
, "qemu_init_main_loop failed\n");
5788 linux_boot
= (kernel_filename
!= NULL
);
5789 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5791 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5792 fprintf(stderr
, "-append only allowed with -kernel option\n");
5796 if (!linux_boot
&& initrd_filename
!= NULL
) {
5797 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5801 /* boot to floppy or the default cd if no hard disk defined yet */
5802 if (!boot_devices
[0]) {
5803 boot_devices
= "cad";
5805 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5808 if (init_timer_alarm() < 0) {
5809 fprintf(stderr
, "could not initialize alarm timer\n");
5812 if (use_icount
&& icount_time_shift
< 0) {
5814 /* 125MIPS seems a reasonable initial guess at the guest speed.
5815 It will be corrected fairly quickly anyway. */
5816 icount_time_shift
= 3;
5817 init_icount_adjust();
5824 /* init network clients */
5825 if (nb_net_clients
== 0) {
5826 /* if no clients, we use a default config */
5827 net_clients
[nb_net_clients
++] = "nic";
5829 net_clients
[nb_net_clients
++] = "user";
5833 for(i
= 0;i
< nb_net_clients
; i
++) {
5834 if (net_client_parse(net_clients
[i
]) < 0)
5840 /* XXX: this should be moved in the PC machine instantiation code */
5841 if (net_boot
!= 0) {
5843 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5844 const char *model
= nd_table
[i
].model
;
5847 if (net_boot
& (1 << i
)) {
5850 snprintf(buf
, sizeof(buf
), "pxe-%s.bin", model
);
5851 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, buf
);
5852 if (filename
&& get_image_size(filename
) > 0) {
5853 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5854 fprintf(stderr
, "Too many option ROMs\n");
5857 option_rom
[nb_option_roms
] = qemu_strdup(buf
);
5862 qemu_free(filename
);
5867 fprintf(stderr
, "No valid PXE rom found for network device\n");
5873 /* init the bluetooth world */
5874 for (i
= 0; i
< nb_bt_opts
; i
++)
5875 if (bt_parse(bt_opts
[i
]))
5878 /* init the memory */
5880 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5883 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5884 guest ram allocation. It needs to go away. */
5885 if (kqemu_allowed
) {
5886 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5887 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5888 if (!kqemu_phys_ram_base
) {
5889 fprintf(stderr
, "Could not allocate physical memory\n");
5895 /* init the dynamic translator */
5896 cpu_exec_init_all(tb_size
* 1024 * 1024);
5900 /* we always create the cdrom drive, even if no disk is there */
5902 if (nb_drives_opt
< MAX_DRIVES
)
5903 drive_add(NULL
, CDROM_ALIAS
);
5905 /* we always create at least one floppy */
5907 if (nb_drives_opt
< MAX_DRIVES
)
5908 drive_add(NULL
, FD_ALIAS
, 0);
5910 /* we always create one sd slot, even if no card is in it */
5912 if (nb_drives_opt
< MAX_DRIVES
)
5913 drive_add(NULL
, SD_ALIAS
);
5915 /* open the virtual block devices */
5917 for(i
= 0; i
< nb_drives_opt
; i
++)
5918 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5921 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5922 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5925 /* must be after terminal init, SDL library changes signal handlers */
5929 /* Maintain compatibility with multiple stdio monitors */
5930 if (!strcmp(monitor_device
,"stdio")) {
5931 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5932 const char *devname
= serial_devices
[i
];
5933 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5934 monitor_device
= NULL
;
5936 } else if (devname
&& !strcmp(devname
,"stdio")) {
5937 monitor_device
= NULL
;
5938 serial_devices
[i
] = "mon:stdio";
5944 if (nb_numa_nodes
> 0) {
5947 if (nb_numa_nodes
> smp_cpus
) {
5948 nb_numa_nodes
= smp_cpus
;
5951 /* If no memory size if given for any node, assume the default case
5952 * and distribute the available memory equally across all nodes
5954 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5955 if (node_mem
[i
] != 0)
5958 if (i
== nb_numa_nodes
) {
5959 uint64_t usedmem
= 0;
5961 /* On Linux, the each node's border has to be 8MB aligned,
5962 * the final node gets the rest.
5964 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5965 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5966 usedmem
+= node_mem
[i
];
5968 node_mem
[i
] = ram_size
- usedmem
;
5971 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5972 if (node_cpumask
[i
] != 0)
5975 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5976 * must cope with this anyway, because there are BIOSes out there in
5977 * real machines which also use this scheme.
5979 if (i
== nb_numa_nodes
) {
5980 for (i
= 0; i
< smp_cpus
; i
++) {
5981 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5986 if (kvm_enabled()) {
5989 ret
= kvm_init(smp_cpus
);
5991 fprintf(stderr
, "failed to initialize KVM\n");
5996 if (monitor_device
) {
5997 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5999 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
6004 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6005 const char *devname
= serial_devices
[i
];
6006 if (devname
&& strcmp(devname
, "none")) {
6008 snprintf(label
, sizeof(label
), "serial%d", i
);
6009 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6010 if (!serial_hds
[i
]) {
6011 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
6018 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6019 const char *devname
= parallel_devices
[i
];
6020 if (devname
&& strcmp(devname
, "none")) {
6022 snprintf(label
, sizeof(label
), "parallel%d", i
);
6023 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6024 if (!parallel_hds
[i
]) {
6025 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
6032 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6033 const char *devname
= virtio_consoles
[i
];
6034 if (devname
&& strcmp(devname
, "none")) {
6036 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6037 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6038 if (!virtcon_hds
[i
]) {
6039 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
6046 module_call_init(MODULE_INIT_DEVICE
);
6048 machine
->init(ram_size
, boot_devices
,
6049 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
6052 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
6053 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6054 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
6060 current_machine
= machine
;
6062 /* Set KVM's vcpu state to qemu's initial CPUState. */
6063 if (kvm_enabled()) {
6066 ret
= kvm_sync_vcpus();
6068 fprintf(stderr
, "failed to initialize vcpus\n");
6073 /* init USB devices */
6075 for(i
= 0; i
< usb_devices_index
; i
++) {
6076 if (usb_device_add(usb_devices
[i
], 0) < 0) {
6077 fprintf(stderr
, "Warning: could not add USB device %s\n",
6084 dumb_display_init();
6085 /* just use the first displaystate for the moment */
6088 if (display_type
== DT_DEFAULT
) {
6089 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6090 display_type
= DT_SDL
;
6092 display_type
= DT_VNC
;
6093 vnc_display
= "localhost:0,to=99";
6099 switch (display_type
) {
6102 #if defined(CONFIG_CURSES)
6104 curses_display_init(ds
, full_screen
);
6107 #if defined(CONFIG_SDL)
6109 sdl_display_init(ds
, full_screen
, no_frame
);
6111 #elif defined(CONFIG_COCOA)
6113 cocoa_display_init(ds
, full_screen
);
6117 vnc_display_init(ds
);
6118 if (vnc_display_open(ds
, vnc_display
) < 0)
6121 if (show_vnc_port
) {
6122 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
6130 dcl
= ds
->listeners
;
6131 while (dcl
!= NULL
) {
6132 if (dcl
->dpy_refresh
!= NULL
) {
6133 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
6134 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
6139 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
6140 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
6141 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
6144 text_consoles_set_display(display_state
);
6145 qemu_chr_initial_reset();
6147 if (monitor_device
&& monitor_hd
)
6148 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6150 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6151 const char *devname
= serial_devices
[i
];
6152 if (devname
&& strcmp(devname
, "none")) {
6154 snprintf(label
, sizeof(label
), "serial%d", i
);
6155 if (strstart(devname
, "vc", 0))
6156 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6160 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6161 const char *devname
= parallel_devices
[i
];
6162 if (devname
&& strcmp(devname
, "none")) {
6164 snprintf(label
, sizeof(label
), "parallel%d", i
);
6165 if (strstart(devname
, "vc", 0))
6166 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6170 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6171 const char *devname
= virtio_consoles
[i
];
6172 if (virtcon_hds
[i
] && devname
) {
6174 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6175 if (strstart(devname
, "vc", 0))
6176 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6180 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6181 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6187 do_loadvm(cur_mon
, loadvm
);
6190 autostart
= 0; /* fixme how to deal with -daemonize */
6191 qemu_start_incoming_migration(incoming
);
6203 len
= write(fds
[1], &status
, 1);
6204 if (len
== -1 && (errno
== EINTR
))
6211 TFR(fd
= open("/dev/null", O_RDWR
));
6217 pwd
= getpwnam(run_as
);
6219 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6225 if (chroot(chroot_dir
) < 0) {
6226 fprintf(stderr
, "chroot failed\n");
6233 if (setgid(pwd
->pw_gid
) < 0) {
6234 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6237 if (setuid(pwd
->pw_uid
) < 0) {
6238 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6241 if (setuid(0) != -1) {
6242 fprintf(stderr
, "Dropping privileges failed\n");