block migration: Initialize remaining BlkMigState fields
[qemu/aliguori-queue.git] / vl.c
blobba5bd3d80ecf09e538785ceba96597c45f67b798
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
113 return qemu_main(argc, argv, NULL);
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #include "slirp/libslirp.h"
168 #include "qemu-queue.h"
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
173 #define DEFAULT_RAM_SIZE 128
175 /* Maximum number of monitor devices */
176 #define MAX_MONITOR_DEVICES 10
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_CIRRUS;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 static int64_t get_clock_realtime(void)
534 struct timeval tv;
536 gettimeofday(&tv, NULL);
537 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
540 #ifdef WIN32
542 static int64_t clock_freq;
544 static void init_get_clock(void)
546 LARGE_INTEGER freq;
547 int ret;
548 ret = QueryPerformanceFrequency(&freq);
549 if (ret == 0) {
550 fprintf(stderr, "Could not calibrate ticks\n");
551 exit(1);
553 clock_freq = freq.QuadPart;
556 static int64_t get_clock(void)
558 LARGE_INTEGER ti;
559 QueryPerformanceCounter(&ti);
560 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
563 #else
565 static int use_rt_clock;
567 static void init_get_clock(void)
569 use_rt_clock = 0;
570 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
571 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
573 struct timespec ts;
574 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
575 use_rt_clock = 1;
578 #endif
581 static int64_t get_clock(void)
583 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
584 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
585 if (use_rt_clock) {
586 struct timespec ts;
587 clock_gettime(CLOCK_MONOTONIC, &ts);
588 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
589 } else
590 #endif
592 /* XXX: using gettimeofday leads to problems if the date
593 changes, so it should be avoided. */
594 return get_clock_realtime();
597 #endif
599 /* Return the virtual CPU time, based on the instruction counter. */
600 static int64_t cpu_get_icount(void)
602 int64_t icount;
603 CPUState *env = cpu_single_env;;
604 icount = qemu_icount;
605 if (env) {
606 if (!can_do_io(env))
607 fprintf(stderr, "Bad clock read\n");
608 icount -= (env->icount_decr.u16.low + env->icount_extra);
610 return qemu_icount_bias + (icount << icount_time_shift);
613 /***********************************************************/
614 /* guest cycle counter */
616 typedef struct TimersState {
617 int64_t cpu_ticks_prev;
618 int64_t cpu_ticks_offset;
619 int64_t cpu_clock_offset;
620 int32_t cpu_ticks_enabled;
621 int64_t dummy;
622 } TimersState;
624 TimersState timers_state;
626 /* return the host CPU cycle counter and handle stop/restart */
627 int64_t cpu_get_ticks(void)
629 if (use_icount) {
630 return cpu_get_icount();
632 if (!timers_state.cpu_ticks_enabled) {
633 return timers_state.cpu_ticks_offset;
634 } else {
635 int64_t ticks;
636 ticks = cpu_get_real_ticks();
637 if (timers_state.cpu_ticks_prev > ticks) {
638 /* Note: non increasing ticks may happen if the host uses
639 software suspend */
640 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
642 timers_state.cpu_ticks_prev = ticks;
643 return ticks + timers_state.cpu_ticks_offset;
647 /* return the host CPU monotonic timer and handle stop/restart */
648 static int64_t cpu_get_clock(void)
650 int64_t ti;
651 if (!timers_state.cpu_ticks_enabled) {
652 return timers_state.cpu_clock_offset;
653 } else {
654 ti = get_clock();
655 return ti + timers_state.cpu_clock_offset;
659 /* enable cpu_get_ticks() */
660 void cpu_enable_ticks(void)
662 if (!timers_state.cpu_ticks_enabled) {
663 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
664 timers_state.cpu_clock_offset -= get_clock();
665 timers_state.cpu_ticks_enabled = 1;
669 /* disable cpu_get_ticks() : the clock is stopped. You must not call
670 cpu_get_ticks() after that. */
671 void cpu_disable_ticks(void)
673 if (timers_state.cpu_ticks_enabled) {
674 timers_state.cpu_ticks_offset = cpu_get_ticks();
675 timers_state.cpu_clock_offset = cpu_get_clock();
676 timers_state.cpu_ticks_enabled = 0;
680 /***********************************************************/
681 /* timers */
683 #define QEMU_CLOCK_REALTIME 0
684 #define QEMU_CLOCK_VIRTUAL 1
685 #define QEMU_CLOCK_HOST 2
687 struct QEMUClock {
688 int type;
689 /* XXX: add frequency */
692 struct QEMUTimer {
693 QEMUClock *clock;
694 int64_t expire_time;
695 QEMUTimerCB *cb;
696 void *opaque;
697 struct QEMUTimer *next;
700 struct qemu_alarm_timer {
701 char const *name;
702 unsigned int flags;
704 int (*start)(struct qemu_alarm_timer *t);
705 void (*stop)(struct qemu_alarm_timer *t);
706 void (*rearm)(struct qemu_alarm_timer *t);
707 void *priv;
710 #define ALARM_FLAG_DYNTICKS 0x1
711 #define ALARM_FLAG_EXPIRED 0x2
713 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
715 return t && (t->flags & ALARM_FLAG_DYNTICKS);
718 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
720 if (!alarm_has_dynticks(t))
721 return;
723 t->rearm(t);
726 /* TODO: MIN_TIMER_REARM_US should be optimized */
727 #define MIN_TIMER_REARM_US 250
729 static struct qemu_alarm_timer *alarm_timer;
731 #ifdef _WIN32
733 struct qemu_alarm_win32 {
734 MMRESULT timerId;
735 unsigned int period;
736 } alarm_win32_data = {0, -1};
738 static int win32_start_timer(struct qemu_alarm_timer *t);
739 static void win32_stop_timer(struct qemu_alarm_timer *t);
740 static void win32_rearm_timer(struct qemu_alarm_timer *t);
742 #else
744 static int unix_start_timer(struct qemu_alarm_timer *t);
745 static void unix_stop_timer(struct qemu_alarm_timer *t);
747 #ifdef __linux__
749 static int dynticks_start_timer(struct qemu_alarm_timer *t);
750 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
751 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
753 static int hpet_start_timer(struct qemu_alarm_timer *t);
754 static void hpet_stop_timer(struct qemu_alarm_timer *t);
756 static int rtc_start_timer(struct qemu_alarm_timer *t);
757 static void rtc_stop_timer(struct qemu_alarm_timer *t);
759 #endif /* __linux__ */
761 #endif /* _WIN32 */
763 /* Correlation between real and virtual time is always going to be
764 fairly approximate, so ignore small variation.
765 When the guest is idle real and virtual time will be aligned in
766 the IO wait loop. */
767 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
769 static void icount_adjust(void)
771 int64_t cur_time;
772 int64_t cur_icount;
773 int64_t delta;
774 static int64_t last_delta;
775 /* If the VM is not running, then do nothing. */
776 if (!vm_running)
777 return;
779 cur_time = cpu_get_clock();
780 cur_icount = qemu_get_clock(vm_clock);
781 delta = cur_icount - cur_time;
782 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
783 if (delta > 0
784 && last_delta + ICOUNT_WOBBLE < delta * 2
785 && icount_time_shift > 0) {
786 /* The guest is getting too far ahead. Slow time down. */
787 icount_time_shift--;
789 if (delta < 0
790 && last_delta - ICOUNT_WOBBLE > delta * 2
791 && icount_time_shift < MAX_ICOUNT_SHIFT) {
792 /* The guest is getting too far behind. Speed time up. */
793 icount_time_shift++;
795 last_delta = delta;
796 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
799 static void icount_adjust_rt(void * opaque)
801 qemu_mod_timer(icount_rt_timer,
802 qemu_get_clock(rt_clock) + 1000);
803 icount_adjust();
806 static void icount_adjust_vm(void * opaque)
808 qemu_mod_timer(icount_vm_timer,
809 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
810 icount_adjust();
813 static void init_icount_adjust(void)
815 /* Have both realtime and virtual time triggers for speed adjustment.
816 The realtime trigger catches emulated time passing too slowly,
817 the virtual time trigger catches emulated time passing too fast.
818 Realtime triggers occur even when idle, so use them less frequently
819 than VM triggers. */
820 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
821 qemu_mod_timer(icount_rt_timer,
822 qemu_get_clock(rt_clock) + 1000);
823 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
824 qemu_mod_timer(icount_vm_timer,
825 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
828 static struct qemu_alarm_timer alarm_timers[] = {
829 #ifndef _WIN32
830 #ifdef __linux__
831 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
832 dynticks_stop_timer, dynticks_rearm_timer, NULL},
833 /* HPET - if available - is preferred */
834 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
835 /* ...otherwise try RTC */
836 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
837 #endif
838 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
839 #else
840 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
841 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
842 {"win32", 0, win32_start_timer,
843 win32_stop_timer, NULL, &alarm_win32_data},
844 #endif
845 {NULL, }
848 static void show_available_alarms(void)
850 int i;
852 printf("Available alarm timers, in order of precedence:\n");
853 for (i = 0; alarm_timers[i].name; i++)
854 printf("%s\n", alarm_timers[i].name);
857 static void configure_alarms(char const *opt)
859 int i;
860 int cur = 0;
861 int count = ARRAY_SIZE(alarm_timers) - 1;
862 char *arg;
863 char *name;
864 struct qemu_alarm_timer tmp;
866 if (!strcmp(opt, "?")) {
867 show_available_alarms();
868 exit(0);
871 arg = qemu_strdup(opt);
873 /* Reorder the array */
874 name = strtok(arg, ",");
875 while (name) {
876 for (i = 0; i < count && alarm_timers[i].name; i++) {
877 if (!strcmp(alarm_timers[i].name, name))
878 break;
881 if (i == count) {
882 fprintf(stderr, "Unknown clock %s\n", name);
883 goto next;
886 if (i < cur)
887 /* Ignore */
888 goto next;
890 /* Swap */
891 tmp = alarm_timers[i];
892 alarm_timers[i] = alarm_timers[cur];
893 alarm_timers[cur] = tmp;
895 cur++;
896 next:
897 name = strtok(NULL, ",");
900 qemu_free(arg);
902 if (cur) {
903 /* Disable remaining timers */
904 for (i = cur; i < count; i++)
905 alarm_timers[i].name = NULL;
906 } else {
907 show_available_alarms();
908 exit(1);
912 #define QEMU_NUM_CLOCKS 3
914 QEMUClock *rt_clock;
915 QEMUClock *vm_clock;
916 QEMUClock *host_clock;
918 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
920 static QEMUClock *qemu_new_clock(int type)
922 QEMUClock *clock;
923 clock = qemu_mallocz(sizeof(QEMUClock));
924 clock->type = type;
925 return clock;
928 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
930 QEMUTimer *ts;
932 ts = qemu_mallocz(sizeof(QEMUTimer));
933 ts->clock = clock;
934 ts->cb = cb;
935 ts->opaque = opaque;
936 return ts;
939 void qemu_free_timer(QEMUTimer *ts)
941 qemu_free(ts);
944 /* stop a timer, but do not dealloc it */
945 void qemu_del_timer(QEMUTimer *ts)
947 QEMUTimer **pt, *t;
949 /* NOTE: this code must be signal safe because
950 qemu_timer_expired() can be called from a signal. */
951 pt = &active_timers[ts->clock->type];
952 for(;;) {
953 t = *pt;
954 if (!t)
955 break;
956 if (t == ts) {
957 *pt = t->next;
958 break;
960 pt = &t->next;
964 /* modify the current timer so that it will be fired when current_time
965 >= expire_time. The corresponding callback will be called. */
966 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
968 QEMUTimer **pt, *t;
970 qemu_del_timer(ts);
972 /* add the timer in the sorted list */
973 /* NOTE: this code must be signal safe because
974 qemu_timer_expired() can be called from a signal. */
975 pt = &active_timers[ts->clock->type];
976 for(;;) {
977 t = *pt;
978 if (!t)
979 break;
980 if (t->expire_time > expire_time)
981 break;
982 pt = &t->next;
984 ts->expire_time = expire_time;
985 ts->next = *pt;
986 *pt = ts;
988 /* Rearm if necessary */
989 if (pt == &active_timers[ts->clock->type]) {
990 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
991 qemu_rearm_alarm_timer(alarm_timer);
993 /* Interrupt execution to force deadline recalculation. */
994 if (use_icount)
995 qemu_notify_event();
999 int qemu_timer_pending(QEMUTimer *ts)
1001 QEMUTimer *t;
1002 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1003 if (t == ts)
1004 return 1;
1006 return 0;
1009 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1011 if (!timer_head)
1012 return 0;
1013 return (timer_head->expire_time <= current_time);
1016 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1018 QEMUTimer *ts;
1020 for(;;) {
1021 ts = *ptimer_head;
1022 if (!ts || ts->expire_time > current_time)
1023 break;
1024 /* remove timer from the list before calling the callback */
1025 *ptimer_head = ts->next;
1026 ts->next = NULL;
1028 /* run the callback (the timer list can be modified) */
1029 ts->cb(ts->opaque);
1033 int64_t qemu_get_clock(QEMUClock *clock)
1035 switch(clock->type) {
1036 case QEMU_CLOCK_REALTIME:
1037 return get_clock() / 1000000;
1038 default:
1039 case QEMU_CLOCK_VIRTUAL:
1040 if (use_icount) {
1041 return cpu_get_icount();
1042 } else {
1043 return cpu_get_clock();
1045 case QEMU_CLOCK_HOST:
1046 return get_clock_realtime();
1050 static void init_clocks(void)
1052 init_get_clock();
1053 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1054 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1055 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1057 rtc_clock = host_clock;
1060 /* save a timer */
1061 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1063 uint64_t expire_time;
1065 if (qemu_timer_pending(ts)) {
1066 expire_time = ts->expire_time;
1067 } else {
1068 expire_time = -1;
1070 qemu_put_be64(f, expire_time);
1073 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1075 uint64_t expire_time;
1077 expire_time = qemu_get_be64(f);
1078 if (expire_time != -1) {
1079 qemu_mod_timer(ts, expire_time);
1080 } else {
1081 qemu_del_timer(ts);
1085 static const VMStateDescription vmstate_timers = {
1086 .name = "timer",
1087 .version_id = 2,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .fields = (VMStateField []) {
1091 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1092 VMSTATE_INT64(dummy, TimersState),
1093 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1094 VMSTATE_END_OF_LIST()
1098 static void qemu_event_increment(void);
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1108 #if 0
1109 #define DISP_FREQ 1000
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1127 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1134 last_clock = ti;
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1142 qemu_get_clock(rt_clock)) ||
1143 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1144 qemu_get_clock(host_clock))) {
1145 qemu_event_increment();
1146 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1148 #ifndef CONFIG_IOTHREAD
1149 if (next_cpu) {
1150 /* stop the currently executing cpu because a timer occured */
1151 cpu_exit(next_cpu);
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1159 static int64_t qemu_next_deadline(void)
1161 /* To avoid problems with overflow limit this to 2^32. */
1162 int64_t delta = INT32_MAX;
1164 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1165 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1166 qemu_get_clock(vm_clock);
1168 if (active_timers[QEMU_CLOCK_HOST]) {
1169 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1170 qemu_get_clock(host_clock);
1171 if (hdelta < delta)
1172 delta = hdelta;
1175 if (delta < 0)
1176 delta = 0;
1178 return delta;
1181 #if defined(__linux__)
1182 static uint64_t qemu_next_deadline_dyntick(void)
1184 int64_t delta;
1185 int64_t rtdelta;
1187 if (use_icount)
1188 delta = INT32_MAX;
1189 else
1190 delta = (qemu_next_deadline() + 999) / 1000;
1192 if (active_timers[QEMU_CLOCK_REALTIME]) {
1193 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1194 qemu_get_clock(rt_clock))*1000;
1195 if (rtdelta < delta)
1196 delta = rtdelta;
1199 if (delta < MIN_TIMER_REARM_US)
1200 delta = MIN_TIMER_REARM_US;
1202 return delta;
1204 #endif
1206 #ifndef _WIN32
1208 /* Sets a specific flag */
1209 static int fcntl_setfl(int fd, int flag)
1211 int flags;
1213 flags = fcntl(fd, F_GETFL);
1214 if (flags == -1)
1215 return -errno;
1217 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1218 return -errno;
1220 return 0;
1223 #if defined(__linux__)
1225 #define RTC_FREQ 1024
1227 static void enable_sigio_timer(int fd)
1229 struct sigaction act;
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl_setfl(fd, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1243 struct hpet_info info;
1244 int r, fd;
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1285 int fd = (long)t->priv;
1287 close(fd);
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1292 int rtc_fd;
1293 unsigned long current_rtc_freq = 0;
1295 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1296 if (rtc_fd < 0)
1297 return -1;
1298 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1299 if (current_rtc_freq != RTC_FREQ &&
1300 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1312 enable_sigio_timer(rtc_fd);
1314 t->priv = (void *)(long)rtc_fd;
1316 return 0;
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1321 int rtc_fd = (long)t->priv;
1323 close(rtc_fd);
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1336 sigaction(SIGALRM, &act, NULL);
1339 * Initialize ev struct to 0 to avoid valgrind complaining
1340 * about uninitialized data in timer_create call
1342 memset(&ev, 0, sizeof(ev));
1343 ev.sigev_value.sival_int = 0;
1344 ev.sigev_notify = SIGEV_SIGNAL;
1345 ev.sigev_signo = SIGALRM;
1347 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1348 perror("timer_create");
1350 /* disable dynticks */
1351 fprintf(stderr, "Dynamic Ticks disabled\n");
1353 return -1;
1356 t->priv = (void *)(long)host_timer;
1358 return 0;
1361 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1363 timer_t host_timer = (timer_t)(long)t->priv;
1365 timer_delete(host_timer);
1368 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1370 timer_t host_timer = (timer_t)(long)t->priv;
1371 struct itimerspec timeout;
1372 int64_t nearest_delta_us = INT64_MAX;
1373 int64_t current_us;
1375 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1376 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1377 !active_timers[QEMU_CLOCK_HOST])
1378 return;
1380 nearest_delta_us = qemu_next_deadline_dyntick();
1382 /* check whether a timer is already running */
1383 if (timer_gettime(host_timer, &timeout)) {
1384 perror("gettime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1388 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1389 if (current_us && current_us <= nearest_delta_us)
1390 return;
1392 timeout.it_interval.tv_sec = 0;
1393 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1394 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1395 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1396 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1397 perror("settime");
1398 fprintf(stderr, "Internal timer error: aborting\n");
1399 exit(1);
1403 #endif /* defined(__linux__) */
1405 static int unix_start_timer(struct qemu_alarm_timer *t)
1407 struct sigaction act;
1408 struct itimerval itv;
1409 int err;
1411 /* timer signal */
1412 sigfillset(&act.sa_mask);
1413 act.sa_flags = 0;
1414 act.sa_handler = host_alarm_handler;
1416 sigaction(SIGALRM, &act, NULL);
1418 itv.it_interval.tv_sec = 0;
1419 /* for i386 kernel 2.6 to get 1 ms */
1420 itv.it_interval.tv_usec = 999;
1421 itv.it_value.tv_sec = 0;
1422 itv.it_value.tv_usec = 10 * 1000;
1424 err = setitimer(ITIMER_REAL, &itv, NULL);
1425 if (err)
1426 return -1;
1428 return 0;
1431 static void unix_stop_timer(struct qemu_alarm_timer *t)
1433 struct itimerval itv;
1435 memset(&itv, 0, sizeof(itv));
1436 setitimer(ITIMER_REAL, &itv, NULL);
1439 #endif /* !defined(_WIN32) */
1442 #ifdef _WIN32
1444 static int win32_start_timer(struct qemu_alarm_timer *t)
1446 TIMECAPS tc;
1447 struct qemu_alarm_win32 *data = t->priv;
1448 UINT flags;
1450 memset(&tc, 0, sizeof(tc));
1451 timeGetDevCaps(&tc, sizeof(tc));
1453 if (data->period < tc.wPeriodMin)
1454 data->period = tc.wPeriodMin;
1456 timeBeginPeriod(data->period);
1458 flags = TIME_CALLBACK_FUNCTION;
1459 if (alarm_has_dynticks(t))
1460 flags |= TIME_ONESHOT;
1461 else
1462 flags |= TIME_PERIODIC;
1464 data->timerId = timeSetEvent(1, // interval (ms)
1465 data->period, // resolution
1466 host_alarm_handler, // function
1467 (DWORD)t, // parameter
1468 flags);
1470 if (!data->timerId) {
1471 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1472 GetLastError());
1473 timeEndPeriod(data->period);
1474 return -1;
1477 return 0;
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1482 struct qemu_alarm_win32 *data = t->priv;
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490 struct qemu_alarm_win32 *data = t->priv;
1492 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1493 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1494 !active_timers[QEMU_CLOCK_HOST])
1495 return;
1497 timeKillEvent(data->timerId);
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1505 if (!data->timerId) {
1506 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1507 GetLastError());
1509 timeEndPeriod(data->period);
1510 exit(1);
1514 #endif /* _WIN32 */
1516 static int init_timer_alarm(void)
1518 struct qemu_alarm_timer *t = NULL;
1519 int i, err = -1;
1521 for (i = 0; alarm_timers[i].name; i++) {
1522 t = &alarm_timers[i];
1524 err = t->start(t);
1525 if (!err)
1526 break;
1529 if (err) {
1530 err = -ENOENT;
1531 goto fail;
1534 alarm_timer = t;
1536 return 0;
1538 fail:
1539 return err;
1542 static void quit_timers(void)
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1548 /***********************************************************/
1549 /* host time/date access */
1550 void qemu_get_timedate(struct tm *tm, int offset)
1552 time_t ti;
1553 struct tm *ret;
1555 time(&ti);
1556 ti += offset;
1557 if (rtc_date_offset == -1) {
1558 if (rtc_utc)
1559 ret = gmtime(&ti);
1560 else
1561 ret = localtime(&ti);
1562 } else {
1563 ti -= rtc_date_offset;
1564 ret = gmtime(&ti);
1567 memcpy(tm, ret, sizeof(struct tm));
1570 int qemu_timedate_diff(struct tm *tm)
1572 time_t seconds;
1574 if (rtc_date_offset == -1)
1575 if (rtc_utc)
1576 seconds = mktimegm(tm);
1577 else
1578 seconds = mktime(tm);
1579 else
1580 seconds = mktimegm(tm) + rtc_date_offset;
1582 return seconds - time(NULL);
1585 static void configure_rtc_date_offset(const char *startdate, int legacy)
1587 time_t rtc_start_date;
1588 struct tm tm;
1590 if (!strcmp(startdate, "now") && legacy) {
1591 rtc_date_offset = -1;
1592 } else {
1593 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1594 &tm.tm_year,
1595 &tm.tm_mon,
1596 &tm.tm_mday,
1597 &tm.tm_hour,
1598 &tm.tm_min,
1599 &tm.tm_sec) == 6) {
1600 /* OK */
1601 } else if (sscanf(startdate, "%d-%d-%d",
1602 &tm.tm_year,
1603 &tm.tm_mon,
1604 &tm.tm_mday) == 3) {
1605 tm.tm_hour = 0;
1606 tm.tm_min = 0;
1607 tm.tm_sec = 0;
1608 } else {
1609 goto date_fail;
1611 tm.tm_year -= 1900;
1612 tm.tm_mon--;
1613 rtc_start_date = mktimegm(&tm);
1614 if (rtc_start_date == -1) {
1615 date_fail:
1616 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1617 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1618 exit(1);
1620 rtc_date_offset = time(NULL) - rtc_start_date;
1624 static void configure_rtc(QemuOpts *opts)
1626 const char *value;
1628 value = qemu_opt_get(opts, "base");
1629 if (value) {
1630 if (!strcmp(value, "utc")) {
1631 rtc_utc = 1;
1632 } else if (!strcmp(value, "localtime")) {
1633 rtc_utc = 0;
1634 } else {
1635 configure_rtc_date_offset(value, 0);
1638 value = qemu_opt_get(opts, "clock");
1639 if (value) {
1640 if (!strcmp(value, "host")) {
1641 rtc_clock = host_clock;
1642 } else if (!strcmp(value, "vm")) {
1643 rtc_clock = vm_clock;
1644 } else {
1645 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1646 exit(1);
1649 #ifdef CONFIG_TARGET_I386
1650 value = qemu_opt_get(opts, "driftfix");
1651 if (value) {
1652 if (!strcmp(buf, "slew")) {
1653 rtc_td_hack = 1;
1654 } else if (!strcmp(buf, "none")) {
1655 rtc_td_hack = 0;
1656 } else {
1657 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1658 exit(1);
1661 #endif
1664 #ifdef _WIN32
1665 static void socket_cleanup(void)
1667 WSACleanup();
1670 static int socket_init(void)
1672 WSADATA Data;
1673 int ret, err;
1675 ret = WSAStartup(MAKEWORD(2,2), &Data);
1676 if (ret != 0) {
1677 err = WSAGetLastError();
1678 fprintf(stderr, "WSAStartup: %d\n", err);
1679 return -1;
1681 atexit(socket_cleanup);
1682 return 0;
1684 #endif
1686 /***********************************************************/
1687 /* Bluetooth support */
1688 static int nb_hcis;
1689 static int cur_hci;
1690 static struct HCIInfo *hci_table[MAX_NICS];
1692 static struct bt_vlan_s {
1693 struct bt_scatternet_s net;
1694 int id;
1695 struct bt_vlan_s *next;
1696 } *first_bt_vlan;
1698 /* find or alloc a new bluetooth "VLAN" */
1699 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1701 struct bt_vlan_s **pvlan, *vlan;
1702 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1703 if (vlan->id == id)
1704 return &vlan->net;
1706 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1707 vlan->id = id;
1708 pvlan = &first_bt_vlan;
1709 while (*pvlan != NULL)
1710 pvlan = &(*pvlan)->next;
1711 *pvlan = vlan;
1712 return &vlan->net;
1715 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1719 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1721 return -ENOTSUP;
1724 static struct HCIInfo null_hci = {
1725 .cmd_send = null_hci_send,
1726 .sco_send = null_hci_send,
1727 .acl_send = null_hci_send,
1728 .bdaddr_set = null_hci_addr_set,
1731 struct HCIInfo *qemu_next_hci(void)
1733 if (cur_hci == nb_hcis)
1734 return &null_hci;
1736 return hci_table[cur_hci++];
1739 static struct HCIInfo *hci_init(const char *str)
1741 char *endp;
1742 struct bt_scatternet_s *vlan = 0;
1744 if (!strcmp(str, "null"))
1745 /* null */
1746 return &null_hci;
1747 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1748 /* host[:hciN] */
1749 return bt_host_hci(str[4] ? str + 5 : "hci0");
1750 else if (!strncmp(str, "hci", 3)) {
1751 /* hci[,vlan=n] */
1752 if (str[3]) {
1753 if (!strncmp(str + 3, ",vlan=", 6)) {
1754 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1755 if (*endp)
1756 vlan = 0;
1758 } else
1759 vlan = qemu_find_bt_vlan(0);
1760 if (vlan)
1761 return bt_new_hci(vlan);
1764 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1766 return 0;
1769 static int bt_hci_parse(const char *str)
1771 struct HCIInfo *hci;
1772 bdaddr_t bdaddr;
1774 if (nb_hcis >= MAX_NICS) {
1775 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1776 return -1;
1779 hci = hci_init(str);
1780 if (!hci)
1781 return -1;
1783 bdaddr.b[0] = 0x52;
1784 bdaddr.b[1] = 0x54;
1785 bdaddr.b[2] = 0x00;
1786 bdaddr.b[3] = 0x12;
1787 bdaddr.b[4] = 0x34;
1788 bdaddr.b[5] = 0x56 + nb_hcis;
1789 hci->bdaddr_set(hci, bdaddr.b);
1791 hci_table[nb_hcis++] = hci;
1793 return 0;
1796 static void bt_vhci_add(int vlan_id)
1798 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1800 if (!vlan->slave)
1801 fprintf(stderr, "qemu: warning: adding a VHCI to "
1802 "an empty scatternet %i\n", vlan_id);
1804 bt_vhci_init(bt_new_hci(vlan));
1807 static struct bt_device_s *bt_device_add(const char *opt)
1809 struct bt_scatternet_s *vlan;
1810 int vlan_id = 0;
1811 char *endp = strstr(opt, ",vlan=");
1812 int len = (endp ? endp - opt : strlen(opt)) + 1;
1813 char devname[10];
1815 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1817 if (endp) {
1818 vlan_id = strtol(endp + 6, &endp, 0);
1819 if (*endp) {
1820 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1821 return 0;
1825 vlan = qemu_find_bt_vlan(vlan_id);
1827 if (!vlan->slave)
1828 fprintf(stderr, "qemu: warning: adding a slave device to "
1829 "an empty scatternet %i\n", vlan_id);
1831 if (!strcmp(devname, "keyboard"))
1832 return bt_keyboard_init(vlan);
1834 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1835 return 0;
1838 static int bt_parse(const char *opt)
1840 const char *endp, *p;
1841 int vlan;
1843 if (strstart(opt, "hci", &endp)) {
1844 if (!*endp || *endp == ',') {
1845 if (*endp)
1846 if (!strstart(endp, ",vlan=", 0))
1847 opt = endp + 1;
1849 return bt_hci_parse(opt);
1851 } else if (strstart(opt, "vhci", &endp)) {
1852 if (!*endp || *endp == ',') {
1853 if (*endp) {
1854 if (strstart(endp, ",vlan=", &p)) {
1855 vlan = strtol(p, (char **) &endp, 0);
1856 if (*endp) {
1857 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1858 return 1;
1860 } else {
1861 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1862 return 1;
1864 } else
1865 vlan = 0;
1867 bt_vhci_add(vlan);
1868 return 0;
1870 } else if (strstart(opt, "device:", &endp))
1871 return !bt_device_add(endp);
1873 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1874 return 1;
1877 /***********************************************************/
1878 /* QEMU Block devices */
1880 #define HD_ALIAS "index=%d,media=disk"
1881 #define CDROM_ALIAS "index=2,media=cdrom"
1882 #define FD_ALIAS "index=%d,if=floppy"
1883 #define PFLASH_ALIAS "if=pflash"
1884 #define MTD_ALIAS "if=mtd"
1885 #define SD_ALIAS "index=0,if=sd"
1887 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1889 va_list ap;
1890 char optstr[1024];
1891 QemuOpts *opts;
1893 va_start(ap, fmt);
1894 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1895 va_end(ap);
1897 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1898 if (!opts) {
1899 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1900 __FUNCTION__, optstr);
1901 return NULL;
1903 if (file)
1904 qemu_opt_set(opts, "file", file);
1905 return opts;
1908 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1910 DriveInfo *dinfo;
1912 /* seek interface, bus and unit */
1914 QTAILQ_FOREACH(dinfo, &drives, next) {
1915 if (dinfo->type == type &&
1916 dinfo->bus == bus &&
1917 dinfo->unit == unit)
1918 return dinfo;
1921 return NULL;
1924 DriveInfo *drive_get_by_id(const char *id)
1926 DriveInfo *dinfo;
1928 QTAILQ_FOREACH(dinfo, &drives, next) {
1929 if (strcmp(id, dinfo->id))
1930 continue;
1931 return dinfo;
1933 return NULL;
1936 int drive_get_max_bus(BlockInterfaceType type)
1938 int max_bus;
1939 DriveInfo *dinfo;
1941 max_bus = -1;
1942 QTAILQ_FOREACH(dinfo, &drives, next) {
1943 if(dinfo->type == type &&
1944 dinfo->bus > max_bus)
1945 max_bus = dinfo->bus;
1947 return max_bus;
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1952 DriveInfo *dinfo;
1954 QTAILQ_FOREACH(dinfo, &drives, next) {
1955 if (dinfo->bdrv == bdrv)
1956 return dinfo->serial;
1959 return "\0";
1962 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1964 DriveInfo *dinfo;
1966 QTAILQ_FOREACH(dinfo, &drives, next) {
1967 if (dinfo->bdrv == bdrv)
1968 return dinfo->onerror;
1971 return BLOCK_ERR_STOP_ENOSPC;
1974 static void bdrv_format_print(void *opaque, const char *name)
1976 fprintf(stderr, " %s", name);
1979 void drive_uninit(DriveInfo *dinfo)
1981 qemu_opts_del(dinfo->opts);
1982 bdrv_delete(dinfo->bdrv);
1983 QTAILQ_REMOVE(&drives, dinfo, next);
1984 qemu_free(dinfo);
1987 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1988 int *fatal_error)
1990 const char *buf;
1991 const char *file = NULL;
1992 char devname[128];
1993 const char *serial;
1994 const char *mediastr = "";
1995 BlockInterfaceType type;
1996 enum { MEDIA_DISK, MEDIA_CDROM } media;
1997 int bus_id, unit_id;
1998 int cyls, heads, secs, translation;
1999 BlockDriver *drv = NULL;
2000 QEMUMachine *machine = opaque;
2001 int max_devs;
2002 int index;
2003 int cache;
2004 int aio = 0;
2005 int ro = 0;
2006 int bdrv_flags, onerror;
2007 const char *devaddr;
2008 DriveInfo *dinfo;
2009 int snapshot = 0;
2011 *fatal_error = 1;
2013 translation = BIOS_ATA_TRANSLATION_AUTO;
2014 cache = 1;
2016 if (machine && machine->use_scsi) {
2017 type = IF_SCSI;
2018 max_devs = MAX_SCSI_DEVS;
2019 pstrcpy(devname, sizeof(devname), "scsi");
2020 } else {
2021 type = IF_IDE;
2022 max_devs = MAX_IDE_DEVS;
2023 pstrcpy(devname, sizeof(devname), "ide");
2025 media = MEDIA_DISK;
2027 /* extract parameters */
2028 bus_id = qemu_opt_get_number(opts, "bus", 0);
2029 unit_id = qemu_opt_get_number(opts, "unit", -1);
2030 index = qemu_opt_get_number(opts, "index", -1);
2032 cyls = qemu_opt_get_number(opts, "cyls", 0);
2033 heads = qemu_opt_get_number(opts, "heads", 0);
2034 secs = qemu_opt_get_number(opts, "secs", 0);
2036 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2037 ro = qemu_opt_get_bool(opts, "readonly", 0);
2039 file = qemu_opt_get(opts, "file");
2040 serial = qemu_opt_get(opts, "serial");
2042 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2043 pstrcpy(devname, sizeof(devname), buf);
2044 if (!strcmp(buf, "ide")) {
2045 type = IF_IDE;
2046 max_devs = MAX_IDE_DEVS;
2047 } else if (!strcmp(buf, "scsi")) {
2048 type = IF_SCSI;
2049 max_devs = MAX_SCSI_DEVS;
2050 } else if (!strcmp(buf, "floppy")) {
2051 type = IF_FLOPPY;
2052 max_devs = 0;
2053 } else if (!strcmp(buf, "pflash")) {
2054 type = IF_PFLASH;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "mtd")) {
2057 type = IF_MTD;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "sd")) {
2060 type = IF_SD;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "virtio")) {
2063 type = IF_VIRTIO;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "xen")) {
2066 type = IF_XEN;
2067 max_devs = 0;
2068 } else if (!strcmp(buf, "none")) {
2069 type = IF_NONE;
2070 max_devs = 0;
2071 } else {
2072 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2073 return NULL;
2077 if (cyls || heads || secs) {
2078 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2079 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2080 return NULL;
2082 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2083 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2084 return NULL;
2086 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2087 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2088 return NULL;
2092 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2093 if (!cyls) {
2094 fprintf(stderr,
2095 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2096 buf);
2097 return NULL;
2099 if (!strcmp(buf, "none"))
2100 translation = BIOS_ATA_TRANSLATION_NONE;
2101 else if (!strcmp(buf, "lba"))
2102 translation = BIOS_ATA_TRANSLATION_LBA;
2103 else if (!strcmp(buf, "auto"))
2104 translation = BIOS_ATA_TRANSLATION_AUTO;
2105 else {
2106 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2107 return NULL;
2111 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2112 if (!strcmp(buf, "disk")) {
2113 media = MEDIA_DISK;
2114 } else if (!strcmp(buf, "cdrom")) {
2115 if (cyls || secs || heads) {
2116 fprintf(stderr,
2117 "qemu: '%s' invalid physical CHS format\n", buf);
2118 return NULL;
2120 media = MEDIA_CDROM;
2121 } else {
2122 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2123 return NULL;
2127 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2128 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2129 cache = 0;
2130 else if (!strcmp(buf, "writethrough"))
2131 cache = 1;
2132 else if (!strcmp(buf, "writeback"))
2133 cache = 2;
2134 else {
2135 fprintf(stderr, "qemu: invalid cache option\n");
2136 return NULL;
2140 #ifdef CONFIG_LINUX_AIO
2141 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2142 if (!strcmp(buf, "threads"))
2143 aio = 0;
2144 else if (!strcmp(buf, "native"))
2145 aio = 1;
2146 else {
2147 fprintf(stderr, "qemu: invalid aio option\n");
2148 return NULL;
2151 #endif
2153 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2154 if (strcmp(buf, "?") == 0) {
2155 fprintf(stderr, "qemu: Supported formats:");
2156 bdrv_iterate_format(bdrv_format_print, NULL);
2157 fprintf(stderr, "\n");
2158 return NULL;
2160 drv = bdrv_find_whitelisted_format(buf);
2161 if (!drv) {
2162 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2163 return NULL;
2167 onerror = BLOCK_ERR_STOP_ENOSPC;
2168 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2169 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2170 fprintf(stderr, "werror is no supported by this format\n");
2171 return NULL;
2173 if (!strcmp(buf, "ignore"))
2174 onerror = BLOCK_ERR_IGNORE;
2175 else if (!strcmp(buf, "enospc"))
2176 onerror = BLOCK_ERR_STOP_ENOSPC;
2177 else if (!strcmp(buf, "stop"))
2178 onerror = BLOCK_ERR_STOP_ANY;
2179 else if (!strcmp(buf, "report"))
2180 onerror = BLOCK_ERR_REPORT;
2181 else {
2182 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2183 return NULL;
2187 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2188 if (type != IF_VIRTIO) {
2189 fprintf(stderr, "addr is not supported\n");
2190 return NULL;
2194 /* compute bus and unit according index */
2196 if (index != -1) {
2197 if (bus_id != 0 || unit_id != -1) {
2198 fprintf(stderr,
2199 "qemu: index cannot be used with bus and unit\n");
2200 return NULL;
2202 if (max_devs == 0)
2204 unit_id = index;
2205 bus_id = 0;
2206 } else {
2207 unit_id = index % max_devs;
2208 bus_id = index / max_devs;
2212 /* if user doesn't specify a unit_id,
2213 * try to find the first free
2216 if (unit_id == -1) {
2217 unit_id = 0;
2218 while (drive_get(type, bus_id, unit_id) != NULL) {
2219 unit_id++;
2220 if (max_devs && unit_id >= max_devs) {
2221 unit_id -= max_devs;
2222 bus_id++;
2227 /* check unit id */
2229 if (max_devs && unit_id >= max_devs) {
2230 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2231 unit_id, max_devs - 1);
2232 return NULL;
2236 * ignore multiple definitions
2239 if (drive_get(type, bus_id, unit_id) != NULL) {
2240 *fatal_error = 0;
2241 return NULL;
2244 /* init */
2246 dinfo = qemu_mallocz(sizeof(*dinfo));
2247 if ((buf = qemu_opts_id(opts)) != NULL) {
2248 dinfo->id = qemu_strdup(buf);
2249 } else {
2250 /* no id supplied -> create one */
2251 dinfo->id = qemu_mallocz(32);
2252 if (type == IF_IDE || type == IF_SCSI)
2253 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2254 if (max_devs)
2255 snprintf(dinfo->id, 32, "%s%i%s%i",
2256 devname, bus_id, mediastr, unit_id);
2257 else
2258 snprintf(dinfo->id, 32, "%s%s%i",
2259 devname, mediastr, unit_id);
2261 dinfo->bdrv = bdrv_new(dinfo->id);
2262 dinfo->devaddr = devaddr;
2263 dinfo->type = type;
2264 dinfo->bus = bus_id;
2265 dinfo->unit = unit_id;
2266 dinfo->onerror = onerror;
2267 dinfo->opts = opts;
2268 if (serial)
2269 strncpy(dinfo->serial, serial, sizeof(serial));
2270 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2272 switch(type) {
2273 case IF_IDE:
2274 case IF_SCSI:
2275 case IF_XEN:
2276 case IF_NONE:
2277 switch(media) {
2278 case MEDIA_DISK:
2279 if (cyls != 0) {
2280 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2281 bdrv_set_translation_hint(dinfo->bdrv, translation);
2283 break;
2284 case MEDIA_CDROM:
2285 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2286 break;
2288 break;
2289 case IF_SD:
2290 /* FIXME: This isn't really a floppy, but it's a reasonable
2291 approximation. */
2292 case IF_FLOPPY:
2293 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2294 break;
2295 case IF_PFLASH:
2296 case IF_MTD:
2297 break;
2298 case IF_VIRTIO:
2299 /* add virtio block device */
2300 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2301 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2302 qemu_opt_set(opts, "drive", dinfo->id);
2303 if (devaddr)
2304 qemu_opt_set(opts, "addr", devaddr);
2305 break;
2306 case IF_COUNT:
2307 abort();
2309 if (!file) {
2310 *fatal_error = 0;
2311 return NULL;
2313 bdrv_flags = 0;
2314 if (snapshot) {
2315 bdrv_flags |= BDRV_O_SNAPSHOT;
2316 cache = 2; /* always use write-back with snapshot */
2318 if (cache == 0) /* no caching */
2319 bdrv_flags |= BDRV_O_NOCACHE;
2320 else if (cache == 2) /* write-back */
2321 bdrv_flags |= BDRV_O_CACHE_WB;
2323 if (aio == 1) {
2324 bdrv_flags |= BDRV_O_NATIVE_AIO;
2325 } else {
2326 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2329 if (ro == 1) {
2330 if (type == IF_IDE) {
2331 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2332 return NULL;
2334 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2337 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2338 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2339 file, strerror(errno));
2340 return NULL;
2343 if (bdrv_key_required(dinfo->bdrv))
2344 autostart = 0;
2345 *fatal_error = 0;
2346 return dinfo;
2349 static int drive_init_func(QemuOpts *opts, void *opaque)
2351 QEMUMachine *machine = opaque;
2352 int fatal_error = 0;
2354 if (drive_init(opts, machine, &fatal_error) == NULL) {
2355 if (fatal_error)
2356 return 1;
2358 return 0;
2361 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2363 if (NULL == qemu_opt_get(opts, "snapshot")) {
2364 qemu_opt_set(opts, "snapshot", "on");
2366 return 0;
2369 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2371 boot_set_handler = func;
2372 boot_set_opaque = opaque;
2375 int qemu_boot_set(const char *boot_devices)
2377 if (!boot_set_handler) {
2378 return -EINVAL;
2380 return boot_set_handler(boot_set_opaque, boot_devices);
2383 static int parse_bootdevices(char *devices)
2385 /* We just do some generic consistency checks */
2386 const char *p;
2387 int bitmap = 0;
2389 for (p = devices; *p != '\0'; p++) {
2390 /* Allowed boot devices are:
2391 * a-b: floppy disk drives
2392 * c-f: IDE disk drives
2393 * g-m: machine implementation dependant drives
2394 * n-p: network devices
2395 * It's up to each machine implementation to check if the given boot
2396 * devices match the actual hardware implementation and firmware
2397 * features.
2399 if (*p < 'a' || *p > 'p') {
2400 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2401 exit(1);
2403 if (bitmap & (1 << (*p - 'a'))) {
2404 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2405 exit(1);
2407 bitmap |= 1 << (*p - 'a');
2409 return bitmap;
2412 static void restore_boot_devices(void *opaque)
2414 char *standard_boot_devices = opaque;
2416 qemu_boot_set(standard_boot_devices);
2418 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2419 qemu_free(standard_boot_devices);
2422 static void numa_add(const char *optarg)
2424 char option[128];
2425 char *endptr;
2426 unsigned long long value, endvalue;
2427 int nodenr;
2429 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2430 if (!strcmp(option, "node")) {
2431 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2432 nodenr = nb_numa_nodes;
2433 } else {
2434 nodenr = strtoull(option, NULL, 10);
2437 if (get_param_value(option, 128, "mem", optarg) == 0) {
2438 node_mem[nodenr] = 0;
2439 } else {
2440 value = strtoull(option, &endptr, 0);
2441 switch (*endptr) {
2442 case 0: case 'M': case 'm':
2443 value <<= 20;
2444 break;
2445 case 'G': case 'g':
2446 value <<= 30;
2447 break;
2449 node_mem[nodenr] = value;
2451 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2452 node_cpumask[nodenr] = 0;
2453 } else {
2454 value = strtoull(option, &endptr, 10);
2455 if (value >= 64) {
2456 value = 63;
2457 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2458 } else {
2459 if (*endptr == '-') {
2460 endvalue = strtoull(endptr+1, &endptr, 10);
2461 if (endvalue >= 63) {
2462 endvalue = 62;
2463 fprintf(stderr,
2464 "only 63 CPUs in NUMA mode supported.\n");
2466 value = (1 << (endvalue + 1)) - (1 << value);
2467 } else {
2468 value = 1 << value;
2471 node_cpumask[nodenr] = value;
2473 nb_numa_nodes++;
2475 return;
2478 static void smp_parse(const char *optarg)
2480 int smp, sockets = 0, threads = 0, cores = 0;
2481 char *endptr;
2482 char option[128];
2484 smp = strtoul(optarg, &endptr, 10);
2485 if (endptr != optarg) {
2486 if (*endptr == ',') {
2487 endptr++;
2490 if (get_param_value(option, 128, "sockets", endptr) != 0)
2491 sockets = strtoull(option, NULL, 10);
2492 if (get_param_value(option, 128, "cores", endptr) != 0)
2493 cores = strtoull(option, NULL, 10);
2494 if (get_param_value(option, 128, "threads", endptr) != 0)
2495 threads = strtoull(option, NULL, 10);
2496 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2497 max_cpus = strtoull(option, NULL, 10);
2499 /* compute missing values, prefer sockets over cores over threads */
2500 if (smp == 0 || sockets == 0) {
2501 sockets = sockets > 0 ? sockets : 1;
2502 cores = cores > 0 ? cores : 1;
2503 threads = threads > 0 ? threads : 1;
2504 if (smp == 0) {
2505 smp = cores * threads * sockets;
2506 } else {
2507 sockets = smp / (cores * threads);
2509 } else {
2510 if (cores == 0) {
2511 threads = threads > 0 ? threads : 1;
2512 cores = smp / (sockets * threads);
2513 } else {
2514 if (sockets == 0) {
2515 sockets = smp / (cores * threads);
2516 } else {
2517 threads = smp / (cores * sockets);
2521 smp_cpus = smp;
2522 smp_cores = cores > 0 ? cores : 1;
2523 smp_threads = threads > 0 ? threads : 1;
2524 if (max_cpus == 0)
2525 max_cpus = smp_cpus;
2528 /***********************************************************/
2529 /* USB devices */
2531 static int usb_device_add(const char *devname, int is_hotplug)
2533 const char *p;
2534 USBDevice *dev = NULL;
2536 if (!usb_enabled)
2537 return -1;
2539 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2540 dev = usbdevice_create(devname);
2541 if (dev)
2542 goto done;
2544 /* the other ones */
2545 if (strstart(devname, "host:", &p)) {
2546 dev = usb_host_device_open(p);
2547 } else if (strstart(devname, "net:", &p)) {
2548 QemuOpts *opts;
2549 int idx;
2551 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2552 if (!opts) {
2553 return -1;
2556 qemu_opt_set(opts, "type", "nic");
2557 qemu_opt_set(opts, "model", "usb");
2559 idx = net_client_init(NULL, opts, 0);
2560 if (idx == -1) {
2561 return -1;
2564 dev = usb_net_init(&nd_table[idx]);
2565 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2566 dev = usb_bt_init(devname[2] ? hci_init(p) :
2567 bt_new_hci(qemu_find_bt_vlan(0)));
2568 } else {
2569 return -1;
2571 if (!dev)
2572 return -1;
2574 done:
2575 return 0;
2578 static int usb_device_del(const char *devname)
2580 int bus_num, addr;
2581 const char *p;
2583 if (strstart(devname, "host:", &p))
2584 return usb_host_device_close(p);
2586 if (!usb_enabled)
2587 return -1;
2589 p = strchr(devname, '.');
2590 if (!p)
2591 return -1;
2592 bus_num = strtoul(devname, NULL, 0);
2593 addr = strtoul(p + 1, NULL, 0);
2595 return usb_device_delete_addr(bus_num, addr);
2598 static int usb_parse(const char *cmdline)
2600 return usb_device_add(cmdline, 0);
2603 void do_usb_add(Monitor *mon, const QDict *qdict)
2605 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2608 void do_usb_del(Monitor *mon, const QDict *qdict)
2610 usb_device_del(qdict_get_str(qdict, "devname"));
2613 /***********************************************************/
2614 /* PCMCIA/Cardbus */
2616 static struct pcmcia_socket_entry_s {
2617 PCMCIASocket *socket;
2618 struct pcmcia_socket_entry_s *next;
2619 } *pcmcia_sockets = 0;
2621 void pcmcia_socket_register(PCMCIASocket *socket)
2623 struct pcmcia_socket_entry_s *entry;
2625 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2626 entry->socket = socket;
2627 entry->next = pcmcia_sockets;
2628 pcmcia_sockets = entry;
2631 void pcmcia_socket_unregister(PCMCIASocket *socket)
2633 struct pcmcia_socket_entry_s *entry, **ptr;
2635 ptr = &pcmcia_sockets;
2636 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2637 if (entry->socket == socket) {
2638 *ptr = entry->next;
2639 qemu_free(entry);
2643 void pcmcia_info(Monitor *mon)
2645 struct pcmcia_socket_entry_s *iter;
2647 if (!pcmcia_sockets)
2648 monitor_printf(mon, "No PCMCIA sockets\n");
2650 for (iter = pcmcia_sockets; iter; iter = iter->next)
2651 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2652 iter->socket->attached ? iter->socket->card_string :
2653 "Empty");
2656 /***********************************************************/
2657 /* register display */
2659 struct DisplayAllocator default_allocator = {
2660 defaultallocator_create_displaysurface,
2661 defaultallocator_resize_displaysurface,
2662 defaultallocator_free_displaysurface
2665 void register_displaystate(DisplayState *ds)
2667 DisplayState **s;
2668 s = &display_state;
2669 while (*s != NULL)
2670 s = &(*s)->next;
2671 ds->next = NULL;
2672 *s = ds;
2675 DisplayState *get_displaystate(void)
2677 return display_state;
2680 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2682 if(ds->allocator == &default_allocator) ds->allocator = da;
2683 return ds->allocator;
2686 /* dumb display */
2688 static void dumb_display_init(void)
2690 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2691 ds->allocator = &default_allocator;
2692 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2693 register_displaystate(ds);
2696 /***********************************************************/
2697 /* I/O handling */
2699 typedef struct IOHandlerRecord {
2700 int fd;
2701 IOCanRWHandler *fd_read_poll;
2702 IOHandler *fd_read;
2703 IOHandler *fd_write;
2704 int deleted;
2705 void *opaque;
2706 /* temporary data */
2707 struct pollfd *ufd;
2708 struct IOHandlerRecord *next;
2709 } IOHandlerRecord;
2711 static IOHandlerRecord *first_io_handler;
2713 /* XXX: fd_read_poll should be suppressed, but an API change is
2714 necessary in the character devices to suppress fd_can_read(). */
2715 int qemu_set_fd_handler2(int fd,
2716 IOCanRWHandler *fd_read_poll,
2717 IOHandler *fd_read,
2718 IOHandler *fd_write,
2719 void *opaque)
2721 IOHandlerRecord **pioh, *ioh;
2723 if (!fd_read && !fd_write) {
2724 pioh = &first_io_handler;
2725 for(;;) {
2726 ioh = *pioh;
2727 if (ioh == NULL)
2728 break;
2729 if (ioh->fd == fd) {
2730 ioh->deleted = 1;
2731 break;
2733 pioh = &ioh->next;
2735 } else {
2736 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2737 if (ioh->fd == fd)
2738 goto found;
2740 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2741 ioh->next = first_io_handler;
2742 first_io_handler = ioh;
2743 found:
2744 ioh->fd = fd;
2745 ioh->fd_read_poll = fd_read_poll;
2746 ioh->fd_read = fd_read;
2747 ioh->fd_write = fd_write;
2748 ioh->opaque = opaque;
2749 ioh->deleted = 0;
2751 return 0;
2754 int qemu_set_fd_handler(int fd,
2755 IOHandler *fd_read,
2756 IOHandler *fd_write,
2757 void *opaque)
2759 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2762 #ifdef _WIN32
2763 /***********************************************************/
2764 /* Polling handling */
2766 typedef struct PollingEntry {
2767 PollingFunc *func;
2768 void *opaque;
2769 struct PollingEntry *next;
2770 } PollingEntry;
2772 static PollingEntry *first_polling_entry;
2774 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2776 PollingEntry **ppe, *pe;
2777 pe = qemu_mallocz(sizeof(PollingEntry));
2778 pe->func = func;
2779 pe->opaque = opaque;
2780 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2781 *ppe = pe;
2782 return 0;
2785 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2787 PollingEntry **ppe, *pe;
2788 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2789 pe = *ppe;
2790 if (pe->func == func && pe->opaque == opaque) {
2791 *ppe = pe->next;
2792 qemu_free(pe);
2793 break;
2798 /***********************************************************/
2799 /* Wait objects support */
2800 typedef struct WaitObjects {
2801 int num;
2802 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2803 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2804 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2805 } WaitObjects;
2807 static WaitObjects wait_objects = {0};
2809 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2811 WaitObjects *w = &wait_objects;
2813 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2814 return -1;
2815 w->events[w->num] = handle;
2816 w->func[w->num] = func;
2817 w->opaque[w->num] = opaque;
2818 w->num++;
2819 return 0;
2822 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2824 int i, found;
2825 WaitObjects *w = &wait_objects;
2827 found = 0;
2828 for (i = 0; i < w->num; i++) {
2829 if (w->events[i] == handle)
2830 found = 1;
2831 if (found) {
2832 w->events[i] = w->events[i + 1];
2833 w->func[i] = w->func[i + 1];
2834 w->opaque[i] = w->opaque[i + 1];
2837 if (found)
2838 w->num--;
2840 #endif
2842 /***********************************************************/
2843 /* ram save/restore */
2845 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2846 #define RAM_SAVE_FLAG_COMPRESS 0x02
2847 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2848 #define RAM_SAVE_FLAG_PAGE 0x08
2849 #define RAM_SAVE_FLAG_EOS 0x10
2851 static int is_dup_page(uint8_t *page, uint8_t ch)
2853 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2854 uint32_t *array = (uint32_t *)page;
2855 int i;
2857 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2858 if (array[i] != val)
2859 return 0;
2862 return 1;
2865 static int ram_save_block(QEMUFile *f)
2867 static ram_addr_t current_addr = 0;
2868 ram_addr_t saved_addr = current_addr;
2869 ram_addr_t addr = 0;
2870 int found = 0;
2872 while (addr < last_ram_offset) {
2873 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2874 uint8_t *p;
2876 cpu_physical_memory_reset_dirty(current_addr,
2877 current_addr + TARGET_PAGE_SIZE,
2878 MIGRATION_DIRTY_FLAG);
2880 p = qemu_get_ram_ptr(current_addr);
2882 if (is_dup_page(p, *p)) {
2883 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2884 qemu_put_byte(f, *p);
2885 } else {
2886 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2887 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2890 found = 1;
2891 break;
2893 addr += TARGET_PAGE_SIZE;
2894 current_addr = (saved_addr + addr) % last_ram_offset;
2897 return found;
2900 static uint64_t bytes_transferred = 0;
2902 static ram_addr_t ram_save_remaining(void)
2904 ram_addr_t addr;
2905 ram_addr_t count = 0;
2907 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2908 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2909 count++;
2912 return count;
2915 uint64_t ram_bytes_remaining(void)
2917 return ram_save_remaining() * TARGET_PAGE_SIZE;
2920 uint64_t ram_bytes_transferred(void)
2922 return bytes_transferred;
2925 uint64_t ram_bytes_total(void)
2927 return last_ram_offset;
2930 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2932 ram_addr_t addr;
2933 uint64_t bytes_transferred_last;
2934 double bwidth = 0;
2935 uint64_t expected_time = 0;
2937 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2938 qemu_file_set_error(f);
2939 return 0;
2942 if (stage == 1) {
2943 /* Make sure all dirty bits are set */
2944 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2945 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2946 cpu_physical_memory_set_dirty(addr);
2949 /* Enable dirty memory tracking */
2950 cpu_physical_memory_set_dirty_tracking(1);
2952 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2955 bytes_transferred_last = bytes_transferred;
2956 bwidth = get_clock();
2958 while (!qemu_file_rate_limit(f)) {
2959 int ret;
2961 ret = ram_save_block(f);
2962 bytes_transferred += ret * TARGET_PAGE_SIZE;
2963 if (ret == 0) /* no more blocks */
2964 break;
2967 bwidth = get_clock() - bwidth;
2968 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2970 /* if we haven't transferred anything this round, force expected_time to a
2971 * a very high value, but without crashing */
2972 if (bwidth == 0)
2973 bwidth = 0.000001;
2975 /* try transferring iterative blocks of memory */
2976 if (stage == 3) {
2977 /* flush all remaining blocks regardless of rate limiting */
2978 while (ram_save_block(f) != 0) {
2979 bytes_transferred += TARGET_PAGE_SIZE;
2981 cpu_physical_memory_set_dirty_tracking(0);
2984 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2986 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2988 return (stage == 2) && (expected_time <= migrate_max_downtime());
2991 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2993 ram_addr_t addr;
2994 int flags;
2996 if (version_id != 3)
2997 return -EINVAL;
2999 do {
3000 addr = qemu_get_be64(f);
3002 flags = addr & ~TARGET_PAGE_MASK;
3003 addr &= TARGET_PAGE_MASK;
3005 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3006 if (addr != last_ram_offset)
3007 return -EINVAL;
3010 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3011 uint8_t ch = qemu_get_byte(f);
3012 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3013 #ifndef _WIN32
3014 if (ch == 0 &&
3015 (!kvm_enabled() || kvm_has_sync_mmu())) {
3016 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3018 #endif
3019 } else if (flags & RAM_SAVE_FLAG_PAGE)
3020 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3021 } while (!(flags & RAM_SAVE_FLAG_EOS));
3023 return 0;
3026 void qemu_service_io(void)
3028 qemu_notify_event();
3031 /***********************************************************/
3032 /* machine registration */
3034 static QEMUMachine *first_machine = NULL;
3035 QEMUMachine *current_machine = NULL;
3037 int qemu_register_machine(QEMUMachine *m)
3039 QEMUMachine **pm;
3040 pm = &first_machine;
3041 while (*pm != NULL)
3042 pm = &(*pm)->next;
3043 m->next = NULL;
3044 *pm = m;
3045 return 0;
3048 static QEMUMachine *find_machine(const char *name)
3050 QEMUMachine *m;
3052 for(m = first_machine; m != NULL; m = m->next) {
3053 if (!strcmp(m->name, name))
3054 return m;
3055 if (m->alias && !strcmp(m->alias, name))
3056 return m;
3058 return NULL;
3061 static QEMUMachine *find_default_machine(void)
3063 QEMUMachine *m;
3065 for(m = first_machine; m != NULL; m = m->next) {
3066 if (m->is_default) {
3067 return m;
3070 return NULL;
3073 /***********************************************************/
3074 /* main execution loop */
3076 static void gui_update(void *opaque)
3078 uint64_t interval = GUI_REFRESH_INTERVAL;
3079 DisplayState *ds = opaque;
3080 DisplayChangeListener *dcl = ds->listeners;
3082 dpy_refresh(ds);
3084 while (dcl != NULL) {
3085 if (dcl->gui_timer_interval &&
3086 dcl->gui_timer_interval < interval)
3087 interval = dcl->gui_timer_interval;
3088 dcl = dcl->next;
3090 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3093 static void nographic_update(void *opaque)
3095 uint64_t interval = GUI_REFRESH_INTERVAL;
3097 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3100 struct vm_change_state_entry {
3101 VMChangeStateHandler *cb;
3102 void *opaque;
3103 QLIST_ENTRY (vm_change_state_entry) entries;
3106 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3108 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3109 void *opaque)
3111 VMChangeStateEntry *e;
3113 e = qemu_mallocz(sizeof (*e));
3115 e->cb = cb;
3116 e->opaque = opaque;
3117 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3118 return e;
3121 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3123 QLIST_REMOVE (e, entries);
3124 qemu_free (e);
3127 static void vm_state_notify(int running, int reason)
3129 VMChangeStateEntry *e;
3131 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3132 e->cb(e->opaque, running, reason);
3136 static void resume_all_vcpus(void);
3137 static void pause_all_vcpus(void);
3139 void vm_start(void)
3141 if (!vm_running) {
3142 cpu_enable_ticks();
3143 vm_running = 1;
3144 vm_state_notify(1, 0);
3145 qemu_rearm_alarm_timer(alarm_timer);
3146 resume_all_vcpus();
3150 /* reset/shutdown handler */
3152 typedef struct QEMUResetEntry {
3153 QTAILQ_ENTRY(QEMUResetEntry) entry;
3154 QEMUResetHandler *func;
3155 void *opaque;
3156 } QEMUResetEntry;
3158 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3159 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3160 static int reset_requested;
3161 static int shutdown_requested;
3162 static int powerdown_requested;
3163 static int debug_requested;
3164 static int vmstop_requested;
3166 int qemu_shutdown_requested(void)
3168 int r = shutdown_requested;
3169 shutdown_requested = 0;
3170 return r;
3173 int qemu_reset_requested(void)
3175 int r = reset_requested;
3176 reset_requested = 0;
3177 return r;
3180 int qemu_powerdown_requested(void)
3182 int r = powerdown_requested;
3183 powerdown_requested = 0;
3184 return r;
3187 static int qemu_debug_requested(void)
3189 int r = debug_requested;
3190 debug_requested = 0;
3191 return r;
3194 static int qemu_vmstop_requested(void)
3196 int r = vmstop_requested;
3197 vmstop_requested = 0;
3198 return r;
3201 static void do_vm_stop(int reason)
3203 if (vm_running) {
3204 cpu_disable_ticks();
3205 vm_running = 0;
3206 pause_all_vcpus();
3207 vm_state_notify(0, reason);
3211 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3213 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3215 re->func = func;
3216 re->opaque = opaque;
3217 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3220 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3222 QEMUResetEntry *re;
3224 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3225 if (re->func == func && re->opaque == opaque) {
3226 QTAILQ_REMOVE(&reset_handlers, re, entry);
3227 qemu_free(re);
3228 return;
3233 void qemu_system_reset(void)
3235 QEMUResetEntry *re, *nre;
3237 /* reset all devices */
3238 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3239 re->func(re->opaque);
3243 void qemu_system_reset_request(void)
3245 if (no_reboot) {
3246 shutdown_requested = 1;
3247 } else {
3248 reset_requested = 1;
3250 qemu_notify_event();
3253 void qemu_system_shutdown_request(void)
3255 shutdown_requested = 1;
3256 qemu_notify_event();
3259 void qemu_system_powerdown_request(void)
3261 powerdown_requested = 1;
3262 qemu_notify_event();
3265 #ifdef CONFIG_IOTHREAD
3266 static void qemu_system_vmstop_request(int reason)
3268 vmstop_requested = reason;
3269 qemu_notify_event();
3271 #endif
3273 #ifndef _WIN32
3274 static int io_thread_fd = -1;
3276 static void qemu_event_increment(void)
3278 static const char byte = 0;
3280 if (io_thread_fd == -1)
3281 return;
3283 write(io_thread_fd, &byte, sizeof(byte));
3286 static void qemu_event_read(void *opaque)
3288 int fd = (unsigned long)opaque;
3289 ssize_t len;
3291 /* Drain the notify pipe */
3292 do {
3293 char buffer[512];
3294 len = read(fd, buffer, sizeof(buffer));
3295 } while ((len == -1 && errno == EINTR) || len > 0);
3298 static int qemu_event_init(void)
3300 int err;
3301 int fds[2];
3303 err = pipe(fds);
3304 if (err == -1)
3305 return -errno;
3307 err = fcntl_setfl(fds[0], O_NONBLOCK);
3308 if (err < 0)
3309 goto fail;
3311 err = fcntl_setfl(fds[1], O_NONBLOCK);
3312 if (err < 0)
3313 goto fail;
3315 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3316 (void *)(unsigned long)fds[0]);
3318 io_thread_fd = fds[1];
3319 return 0;
3321 fail:
3322 close(fds[0]);
3323 close(fds[1]);
3324 return err;
3326 #else
3327 HANDLE qemu_event_handle;
3329 static void dummy_event_handler(void *opaque)
3333 static int qemu_event_init(void)
3335 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3336 if (!qemu_event_handle) {
3337 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3338 return -1;
3340 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3341 return 0;
3344 static void qemu_event_increment(void)
3346 if (!SetEvent(qemu_event_handle)) {
3347 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3348 GetLastError());
3349 exit (1);
3352 #endif
3354 static int cpu_can_run(CPUState *env)
3356 if (env->stop)
3357 return 0;
3358 if (env->stopped)
3359 return 0;
3360 return 1;
3363 #ifndef CONFIG_IOTHREAD
3364 static int qemu_init_main_loop(void)
3366 return qemu_event_init();
3369 void qemu_init_vcpu(void *_env)
3371 CPUState *env = _env;
3373 if (kvm_enabled())
3374 kvm_init_vcpu(env);
3375 env->nr_cores = smp_cores;
3376 env->nr_threads = smp_threads;
3377 return;
3380 int qemu_cpu_self(void *env)
3382 return 1;
3385 static void resume_all_vcpus(void)
3389 static void pause_all_vcpus(void)
3393 void qemu_cpu_kick(void *env)
3395 return;
3398 void qemu_notify_event(void)
3400 CPUState *env = cpu_single_env;
3402 if (env) {
3403 cpu_exit(env);
3407 void qemu_mutex_lock_iothread(void) {}
3408 void qemu_mutex_unlock_iothread(void) {}
3410 void vm_stop(int reason)
3412 do_vm_stop(reason);
3415 #else /* CONFIG_IOTHREAD */
3417 #include "qemu-thread.h"
3419 QemuMutex qemu_global_mutex;
3420 static QemuMutex qemu_fair_mutex;
3422 static QemuThread io_thread;
3424 static QemuThread *tcg_cpu_thread;
3425 static QemuCond *tcg_halt_cond;
3427 static int qemu_system_ready;
3428 /* cpu creation */
3429 static QemuCond qemu_cpu_cond;
3430 /* system init */
3431 static QemuCond qemu_system_cond;
3432 static QemuCond qemu_pause_cond;
3434 static void block_io_signals(void);
3435 static void unblock_io_signals(void);
3436 static int tcg_has_work(void);
3438 static int qemu_init_main_loop(void)
3440 int ret;
3442 ret = qemu_event_init();
3443 if (ret)
3444 return ret;
3446 qemu_cond_init(&qemu_pause_cond);
3447 qemu_mutex_init(&qemu_fair_mutex);
3448 qemu_mutex_init(&qemu_global_mutex);
3449 qemu_mutex_lock(&qemu_global_mutex);
3451 unblock_io_signals();
3452 qemu_thread_self(&io_thread);
3454 return 0;
3457 static void qemu_wait_io_event(CPUState *env)
3459 while (!tcg_has_work())
3460 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3462 qemu_mutex_unlock(&qemu_global_mutex);
3465 * Users of qemu_global_mutex can be starved, having no chance
3466 * to acquire it since this path will get to it first.
3467 * So use another lock to provide fairness.
3469 qemu_mutex_lock(&qemu_fair_mutex);
3470 qemu_mutex_unlock(&qemu_fair_mutex);
3472 qemu_mutex_lock(&qemu_global_mutex);
3473 if (env->stop) {
3474 env->stop = 0;
3475 env->stopped = 1;
3476 qemu_cond_signal(&qemu_pause_cond);
3480 static int qemu_cpu_exec(CPUState *env);
3482 static void *kvm_cpu_thread_fn(void *arg)
3484 CPUState *env = arg;
3486 block_io_signals();
3487 qemu_thread_self(env->thread);
3488 if (kvm_enabled())
3489 kvm_init_vcpu(env);
3491 /* signal CPU creation */
3492 qemu_mutex_lock(&qemu_global_mutex);
3493 env->created = 1;
3494 qemu_cond_signal(&qemu_cpu_cond);
3496 /* and wait for machine initialization */
3497 while (!qemu_system_ready)
3498 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3500 while (1) {
3501 if (cpu_can_run(env))
3502 qemu_cpu_exec(env);
3503 qemu_wait_io_event(env);
3506 return NULL;
3509 static void tcg_cpu_exec(void);
3511 static void *tcg_cpu_thread_fn(void *arg)
3513 CPUState *env = arg;
3515 block_io_signals();
3516 qemu_thread_self(env->thread);
3518 /* signal CPU creation */
3519 qemu_mutex_lock(&qemu_global_mutex);
3520 for (env = first_cpu; env != NULL; env = env->next_cpu)
3521 env->created = 1;
3522 qemu_cond_signal(&qemu_cpu_cond);
3524 /* and wait for machine initialization */
3525 while (!qemu_system_ready)
3526 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3528 while (1) {
3529 tcg_cpu_exec();
3530 qemu_wait_io_event(cur_cpu);
3533 return NULL;
3536 void qemu_cpu_kick(void *_env)
3538 CPUState *env = _env;
3539 qemu_cond_broadcast(env->halt_cond);
3540 if (kvm_enabled())
3541 qemu_thread_signal(env->thread, SIGUSR1);
3544 int qemu_cpu_self(void *_env)
3546 CPUState *env = _env;
3547 QemuThread this;
3549 qemu_thread_self(&this);
3551 return qemu_thread_equal(&this, env->thread);
3554 static void cpu_signal(int sig)
3556 if (cpu_single_env)
3557 cpu_exit(cpu_single_env);
3560 static void block_io_signals(void)
3562 sigset_t set;
3563 struct sigaction sigact;
3565 sigemptyset(&set);
3566 sigaddset(&set, SIGUSR2);
3567 sigaddset(&set, SIGIO);
3568 sigaddset(&set, SIGALRM);
3569 pthread_sigmask(SIG_BLOCK, &set, NULL);
3571 sigemptyset(&set);
3572 sigaddset(&set, SIGUSR1);
3573 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3575 memset(&sigact, 0, sizeof(sigact));
3576 sigact.sa_handler = cpu_signal;
3577 sigaction(SIGUSR1, &sigact, NULL);
3580 static void unblock_io_signals(void)
3582 sigset_t set;
3584 sigemptyset(&set);
3585 sigaddset(&set, SIGUSR2);
3586 sigaddset(&set, SIGIO);
3587 sigaddset(&set, SIGALRM);
3588 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3590 sigemptyset(&set);
3591 sigaddset(&set, SIGUSR1);
3592 pthread_sigmask(SIG_BLOCK, &set, NULL);
3595 static void qemu_signal_lock(unsigned int msecs)
3597 qemu_mutex_lock(&qemu_fair_mutex);
3599 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3600 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3601 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3602 break;
3604 qemu_mutex_unlock(&qemu_fair_mutex);
3607 void qemu_mutex_lock_iothread(void)
3609 if (kvm_enabled()) {
3610 qemu_mutex_lock(&qemu_fair_mutex);
3611 qemu_mutex_lock(&qemu_global_mutex);
3612 qemu_mutex_unlock(&qemu_fair_mutex);
3613 } else
3614 qemu_signal_lock(100);
3617 void qemu_mutex_unlock_iothread(void)
3619 qemu_mutex_unlock(&qemu_global_mutex);
3622 static int all_vcpus_paused(void)
3624 CPUState *penv = first_cpu;
3626 while (penv) {
3627 if (!penv->stopped)
3628 return 0;
3629 penv = (CPUState *)penv->next_cpu;
3632 return 1;
3635 static void pause_all_vcpus(void)
3637 CPUState *penv = first_cpu;
3639 while (penv) {
3640 penv->stop = 1;
3641 qemu_thread_signal(penv->thread, SIGUSR1);
3642 qemu_cpu_kick(penv);
3643 penv = (CPUState *)penv->next_cpu;
3646 while (!all_vcpus_paused()) {
3647 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3648 penv = first_cpu;
3649 while (penv) {
3650 qemu_thread_signal(penv->thread, SIGUSR1);
3651 penv = (CPUState *)penv->next_cpu;
3656 static void resume_all_vcpus(void)
3658 CPUState *penv = first_cpu;
3660 while (penv) {
3661 penv->stop = 0;
3662 penv->stopped = 0;
3663 qemu_thread_signal(penv->thread, SIGUSR1);
3664 qemu_cpu_kick(penv);
3665 penv = (CPUState *)penv->next_cpu;
3669 static void tcg_init_vcpu(void *_env)
3671 CPUState *env = _env;
3672 /* share a single thread for all cpus with TCG */
3673 if (!tcg_cpu_thread) {
3674 env->thread = qemu_mallocz(sizeof(QemuThread));
3675 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3676 qemu_cond_init(env->halt_cond);
3677 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3678 while (env->created == 0)
3679 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3680 tcg_cpu_thread = env->thread;
3681 tcg_halt_cond = env->halt_cond;
3682 } else {
3683 env->thread = tcg_cpu_thread;
3684 env->halt_cond = tcg_halt_cond;
3688 static void kvm_start_vcpu(CPUState *env)
3690 env->thread = qemu_mallocz(sizeof(QemuThread));
3691 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3692 qemu_cond_init(env->halt_cond);
3693 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3694 while (env->created == 0)
3695 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3698 void qemu_init_vcpu(void *_env)
3700 CPUState *env = _env;
3702 if (kvm_enabled())
3703 kvm_start_vcpu(env);
3704 else
3705 tcg_init_vcpu(env);
3706 env->nr_cores = smp_cores;
3707 env->nr_threads = smp_threads;
3710 void qemu_notify_event(void)
3712 qemu_event_increment();
3715 void vm_stop(int reason)
3717 QemuThread me;
3718 qemu_thread_self(&me);
3720 if (!qemu_thread_equal(&me, &io_thread)) {
3721 qemu_system_vmstop_request(reason);
3723 * FIXME: should not return to device code in case
3724 * vm_stop() has been requested.
3726 if (cpu_single_env) {
3727 cpu_exit(cpu_single_env);
3728 cpu_single_env->stop = 1;
3730 return;
3732 do_vm_stop(reason);
3735 #endif
3738 #ifdef _WIN32
3739 static void host_main_loop_wait(int *timeout)
3741 int ret, ret2, i;
3742 PollingEntry *pe;
3745 /* XXX: need to suppress polling by better using win32 events */
3746 ret = 0;
3747 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3748 ret |= pe->func(pe->opaque);
3750 if (ret == 0) {
3751 int err;
3752 WaitObjects *w = &wait_objects;
3754 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3755 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3756 if (w->func[ret - WAIT_OBJECT_0])
3757 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3759 /* Check for additional signaled events */
3760 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3762 /* Check if event is signaled */
3763 ret2 = WaitForSingleObject(w->events[i], 0);
3764 if(ret2 == WAIT_OBJECT_0) {
3765 if (w->func[i])
3766 w->func[i](w->opaque[i]);
3767 } else if (ret2 == WAIT_TIMEOUT) {
3768 } else {
3769 err = GetLastError();
3770 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3773 } else if (ret == WAIT_TIMEOUT) {
3774 } else {
3775 err = GetLastError();
3776 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3780 *timeout = 0;
3782 #else
3783 static void host_main_loop_wait(int *timeout)
3786 #endif
3788 void main_loop_wait(int timeout)
3790 IOHandlerRecord *ioh;
3791 fd_set rfds, wfds, xfds;
3792 int ret, nfds;
3793 struct timeval tv;
3795 qemu_bh_update_timeout(&timeout);
3797 host_main_loop_wait(&timeout);
3799 /* poll any events */
3800 /* XXX: separate device handlers from system ones */
3801 nfds = -1;
3802 FD_ZERO(&rfds);
3803 FD_ZERO(&wfds);
3804 FD_ZERO(&xfds);
3805 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3806 if (ioh->deleted)
3807 continue;
3808 if (ioh->fd_read &&
3809 (!ioh->fd_read_poll ||
3810 ioh->fd_read_poll(ioh->opaque) != 0)) {
3811 FD_SET(ioh->fd, &rfds);
3812 if (ioh->fd > nfds)
3813 nfds = ioh->fd;
3815 if (ioh->fd_write) {
3816 FD_SET(ioh->fd, &wfds);
3817 if (ioh->fd > nfds)
3818 nfds = ioh->fd;
3822 tv.tv_sec = timeout / 1000;
3823 tv.tv_usec = (timeout % 1000) * 1000;
3825 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3827 qemu_mutex_unlock_iothread();
3828 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3829 qemu_mutex_lock_iothread();
3830 if (ret > 0) {
3831 IOHandlerRecord **pioh;
3833 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3834 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3835 ioh->fd_read(ioh->opaque);
3837 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3838 ioh->fd_write(ioh->opaque);
3842 /* remove deleted IO handlers */
3843 pioh = &first_io_handler;
3844 while (*pioh) {
3845 ioh = *pioh;
3846 if (ioh->deleted) {
3847 *pioh = ioh->next;
3848 qemu_free(ioh);
3849 } else
3850 pioh = &ioh->next;
3854 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3856 /* rearm timer, if not periodic */
3857 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3858 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3859 qemu_rearm_alarm_timer(alarm_timer);
3862 /* vm time timers */
3863 if (vm_running) {
3864 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3865 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3866 qemu_get_clock(vm_clock));
3869 /* real time timers */
3870 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3871 qemu_get_clock(rt_clock));
3873 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3874 qemu_get_clock(host_clock));
3876 /* Check bottom-halves last in case any of the earlier events triggered
3877 them. */
3878 qemu_bh_poll();
3882 static int qemu_cpu_exec(CPUState *env)
3884 int ret;
3885 #ifdef CONFIG_PROFILER
3886 int64_t ti;
3887 #endif
3889 #ifdef CONFIG_PROFILER
3890 ti = profile_getclock();
3891 #endif
3892 if (use_icount) {
3893 int64_t count;
3894 int decr;
3895 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3896 env->icount_decr.u16.low = 0;
3897 env->icount_extra = 0;
3898 count = qemu_next_deadline();
3899 count = (count + (1 << icount_time_shift) - 1)
3900 >> icount_time_shift;
3901 qemu_icount += count;
3902 decr = (count > 0xffff) ? 0xffff : count;
3903 count -= decr;
3904 env->icount_decr.u16.low = decr;
3905 env->icount_extra = count;
3907 ret = cpu_exec(env);
3908 #ifdef CONFIG_PROFILER
3909 qemu_time += profile_getclock() - ti;
3910 #endif
3911 if (use_icount) {
3912 /* Fold pending instructions back into the
3913 instruction counter, and clear the interrupt flag. */
3914 qemu_icount -= (env->icount_decr.u16.low
3915 + env->icount_extra);
3916 env->icount_decr.u32 = 0;
3917 env->icount_extra = 0;
3919 return ret;
3922 static void tcg_cpu_exec(void)
3924 int ret = 0;
3926 if (next_cpu == NULL)
3927 next_cpu = first_cpu;
3928 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3929 CPUState *env = cur_cpu = next_cpu;
3931 if (!vm_running)
3932 break;
3933 if (timer_alarm_pending) {
3934 timer_alarm_pending = 0;
3935 break;
3937 if (cpu_can_run(env))
3938 ret = qemu_cpu_exec(env);
3939 if (ret == EXCP_DEBUG) {
3940 gdb_set_stop_cpu(env);
3941 debug_requested = 1;
3942 break;
3947 static int cpu_has_work(CPUState *env)
3949 if (env->stop)
3950 return 1;
3951 if (env->stopped)
3952 return 0;
3953 if (!env->halted)
3954 return 1;
3955 if (qemu_cpu_has_work(env))
3956 return 1;
3957 return 0;
3960 static int tcg_has_work(void)
3962 CPUState *env;
3964 for (env = first_cpu; env != NULL; env = env->next_cpu)
3965 if (cpu_has_work(env))
3966 return 1;
3967 return 0;
3970 static int qemu_calculate_timeout(void)
3972 #ifndef CONFIG_IOTHREAD
3973 int timeout;
3975 if (!vm_running)
3976 timeout = 5000;
3977 else if (tcg_has_work())
3978 timeout = 0;
3979 else if (!use_icount)
3980 timeout = 5000;
3981 else {
3982 /* XXX: use timeout computed from timers */
3983 int64_t add;
3984 int64_t delta;
3985 /* Advance virtual time to the next event. */
3986 if (use_icount == 1) {
3987 /* When not using an adaptive execution frequency
3988 we tend to get badly out of sync with real time,
3989 so just delay for a reasonable amount of time. */
3990 delta = 0;
3991 } else {
3992 delta = cpu_get_icount() - cpu_get_clock();
3994 if (delta > 0) {
3995 /* If virtual time is ahead of real time then just
3996 wait for IO. */
3997 timeout = (delta / 1000000) + 1;
3998 } else {
3999 /* Wait for either IO to occur or the next
4000 timer event. */
4001 add = qemu_next_deadline();
4002 /* We advance the timer before checking for IO.
4003 Limit the amount we advance so that early IO
4004 activity won't get the guest too far ahead. */
4005 if (add > 10000000)
4006 add = 10000000;
4007 delta += add;
4008 add = (add + (1 << icount_time_shift) - 1)
4009 >> icount_time_shift;
4010 qemu_icount += add;
4011 timeout = delta / 1000000;
4012 if (timeout < 0)
4013 timeout = 0;
4017 return timeout;
4018 #else /* CONFIG_IOTHREAD */
4019 return 1000;
4020 #endif
4023 static int vm_can_run(void)
4025 if (powerdown_requested)
4026 return 0;
4027 if (reset_requested)
4028 return 0;
4029 if (shutdown_requested)
4030 return 0;
4031 if (debug_requested)
4032 return 0;
4033 return 1;
4036 qemu_irq qemu_system_powerdown;
4038 static void main_loop(void)
4040 int r;
4042 #ifdef CONFIG_IOTHREAD
4043 qemu_system_ready = 1;
4044 qemu_cond_broadcast(&qemu_system_cond);
4045 #endif
4047 for (;;) {
4048 do {
4049 #ifdef CONFIG_PROFILER
4050 int64_t ti;
4051 #endif
4052 #ifndef CONFIG_IOTHREAD
4053 tcg_cpu_exec();
4054 #endif
4055 #ifdef CONFIG_PROFILER
4056 ti = profile_getclock();
4057 #endif
4058 main_loop_wait(qemu_calculate_timeout());
4059 #ifdef CONFIG_PROFILER
4060 dev_time += profile_getclock() - ti;
4061 #endif
4062 } while (vm_can_run());
4064 if (qemu_debug_requested()) {
4065 monitor_protocol_event(EVENT_DEBUG, NULL);
4066 vm_stop(EXCP_DEBUG);
4068 if (qemu_shutdown_requested()) {
4069 monitor_protocol_event(EVENT_SHUTDOWN, NULL);
4070 if (no_shutdown) {
4071 vm_stop(0);
4072 no_shutdown = 0;
4073 } else
4074 break;
4076 if (qemu_reset_requested()) {
4077 monitor_protocol_event(EVENT_RESET, NULL);
4078 pause_all_vcpus();
4079 qemu_system_reset();
4080 resume_all_vcpus();
4082 if (qemu_powerdown_requested()) {
4083 monitor_protocol_event(EVENT_POWERDOWN, NULL);
4084 qemu_irq_raise(qemu_system_powerdown);
4086 if ((r = qemu_vmstop_requested())) {
4087 monitor_protocol_event(EVENT_STOP, NULL);
4088 vm_stop(r);
4091 pause_all_vcpus();
4094 static void version(void)
4096 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4099 static void help(int exitcode)
4101 version();
4102 printf("usage: %s [options] [disk_image]\n"
4103 "\n"
4104 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4105 "\n"
4106 #define DEF(option, opt_arg, opt_enum, opt_help) \
4107 opt_help
4108 #define DEFHEADING(text) stringify(text) "\n"
4109 #include "qemu-options.h"
4110 #undef DEF
4111 #undef DEFHEADING
4112 #undef GEN_DOCS
4113 "\n"
4114 "During emulation, the following keys are useful:\n"
4115 "ctrl-alt-f toggle full screen\n"
4116 "ctrl-alt-n switch to virtual console 'n'\n"
4117 "ctrl-alt toggle mouse and keyboard grab\n"
4118 "\n"
4119 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4121 "qemu",
4122 DEFAULT_RAM_SIZE,
4123 #ifndef _WIN32
4124 DEFAULT_NETWORK_SCRIPT,
4125 DEFAULT_NETWORK_DOWN_SCRIPT,
4126 #endif
4127 DEFAULT_GDBSTUB_PORT,
4128 "/tmp/qemu.log");
4129 exit(exitcode);
4132 #define HAS_ARG 0x0001
4134 enum {
4135 #define DEF(option, opt_arg, opt_enum, opt_help) \
4136 opt_enum,
4137 #define DEFHEADING(text)
4138 #include "qemu-options.h"
4139 #undef DEF
4140 #undef DEFHEADING
4141 #undef GEN_DOCS
4144 typedef struct QEMUOption {
4145 const char *name;
4146 int flags;
4147 int index;
4148 } QEMUOption;
4150 static const QEMUOption qemu_options[] = {
4151 { "h", 0, QEMU_OPTION_h },
4152 #define DEF(option, opt_arg, opt_enum, opt_help) \
4153 { option, opt_arg, opt_enum },
4154 #define DEFHEADING(text)
4155 #include "qemu-options.h"
4156 #undef DEF
4157 #undef DEFHEADING
4158 #undef GEN_DOCS
4159 { NULL },
4162 #ifdef HAS_AUDIO
4163 struct soundhw soundhw[] = {
4164 #ifdef HAS_AUDIO_CHOICE
4165 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4167 "pcspk",
4168 "PC speaker",
4171 { .init_isa = pcspk_audio_init }
4173 #endif
4175 #ifdef CONFIG_SB16
4177 "sb16",
4178 "Creative Sound Blaster 16",
4181 { .init_isa = SB16_init }
4183 #endif
4185 #ifdef CONFIG_CS4231A
4187 "cs4231a",
4188 "CS4231A",
4191 { .init_isa = cs4231a_init }
4193 #endif
4195 #ifdef CONFIG_ADLIB
4197 "adlib",
4198 #ifdef HAS_YMF262
4199 "Yamaha YMF262 (OPL3)",
4200 #else
4201 "Yamaha YM3812 (OPL2)",
4202 #endif
4205 { .init_isa = Adlib_init }
4207 #endif
4209 #ifdef CONFIG_GUS
4211 "gus",
4212 "Gravis Ultrasound GF1",
4215 { .init_isa = GUS_init }
4217 #endif
4219 #ifdef CONFIG_AC97
4221 "ac97",
4222 "Intel 82801AA AC97 Audio",
4225 { .init_pci = ac97_init }
4227 #endif
4229 #ifdef CONFIG_ES1370
4231 "es1370",
4232 "ENSONIQ AudioPCI ES1370",
4235 { .init_pci = es1370_init }
4237 #endif
4239 #endif /* HAS_AUDIO_CHOICE */
4241 { NULL, NULL, 0, 0, { NULL } }
4244 static void select_soundhw (const char *optarg)
4246 struct soundhw *c;
4248 if (*optarg == '?') {
4249 show_valid_cards:
4251 printf ("Valid sound card names (comma separated):\n");
4252 for (c = soundhw; c->name; ++c) {
4253 printf ("%-11s %s\n", c->name, c->descr);
4255 printf ("\n-soundhw all will enable all of the above\n");
4256 exit (*optarg != '?');
4258 else {
4259 size_t l;
4260 const char *p;
4261 char *e;
4262 int bad_card = 0;
4264 if (!strcmp (optarg, "all")) {
4265 for (c = soundhw; c->name; ++c) {
4266 c->enabled = 1;
4268 return;
4271 p = optarg;
4272 while (*p) {
4273 e = strchr (p, ',');
4274 l = !e ? strlen (p) : (size_t) (e - p);
4276 for (c = soundhw; c->name; ++c) {
4277 if (!strncmp (c->name, p, l) && !c->name[l]) {
4278 c->enabled = 1;
4279 break;
4283 if (!c->name) {
4284 if (l > 80) {
4285 fprintf (stderr,
4286 "Unknown sound card name (too big to show)\n");
4288 else {
4289 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4290 (int) l, p);
4292 bad_card = 1;
4294 p += l + (e != NULL);
4297 if (bad_card)
4298 goto show_valid_cards;
4301 #endif
4303 static void select_vgahw (const char *p)
4305 const char *opts;
4307 vga_interface_type = VGA_NONE;
4308 if (strstart(p, "std", &opts)) {
4309 vga_interface_type = VGA_STD;
4310 } else if (strstart(p, "cirrus", &opts)) {
4311 vga_interface_type = VGA_CIRRUS;
4312 } else if (strstart(p, "vmware", &opts)) {
4313 vga_interface_type = VGA_VMWARE;
4314 } else if (strstart(p, "xenfb", &opts)) {
4315 vga_interface_type = VGA_XENFB;
4316 } else if (!strstart(p, "none", &opts)) {
4317 invalid_vga:
4318 fprintf(stderr, "Unknown vga type: %s\n", p);
4319 exit(1);
4321 while (*opts) {
4322 const char *nextopt;
4324 if (strstart(opts, ",retrace=", &nextopt)) {
4325 opts = nextopt;
4326 if (strstart(opts, "dumb", &nextopt))
4327 vga_retrace_method = VGA_RETRACE_DUMB;
4328 else if (strstart(opts, "precise", &nextopt))
4329 vga_retrace_method = VGA_RETRACE_PRECISE;
4330 else goto invalid_vga;
4331 } else goto invalid_vga;
4332 opts = nextopt;
4336 #ifdef TARGET_I386
4337 static int balloon_parse(const char *arg)
4339 QemuOpts *opts;
4341 if (strcmp(arg, "none") == 0) {
4342 return 0;
4345 if (!strncmp(arg, "virtio", 6)) {
4346 if (arg[6] == ',') {
4347 /* have params -> parse them */
4348 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4349 if (!opts)
4350 return -1;
4351 } else {
4352 /* create empty opts */
4353 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4355 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4356 return 0;
4359 return -1;
4361 #endif
4363 #ifdef _WIN32
4364 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4366 exit(STATUS_CONTROL_C_EXIT);
4367 return TRUE;
4369 #endif
4371 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4373 int ret;
4375 if(strlen(str) != 36)
4376 return -1;
4378 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4379 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4380 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4382 if(ret != 16)
4383 return -1;
4385 #ifdef TARGET_I386
4386 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4387 #endif
4389 return 0;
4392 #ifndef _WIN32
4394 static void termsig_handler(int signal)
4396 qemu_system_shutdown_request();
4399 static void sigchld_handler(int signal)
4401 waitpid(-1, NULL, WNOHANG);
4404 static void sighandler_setup(void)
4406 struct sigaction act;
4408 memset(&act, 0, sizeof(act));
4409 act.sa_handler = termsig_handler;
4410 sigaction(SIGINT, &act, NULL);
4411 sigaction(SIGHUP, &act, NULL);
4412 sigaction(SIGTERM, &act, NULL);
4414 act.sa_handler = sigchld_handler;
4415 act.sa_flags = SA_NOCLDSTOP;
4416 sigaction(SIGCHLD, &act, NULL);
4419 #endif
4421 #ifdef _WIN32
4422 /* Look for support files in the same directory as the executable. */
4423 static char *find_datadir(const char *argv0)
4425 char *p;
4426 char buf[MAX_PATH];
4427 DWORD len;
4429 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4430 if (len == 0) {
4431 return NULL;
4434 buf[len] = 0;
4435 p = buf + len - 1;
4436 while (p != buf && *p != '\\')
4437 p--;
4438 *p = 0;
4439 if (access(buf, R_OK) == 0) {
4440 return qemu_strdup(buf);
4442 return NULL;
4444 #else /* !_WIN32 */
4446 /* Find a likely location for support files using the location of the binary.
4447 For installed binaries this will be "$bindir/../share/qemu". When
4448 running from the build tree this will be "$bindir/../pc-bios". */
4449 #define SHARE_SUFFIX "/share/qemu"
4450 #define BUILD_SUFFIX "/pc-bios"
4451 static char *find_datadir(const char *argv0)
4453 char *dir;
4454 char *p = NULL;
4455 char *res;
4456 char buf[PATH_MAX];
4457 size_t max_len;
4459 #if defined(__linux__)
4461 int len;
4462 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4463 if (len > 0) {
4464 buf[len] = 0;
4465 p = buf;
4468 #elif defined(__FreeBSD__)
4470 int len;
4471 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4472 if (len > 0) {
4473 buf[len] = 0;
4474 p = buf;
4477 #endif
4478 /* If we don't have any way of figuring out the actual executable
4479 location then try argv[0]. */
4480 if (!p) {
4481 p = realpath(argv0, buf);
4482 if (!p) {
4483 return NULL;
4486 dir = dirname(p);
4487 dir = dirname(dir);
4489 max_len = strlen(dir) +
4490 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4491 res = qemu_mallocz(max_len);
4492 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4493 if (access(res, R_OK)) {
4494 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4495 if (access(res, R_OK)) {
4496 qemu_free(res);
4497 res = NULL;
4501 return res;
4503 #undef SHARE_SUFFIX
4504 #undef BUILD_SUFFIX
4505 #endif
4507 char *qemu_find_file(int type, const char *name)
4509 int len;
4510 const char *subdir;
4511 char *buf;
4513 /* If name contains path separators then try it as a straight path. */
4514 if ((strchr(name, '/') || strchr(name, '\\'))
4515 && access(name, R_OK) == 0) {
4516 return qemu_strdup(name);
4518 switch (type) {
4519 case QEMU_FILE_TYPE_BIOS:
4520 subdir = "";
4521 break;
4522 case QEMU_FILE_TYPE_KEYMAP:
4523 subdir = "keymaps/";
4524 break;
4525 default:
4526 abort();
4528 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4529 buf = qemu_mallocz(len);
4530 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4531 if (access(buf, R_OK)) {
4532 qemu_free(buf);
4533 return NULL;
4535 return buf;
4538 static int device_init_func(QemuOpts *opts, void *opaque)
4540 DeviceState *dev;
4542 dev = qdev_device_add(opts);
4543 if (!dev)
4544 return -1;
4545 return 0;
4548 struct device_config {
4549 enum {
4550 DEV_USB, /* -usbdevice */
4551 DEV_BT, /* -bt */
4552 } type;
4553 const char *cmdline;
4554 QTAILQ_ENTRY(device_config) next;
4556 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4558 static void add_device_config(int type, const char *cmdline)
4560 struct device_config *conf;
4562 conf = qemu_mallocz(sizeof(*conf));
4563 conf->type = type;
4564 conf->cmdline = cmdline;
4565 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4568 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4570 struct device_config *conf;
4571 int rc;
4573 QTAILQ_FOREACH(conf, &device_configs, next) {
4574 if (conf->type != type)
4575 continue;
4576 rc = func(conf->cmdline);
4577 if (0 != rc)
4578 return rc;
4580 return 0;
4583 int main(int argc, char **argv, char **envp)
4585 const char *gdbstub_dev = NULL;
4586 uint32_t boot_devices_bitmap = 0;
4587 int i;
4588 int snapshot, linux_boot, net_boot;
4589 const char *initrd_filename;
4590 const char *kernel_filename, *kernel_cmdline;
4591 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4592 DisplayState *ds;
4593 DisplayChangeListener *dcl;
4594 int cyls, heads, secs, translation;
4595 QemuOpts *hda_opts = NULL, *opts;
4596 int optind;
4597 const char *r, *optarg;
4598 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4599 const char *monitor_devices[MAX_MONITOR_DEVICES];
4600 int monitor_flags[MAX_MONITOR_DEVICES];
4601 int monitor_device_index;
4602 const char *serial_devices[MAX_SERIAL_PORTS];
4603 int serial_device_index;
4604 const char *parallel_devices[MAX_PARALLEL_PORTS];
4605 int parallel_device_index;
4606 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4607 int virtio_console_index;
4608 const char *loadvm = NULL;
4609 QEMUMachine *machine;
4610 const char *cpu_model;
4611 #ifndef _WIN32
4612 int fds[2];
4613 #endif
4614 int tb_size;
4615 const char *pid_file = NULL;
4616 const char *incoming = NULL;
4617 #ifndef _WIN32
4618 int fd = 0;
4619 struct passwd *pwd = NULL;
4620 const char *chroot_dir = NULL;
4621 const char *run_as = NULL;
4622 #endif
4623 CPUState *env;
4624 int show_vnc_port = 0;
4626 init_clocks();
4628 qemu_errors_to_file(stderr);
4629 qemu_cache_utils_init(envp);
4631 QLIST_INIT (&vm_change_state_head);
4632 #ifndef _WIN32
4634 struct sigaction act;
4635 sigfillset(&act.sa_mask);
4636 act.sa_flags = 0;
4637 act.sa_handler = SIG_IGN;
4638 sigaction(SIGPIPE, &act, NULL);
4640 #else
4641 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4642 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4643 QEMU to run on a single CPU */
4645 HANDLE h;
4646 DWORD mask, smask;
4647 int i;
4648 h = GetCurrentProcess();
4649 if (GetProcessAffinityMask(h, &mask, &smask)) {
4650 for(i = 0; i < 32; i++) {
4651 if (mask & (1 << i))
4652 break;
4654 if (i != 32) {
4655 mask = 1 << i;
4656 SetProcessAffinityMask(h, mask);
4660 #endif
4662 module_call_init(MODULE_INIT_MACHINE);
4663 machine = find_default_machine();
4664 cpu_model = NULL;
4665 initrd_filename = NULL;
4666 ram_size = 0;
4667 snapshot = 0;
4668 kernel_filename = NULL;
4669 kernel_cmdline = "";
4670 cyls = heads = secs = 0;
4671 translation = BIOS_ATA_TRANSLATION_AUTO;
4673 serial_devices[0] = "vc:80Cx24C";
4674 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4675 serial_devices[i] = NULL;
4676 serial_device_index = 0;
4678 parallel_devices[0] = "vc:80Cx24C";
4679 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4680 parallel_devices[i] = NULL;
4681 parallel_device_index = 0;
4683 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4684 virtio_consoles[i] = NULL;
4685 virtio_console_index = 0;
4687 monitor_devices[0] = "vc:80Cx24C";
4688 monitor_flags[0] = MONITOR_IS_DEFAULT | MONITOR_USE_READLINE;
4689 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4690 monitor_devices[i] = NULL;
4691 monitor_flags[i] = MONITOR_USE_READLINE;
4693 monitor_device_index = 0;
4695 for (i = 0; i < MAX_NODES; i++) {
4696 node_mem[i] = 0;
4697 node_cpumask[i] = 0;
4700 nb_numa_nodes = 0;
4701 nb_nics = 0;
4703 tb_size = 0;
4704 autostart= 1;
4706 optind = 1;
4707 for(;;) {
4708 if (optind >= argc)
4709 break;
4710 r = argv[optind];
4711 if (r[0] != '-') {
4712 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4713 } else {
4714 const QEMUOption *popt;
4716 optind++;
4717 /* Treat --foo the same as -foo. */
4718 if (r[1] == '-')
4719 r++;
4720 popt = qemu_options;
4721 for(;;) {
4722 if (!popt->name) {
4723 fprintf(stderr, "%s: invalid option -- '%s'\n",
4724 argv[0], r);
4725 exit(1);
4727 if (!strcmp(popt->name, r + 1))
4728 break;
4729 popt++;
4731 if (popt->flags & HAS_ARG) {
4732 if (optind >= argc) {
4733 fprintf(stderr, "%s: option '%s' requires an argument\n",
4734 argv[0], r);
4735 exit(1);
4737 optarg = argv[optind++];
4738 } else {
4739 optarg = NULL;
4742 switch(popt->index) {
4743 case QEMU_OPTION_M:
4744 machine = find_machine(optarg);
4745 if (!machine) {
4746 QEMUMachine *m;
4747 printf("Supported machines are:\n");
4748 for(m = first_machine; m != NULL; m = m->next) {
4749 if (m->alias)
4750 printf("%-10s %s (alias of %s)\n",
4751 m->alias, m->desc, m->name);
4752 printf("%-10s %s%s\n",
4753 m->name, m->desc,
4754 m->is_default ? " (default)" : "");
4756 exit(*optarg != '?');
4758 break;
4759 case QEMU_OPTION_cpu:
4760 /* hw initialization will check this */
4761 if (*optarg == '?') {
4762 /* XXX: implement xxx_cpu_list for targets that still miss it */
4763 #if defined(cpu_list)
4764 cpu_list(stdout, &fprintf);
4765 #endif
4766 exit(0);
4767 } else {
4768 cpu_model = optarg;
4770 break;
4771 case QEMU_OPTION_initrd:
4772 initrd_filename = optarg;
4773 break;
4774 case QEMU_OPTION_hda:
4775 if (cyls == 0)
4776 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4777 else
4778 hda_opts = drive_add(optarg, HD_ALIAS
4779 ",cyls=%d,heads=%d,secs=%d%s",
4780 0, cyls, heads, secs,
4781 translation == BIOS_ATA_TRANSLATION_LBA ?
4782 ",trans=lba" :
4783 translation == BIOS_ATA_TRANSLATION_NONE ?
4784 ",trans=none" : "");
4785 break;
4786 case QEMU_OPTION_hdb:
4787 case QEMU_OPTION_hdc:
4788 case QEMU_OPTION_hdd:
4789 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4790 break;
4791 case QEMU_OPTION_drive:
4792 drive_add(NULL, "%s", optarg);
4793 break;
4794 case QEMU_OPTION_set:
4795 if (qemu_set_option(optarg) != 0)
4796 exit(1);
4797 break;
4798 case QEMU_OPTION_mtdblock:
4799 drive_add(optarg, MTD_ALIAS);
4800 break;
4801 case QEMU_OPTION_sd:
4802 drive_add(optarg, SD_ALIAS);
4803 break;
4804 case QEMU_OPTION_pflash:
4805 drive_add(optarg, PFLASH_ALIAS);
4806 break;
4807 case QEMU_OPTION_snapshot:
4808 snapshot = 1;
4809 break;
4810 case QEMU_OPTION_hdachs:
4812 const char *p;
4813 p = optarg;
4814 cyls = strtol(p, (char **)&p, 0);
4815 if (cyls < 1 || cyls > 16383)
4816 goto chs_fail;
4817 if (*p != ',')
4818 goto chs_fail;
4819 p++;
4820 heads = strtol(p, (char **)&p, 0);
4821 if (heads < 1 || heads > 16)
4822 goto chs_fail;
4823 if (*p != ',')
4824 goto chs_fail;
4825 p++;
4826 secs = strtol(p, (char **)&p, 0);
4827 if (secs < 1 || secs > 63)
4828 goto chs_fail;
4829 if (*p == ',') {
4830 p++;
4831 if (!strcmp(p, "none"))
4832 translation = BIOS_ATA_TRANSLATION_NONE;
4833 else if (!strcmp(p, "lba"))
4834 translation = BIOS_ATA_TRANSLATION_LBA;
4835 else if (!strcmp(p, "auto"))
4836 translation = BIOS_ATA_TRANSLATION_AUTO;
4837 else
4838 goto chs_fail;
4839 } else if (*p != '\0') {
4840 chs_fail:
4841 fprintf(stderr, "qemu: invalid physical CHS format\n");
4842 exit(1);
4844 if (hda_opts != NULL) {
4845 char num[16];
4846 snprintf(num, sizeof(num), "%d", cyls);
4847 qemu_opt_set(hda_opts, "cyls", num);
4848 snprintf(num, sizeof(num), "%d", heads);
4849 qemu_opt_set(hda_opts, "heads", num);
4850 snprintf(num, sizeof(num), "%d", secs);
4851 qemu_opt_set(hda_opts, "secs", num);
4852 if (translation == BIOS_ATA_TRANSLATION_LBA)
4853 qemu_opt_set(hda_opts, "trans", "lba");
4854 if (translation == BIOS_ATA_TRANSLATION_NONE)
4855 qemu_opt_set(hda_opts, "trans", "none");
4858 break;
4859 case QEMU_OPTION_numa:
4860 if (nb_numa_nodes >= MAX_NODES) {
4861 fprintf(stderr, "qemu: too many NUMA nodes\n");
4862 exit(1);
4864 numa_add(optarg);
4865 break;
4866 case QEMU_OPTION_nographic:
4867 display_type = DT_NOGRAPHIC;
4868 break;
4869 #ifdef CONFIG_CURSES
4870 case QEMU_OPTION_curses:
4871 display_type = DT_CURSES;
4872 break;
4873 #endif
4874 case QEMU_OPTION_portrait:
4875 graphic_rotate = 1;
4876 break;
4877 case QEMU_OPTION_kernel:
4878 kernel_filename = optarg;
4879 break;
4880 case QEMU_OPTION_append:
4881 kernel_cmdline = optarg;
4882 break;
4883 case QEMU_OPTION_cdrom:
4884 drive_add(optarg, CDROM_ALIAS);
4885 break;
4886 case QEMU_OPTION_boot:
4888 static const char * const params[] = {
4889 "order", "once", "menu", NULL
4891 char buf[sizeof(boot_devices)];
4892 char *standard_boot_devices;
4893 int legacy = 0;
4895 if (!strchr(optarg, '=')) {
4896 legacy = 1;
4897 pstrcpy(buf, sizeof(buf), optarg);
4898 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4899 fprintf(stderr,
4900 "qemu: unknown boot parameter '%s' in '%s'\n",
4901 buf, optarg);
4902 exit(1);
4905 if (legacy ||
4906 get_param_value(buf, sizeof(buf), "order", optarg)) {
4907 boot_devices_bitmap = parse_bootdevices(buf);
4908 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4910 if (!legacy) {
4911 if (get_param_value(buf, sizeof(buf),
4912 "once", optarg)) {
4913 boot_devices_bitmap |= parse_bootdevices(buf);
4914 standard_boot_devices = qemu_strdup(boot_devices);
4915 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4916 qemu_register_reset(restore_boot_devices,
4917 standard_boot_devices);
4919 if (get_param_value(buf, sizeof(buf),
4920 "menu", optarg)) {
4921 if (!strcmp(buf, "on")) {
4922 boot_menu = 1;
4923 } else if (!strcmp(buf, "off")) {
4924 boot_menu = 0;
4925 } else {
4926 fprintf(stderr,
4927 "qemu: invalid option value '%s'\n",
4928 buf);
4929 exit(1);
4934 break;
4935 case QEMU_OPTION_fda:
4936 case QEMU_OPTION_fdb:
4937 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4938 break;
4939 #ifdef TARGET_I386
4940 case QEMU_OPTION_no_fd_bootchk:
4941 fd_bootchk = 0;
4942 break;
4943 #endif
4944 case QEMU_OPTION_netdev:
4945 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4946 exit(1);
4948 break;
4949 case QEMU_OPTION_net:
4950 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4951 exit(1);
4953 break;
4954 #ifdef CONFIG_SLIRP
4955 case QEMU_OPTION_tftp:
4956 legacy_tftp_prefix = optarg;
4957 break;
4958 case QEMU_OPTION_bootp:
4959 legacy_bootp_filename = optarg;
4960 break;
4961 #ifndef _WIN32
4962 case QEMU_OPTION_smb:
4963 if (net_slirp_smb(optarg) < 0)
4964 exit(1);
4965 break;
4966 #endif
4967 case QEMU_OPTION_redir:
4968 if (net_slirp_redir(optarg) < 0)
4969 exit(1);
4970 break;
4971 #endif
4972 case QEMU_OPTION_bt:
4973 add_device_config(DEV_BT, optarg);
4974 break;
4975 #ifdef HAS_AUDIO
4976 case QEMU_OPTION_audio_help:
4977 AUD_help ();
4978 exit (0);
4979 break;
4980 case QEMU_OPTION_soundhw:
4981 select_soundhw (optarg);
4982 break;
4983 #endif
4984 case QEMU_OPTION_h:
4985 help(0);
4986 break;
4987 case QEMU_OPTION_version:
4988 version();
4989 exit(0);
4990 break;
4991 case QEMU_OPTION_m: {
4992 uint64_t value;
4993 char *ptr;
4995 value = strtoul(optarg, &ptr, 10);
4996 switch (*ptr) {
4997 case 0: case 'M': case 'm':
4998 value <<= 20;
4999 break;
5000 case 'G': case 'g':
5001 value <<= 30;
5002 break;
5003 default:
5004 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5005 exit(1);
5008 /* On 32-bit hosts, QEMU is limited by virtual address space */
5009 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5010 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5011 exit(1);
5013 if (value != (uint64_t)(ram_addr_t)value) {
5014 fprintf(stderr, "qemu: ram size too large\n");
5015 exit(1);
5017 ram_size = value;
5018 break;
5020 case QEMU_OPTION_d:
5022 int mask;
5023 const CPULogItem *item;
5025 mask = cpu_str_to_log_mask(optarg);
5026 if (!mask) {
5027 printf("Log items (comma separated):\n");
5028 for(item = cpu_log_items; item->mask != 0; item++) {
5029 printf("%-10s %s\n", item->name, item->help);
5031 exit(1);
5033 cpu_set_log(mask);
5035 break;
5036 case QEMU_OPTION_s:
5037 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5038 break;
5039 case QEMU_OPTION_gdb:
5040 gdbstub_dev = optarg;
5041 break;
5042 case QEMU_OPTION_L:
5043 data_dir = optarg;
5044 break;
5045 case QEMU_OPTION_bios:
5046 bios_name = optarg;
5047 break;
5048 case QEMU_OPTION_singlestep:
5049 singlestep = 1;
5050 break;
5051 case QEMU_OPTION_S:
5052 autostart = 0;
5053 break;
5054 case QEMU_OPTION_k:
5055 keyboard_layout = optarg;
5056 break;
5057 case QEMU_OPTION_localtime:
5058 rtc_utc = 0;
5059 break;
5060 case QEMU_OPTION_vga:
5061 select_vgahw (optarg);
5062 break;
5063 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5064 case QEMU_OPTION_g:
5066 const char *p;
5067 int w, h, depth;
5068 p = optarg;
5069 w = strtol(p, (char **)&p, 10);
5070 if (w <= 0) {
5071 graphic_error:
5072 fprintf(stderr, "qemu: invalid resolution or depth\n");
5073 exit(1);
5075 if (*p != 'x')
5076 goto graphic_error;
5077 p++;
5078 h = strtol(p, (char **)&p, 10);
5079 if (h <= 0)
5080 goto graphic_error;
5081 if (*p == 'x') {
5082 p++;
5083 depth = strtol(p, (char **)&p, 10);
5084 if (depth != 8 && depth != 15 && depth != 16 &&
5085 depth != 24 && depth != 32)
5086 goto graphic_error;
5087 } else if (*p == '\0') {
5088 depth = graphic_depth;
5089 } else {
5090 goto graphic_error;
5093 graphic_width = w;
5094 graphic_height = h;
5095 graphic_depth = depth;
5097 break;
5098 #endif
5099 case QEMU_OPTION_echr:
5101 char *r;
5102 term_escape_char = strtol(optarg, &r, 0);
5103 if (r == optarg)
5104 printf("Bad argument to echr\n");
5105 break;
5107 case QEMU_OPTION_monitor:
5108 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5109 fprintf(stderr, "qemu: too many monitor devices\n");
5110 exit(1);
5112 monitor_devices[monitor_device_index] =
5113 monitor_cmdline_parse(optarg,
5114 &monitor_flags[monitor_device_index]);
5115 monitor_device_index++;
5116 break;
5117 case QEMU_OPTION_chardev:
5118 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5119 if (!opts) {
5120 fprintf(stderr, "parse error: %s\n", optarg);
5121 exit(1);
5123 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5124 exit(1);
5126 break;
5127 case QEMU_OPTION_serial:
5128 if (serial_device_index >= MAX_SERIAL_PORTS) {
5129 fprintf(stderr, "qemu: too many serial ports\n");
5130 exit(1);
5132 serial_devices[serial_device_index] = optarg;
5133 serial_device_index++;
5134 break;
5135 case QEMU_OPTION_watchdog:
5136 if (watchdog) {
5137 fprintf(stderr,
5138 "qemu: only one watchdog option may be given\n");
5139 return 1;
5141 watchdog = optarg;
5142 break;
5143 case QEMU_OPTION_watchdog_action:
5144 if (select_watchdog_action(optarg) == -1) {
5145 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5146 exit(1);
5148 break;
5149 case QEMU_OPTION_virtiocon:
5150 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5151 fprintf(stderr, "qemu: too many virtio consoles\n");
5152 exit(1);
5154 virtio_consoles[virtio_console_index] = optarg;
5155 virtio_console_index++;
5156 break;
5157 case QEMU_OPTION_parallel:
5158 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5159 fprintf(stderr, "qemu: too many parallel ports\n");
5160 exit(1);
5162 parallel_devices[parallel_device_index] = optarg;
5163 parallel_device_index++;
5164 break;
5165 case QEMU_OPTION_loadvm:
5166 loadvm = optarg;
5167 break;
5168 case QEMU_OPTION_full_screen:
5169 full_screen = 1;
5170 break;
5171 #ifdef CONFIG_SDL
5172 case QEMU_OPTION_no_frame:
5173 no_frame = 1;
5174 break;
5175 case QEMU_OPTION_alt_grab:
5176 alt_grab = 1;
5177 break;
5178 case QEMU_OPTION_ctrl_grab:
5179 ctrl_grab = 1;
5180 break;
5181 case QEMU_OPTION_no_quit:
5182 no_quit = 1;
5183 break;
5184 case QEMU_OPTION_sdl:
5185 display_type = DT_SDL;
5186 break;
5187 #endif
5188 case QEMU_OPTION_pidfile:
5189 pid_file = optarg;
5190 break;
5191 #ifdef TARGET_I386
5192 case QEMU_OPTION_win2k_hack:
5193 win2k_install_hack = 1;
5194 break;
5195 case QEMU_OPTION_rtc_td_hack:
5196 rtc_td_hack = 1;
5197 break;
5198 case QEMU_OPTION_acpitable:
5199 if(acpi_table_add(optarg) < 0) {
5200 fprintf(stderr, "Wrong acpi table provided\n");
5201 exit(1);
5203 break;
5204 case QEMU_OPTION_smbios:
5205 if(smbios_entry_add(optarg) < 0) {
5206 fprintf(stderr, "Wrong smbios provided\n");
5207 exit(1);
5209 break;
5210 #endif
5211 #ifdef CONFIG_KVM
5212 case QEMU_OPTION_enable_kvm:
5213 kvm_allowed = 1;
5214 break;
5215 #endif
5216 case QEMU_OPTION_usb:
5217 usb_enabled = 1;
5218 break;
5219 case QEMU_OPTION_usbdevice:
5220 usb_enabled = 1;
5221 add_device_config(DEV_USB, optarg);
5222 break;
5223 case QEMU_OPTION_device:
5224 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5225 exit(1);
5227 break;
5228 case QEMU_OPTION_smp:
5229 smp_parse(optarg);
5230 if (smp_cpus < 1) {
5231 fprintf(stderr, "Invalid number of CPUs\n");
5232 exit(1);
5234 if (max_cpus < smp_cpus) {
5235 fprintf(stderr, "maxcpus must be equal to or greater than "
5236 "smp\n");
5237 exit(1);
5239 if (max_cpus > 255) {
5240 fprintf(stderr, "Unsupported number of maxcpus\n");
5241 exit(1);
5243 break;
5244 case QEMU_OPTION_vnc:
5245 display_type = DT_VNC;
5246 vnc_display = optarg;
5247 break;
5248 #ifdef TARGET_I386
5249 case QEMU_OPTION_no_acpi:
5250 acpi_enabled = 0;
5251 break;
5252 case QEMU_OPTION_no_hpet:
5253 no_hpet = 1;
5254 break;
5255 case QEMU_OPTION_balloon:
5256 if (balloon_parse(optarg) < 0) {
5257 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5258 exit(1);
5260 break;
5261 #endif
5262 case QEMU_OPTION_no_reboot:
5263 no_reboot = 1;
5264 break;
5265 case QEMU_OPTION_no_shutdown:
5266 no_shutdown = 1;
5267 break;
5268 case QEMU_OPTION_show_cursor:
5269 cursor_hide = 0;
5270 break;
5271 case QEMU_OPTION_uuid:
5272 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5273 fprintf(stderr, "Fail to parse UUID string."
5274 " Wrong format.\n");
5275 exit(1);
5277 break;
5278 #ifndef _WIN32
5279 case QEMU_OPTION_daemonize:
5280 daemonize = 1;
5281 break;
5282 #endif
5283 case QEMU_OPTION_option_rom:
5284 if (nb_option_roms >= MAX_OPTION_ROMS) {
5285 fprintf(stderr, "Too many option ROMs\n");
5286 exit(1);
5288 option_rom[nb_option_roms] = optarg;
5289 nb_option_roms++;
5290 break;
5291 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5292 case QEMU_OPTION_semihosting:
5293 semihosting_enabled = 1;
5294 break;
5295 #endif
5296 case QEMU_OPTION_name:
5297 qemu_name = qemu_strdup(optarg);
5299 char *p = strchr(qemu_name, ',');
5300 if (p != NULL) {
5301 *p++ = 0;
5302 if (strncmp(p, "process=", 8)) {
5303 fprintf(stderr, "Unknown subargument %s to -name", p);
5304 exit(1);
5306 p += 8;
5307 set_proc_name(p);
5310 break;
5311 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5312 case QEMU_OPTION_prom_env:
5313 if (nb_prom_envs >= MAX_PROM_ENVS) {
5314 fprintf(stderr, "Too many prom variables\n");
5315 exit(1);
5317 prom_envs[nb_prom_envs] = optarg;
5318 nb_prom_envs++;
5319 break;
5320 #endif
5321 #ifdef TARGET_ARM
5322 case QEMU_OPTION_old_param:
5323 old_param = 1;
5324 break;
5325 #endif
5326 case QEMU_OPTION_clock:
5327 configure_alarms(optarg);
5328 break;
5329 case QEMU_OPTION_startdate:
5330 configure_rtc_date_offset(optarg, 1);
5331 break;
5332 case QEMU_OPTION_rtc:
5333 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5334 if (!opts) {
5335 fprintf(stderr, "parse error: %s\n", optarg);
5336 exit(1);
5338 configure_rtc(opts);
5339 break;
5340 case QEMU_OPTION_tb_size:
5341 tb_size = strtol(optarg, NULL, 0);
5342 if (tb_size < 0)
5343 tb_size = 0;
5344 break;
5345 case QEMU_OPTION_icount:
5346 use_icount = 1;
5347 if (strcmp(optarg, "auto") == 0) {
5348 icount_time_shift = -1;
5349 } else {
5350 icount_time_shift = strtol(optarg, NULL, 0);
5352 break;
5353 case QEMU_OPTION_incoming:
5354 incoming = optarg;
5355 break;
5356 #ifndef _WIN32
5357 case QEMU_OPTION_chroot:
5358 chroot_dir = optarg;
5359 break;
5360 case QEMU_OPTION_runas:
5361 run_as = optarg;
5362 break;
5363 #endif
5364 #ifdef CONFIG_XEN
5365 case QEMU_OPTION_xen_domid:
5366 xen_domid = atoi(optarg);
5367 break;
5368 case QEMU_OPTION_xen_create:
5369 xen_mode = XEN_CREATE;
5370 break;
5371 case QEMU_OPTION_xen_attach:
5372 xen_mode = XEN_ATTACH;
5373 break;
5374 #endif
5375 case QEMU_OPTION_readconfig:
5377 FILE *fp;
5378 fp = fopen(optarg, "r");
5379 if (fp == NULL) {
5380 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5381 exit(1);
5383 if (qemu_config_parse(fp) != 0) {
5384 exit(1);
5386 fclose(fp);
5387 break;
5389 case QEMU_OPTION_writeconfig:
5391 FILE *fp;
5392 if (strcmp(optarg, "-") == 0) {
5393 fp = stdout;
5394 } else {
5395 fp = fopen(optarg, "w");
5396 if (fp == NULL) {
5397 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5398 exit(1);
5401 qemu_config_write(fp);
5402 fclose(fp);
5403 break;
5409 /* If no data_dir is specified then try to find it relative to the
5410 executable path. */
5411 if (!data_dir) {
5412 data_dir = find_datadir(argv[0]);
5414 /* If all else fails use the install patch specified when building. */
5415 if (!data_dir) {
5416 data_dir = CONFIG_QEMU_SHAREDIR;
5420 * Default to max_cpus = smp_cpus, in case the user doesn't
5421 * specify a max_cpus value.
5423 if (!max_cpus)
5424 max_cpus = smp_cpus;
5426 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5427 if (smp_cpus > machine->max_cpus) {
5428 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5429 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5430 machine->max_cpus);
5431 exit(1);
5434 if (display_type == DT_NOGRAPHIC) {
5435 if (serial_device_index == 0)
5436 serial_devices[0] = "stdio";
5437 if (parallel_device_index == 0)
5438 parallel_devices[0] = "null";
5439 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5440 monitor_devices[0] = "stdio";
5444 #ifndef _WIN32
5445 if (daemonize) {
5446 pid_t pid;
5448 if (pipe(fds) == -1)
5449 exit(1);
5451 pid = fork();
5452 if (pid > 0) {
5453 uint8_t status;
5454 ssize_t len;
5456 close(fds[1]);
5458 again:
5459 len = read(fds[0], &status, 1);
5460 if (len == -1 && (errno == EINTR))
5461 goto again;
5463 if (len != 1)
5464 exit(1);
5465 else if (status == 1) {
5466 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5467 exit(1);
5468 } else
5469 exit(0);
5470 } else if (pid < 0)
5471 exit(1);
5473 setsid();
5475 pid = fork();
5476 if (pid > 0)
5477 exit(0);
5478 else if (pid < 0)
5479 exit(1);
5481 umask(027);
5483 signal(SIGTSTP, SIG_IGN);
5484 signal(SIGTTOU, SIG_IGN);
5485 signal(SIGTTIN, SIG_IGN);
5488 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5489 if (daemonize) {
5490 uint8_t status = 1;
5491 write(fds[1], &status, 1);
5492 } else
5493 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5494 exit(1);
5496 #endif
5498 if (kvm_enabled()) {
5499 int ret;
5501 ret = kvm_init(smp_cpus);
5502 if (ret < 0) {
5503 fprintf(stderr, "failed to initialize KVM\n");
5504 exit(1);
5508 if (qemu_init_main_loop()) {
5509 fprintf(stderr, "qemu_init_main_loop failed\n");
5510 exit(1);
5512 linux_boot = (kernel_filename != NULL);
5514 if (!linux_boot && *kernel_cmdline != '\0') {
5515 fprintf(stderr, "-append only allowed with -kernel option\n");
5516 exit(1);
5519 if (!linux_boot && initrd_filename != NULL) {
5520 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5521 exit(1);
5524 #ifndef _WIN32
5525 /* Win32 doesn't support line-buffering and requires size >= 2 */
5526 setvbuf(stdout, NULL, _IOLBF, 0);
5527 #endif
5529 if (init_timer_alarm() < 0) {
5530 fprintf(stderr, "could not initialize alarm timer\n");
5531 exit(1);
5533 if (use_icount && icount_time_shift < 0) {
5534 use_icount = 2;
5535 /* 125MIPS seems a reasonable initial guess at the guest speed.
5536 It will be corrected fairly quickly anyway. */
5537 icount_time_shift = 3;
5538 init_icount_adjust();
5541 #ifdef _WIN32
5542 socket_init();
5543 #endif
5545 if (net_init_clients() < 0) {
5546 exit(1);
5549 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5550 net_set_boot_mask(net_boot);
5552 /* init the bluetooth world */
5553 if (foreach_device_config(DEV_BT, bt_parse))
5554 exit(1);
5556 /* init the memory */
5557 if (ram_size == 0)
5558 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5560 /* init the dynamic translator */
5561 cpu_exec_init_all(tb_size * 1024 * 1024);
5563 bdrv_init_with_whitelist();
5565 blk_mig_init();
5567 /* we always create the cdrom drive, even if no disk is there */
5568 drive_add(NULL, CDROM_ALIAS);
5570 /* we always create at least one floppy */
5571 drive_add(NULL, FD_ALIAS, 0);
5573 /* we always create one sd slot, even if no card is in it */
5574 drive_add(NULL, SD_ALIAS);
5576 /* open the virtual block devices */
5577 if (snapshot)
5578 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5579 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5580 exit(1);
5582 vmstate_register(0, &vmstate_timers ,&timers_state);
5583 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5584 ram_load, NULL);
5586 /* Maintain compatibility with multiple stdio monitors */
5587 if (!strcmp(monitor_devices[0],"stdio")) {
5588 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5589 const char *devname = serial_devices[i];
5590 if (devname && !strcmp(devname,"mon:stdio")) {
5591 monitor_devices[0] = NULL;
5592 break;
5593 } else if (devname && !strcmp(devname,"stdio")) {
5594 monitor_devices[0] = NULL;
5595 serial_devices[i] = "mon:stdio";
5596 break;
5601 if (nb_numa_nodes > 0) {
5602 int i;
5604 if (nb_numa_nodes > smp_cpus) {
5605 nb_numa_nodes = smp_cpus;
5608 /* If no memory size if given for any node, assume the default case
5609 * and distribute the available memory equally across all nodes
5611 for (i = 0; i < nb_numa_nodes; i++) {
5612 if (node_mem[i] != 0)
5613 break;
5615 if (i == nb_numa_nodes) {
5616 uint64_t usedmem = 0;
5618 /* On Linux, the each node's border has to be 8MB aligned,
5619 * the final node gets the rest.
5621 for (i = 0; i < nb_numa_nodes - 1; i++) {
5622 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5623 usedmem += node_mem[i];
5625 node_mem[i] = ram_size - usedmem;
5628 for (i = 0; i < nb_numa_nodes; i++) {
5629 if (node_cpumask[i] != 0)
5630 break;
5632 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5633 * must cope with this anyway, because there are BIOSes out there in
5634 * real machines which also use this scheme.
5636 if (i == nb_numa_nodes) {
5637 for (i = 0; i < smp_cpus; i++) {
5638 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5643 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5644 const char *devname = monitor_devices[i];
5645 if (devname && strcmp(devname, "none")) {
5646 char label[32];
5647 if (i == 0) {
5648 snprintf(label, sizeof(label), "monitor");
5649 } else {
5650 snprintf(label, sizeof(label), "monitor%d", i);
5652 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5653 if (!monitor_hds[i]) {
5654 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5655 devname);
5656 exit(1);
5661 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5662 const char *devname = serial_devices[i];
5663 if (devname && strcmp(devname, "none")) {
5664 char label[32];
5665 snprintf(label, sizeof(label), "serial%d", i);
5666 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5667 if (!serial_hds[i]) {
5668 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5669 devname, strerror(errno));
5670 exit(1);
5675 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5676 const char *devname = parallel_devices[i];
5677 if (devname && strcmp(devname, "none")) {
5678 char label[32];
5679 snprintf(label, sizeof(label), "parallel%d", i);
5680 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5681 if (!parallel_hds[i]) {
5682 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5683 devname, strerror(errno));
5684 exit(1);
5689 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5690 const char *devname = virtio_consoles[i];
5691 if (devname && strcmp(devname, "none")) {
5692 char label[32];
5693 snprintf(label, sizeof(label), "virtcon%d", i);
5694 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5695 if (!virtcon_hds[i]) {
5696 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5697 devname, strerror(errno));
5698 exit(1);
5703 module_call_init(MODULE_INIT_DEVICE);
5705 if (watchdog) {
5706 i = select_watchdog(watchdog);
5707 if (i > 0)
5708 exit (i == 1 ? 1 : 0);
5711 if (machine->compat_props) {
5712 qdev_prop_register_compat(machine->compat_props);
5714 machine->init(ram_size, boot_devices,
5715 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5718 #ifndef _WIN32
5719 /* must be after terminal init, SDL library changes signal handlers */
5720 sighandler_setup();
5721 #endif
5723 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5724 for (i = 0; i < nb_numa_nodes; i++) {
5725 if (node_cpumask[i] & (1 << env->cpu_index)) {
5726 env->numa_node = i;
5731 current_machine = machine;
5733 /* init USB devices */
5734 if (usb_enabled) {
5735 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5736 exit(1);
5739 /* init generic devices */
5740 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5741 exit(1);
5743 if (!display_state)
5744 dumb_display_init();
5745 /* just use the first displaystate for the moment */
5746 ds = display_state;
5748 if (display_type == DT_DEFAULT) {
5749 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5750 display_type = DT_SDL;
5751 #else
5752 display_type = DT_VNC;
5753 vnc_display = "localhost:0,to=99";
5754 show_vnc_port = 1;
5755 #endif
5759 switch (display_type) {
5760 case DT_NOGRAPHIC:
5761 break;
5762 #if defined(CONFIG_CURSES)
5763 case DT_CURSES:
5764 curses_display_init(ds, full_screen);
5765 break;
5766 #endif
5767 #if defined(CONFIG_SDL)
5768 case DT_SDL:
5769 sdl_display_init(ds, full_screen, no_frame);
5770 break;
5771 #elif defined(CONFIG_COCOA)
5772 case DT_SDL:
5773 cocoa_display_init(ds, full_screen);
5774 break;
5775 #endif
5776 case DT_VNC:
5777 vnc_display_init(ds);
5778 if (vnc_display_open(ds, vnc_display) < 0)
5779 exit(1);
5781 if (show_vnc_port) {
5782 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5784 break;
5785 default:
5786 break;
5788 dpy_resize(ds);
5790 dcl = ds->listeners;
5791 while (dcl != NULL) {
5792 if (dcl->dpy_refresh != NULL) {
5793 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5794 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5796 dcl = dcl->next;
5799 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5800 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5801 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5804 text_consoles_set_display(display_state);
5806 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5807 if (monitor_devices[i] && monitor_hds[i]) {
5808 monitor_init(monitor_hds[i], monitor_flags[i]);
5812 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5813 const char *devname = serial_devices[i];
5814 if (devname && strcmp(devname, "none")) {
5815 if (strstart(devname, "vc", 0))
5816 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5820 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5821 const char *devname = parallel_devices[i];
5822 if (devname && strcmp(devname, "none")) {
5823 if (strstart(devname, "vc", 0))
5824 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5828 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5829 const char *devname = virtio_consoles[i];
5830 if (virtcon_hds[i] && devname) {
5831 if (strstart(devname, "vc", 0))
5832 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5836 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5837 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5838 gdbstub_dev);
5839 exit(1);
5842 qdev_machine_creation_done();
5844 rom_load_all();
5846 qemu_system_reset();
5847 if (loadvm) {
5848 if (load_vmstate(cur_mon, loadvm) < 0) {
5849 autostart = 0;
5853 if (incoming) {
5854 qemu_start_incoming_migration(incoming);
5855 } else if (autostart) {
5856 vm_start();
5859 #ifndef _WIN32
5860 if (daemonize) {
5861 uint8_t status = 0;
5862 ssize_t len;
5864 again1:
5865 len = write(fds[1], &status, 1);
5866 if (len == -1 && (errno == EINTR))
5867 goto again1;
5869 if (len != 1)
5870 exit(1);
5872 chdir("/");
5873 TFR(fd = open("/dev/null", O_RDWR));
5874 if (fd == -1)
5875 exit(1);
5878 if (run_as) {
5879 pwd = getpwnam(run_as);
5880 if (!pwd) {
5881 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5882 exit(1);
5886 if (chroot_dir) {
5887 if (chroot(chroot_dir) < 0) {
5888 fprintf(stderr, "chroot failed\n");
5889 exit(1);
5891 chdir("/");
5894 if (run_as) {
5895 if (setgid(pwd->pw_gid) < 0) {
5896 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5897 exit(1);
5899 if (setuid(pwd->pw_uid) < 0) {
5900 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5901 exit(1);
5903 if (setuid(0) != -1) {
5904 fprintf(stderr, "Dropping privileges failed\n");
5905 exit(1);
5909 if (daemonize) {
5910 dup2(fd, 0);
5911 dup2(fd, 1);
5912 dup2(fd, 2);
5914 close(fd);
5916 #endif
5918 main_loop();
5919 quit_timers();
5920 net_cleanup();
5922 return 0;