Introduce -smp , maxcpus= flag to specify maximum number of CPUS.
[qemu/aliguori-queue.git] / kvm-all.c
blob91d9333a66f2209057ccc38f388c0b46876cc508
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 int irqchip_in_kernel;
67 int pit_in_kernel;
70 static KVMState *kvm_state;
72 static KVMSlot *kvm_alloc_slot(KVMState *s)
74 int i;
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
92 int i;
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
99 return mem;
103 return NULL;
107 * Find overlapping slot with lowest start address
109 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
113 KVMSlot *found = NULL;
114 int i;
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
121 continue;
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
126 found = mem;
130 return found;
133 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 struct kvm_userspace_memory_region mem;
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141 mem.flags = slot->flags;
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148 static void kvm_reset_vcpu(void *opaque)
150 CPUState *env = opaque;
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154 abort();
158 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
160 if (env == cpu_single_env) {
161 func(data);
162 return;
164 abort();
167 int kvm_irqchip_in_kernel(void)
169 return kvm_state->irqchip_in_kernel;
172 int kvm_pit_in_kernel(void)
174 return kvm_state->pit_in_kernel;
178 int kvm_init_vcpu(CPUState *env)
180 KVMState *s = kvm_state;
181 long mmap_size;
182 int ret;
184 dprintf("kvm_init_vcpu\n");
186 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
187 if (ret < 0) {
188 dprintf("kvm_create_vcpu failed\n");
189 goto err;
192 env->kvm_fd = ret;
193 env->kvm_state = s;
195 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
196 if (mmap_size < 0) {
197 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
198 goto err;
201 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
202 env->kvm_fd, 0);
203 if (env->kvm_run == MAP_FAILED) {
204 ret = -errno;
205 dprintf("mmap'ing vcpu state failed\n");
206 goto err;
209 ret = kvm_arch_init_vcpu(env);
210 if (ret == 0) {
211 qemu_register_reset(kvm_reset_vcpu, env);
212 ret = kvm_arch_put_registers(env);
214 err:
215 return ret;
218 int kvm_put_mp_state(CPUState *env)
220 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
222 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
225 int kvm_get_mp_state(CPUState *env)
227 struct kvm_mp_state mp_state;
228 int ret;
230 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
231 if (ret < 0) {
232 return ret;
234 env->mp_state = mp_state.mp_state;
235 return 0;
239 * dirty pages logging control
241 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
242 ram_addr_t size, int flags, int mask)
244 KVMState *s = kvm_state;
245 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
246 int old_flags;
248 if (mem == NULL) {
249 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
250 TARGET_FMT_plx "\n", __func__, phys_addr,
251 (target_phys_addr_t)(phys_addr + size - 1));
252 return -EINVAL;
255 old_flags = mem->flags;
257 flags = (mem->flags & ~mask) | flags;
258 mem->flags = flags;
260 /* If nothing changed effectively, no need to issue ioctl */
261 if (s->migration_log) {
262 flags |= KVM_MEM_LOG_DIRTY_PAGES;
264 if (flags == old_flags) {
265 return 0;
268 return kvm_set_user_memory_region(s, mem);
271 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
273 return kvm_dirty_pages_log_change(phys_addr, size,
274 KVM_MEM_LOG_DIRTY_PAGES,
275 KVM_MEM_LOG_DIRTY_PAGES);
278 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
280 return kvm_dirty_pages_log_change(phys_addr, size,
282 KVM_MEM_LOG_DIRTY_PAGES);
285 int kvm_set_migration_log(int enable)
287 KVMState *s = kvm_state;
288 KVMSlot *mem;
289 int i, err;
291 s->migration_log = enable;
293 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
294 mem = &s->slots[i];
296 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
297 continue;
299 err = kvm_set_user_memory_region(s, mem);
300 if (err) {
301 return err;
304 return 0;
307 static int test_le_bit(unsigned long nr, unsigned char *addr)
309 return (addr[nr >> 3] >> (nr & 7)) & 1;
313 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
314 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
315 * This means all bits are set to dirty.
317 * @start_add: start of logged region.
318 * @end_addr: end of logged region.
320 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
321 target_phys_addr_t end_addr)
323 KVMState *s = kvm_state;
324 unsigned long size, allocated_size = 0;
325 target_phys_addr_t phys_addr;
326 ram_addr_t addr;
327 KVMDirtyLog d;
328 KVMSlot *mem;
329 int ret = 0;
330 int r;
332 d.dirty_bitmap = NULL;
333 while (start_addr < end_addr) {
334 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
335 if (mem == NULL) {
336 break;
339 /* We didn't activate dirty logging? Don't care then. */
340 if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
341 continue;
344 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
345 if (!d.dirty_bitmap) {
346 d.dirty_bitmap = qemu_malloc(size);
347 } else if (size > allocated_size) {
348 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
350 allocated_size = size;
351 memset(d.dirty_bitmap, 0, allocated_size);
353 d.slot = mem->slot;
355 r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
356 if (r == -EINVAL) {
357 dprintf("ioctl failed %d\n", errno);
358 ret = -1;
359 break;
362 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
363 phys_addr < mem->start_addr + mem->memory_size;
364 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
365 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
366 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
368 if (test_le_bit(nr, bitmap)) {
369 cpu_physical_memory_set_dirty(addr);
370 } else if (r < 0) {
371 /* When our KVM implementation doesn't know about dirty logging
372 * we can just assume it's always dirty and be fine. */
373 cpu_physical_memory_set_dirty(addr);
376 start_addr = phys_addr;
378 qemu_free(d.dirty_bitmap);
380 return ret;
383 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
385 int ret = -ENOSYS;
386 #ifdef KVM_CAP_COALESCED_MMIO
387 KVMState *s = kvm_state;
389 if (s->coalesced_mmio) {
390 struct kvm_coalesced_mmio_zone zone;
392 zone.addr = start;
393 zone.size = size;
395 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
397 #endif
399 return ret;
402 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 int ret = -ENOSYS;
405 #ifdef KVM_CAP_COALESCED_MMIO
406 KVMState *s = kvm_state;
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
411 zone.addr = start;
412 zone.size = size;
414 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
416 #endif
418 return ret;
421 int kvm_check_extension(KVMState *s, unsigned int extension)
423 int ret;
425 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
426 if (ret < 0) {
427 ret = 0;
430 return ret;
433 int kvm_init(int smp_cpus)
435 static const char upgrade_note[] =
436 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
437 "(see http://sourceforge.net/projects/kvm).\n";
438 KVMState *s;
439 int ret;
440 int i;
442 if (smp_cpus > 1) {
443 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
444 return -EINVAL;
447 s = qemu_mallocz(sizeof(KVMState));
449 #ifdef KVM_CAP_SET_GUEST_DEBUG
450 TAILQ_INIT(&s->kvm_sw_breakpoints);
451 #endif
452 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
453 s->slots[i].slot = i;
455 s->vmfd = -1;
456 s->fd = open("/dev/kvm", O_RDWR);
457 if (s->fd == -1) {
458 fprintf(stderr, "Could not access KVM kernel module: %m\n");
459 ret = -errno;
460 goto err;
463 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
464 if (ret < KVM_API_VERSION) {
465 if (ret > 0)
466 ret = -EINVAL;
467 fprintf(stderr, "kvm version too old\n");
468 goto err;
471 if (ret > KVM_API_VERSION) {
472 ret = -EINVAL;
473 fprintf(stderr, "kvm version not supported\n");
474 goto err;
477 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
478 if (s->vmfd < 0)
479 goto err;
481 /* initially, KVM allocated its own memory and we had to jump through
482 * hooks to make phys_ram_base point to this. Modern versions of KVM
483 * just use a user allocated buffer so we can use regular pages
484 * unmodified. Make sure we have a sufficiently modern version of KVM.
486 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
487 ret = -EINVAL;
488 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
489 upgrade_note);
490 goto err;
493 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
494 * destroyed properly. Since we rely on this capability, refuse to work
495 * with any kernel without this capability. */
496 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
497 ret = -EINVAL;
499 fprintf(stderr,
500 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
501 upgrade_note);
502 goto err;
505 #ifdef KVM_CAP_COALESCED_MMIO
506 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
507 #else
508 s->coalesced_mmio = 0;
509 #endif
511 s->broken_set_mem_region = 1;
512 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
513 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
514 if (ret > 0) {
515 s->broken_set_mem_region = 0;
517 #endif
519 ret = kvm_arch_init(s, smp_cpus);
520 if (ret < 0)
521 goto err;
523 kvm_state = s;
525 return 0;
527 err:
528 if (s) {
529 if (s->vmfd != -1)
530 close(s->vmfd);
531 if (s->fd != -1)
532 close(s->fd);
534 qemu_free(s);
536 return ret;
539 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
540 int direction, int size, uint32_t count)
542 int i;
543 uint8_t *ptr = data;
545 for (i = 0; i < count; i++) {
546 if (direction == KVM_EXIT_IO_IN) {
547 switch (size) {
548 case 1:
549 stb_p(ptr, cpu_inb(env, port));
550 break;
551 case 2:
552 stw_p(ptr, cpu_inw(env, port));
553 break;
554 case 4:
555 stl_p(ptr, cpu_inl(env, port));
556 break;
558 } else {
559 switch (size) {
560 case 1:
561 cpu_outb(env, port, ldub_p(ptr));
562 break;
563 case 2:
564 cpu_outw(env, port, lduw_p(ptr));
565 break;
566 case 4:
567 cpu_outl(env, port, ldl_p(ptr));
568 break;
572 ptr += size;
575 return 1;
578 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
580 #ifdef KVM_CAP_COALESCED_MMIO
581 KVMState *s = kvm_state;
582 if (s->coalesced_mmio) {
583 struct kvm_coalesced_mmio_ring *ring;
585 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
586 while (ring->first != ring->last) {
587 struct kvm_coalesced_mmio *ent;
589 ent = &ring->coalesced_mmio[ring->first];
591 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
592 /* FIXME smp_wmb() */
593 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
596 #endif
599 int kvm_cpu_exec(CPUState *env)
601 struct kvm_run *run = env->kvm_run;
602 int ret;
604 dprintf("kvm_cpu_exec()\n");
606 do {
607 if (env->exit_request) {
608 dprintf("interrupt exit requested\n");
609 ret = 0;
610 break;
613 kvm_arch_pre_run(env, run);
614 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
615 kvm_arch_post_run(env, run);
617 if (ret == -EINTR || ret == -EAGAIN) {
618 dprintf("io window exit\n");
619 ret = 0;
620 break;
623 if (ret < 0) {
624 dprintf("kvm run failed %s\n", strerror(-ret));
625 abort();
628 kvm_run_coalesced_mmio(env, run);
630 ret = 0; /* exit loop */
631 switch (run->exit_reason) {
632 case KVM_EXIT_IO:
633 dprintf("handle_io\n");
634 ret = kvm_handle_io(env, run->io.port,
635 (uint8_t *)run + run->io.data_offset,
636 run->io.direction,
637 run->io.size,
638 run->io.count);
639 break;
640 case KVM_EXIT_MMIO:
641 dprintf("handle_mmio\n");
642 cpu_physical_memory_rw(run->mmio.phys_addr,
643 run->mmio.data,
644 run->mmio.len,
645 run->mmio.is_write);
646 ret = 1;
647 break;
648 case KVM_EXIT_IRQ_WINDOW_OPEN:
649 dprintf("irq_window_open\n");
650 break;
651 case KVM_EXIT_SHUTDOWN:
652 dprintf("shutdown\n");
653 qemu_system_reset_request();
654 ret = 1;
655 break;
656 case KVM_EXIT_UNKNOWN:
657 dprintf("kvm_exit_unknown\n");
658 break;
659 case KVM_EXIT_FAIL_ENTRY:
660 dprintf("kvm_exit_fail_entry\n");
661 break;
662 case KVM_EXIT_EXCEPTION:
663 dprintf("kvm_exit_exception\n");
664 break;
665 case KVM_EXIT_DEBUG:
666 dprintf("kvm_exit_debug\n");
667 #ifdef KVM_CAP_SET_GUEST_DEBUG
668 if (kvm_arch_debug(&run->debug.arch)) {
669 gdb_set_stop_cpu(env);
670 vm_stop(EXCP_DEBUG);
671 env->exception_index = EXCP_DEBUG;
672 return 0;
674 /* re-enter, this exception was guest-internal */
675 ret = 1;
676 #endif /* KVM_CAP_SET_GUEST_DEBUG */
677 break;
678 default:
679 dprintf("kvm_arch_handle_exit\n");
680 ret = kvm_arch_handle_exit(env, run);
681 break;
683 } while (ret > 0);
685 if (env->exit_request) {
686 env->exit_request = 0;
687 env->exception_index = EXCP_INTERRUPT;
690 return ret;
693 void kvm_set_phys_mem(target_phys_addr_t start_addr,
694 ram_addr_t size,
695 ram_addr_t phys_offset)
697 KVMState *s = kvm_state;
698 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
699 KVMSlot *mem, old;
700 int err;
702 if (start_addr & ~TARGET_PAGE_MASK) {
703 if (flags >= IO_MEM_UNASSIGNED) {
704 if (!kvm_lookup_overlapping_slot(s, start_addr,
705 start_addr + size)) {
706 return;
708 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
709 } else {
710 fprintf(stderr, "Only page-aligned memory slots supported\n");
712 abort();
715 /* KVM does not support read-only slots */
716 phys_offset &= ~IO_MEM_ROM;
718 while (1) {
719 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
720 if (!mem) {
721 break;
724 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
725 (start_addr + size <= mem->start_addr + mem->memory_size) &&
726 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
727 /* The new slot fits into the existing one and comes with
728 * identical parameters - nothing to be done. */
729 return;
732 old = *mem;
734 /* unregister the overlapping slot */
735 mem->memory_size = 0;
736 err = kvm_set_user_memory_region(s, mem);
737 if (err) {
738 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
739 __func__, strerror(-err));
740 abort();
743 /* Workaround for older KVM versions: we can't join slots, even not by
744 * unregistering the previous ones and then registering the larger
745 * slot. We have to maintain the existing fragmentation. Sigh.
747 * This workaround assumes that the new slot starts at the same
748 * address as the first existing one. If not or if some overlapping
749 * slot comes around later, we will fail (not seen in practice so far)
750 * - and actually require a recent KVM version. */
751 if (s->broken_set_mem_region &&
752 old.start_addr == start_addr && old.memory_size < size &&
753 flags < IO_MEM_UNASSIGNED) {
754 mem = kvm_alloc_slot(s);
755 mem->memory_size = old.memory_size;
756 mem->start_addr = old.start_addr;
757 mem->phys_offset = old.phys_offset;
758 mem->flags = 0;
760 err = kvm_set_user_memory_region(s, mem);
761 if (err) {
762 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
763 strerror(-err));
764 abort();
767 start_addr += old.memory_size;
768 phys_offset += old.memory_size;
769 size -= old.memory_size;
770 continue;
773 /* register prefix slot */
774 if (old.start_addr < start_addr) {
775 mem = kvm_alloc_slot(s);
776 mem->memory_size = start_addr - old.start_addr;
777 mem->start_addr = old.start_addr;
778 mem->phys_offset = old.phys_offset;
779 mem->flags = 0;
781 err = kvm_set_user_memory_region(s, mem);
782 if (err) {
783 fprintf(stderr, "%s: error registering prefix slot: %s\n",
784 __func__, strerror(-err));
785 abort();
789 /* register suffix slot */
790 if (old.start_addr + old.memory_size > start_addr + size) {
791 ram_addr_t size_delta;
793 mem = kvm_alloc_slot(s);
794 mem->start_addr = start_addr + size;
795 size_delta = mem->start_addr - old.start_addr;
796 mem->memory_size = old.memory_size - size_delta;
797 mem->phys_offset = old.phys_offset + size_delta;
798 mem->flags = 0;
800 err = kvm_set_user_memory_region(s, mem);
801 if (err) {
802 fprintf(stderr, "%s: error registering suffix slot: %s\n",
803 __func__, strerror(-err));
804 abort();
809 /* in case the KVM bug workaround already "consumed" the new slot */
810 if (!size)
811 return;
813 /* KVM does not need to know about this memory */
814 if (flags >= IO_MEM_UNASSIGNED)
815 return;
817 mem = kvm_alloc_slot(s);
818 mem->memory_size = size;
819 mem->start_addr = start_addr;
820 mem->phys_offset = phys_offset;
821 mem->flags = 0;
823 err = kvm_set_user_memory_region(s, mem);
824 if (err) {
825 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
826 strerror(-err));
827 abort();
831 int kvm_ioctl(KVMState *s, int type, ...)
833 int ret;
834 void *arg;
835 va_list ap;
837 va_start(ap, type);
838 arg = va_arg(ap, void *);
839 va_end(ap);
841 ret = ioctl(s->fd, type, arg);
842 if (ret == -1)
843 ret = -errno;
845 return ret;
848 int kvm_vm_ioctl(KVMState *s, int type, ...)
850 int ret;
851 void *arg;
852 va_list ap;
854 va_start(ap, type);
855 arg = va_arg(ap, void *);
856 va_end(ap);
858 ret = ioctl(s->vmfd, type, arg);
859 if (ret == -1)
860 ret = -errno;
862 return ret;
865 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
867 int ret;
868 void *arg;
869 va_list ap;
871 va_start(ap, type);
872 arg = va_arg(ap, void *);
873 va_end(ap);
875 ret = ioctl(env->kvm_fd, type, arg);
876 if (ret == -1)
877 ret = -errno;
879 return ret;
882 int kvm_has_sync_mmu(void)
884 #ifdef KVM_CAP_SYNC_MMU
885 KVMState *s = kvm_state;
887 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
888 #else
889 return 0;
890 #endif
893 void kvm_setup_guest_memory(void *start, size_t size)
895 if (!kvm_has_sync_mmu()) {
896 #ifdef MADV_DONTFORK
897 int ret = madvise(start, size, MADV_DONTFORK);
899 if (ret) {
900 perror("madvice");
901 exit(1);
903 #else
904 fprintf(stderr,
905 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
906 exit(1);
907 #endif
911 #ifdef KVM_CAP_SET_GUEST_DEBUG
912 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
913 target_ulong pc)
915 struct kvm_sw_breakpoint *bp;
917 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
918 if (bp->pc == pc)
919 return bp;
921 return NULL;
924 int kvm_sw_breakpoints_active(CPUState *env)
926 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
929 struct kvm_set_guest_debug_data {
930 struct kvm_guest_debug dbg;
931 CPUState *env;
932 int err;
935 static void kvm_invoke_set_guest_debug(void *data)
937 struct kvm_set_guest_debug_data *dbg_data = data;
938 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
941 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
943 struct kvm_set_guest_debug_data data;
945 data.dbg.control = 0;
946 if (env->singlestep_enabled)
947 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
949 kvm_arch_update_guest_debug(env, &data.dbg);
950 data.dbg.control |= reinject_trap;
951 data.env = env;
953 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
954 return data.err;
957 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
958 target_ulong len, int type)
960 struct kvm_sw_breakpoint *bp;
961 CPUState *env;
962 int err;
964 if (type == GDB_BREAKPOINT_SW) {
965 bp = kvm_find_sw_breakpoint(current_env, addr);
966 if (bp) {
967 bp->use_count++;
968 return 0;
971 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
972 if (!bp)
973 return -ENOMEM;
975 bp->pc = addr;
976 bp->use_count = 1;
977 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
978 if (err) {
979 free(bp);
980 return err;
983 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
984 bp, entry);
985 } else {
986 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
987 if (err)
988 return err;
991 for (env = first_cpu; env != NULL; env = env->next_cpu) {
992 err = kvm_update_guest_debug(env, 0);
993 if (err)
994 return err;
996 return 0;
999 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1000 target_ulong len, int type)
1002 struct kvm_sw_breakpoint *bp;
1003 CPUState *env;
1004 int err;
1006 if (type == GDB_BREAKPOINT_SW) {
1007 bp = kvm_find_sw_breakpoint(current_env, addr);
1008 if (!bp)
1009 return -ENOENT;
1011 if (bp->use_count > 1) {
1012 bp->use_count--;
1013 return 0;
1016 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1017 if (err)
1018 return err;
1020 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1021 qemu_free(bp);
1022 } else {
1023 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1024 if (err)
1025 return err;
1028 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1029 err = kvm_update_guest_debug(env, 0);
1030 if (err)
1031 return err;
1033 return 0;
1036 void kvm_remove_all_breakpoints(CPUState *current_env)
1038 struct kvm_sw_breakpoint *bp, *next;
1039 KVMState *s = current_env->kvm_state;
1040 CPUState *env;
1042 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1043 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1044 /* Try harder to find a CPU that currently sees the breakpoint. */
1045 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1046 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1047 break;
1051 kvm_arch_remove_all_hw_breakpoints();
1053 for (env = first_cpu; env != NULL; env = env->next_cpu)
1054 kvm_update_guest_debug(env, 0);
1057 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1059 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1061 return -EINVAL;
1064 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1065 target_ulong len, int type)
1067 return -EINVAL;
1070 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1071 target_ulong len, int type)
1073 return -EINVAL;
1076 void kvm_remove_all_breakpoints(CPUState *current_env)
1079 #endif /* !KVM_CAP_SET_GUEST_DEBUG */