4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
64 int broken_set_mem_region
;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
70 int irqchip_in_kernel
;
74 static KVMState
*kvm_state
;
76 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
80 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
81 /* KVM private memory slots */
84 if (s
->slots
[i
].memory_size
== 0)
88 fprintf(stderr
, "%s: no free slot available\n", __func__
);
92 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
93 target_phys_addr_t start_addr
,
94 target_phys_addr_t end_addr
)
98 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
99 KVMSlot
*mem
= &s
->slots
[i
];
101 if (start_addr
== mem
->start_addr
&&
102 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
111 * Find overlapping slot with lowest start address
113 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
114 target_phys_addr_t start_addr
,
115 target_phys_addr_t end_addr
)
117 KVMSlot
*found
= NULL
;
120 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
121 KVMSlot
*mem
= &s
->slots
[i
];
123 if (mem
->memory_size
== 0 ||
124 (found
&& found
->start_addr
< mem
->start_addr
)) {
128 if (end_addr
> mem
->start_addr
&&
129 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
137 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
139 struct kvm_userspace_memory_region mem
;
141 mem
.slot
= slot
->slot
;
142 mem
.guest_phys_addr
= slot
->start_addr
;
143 mem
.memory_size
= slot
->memory_size
;
144 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
145 mem
.flags
= slot
->flags
;
146 if (s
->migration_log
) {
147 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
149 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
152 static void kvm_reset_vcpu(void *opaque
)
154 CPUState
*env
= opaque
;
156 kvm_arch_reset_vcpu(env
);
157 if (kvm_arch_put_registers(env
)) {
158 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
163 int kvm_irqchip_in_kernel(void)
165 return kvm_state
->irqchip_in_kernel
;
168 int kvm_pit_in_kernel(void)
170 return kvm_state
->pit_in_kernel
;
174 int kvm_init_vcpu(CPUState
*env
)
176 KVMState
*s
= kvm_state
;
180 dprintf("kvm_init_vcpu\n");
182 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
184 dprintf("kvm_create_vcpu failed\n");
191 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
197 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
199 if (env
->kvm_run
== MAP_FAILED
) {
201 dprintf("mmap'ing vcpu state failed\n");
205 #ifdef KVM_CAP_COALESCED_MMIO
206 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
207 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
208 s
->coalesced_mmio
* PAGE_SIZE
;
211 ret
= kvm_arch_init_vcpu(env
);
213 qemu_register_reset(kvm_reset_vcpu
, env
);
214 kvm_arch_reset_vcpu(env
);
215 ret
= kvm_arch_put_registers(env
);
222 * dirty pages logging control
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
225 ram_addr_t size
, int flags
, int mask
)
227 KVMState
*s
= kvm_state
;
228 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
232 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
233 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
234 (target_phys_addr_t
)(phys_addr
+ size
- 1));
238 old_flags
= mem
->flags
;
240 flags
= (mem
->flags
& ~mask
) | flags
;
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s
->migration_log
) {
245 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
247 if (flags
== old_flags
) {
251 return kvm_set_user_memory_region(s
, mem
);
254 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
256 return kvm_dirty_pages_log_change(phys_addr
, size
,
257 KVM_MEM_LOG_DIRTY_PAGES
,
258 KVM_MEM_LOG_DIRTY_PAGES
);
261 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
263 return kvm_dirty_pages_log_change(phys_addr
, size
,
265 KVM_MEM_LOG_DIRTY_PAGES
);
268 static int kvm_set_migration_log(int enable
)
270 KVMState
*s
= kvm_state
;
274 s
->migration_log
= enable
;
276 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
279 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
282 err
= kvm_set_user_memory_region(s
, mem
);
290 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
292 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
300 * @start_add: start of logged region.
301 * @end_addr: end of logged region.
303 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
304 target_phys_addr_t end_addr
)
306 KVMState
*s
= kvm_state
;
307 unsigned long size
, allocated_size
= 0;
308 target_phys_addr_t phys_addr
;
314 d
.dirty_bitmap
= NULL
;
315 while (start_addr
< end_addr
) {
316 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
321 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
322 if (!d
.dirty_bitmap
) {
323 d
.dirty_bitmap
= qemu_malloc(size
);
324 } else if (size
> allocated_size
) {
325 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
327 allocated_size
= size
;
328 memset(d
.dirty_bitmap
, 0, allocated_size
);
332 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
333 dprintf("ioctl failed %d\n", errno
);
338 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
339 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
340 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
341 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
342 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
344 if (test_le_bit(nr
, bitmap
)) {
345 cpu_physical_memory_set_dirty(addr
);
348 start_addr
= phys_addr
;
350 qemu_free(d
.dirty_bitmap
);
355 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
358 #ifdef KVM_CAP_COALESCED_MMIO
359 KVMState
*s
= kvm_state
;
361 if (s
->coalesced_mmio
) {
362 struct kvm_coalesced_mmio_zone zone
;
367 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
374 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState
*s
= kvm_state
;
380 if (s
->coalesced_mmio
) {
381 struct kvm_coalesced_mmio_zone zone
;
386 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
393 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
397 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
405 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
407 ram_addr_t phys_offset
)
409 KVMState
*s
= kvm_state
;
410 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
414 if (start_addr
& ~TARGET_PAGE_MASK
) {
415 if (flags
>= IO_MEM_UNASSIGNED
) {
416 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
417 start_addr
+ size
)) {
420 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
422 fprintf(stderr
, "Only page-aligned memory slots supported\n");
427 /* KVM does not support read-only slots */
428 phys_offset
&= ~IO_MEM_ROM
;
431 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
436 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
437 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
438 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
439 /* The new slot fits into the existing one and comes with
440 * identical parameters - nothing to be done. */
446 /* unregister the overlapping slot */
447 mem
->memory_size
= 0;
448 err
= kvm_set_user_memory_region(s
, mem
);
450 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
451 __func__
, strerror(-err
));
455 /* Workaround for older KVM versions: we can't join slots, even not by
456 * unregistering the previous ones and then registering the larger
457 * slot. We have to maintain the existing fragmentation. Sigh.
459 * This workaround assumes that the new slot starts at the same
460 * address as the first existing one. If not or if some overlapping
461 * slot comes around later, we will fail (not seen in practice so far)
462 * - and actually require a recent KVM version. */
463 if (s
->broken_set_mem_region
&&
464 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
465 flags
< IO_MEM_UNASSIGNED
) {
466 mem
= kvm_alloc_slot(s
);
467 mem
->memory_size
= old
.memory_size
;
468 mem
->start_addr
= old
.start_addr
;
469 mem
->phys_offset
= old
.phys_offset
;
472 err
= kvm_set_user_memory_region(s
, mem
);
474 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
479 start_addr
+= old
.memory_size
;
480 phys_offset
+= old
.memory_size
;
481 size
-= old
.memory_size
;
485 /* register prefix slot */
486 if (old
.start_addr
< start_addr
) {
487 mem
= kvm_alloc_slot(s
);
488 mem
->memory_size
= start_addr
- old
.start_addr
;
489 mem
->start_addr
= old
.start_addr
;
490 mem
->phys_offset
= old
.phys_offset
;
493 err
= kvm_set_user_memory_region(s
, mem
);
495 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
496 __func__
, strerror(-err
));
501 /* register suffix slot */
502 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
503 ram_addr_t size_delta
;
505 mem
= kvm_alloc_slot(s
);
506 mem
->start_addr
= start_addr
+ size
;
507 size_delta
= mem
->start_addr
- old
.start_addr
;
508 mem
->memory_size
= old
.memory_size
- size_delta
;
509 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
512 err
= kvm_set_user_memory_region(s
, mem
);
514 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
515 __func__
, strerror(-err
));
521 /* in case the KVM bug workaround already "consumed" the new slot */
525 /* KVM does not need to know about this memory */
526 if (flags
>= IO_MEM_UNASSIGNED
)
529 mem
= kvm_alloc_slot(s
);
530 mem
->memory_size
= size
;
531 mem
->start_addr
= start_addr
;
532 mem
->phys_offset
= phys_offset
;
535 err
= kvm_set_user_memory_region(s
, mem
);
537 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
543 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
544 target_phys_addr_t start_addr
,
546 ram_addr_t phys_offset
)
548 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
551 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
552 target_phys_addr_t start_addr
,
553 target_phys_addr_t end_addr
)
555 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
558 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
561 return kvm_set_migration_log(enable
);
564 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
565 .set_memory
= kvm_client_set_memory
,
566 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
567 .migration_log
= kvm_client_migration_log
,
570 int kvm_init(int smp_cpus
)
572 static const char upgrade_note
[] =
573 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
574 "(see http://sourceforge.net/projects/kvm).\n";
580 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
584 s
= qemu_mallocz(sizeof(KVMState
));
586 #ifdef KVM_CAP_SET_GUEST_DEBUG
587 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
589 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
590 s
->slots
[i
].slot
= i
;
593 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
595 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
600 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
601 if (ret
< KVM_API_VERSION
) {
604 fprintf(stderr
, "kvm version too old\n");
608 if (ret
> KVM_API_VERSION
) {
610 fprintf(stderr
, "kvm version not supported\n");
614 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
620 * just use a user allocated buffer so we can use regular pages
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
625 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
633 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
642 s
->coalesced_mmio
= 0;
643 #ifdef KVM_CAP_COALESCED_MMIO
644 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
645 s
->coalesced_mmio_ring
= NULL
;
648 s
->broken_set_mem_region
= 1;
649 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
652 s
->broken_set_mem_region
= 0;
657 #ifdef KVM_CAP_VCPU_EVENTS
658 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
661 ret
= kvm_arch_init(s
, smp_cpus
);
666 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
682 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
688 for (i
= 0; i
< count
; i
++) {
689 if (direction
== KVM_EXIT_IO_IN
) {
692 stb_p(ptr
, cpu_inb(port
));
695 stw_p(ptr
, cpu_inw(port
));
698 stl_p(ptr
, cpu_inl(port
));
704 cpu_outb(port
, ldub_p(ptr
));
707 cpu_outw(port
, lduw_p(ptr
));
710 cpu_outl(port
, ldl_p(ptr
));
721 void kvm_flush_coalesced_mmio_buffer(void)
723 #ifdef KVM_CAP_COALESCED_MMIO
724 KVMState
*s
= kvm_state
;
725 if (s
->coalesced_mmio_ring
) {
726 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
727 while (ring
->first
!= ring
->last
) {
728 struct kvm_coalesced_mmio
*ent
;
730 ent
= &ring
->coalesced_mmio
[ring
->first
];
732 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
733 /* FIXME smp_wmb() */
734 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
740 void kvm_cpu_synchronize_state(CPUState
*env
)
742 if (!env
->kvm_vcpu_dirty
) {
743 kvm_arch_get_registers(env
);
744 env
->kvm_vcpu_dirty
= 1;
748 int kvm_cpu_exec(CPUState
*env
)
750 struct kvm_run
*run
= env
->kvm_run
;
753 dprintf("kvm_cpu_exec()\n");
756 if (env
->exit_request
) {
757 dprintf("interrupt exit requested\n");
762 if (env
->kvm_vcpu_dirty
) {
763 kvm_arch_put_registers(env
);
764 env
->kvm_vcpu_dirty
= 0;
767 kvm_arch_pre_run(env
, run
);
768 qemu_mutex_unlock_iothread();
769 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
770 qemu_mutex_lock_iothread();
771 kvm_arch_post_run(env
, run
);
773 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
774 dprintf("io window exit\n");
780 dprintf("kvm run failed %s\n", strerror(-ret
));
784 kvm_flush_coalesced_mmio_buffer();
786 ret
= 0; /* exit loop */
787 switch (run
->exit_reason
) {
789 dprintf("handle_io\n");
790 ret
= kvm_handle_io(run
->io
.port
,
791 (uint8_t *)run
+ run
->io
.data_offset
,
797 dprintf("handle_mmio\n");
798 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
804 case KVM_EXIT_IRQ_WINDOW_OPEN
:
805 dprintf("irq_window_open\n");
807 case KVM_EXIT_SHUTDOWN
:
808 dprintf("shutdown\n");
809 qemu_system_reset_request();
812 case KVM_EXIT_UNKNOWN
:
813 dprintf("kvm_exit_unknown\n");
815 case KVM_EXIT_FAIL_ENTRY
:
816 dprintf("kvm_exit_fail_entry\n");
818 case KVM_EXIT_EXCEPTION
:
819 dprintf("kvm_exit_exception\n");
822 dprintf("kvm_exit_debug\n");
823 #ifdef KVM_CAP_SET_GUEST_DEBUG
824 if (kvm_arch_debug(&run
->debug
.arch
)) {
825 gdb_set_stop_cpu(env
);
827 env
->exception_index
= EXCP_DEBUG
;
830 /* re-enter, this exception was guest-internal */
832 #endif /* KVM_CAP_SET_GUEST_DEBUG */
835 dprintf("kvm_arch_handle_exit\n");
836 ret
= kvm_arch_handle_exit(env
, run
);
841 if (env
->exit_request
) {
842 env
->exit_request
= 0;
843 env
->exception_index
= EXCP_INTERRUPT
;
849 int kvm_ioctl(KVMState
*s
, int type
, ...)
856 arg
= va_arg(ap
, void *);
859 ret
= ioctl(s
->fd
, type
, arg
);
866 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
873 arg
= va_arg(ap
, void *);
876 ret
= ioctl(s
->vmfd
, type
, arg
);
883 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
890 arg
= va_arg(ap
, void *);
893 ret
= ioctl(env
->kvm_fd
, type
, arg
);
900 int kvm_has_sync_mmu(void)
902 #ifdef KVM_CAP_SYNC_MMU
903 KVMState
*s
= kvm_state
;
905 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
911 int kvm_has_vcpu_events(void)
913 return kvm_state
->vcpu_events
;
916 void kvm_setup_guest_memory(void *start
, size_t size
)
918 if (!kvm_has_sync_mmu()) {
920 int ret
= madvise(start
, size
, MADV_DONTFORK
);
928 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
934 #ifdef KVM_CAP_SET_GUEST_DEBUG
935 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
937 #ifdef CONFIG_IOTHREAD
938 if (env
!= cpu_single_env
) {
945 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
948 struct kvm_sw_breakpoint
*bp
;
950 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
957 int kvm_sw_breakpoints_active(CPUState
*env
)
959 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
962 struct kvm_set_guest_debug_data
{
963 struct kvm_guest_debug dbg
;
968 static void kvm_invoke_set_guest_debug(void *data
)
970 struct kvm_set_guest_debug_data
*dbg_data
= data
;
971 CPUState
*env
= dbg_data
->env
;
973 if (env
->kvm_vcpu_dirty
) {
974 kvm_arch_put_registers(env
);
975 env
->kvm_vcpu_dirty
= 0;
977 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
980 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
982 struct kvm_set_guest_debug_data data
;
984 data
.dbg
.control
= 0;
985 if (env
->singlestep_enabled
)
986 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
988 kvm_arch_update_guest_debug(env
, &data
.dbg
);
989 data
.dbg
.control
|= reinject_trap
;
992 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
996 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
997 target_ulong len
, int type
)
999 struct kvm_sw_breakpoint
*bp
;
1003 if (type
== GDB_BREAKPOINT_SW
) {
1004 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1010 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1016 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1022 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1025 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1030 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1031 err
= kvm_update_guest_debug(env
, 0);
1038 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1039 target_ulong len
, int type
)
1041 struct kvm_sw_breakpoint
*bp
;
1045 if (type
== GDB_BREAKPOINT_SW
) {
1046 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1050 if (bp
->use_count
> 1) {
1055 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1059 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1062 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1067 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1068 err
= kvm_update_guest_debug(env
, 0);
1075 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1077 struct kvm_sw_breakpoint
*bp
, *next
;
1078 KVMState
*s
= current_env
->kvm_state
;
1081 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1082 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1083 /* Try harder to find a CPU that currently sees the breakpoint. */
1084 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1085 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1090 kvm_arch_remove_all_hw_breakpoints();
1092 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1093 kvm_update_guest_debug(env
, 0);
1096 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1098 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1103 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1104 target_ulong len
, int type
)
1109 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1110 target_ulong len
, int type
)
1115 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1118 #endif /* !KVM_CAP_SET_GUEST_DEBUG */