2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 #elif defined(TARGET_S390X)
255 #error unsupported target CPU
257 env
->exception_index
= -1;
259 /* prepare setjmp context for exception handling */
261 if (setjmp(env
->jmp_env
) == 0) {
262 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
264 env
= cpu_single_env
;
265 #define env cpu_single_env
267 env
->current_tb
= NULL
;
268 /* if an exception is pending, we execute it here */
269 if (env
->exception_index
>= 0) {
270 if (env
->exception_index
>= EXCP_INTERRUPT
) {
271 /* exit request from the cpu execution loop */
272 ret
= env
->exception_index
;
273 if (ret
== EXCP_DEBUG
)
274 cpu_handle_debug_exception(env
);
277 #if defined(CONFIG_USER_ONLY)
278 /* if user mode only, we simulate a fake exception
279 which will be handled outside the cpu execution
281 #if defined(TARGET_I386)
282 do_interrupt_user(env
->exception_index
,
283 env
->exception_is_int
,
285 env
->exception_next_eip
);
286 /* successfully delivered */
287 env
->old_exception
= -1;
289 ret
= env
->exception_index
;
292 #if defined(TARGET_I386)
293 /* simulate a real cpu exception. On i386, it can
294 trigger new exceptions, but we do not handle
295 double or triple faults yet. */
296 do_interrupt(env
->exception_index
,
297 env
->exception_is_int
,
299 env
->exception_next_eip
, 0);
300 /* successfully delivered */
301 env
->old_exception
= -1;
302 #elif defined(TARGET_PPC)
304 #elif defined(TARGET_MICROBLAZE)
306 #elif defined(TARGET_MIPS)
308 #elif defined(TARGET_SPARC)
310 #elif defined(TARGET_ARM)
312 #elif defined(TARGET_SH4)
314 #elif defined(TARGET_ALPHA)
316 #elif defined(TARGET_CRIS)
318 #elif defined(TARGET_M68K)
323 env
->exception_index
= -1;
328 longjmp(env
->jmp_env
, 1);
331 next_tb
= 0; /* force lookup of first TB */
333 interrupt_request
= env
->interrupt_request
;
334 if (unlikely(interrupt_request
)) {
335 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
336 /* Mask out external interrupts for this step. */
337 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
342 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
343 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
344 env
->exception_index
= EXCP_DEBUG
;
347 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
348 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
349 defined(TARGET_MICROBLAZE)
350 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
351 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
353 env
->exception_index
= EXCP_HLT
;
357 #if defined(TARGET_I386)
358 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
359 svm_check_intercept(SVM_EXIT_INIT
);
361 env
->exception_index
= EXCP_HALTED
;
363 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
365 } else if (env
->hflags2
& HF2_GIF_MASK
) {
366 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
367 !(env
->hflags
& HF_SMM_MASK
)) {
368 svm_check_intercept(SVM_EXIT_SMI
);
369 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
372 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
373 !(env
->hflags2
& HF2_NMI_MASK
)) {
374 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
375 env
->hflags2
|= HF2_NMI_MASK
;
376 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
378 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
379 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
380 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
382 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
383 (((env
->hflags2
& HF2_VINTR_MASK
) &&
384 (env
->hflags2
& HF2_HIF_MASK
)) ||
385 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
386 (env
->eflags
& IF_MASK
&&
387 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
389 svm_check_intercept(SVM_EXIT_INTR
);
390 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
391 intno
= cpu_get_pic_interrupt(env
);
392 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
393 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
395 env
= cpu_single_env
;
396 #define env cpu_single_env
398 do_interrupt(intno
, 0, 0, 0, 1);
399 /* ensure that no TB jump will be modified as
400 the program flow was changed */
402 #if !defined(CONFIG_USER_ONLY)
403 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
404 (env
->eflags
& IF_MASK
) &&
405 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
407 /* FIXME: this should respect TPR */
408 svm_check_intercept(SVM_EXIT_VINTR
);
409 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
410 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
411 do_interrupt(intno
, 0, 0, 0, 1);
412 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
417 #elif defined(TARGET_PPC)
419 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
423 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
424 ppc_hw_interrupt(env
);
425 if (env
->pending_interrupts
== 0)
426 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
429 #elif defined(TARGET_MICROBLAZE)
430 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
431 && (env
->sregs
[SR_MSR
] & MSR_IE
)
432 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
433 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
434 env
->exception_index
= EXCP_IRQ
;
438 #elif defined(TARGET_MIPS)
439 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
440 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
441 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
442 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
443 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
444 !(env
->hflags
& MIPS_HFLAG_DM
)) {
446 env
->exception_index
= EXCP_EXT_INTERRUPT
;
451 #elif defined(TARGET_SPARC)
452 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
453 cpu_interrupts_enabled(env
)) {
454 int pil
= env
->interrupt_index
& 15;
455 int type
= env
->interrupt_index
& 0xf0;
457 if (((type
== TT_EXTINT
) &&
458 (pil
== 15 || pil
> env
->psrpil
)) ||
460 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
461 env
->exception_index
= env
->interrupt_index
;
463 env
->interrupt_index
= 0;
466 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
467 //do_interrupt(0, 0, 0, 0, 0);
468 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
470 #elif defined(TARGET_ARM)
471 if (interrupt_request
& CPU_INTERRUPT_FIQ
472 && !(env
->uncached_cpsr
& CPSR_F
)) {
473 env
->exception_index
= EXCP_FIQ
;
477 /* ARMv7-M interrupt return works by loading a magic value
478 into the PC. On real hardware the load causes the
479 return to occur. The qemu implementation performs the
480 jump normally, then does the exception return when the
481 CPU tries to execute code at the magic address.
482 This will cause the magic PC value to be pushed to
483 the stack if an interrupt occured at the wrong time.
484 We avoid this by disabling interrupts when
485 pc contains a magic address. */
486 if (interrupt_request
& CPU_INTERRUPT_HARD
487 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
488 || !(env
->uncached_cpsr
& CPSR_I
))) {
489 env
->exception_index
= EXCP_IRQ
;
493 #elif defined(TARGET_SH4)
494 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
498 #elif defined(TARGET_ALPHA)
499 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
503 #elif defined(TARGET_CRIS)
504 if (interrupt_request
& CPU_INTERRUPT_HARD
505 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
506 env
->exception_index
= EXCP_IRQ
;
510 if (interrupt_request
& CPU_INTERRUPT_NMI
511 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
512 env
->exception_index
= EXCP_NMI
;
516 #elif defined(TARGET_M68K)
517 if (interrupt_request
& CPU_INTERRUPT_HARD
518 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
519 < env
->pending_level
) {
520 /* Real hardware gets the interrupt vector via an
521 IACK cycle at this point. Current emulated
522 hardware doesn't rely on this, so we
523 provide/save the vector when the interrupt is
525 env
->exception_index
= env
->pending_vector
;
530 /* Don't use the cached interupt_request value,
531 do_interrupt may have updated the EXITTB flag. */
532 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
533 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
534 /* ensure that no TB jump will be modified as
535 the program flow was changed */
539 if (unlikely(env
->exit_request
)) {
540 env
->exit_request
= 0;
541 env
->exception_index
= EXCP_INTERRUPT
;
544 #ifdef CONFIG_DEBUG_EXEC
545 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
546 /* restore flags in standard format */
548 #if defined(TARGET_I386)
549 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
550 log_cpu_state(env
, X86_DUMP_CCOP
);
551 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
552 #elif defined(TARGET_ARM)
553 log_cpu_state(env
, 0);
554 #elif defined(TARGET_SPARC)
555 log_cpu_state(env
, 0);
556 #elif defined(TARGET_PPC)
557 log_cpu_state(env
, 0);
558 #elif defined(TARGET_M68K)
559 cpu_m68k_flush_flags(env
, env
->cc_op
);
560 env
->cc_op
= CC_OP_FLAGS
;
561 env
->sr
= (env
->sr
& 0xffe0)
562 | env
->cc_dest
| (env
->cc_x
<< 4);
563 log_cpu_state(env
, 0);
564 #elif defined(TARGET_MICROBLAZE)
565 log_cpu_state(env
, 0);
566 #elif defined(TARGET_MIPS)
567 log_cpu_state(env
, 0);
568 #elif defined(TARGET_SH4)
569 log_cpu_state(env
, 0);
570 #elif defined(TARGET_ALPHA)
571 log_cpu_state(env
, 0);
572 #elif defined(TARGET_CRIS)
573 log_cpu_state(env
, 0);
575 #error unsupported target CPU
581 /* Note: we do it here to avoid a gcc bug on Mac OS X when
582 doing it in tb_find_slow */
583 if (tb_invalidated_flag
) {
584 /* as some TB could have been invalidated because
585 of memory exceptions while generating the code, we
586 must recompute the hash index here */
588 tb_invalidated_flag
= 0;
590 #ifdef CONFIG_DEBUG_EXEC
591 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
592 (long)tb
->tc_ptr
, tb
->pc
,
593 lookup_symbol(tb
->pc
));
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
599 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
600 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
603 spin_unlock(&tb_lock
);
604 env
->current_tb
= tb
;
606 /* cpu_interrupt might be called while translating the
607 TB, but before it is linked into a potentially
608 infinite loop and becomes env->current_tb. Avoid
609 starting execution if there is a pending interrupt. */
610 if (unlikely (env
->exit_request
))
611 env
->current_tb
= NULL
;
613 while (env
->current_tb
) {
615 /* execute the generated code */
616 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
618 env
= cpu_single_env
;
619 #define env cpu_single_env
621 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
622 env
->current_tb
= NULL
;
623 if ((next_tb
& 3) == 2) {
624 /* Instruction counter expired. */
626 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
628 cpu_pc_from_tb(env
, tb
);
629 insns_left
= env
->icount_decr
.u32
;
630 if (env
->icount_extra
&& insns_left
>= 0) {
631 /* Refill decrementer and continue execution. */
632 env
->icount_extra
+= insns_left
;
633 if (env
->icount_extra
> 0xffff) {
636 insns_left
= env
->icount_extra
;
638 env
->icount_extra
-= insns_left
;
639 env
->icount_decr
.u16
.low
= insns_left
;
641 if (insns_left
> 0) {
642 /* Execute remaining instructions. */
643 cpu_exec_nocache(insns_left
, tb
);
645 env
->exception_index
= EXCP_INTERRUPT
;
651 /* reset soft MMU for next block (it can currently
652 only be set by a memory fault) */
660 #if defined(TARGET_I386)
661 /* restore flags in standard format */
662 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
663 #elif defined(TARGET_ARM)
664 /* XXX: Save/restore host fpu exception state?. */
665 #elif defined(TARGET_SPARC)
666 #elif defined(TARGET_PPC)
667 #elif defined(TARGET_M68K)
668 cpu_m68k_flush_flags(env
, env
->cc_op
);
669 env
->cc_op
= CC_OP_FLAGS
;
670 env
->sr
= (env
->sr
& 0xffe0)
671 | env
->cc_dest
| (env
->cc_x
<< 4);
672 #elif defined(TARGET_MICROBLAZE)
673 #elif defined(TARGET_MIPS)
674 #elif defined(TARGET_SH4)
675 #elif defined(TARGET_ALPHA)
676 #elif defined(TARGET_CRIS)
677 #elif defined(TARGET_S390X)
680 #error unsupported target CPU
683 /* restore global registers */
684 #include "hostregs_helper.h"
686 /* fail safe : never use cpu_single_env outside cpu_exec() */
687 cpu_single_env
= NULL
;
691 /* must only be called from the generated code as an exception can be
693 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
695 /* XXX: cannot enable it yet because it yields to MMU exception
696 where NIP != read address on PowerPC */
698 target_ulong phys_addr
;
699 phys_addr
= get_phys_addr_code(env
, start
);
700 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
704 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
706 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
708 CPUX86State
*saved_env
;
712 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
714 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
715 (selector
<< 4), 0xffff, 0);
717 helper_load_seg(seg_reg
, selector
);
722 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
724 CPUX86State
*saved_env
;
729 helper_fsave(ptr
, data32
);
734 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
736 CPUX86State
*saved_env
;
741 helper_frstor(ptr
, data32
);
746 #endif /* TARGET_I386 */
748 #if !defined(CONFIG_SOFTMMU)
750 #if defined(TARGET_I386)
751 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
753 #define EXCEPTION_ACTION cpu_loop_exit()
756 /* 'pc' is the host PC at which the exception was raised. 'address' is
757 the effective address of the memory exception. 'is_write' is 1 if a
758 write caused the exception and otherwise 0'. 'old_set' is the
759 signal set which should be restored */
760 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
761 int is_write
, sigset_t
*old_set
,
764 TranslationBlock
*tb
;
768 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
769 #if defined(DEBUG_SIGNAL)
770 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
771 pc
, address
, is_write
, *(unsigned long *)old_set
);
773 /* XXX: locking issue */
774 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
778 /* see if it is an MMU fault */
779 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
781 return 0; /* not an MMU fault */
783 return 1; /* the MMU fault was handled without causing real CPU fault */
784 /* now we have a real cpu fault */
787 /* the PC is inside the translated code. It means that we have
788 a virtual CPU fault */
789 cpu_restore_state(tb
, env
, pc
, puc
);
792 /* we restore the process signal mask as the sigreturn should
793 do it (XXX: use sigsetjmp) */
794 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
797 /* never comes here */
801 #if defined(__i386__)
803 #if defined(__APPLE__)
804 # include <sys/ucontext.h>
806 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
807 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
808 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
809 # define MASK_sig(context) ((context)->uc_sigmask)
810 #elif defined (__NetBSD__)
811 # include <ucontext.h>
813 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
814 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
815 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
816 # define MASK_sig(context) ((context)->uc_sigmask)
817 #elif defined (__FreeBSD__) || defined(__DragonFly__)
818 # include <ucontext.h>
820 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
821 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
822 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
823 # define MASK_sig(context) ((context)->uc_sigmask)
824 #elif defined(__OpenBSD__)
825 # define EIP_sig(context) ((context)->sc_eip)
826 # define TRAP_sig(context) ((context)->sc_trapno)
827 # define ERROR_sig(context) ((context)->sc_err)
828 # define MASK_sig(context) ((context)->sc_mask)
830 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
831 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
832 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
833 # define MASK_sig(context) ((context)->uc_sigmask)
836 int cpu_signal_handler(int host_signum
, void *pinfo
,
839 siginfo_t
*info
= pinfo
;
840 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
841 ucontext_t
*uc
= puc
;
842 #elif defined(__OpenBSD__)
843 struct sigcontext
*uc
= puc
;
845 struct ucontext
*uc
= puc
;
854 #define REG_TRAPNO TRAPNO
857 trapno
= TRAP_sig(uc
);
858 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
860 (ERROR_sig(uc
) >> 1) & 1 : 0,
864 #elif defined(__x86_64__)
867 #define PC_sig(context) _UC_MACHINE_PC(context)
868 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
869 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
870 #define MASK_sig(context) ((context)->uc_sigmask)
871 #elif defined(__OpenBSD__)
872 #define PC_sig(context) ((context)->sc_rip)
873 #define TRAP_sig(context) ((context)->sc_trapno)
874 #define ERROR_sig(context) ((context)->sc_err)
875 #define MASK_sig(context) ((context)->sc_mask)
876 #elif defined (__FreeBSD__) || defined(__DragonFly__)
877 #include <ucontext.h>
879 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
880 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
881 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
882 #define MASK_sig(context) ((context)->uc_sigmask)
884 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
885 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
886 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
887 #define MASK_sig(context) ((context)->uc_sigmask)
890 int cpu_signal_handler(int host_signum
, void *pinfo
,
893 siginfo_t
*info
= pinfo
;
895 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
896 ucontext_t
*uc
= puc
;
897 #elif defined(__OpenBSD__)
898 struct sigcontext
*uc
= puc
;
900 struct ucontext
*uc
= puc
;
904 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
905 TRAP_sig(uc
) == 0xe ?
906 (ERROR_sig(uc
) >> 1) & 1 : 0,
910 #elif defined(_ARCH_PPC)
912 /***********************************************************************
913 * signal context platform-specific definitions
917 /* All Registers access - only for local access */
918 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
921 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
924 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
925 # define LR_sig(context) REG_sig(link, context) /* Link register */
926 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
929 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
930 /* Exception Registers access */
931 # define DAR_sig(context) REG_sig(dar, context)
932 # define DSISR_sig(context) REG_sig(dsisr, context)
933 # define TRAP_sig(context) REG_sig(trap, context)
937 # include <sys/ucontext.h>
938 typedef struct ucontext SIGCONTEXT
;
939 /* All Registers access - only for local access */
940 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
941 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
942 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
943 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
944 /* Gpr Registers access */
945 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
946 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
947 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
948 # define CTR_sig(context) REG_sig(ctr, context)
949 # define XER_sig(context) REG_sig(xer, context) /* Link register */
950 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
951 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
952 /* Float Registers access */
953 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
954 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
955 /* Exception Registers access */
956 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
957 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
958 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
959 #endif /* __APPLE__ */
961 int cpu_signal_handler(int host_signum
, void *pinfo
,
964 siginfo_t
*info
= pinfo
;
965 struct ucontext
*uc
= puc
;
973 if (DSISR_sig(uc
) & 0x00800000)
976 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
979 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
980 is_write
, &uc
->uc_sigmask
, puc
);
983 #elif defined(__alpha__)
985 int cpu_signal_handler(int host_signum
, void *pinfo
,
988 siginfo_t
*info
= pinfo
;
989 struct ucontext
*uc
= puc
;
990 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
994 /* XXX: need kernel patch to get write flag faster */
995 switch (insn
>> 26) {
1010 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1011 is_write
, &uc
->uc_sigmask
, puc
);
1013 #elif defined(__sparc__)
1015 int cpu_signal_handler(int host_signum
, void *pinfo
,
1018 siginfo_t
*info
= pinfo
;
1021 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1022 uint32_t *regs
= (uint32_t *)(info
+ 1);
1023 void *sigmask
= (regs
+ 20);
1024 /* XXX: is there a standard glibc define ? */
1025 unsigned long pc
= regs
[1];
1028 struct sigcontext
*sc
= puc
;
1029 unsigned long pc
= sc
->sigc_regs
.tpc
;
1030 void *sigmask
= (void *)sc
->sigc_mask
;
1031 #elif defined(__OpenBSD__)
1032 struct sigcontext
*uc
= puc
;
1033 unsigned long pc
= uc
->sc_pc
;
1034 void *sigmask
= (void *)(long)uc
->sc_mask
;
1038 /* XXX: need kernel patch to get write flag faster */
1040 insn
= *(uint32_t *)pc
;
1041 if ((insn
>> 30) == 3) {
1042 switch((insn
>> 19) & 0x3f) {
1066 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1067 is_write
, sigmask
, NULL
);
1070 #elif defined(__arm__)
1072 int cpu_signal_handler(int host_signum
, void *pinfo
,
1075 siginfo_t
*info
= pinfo
;
1076 struct ucontext
*uc
= puc
;
1080 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1081 pc
= uc
->uc_mcontext
.gregs
[R15
];
1083 pc
= uc
->uc_mcontext
.arm_pc
;
1085 /* XXX: compute is_write */
1087 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1089 &uc
->uc_sigmask
, puc
);
1092 #elif defined(__mc68000)
1094 int cpu_signal_handler(int host_signum
, void *pinfo
,
1097 siginfo_t
*info
= pinfo
;
1098 struct ucontext
*uc
= puc
;
1102 pc
= uc
->uc_mcontext
.gregs
[16];
1103 /* XXX: compute is_write */
1105 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1107 &uc
->uc_sigmask
, puc
);
1110 #elif defined(__ia64)
1113 /* This ought to be in <bits/siginfo.h>... */
1114 # define __ISR_VALID 1
1117 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1119 siginfo_t
*info
= pinfo
;
1120 struct ucontext
*uc
= puc
;
1124 ip
= uc
->uc_mcontext
.sc_ip
;
1125 switch (host_signum
) {
1131 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1132 /* ISR.W (write-access) is bit 33: */
1133 is_write
= (info
->si_isr
>> 33) & 1;
1139 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1141 &uc
->uc_sigmask
, puc
);
1144 #elif defined(__s390__)
1146 int cpu_signal_handler(int host_signum
, void *pinfo
,
1149 siginfo_t
*info
= pinfo
;
1150 struct ucontext
*uc
= puc
;
1154 pc
= uc
->uc_mcontext
.psw
.addr
;
1155 /* XXX: compute is_write */
1157 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1158 is_write
, &uc
->uc_sigmask
, puc
);
1161 #elif defined(__mips__)
1163 int cpu_signal_handler(int host_signum
, void *pinfo
,
1166 siginfo_t
*info
= pinfo
;
1167 struct ucontext
*uc
= puc
;
1168 greg_t pc
= uc
->uc_mcontext
.pc
;
1171 /* XXX: compute is_write */
1173 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1174 is_write
, &uc
->uc_sigmask
, puc
);
1177 #elif defined(__hppa__)
1179 int cpu_signal_handler(int host_signum
, void *pinfo
,
1182 struct siginfo
*info
= pinfo
;
1183 struct ucontext
*uc
= puc
;
1187 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1188 /* FIXME: compute is_write */
1190 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1192 &uc
->uc_sigmask
, puc
);
1197 #error host CPU specific signal handler needed
1201 #endif /* !defined(CONFIG_SOFTMMU) */