Make -acpi-enable a machine specific option
[qemu/aliguori-queue.git] / block / qcow2-cluster.c
blob03a9f2579943cd10160394f332786ab55e54d0cc
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 if (new_l1_size == 0) {
43 new_l1_size = 1;
45 while (min_size > new_l1_size) {
46 new_l1_size = (new_l1_size * 3 + 1) / 2;
48 #ifdef DEBUG_ALLOC2
49 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50 #endif
52 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
56 /* write new table (align to cluster) */
57 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
58 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
59 if (new_l1_table_offset < 0) {
60 qemu_free(new_l1_table);
61 return new_l1_table_offset;
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
65 for(i = 0; i < s->l1_size; i++)
66 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
67 ret = bdrv_pwrite(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
68 if (ret != new_l1_size2)
69 goto fail;
70 for(i = 0; i < s->l1_size; i++)
71 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
73 /* set new table */
74 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
75 cpu_to_be32w((uint32_t*)data, new_l1_size);
76 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
77 ret = bdrv_pwrite(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
78 if (ret != sizeof(data)) {
79 goto fail;
81 qemu_free(s->l1_table);
82 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
83 s->l1_table_offset = new_l1_table_offset;
84 s->l1_table = new_l1_table;
85 s->l1_size = new_l1_size;
86 return 0;
87 fail:
88 qemu_free(new_l1_table);
89 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
90 return ret < 0 ? ret : -EIO;
93 void qcow2_l2_cache_reset(BlockDriverState *bs)
95 BDRVQcowState *s = bs->opaque;
97 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
98 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
99 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
102 static inline int l2_cache_new_entry(BlockDriverState *bs)
104 BDRVQcowState *s = bs->opaque;
105 uint32_t min_count;
106 int min_index, i;
108 /* find a new entry in the least used one */
109 min_index = 0;
110 min_count = 0xffffffff;
111 for(i = 0; i < L2_CACHE_SIZE; i++) {
112 if (s->l2_cache_counts[i] < min_count) {
113 min_count = s->l2_cache_counts[i];
114 min_index = i;
117 return min_index;
121 * seek_l2_table
123 * seek l2_offset in the l2_cache table
124 * if not found, return NULL,
125 * if found,
126 * increments the l2 cache hit count of the entry,
127 * if counter overflow, divide by two all counters
128 * return the pointer to the l2 cache entry
132 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
134 int i, j;
136 for(i = 0; i < L2_CACHE_SIZE; i++) {
137 if (l2_offset == s->l2_cache_offsets[i]) {
138 /* increment the hit count */
139 if (++s->l2_cache_counts[i] == 0xffffffff) {
140 for(j = 0; j < L2_CACHE_SIZE; j++) {
141 s->l2_cache_counts[j] >>= 1;
144 return s->l2_cache + (i << s->l2_bits);
147 return NULL;
151 * l2_load
153 * Loads a L2 table into memory. If the table is in the cache, the cache
154 * is used; otherwise the L2 table is loaded from the image file.
156 * Returns a pointer to the L2 table on success, or NULL if the read from
157 * the image file failed.
160 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
161 uint64_t **l2_table)
163 BDRVQcowState *s = bs->opaque;
164 int min_index;
165 int ret;
167 /* seek if the table for the given offset is in the cache */
169 *l2_table = seek_l2_table(s, l2_offset);
170 if (*l2_table != NULL) {
171 return 0;
174 /* not found: load a new entry in the least used one */
176 min_index = l2_cache_new_entry(bs);
177 *l2_table = s->l2_cache + (min_index << s->l2_bits);
179 BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
180 ret = bdrv_pread(bs->file, l2_offset, *l2_table,
181 s->l2_size * sizeof(uint64_t));
182 if (ret < 0) {
183 return ret;
186 s->l2_cache_offsets[min_index] = l2_offset;
187 s->l2_cache_counts[min_index] = 1;
189 return 0;
193 * Writes one sector of the L1 table to the disk (can't update single entries
194 * and we really don't want bdrv_pread to perform a read-modify-write)
196 #define L1_ENTRIES_PER_SECTOR (512 / 8)
197 static int write_l1_entry(BlockDriverState *bs, int l1_index)
199 BDRVQcowState *s = bs->opaque;
200 uint64_t buf[L1_ENTRIES_PER_SECTOR];
201 int l1_start_index;
202 int i, ret;
204 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
205 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
206 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
209 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
210 ret = bdrv_pwrite(bs->file, s->l1_table_offset + 8 * l1_start_index,
211 buf, sizeof(buf));
212 if (ret < 0) {
213 return ret;
216 return 0;
220 * l2_allocate
222 * Allocate a new l2 entry in the file. If l1_index points to an already
223 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
224 * table) copy the contents of the old L2 table into the newly allocated one.
225 * Otherwise the new table is initialized with zeros.
229 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
231 BDRVQcowState *s = bs->opaque;
232 int min_index;
233 uint64_t old_l2_offset;
234 uint64_t *l2_table;
235 int64_t l2_offset;
236 int ret;
238 old_l2_offset = s->l1_table[l1_index];
240 /* allocate a new l2 entry */
242 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
243 if (l2_offset < 0) {
244 return l2_offset;
247 /* allocate a new entry in the l2 cache */
249 min_index = l2_cache_new_entry(bs);
250 l2_table = s->l2_cache + (min_index << s->l2_bits);
252 if (old_l2_offset == 0) {
253 /* if there was no old l2 table, clear the new table */
254 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
255 } else {
256 /* if there was an old l2 table, read it from the disk */
257 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
258 ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
259 s->l2_size * sizeof(uint64_t));
260 if (ret < 0) {
261 goto fail;
264 /* write the l2 table to the file */
265 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
267 s->l2_size * sizeof(uint64_t));
268 if (ret < 0) {
269 goto fail;
272 /* update the L1 entry */
273 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
274 ret = write_l1_entry(bs, l1_index);
275 if (ret < 0) {
276 goto fail;
279 /* update the l2 cache entry */
281 s->l2_cache_offsets[min_index] = l2_offset;
282 s->l2_cache_counts[min_index] = 1;
284 *table = l2_table;
285 return 0;
287 fail:
288 qcow2_l2_cache_reset(bs);
289 return ret;
292 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
293 uint64_t *l2_table, uint64_t start, uint64_t mask)
295 int i;
296 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
298 if (!offset)
299 return 0;
301 for (i = start; i < start + nb_clusters; i++)
302 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
303 break;
305 return (i - start);
308 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
310 int i = 0;
312 while(nb_clusters-- && l2_table[i] == 0)
313 i++;
315 return i;
318 /* The crypt function is compatible with the linux cryptoloop
319 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
320 supported */
321 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
322 uint8_t *out_buf, const uint8_t *in_buf,
323 int nb_sectors, int enc,
324 const AES_KEY *key)
326 union {
327 uint64_t ll[2];
328 uint8_t b[16];
329 } ivec;
330 int i;
332 for(i = 0; i < nb_sectors; i++) {
333 ivec.ll[0] = cpu_to_le64(sector_num);
334 ivec.ll[1] = 0;
335 AES_cbc_encrypt(in_buf, out_buf, 512, key,
336 ivec.b, enc);
337 sector_num++;
338 in_buf += 512;
339 out_buf += 512;
344 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
345 uint8_t *buf, int nb_sectors)
347 BDRVQcowState *s = bs->opaque;
348 int ret, index_in_cluster, n, n1;
349 uint64_t cluster_offset;
351 while (nb_sectors > 0) {
352 n = nb_sectors;
354 ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
355 &cluster_offset);
356 if (ret < 0) {
357 return ret;
360 index_in_cluster = sector_num & (s->cluster_sectors - 1);
361 if (!cluster_offset) {
362 if (bs->backing_hd) {
363 /* read from the base image */
364 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
365 if (n1 > 0) {
366 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
367 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
368 if (ret < 0)
369 return -1;
371 } else {
372 memset(buf, 0, 512 * n);
374 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
375 if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
376 return -1;
377 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
378 } else {
379 BLKDBG_EVENT(bs->file, BLKDBG_READ);
380 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
381 if (ret != n * 512)
382 return -1;
383 if (s->crypt_method) {
384 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
385 &s->aes_decrypt_key);
388 nb_sectors -= n;
389 sector_num += n;
390 buf += n * 512;
392 return 0;
395 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
396 uint64_t cluster_offset, int n_start, int n_end)
398 BDRVQcowState *s = bs->opaque;
399 int n, ret;
401 n = n_end - n_start;
402 if (n <= 0)
403 return 0;
404 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
405 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
406 if (ret < 0)
407 return ret;
408 if (s->crypt_method) {
409 qcow2_encrypt_sectors(s, start_sect + n_start,
410 s->cluster_data,
411 s->cluster_data, n, 1,
412 &s->aes_encrypt_key);
414 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
415 ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
416 s->cluster_data, n);
417 if (ret < 0)
418 return ret;
419 return 0;
424 * get_cluster_offset
426 * For a given offset of the disk image, find the cluster offset in
427 * qcow2 file. The offset is stored in *cluster_offset.
429 * on entry, *num is the number of contiguous clusters we'd like to
430 * access following offset.
432 * on exit, *num is the number of contiguous clusters we can read.
434 * Return 0, if the offset is found
435 * Return -errno, otherwise.
439 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
440 int *num, uint64_t *cluster_offset)
442 BDRVQcowState *s = bs->opaque;
443 unsigned int l1_index, l2_index;
444 uint64_t l2_offset, *l2_table;
445 int l1_bits, c;
446 unsigned int index_in_cluster, nb_clusters;
447 uint64_t nb_available, nb_needed;
448 int ret;
450 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
451 nb_needed = *num + index_in_cluster;
453 l1_bits = s->l2_bits + s->cluster_bits;
455 /* compute how many bytes there are between the offset and
456 * the end of the l1 entry
459 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
461 /* compute the number of available sectors */
463 nb_available = (nb_available >> 9) + index_in_cluster;
465 if (nb_needed > nb_available) {
466 nb_needed = nb_available;
469 *cluster_offset = 0;
471 /* seek the the l2 offset in the l1 table */
473 l1_index = offset >> l1_bits;
474 if (l1_index >= s->l1_size)
475 goto out;
477 l2_offset = s->l1_table[l1_index];
479 /* seek the l2 table of the given l2 offset */
481 if (!l2_offset)
482 goto out;
484 /* load the l2 table in memory */
486 l2_offset &= ~QCOW_OFLAG_COPIED;
487 ret = l2_load(bs, l2_offset, &l2_table);
488 if (ret < 0) {
489 return ret;
492 /* find the cluster offset for the given disk offset */
494 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
495 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
496 nb_clusters = size_to_clusters(s, nb_needed << 9);
498 if (!*cluster_offset) {
499 /* how many empty clusters ? */
500 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
501 } else {
502 /* how many allocated clusters ? */
503 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
504 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
507 nb_available = (c * s->cluster_sectors);
508 out:
509 if (nb_available > nb_needed)
510 nb_available = nb_needed;
512 *num = nb_available - index_in_cluster;
514 *cluster_offset &=~QCOW_OFLAG_COPIED;
515 return 0;
519 * get_cluster_table
521 * for a given disk offset, load (and allocate if needed)
522 * the l2 table.
524 * the l2 table offset in the qcow2 file and the cluster index
525 * in the l2 table are given to the caller.
527 * Returns 0 on success, -errno in failure case
529 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
530 uint64_t **new_l2_table,
531 uint64_t *new_l2_offset,
532 int *new_l2_index)
534 BDRVQcowState *s = bs->opaque;
535 unsigned int l1_index, l2_index;
536 uint64_t l2_offset;
537 uint64_t *l2_table = NULL;
538 int ret;
540 /* seek the the l2 offset in the l1 table */
542 l1_index = offset >> (s->l2_bits + s->cluster_bits);
543 if (l1_index >= s->l1_size) {
544 ret = qcow2_grow_l1_table(bs, l1_index + 1);
545 if (ret < 0) {
546 return ret;
549 l2_offset = s->l1_table[l1_index];
551 /* seek the l2 table of the given l2 offset */
553 if (l2_offset & QCOW_OFLAG_COPIED) {
554 /* load the l2 table in memory */
555 l2_offset &= ~QCOW_OFLAG_COPIED;
556 ret = l2_load(bs, l2_offset, &l2_table);
557 if (ret < 0) {
558 return ret;
560 } else {
561 if (l2_offset)
562 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
563 ret = l2_allocate(bs, l1_index, &l2_table);
564 if (ret < 0) {
565 return ret;
567 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
570 /* find the cluster offset for the given disk offset */
572 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
574 *new_l2_table = l2_table;
575 *new_l2_offset = l2_offset;
576 *new_l2_index = l2_index;
578 return 0;
582 * alloc_compressed_cluster_offset
584 * For a given offset of the disk image, return cluster offset in
585 * qcow2 file.
587 * If the offset is not found, allocate a new compressed cluster.
589 * Return the cluster offset if successful,
590 * Return 0, otherwise.
594 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
595 uint64_t offset,
596 int compressed_size)
598 BDRVQcowState *s = bs->opaque;
599 int l2_index, ret;
600 uint64_t l2_offset, *l2_table;
601 int64_t cluster_offset;
602 int nb_csectors;
604 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
605 if (ret < 0) {
606 return 0;
609 cluster_offset = be64_to_cpu(l2_table[l2_index]);
610 if (cluster_offset & QCOW_OFLAG_COPIED)
611 return cluster_offset & ~QCOW_OFLAG_COPIED;
613 if (cluster_offset)
614 qcow2_free_any_clusters(bs, cluster_offset, 1);
616 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
617 if (cluster_offset < 0) {
618 return 0;
621 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
622 (cluster_offset >> 9);
624 cluster_offset |= QCOW_OFLAG_COMPRESSED |
625 ((uint64_t)nb_csectors << s->csize_shift);
627 /* update L2 table */
629 /* compressed clusters never have the copied flag */
631 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
632 l2_table[l2_index] = cpu_to_be64(cluster_offset);
633 if (bdrv_pwrite(bs->file,
634 l2_offset + l2_index * sizeof(uint64_t),
635 l2_table + l2_index,
636 sizeof(uint64_t)) != sizeof(uint64_t))
637 return 0;
639 return cluster_offset;
643 * Write L2 table updates to disk, writing whole sectors to avoid a
644 * read-modify-write in bdrv_pwrite
646 #define L2_ENTRIES_PER_SECTOR (512 / 8)
647 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
648 uint64_t l2_offset, int l2_index, int num)
650 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
651 int start_offset = (8 * l2_index) & ~511;
652 int end_offset = (8 * (l2_index + num) + 511) & ~511;
653 size_t len = end_offset - start_offset;
654 int ret;
656 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
657 ret = bdrv_pwrite(bs->file, l2_offset + start_offset,
658 &l2_table[l2_start_index], len);
659 if (ret < 0) {
660 return ret;
663 return 0;
666 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
668 BDRVQcowState *s = bs->opaque;
669 int i, j = 0, l2_index, ret;
670 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
671 uint64_t cluster_offset = m->cluster_offset;
673 if (m->nb_clusters == 0)
674 return 0;
676 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
678 /* copy content of unmodified sectors */
679 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
680 if (m->n_start) {
681 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
682 if (ret < 0)
683 goto err;
686 if (m->nb_available & (s->cluster_sectors - 1)) {
687 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
688 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
689 m->nb_available - end, s->cluster_sectors);
690 if (ret < 0)
691 goto err;
694 /* update L2 table */
695 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
696 if (ret < 0) {
697 goto err;
700 for (i = 0; i < m->nb_clusters; i++) {
701 /* if two concurrent writes happen to the same unallocated cluster
702 * each write allocates separate cluster and writes data concurrently.
703 * The first one to complete updates l2 table with pointer to its
704 * cluster the second one has to do RMW (which is done above by
705 * copy_sectors()), update l2 table with its cluster pointer and free
706 * old cluster. This is what this loop does */
707 if(l2_table[l2_index + i] != 0)
708 old_cluster[j++] = l2_table[l2_index + i];
710 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
711 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
714 ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
715 if (ret < 0) {
716 qcow2_l2_cache_reset(bs);
717 goto err;
720 for (i = 0; i < j; i++)
721 qcow2_free_any_clusters(bs,
722 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
724 ret = 0;
725 err:
726 qemu_free(old_cluster);
727 return ret;
731 * alloc_cluster_offset
733 * For a given offset of the disk image, return cluster offset in qcow2 file.
734 * If the offset is not found, allocate a new cluster.
736 * If the cluster was already allocated, m->nb_clusters is set to 0,
737 * m->depends_on is set to NULL and the other fields in m are meaningless.
739 * If the cluster is newly allocated, m->nb_clusters is set to the number of
740 * contiguous clusters that have been allocated. This may be 0 if the request
741 * conflict with another write request in flight; in this case, m->depends_on
742 * is set and the remaining fields of m are meaningless.
744 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
745 * information about the first allocated cluster.
747 * Return 0 on success and -errno in error cases
749 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
750 int n_start, int n_end, int *num, QCowL2Meta *m)
752 BDRVQcowState *s = bs->opaque;
753 int l2_index, ret;
754 uint64_t l2_offset, *l2_table;
755 int64_t cluster_offset;
756 unsigned int nb_clusters, i = 0;
757 QCowL2Meta *old_alloc;
759 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
760 if (ret < 0) {
761 return ret;
764 nb_clusters = size_to_clusters(s, n_end << 9);
766 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
768 cluster_offset = be64_to_cpu(l2_table[l2_index]);
770 /* We keep all QCOW_OFLAG_COPIED clusters */
772 if (cluster_offset & QCOW_OFLAG_COPIED) {
773 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
774 &l2_table[l2_index], 0, 0);
776 cluster_offset &= ~QCOW_OFLAG_COPIED;
777 m->nb_clusters = 0;
778 m->depends_on = NULL;
780 goto out;
783 /* for the moment, multiple compressed clusters are not managed */
785 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
786 nb_clusters = 1;
788 /* how many available clusters ? */
790 while (i < nb_clusters) {
791 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
792 &l2_table[l2_index], i, 0);
793 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
794 break;
797 i += count_contiguous_free_clusters(nb_clusters - i,
798 &l2_table[l2_index + i]);
799 if (i >= nb_clusters) {
800 break;
803 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
805 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
806 (cluster_offset & QCOW_OFLAG_COMPRESSED))
807 break;
809 assert(i <= nb_clusters);
810 nb_clusters = i;
813 * Check if there already is an AIO write request in flight which allocates
814 * the same cluster. In this case we need to wait until the previous
815 * request has completed and updated the L2 table accordingly.
817 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
819 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
820 uint64_t old_offset = old_alloc->offset;
821 uint64_t old_end_offset = old_alloc->offset +
822 old_alloc->nb_clusters * s->cluster_size;
824 if (end_offset < old_offset || offset > old_end_offset) {
825 /* No intersection */
826 } else {
827 if (offset < old_offset) {
828 /* Stop at the start of a running allocation */
829 nb_clusters = (old_offset - offset) >> s->cluster_bits;
830 } else {
831 nb_clusters = 0;
834 if (nb_clusters == 0) {
835 /* Set dependency and wait for a callback */
836 m->depends_on = old_alloc;
837 m->nb_clusters = 0;
838 *num = 0;
839 return 0;
844 if (!nb_clusters) {
845 abort();
848 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
850 /* allocate a new cluster */
852 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
853 if (cluster_offset < 0) {
854 QLIST_REMOVE(m, next_in_flight);
855 return cluster_offset;
858 /* save info needed for meta data update */
859 m->offset = offset;
860 m->n_start = n_start;
861 m->nb_clusters = nb_clusters;
863 out:
864 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
865 m->cluster_offset = cluster_offset;
867 *num = m->nb_available - n_start;
869 return 0;
872 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
873 const uint8_t *buf, int buf_size)
875 z_stream strm1, *strm = &strm1;
876 int ret, out_len;
878 memset(strm, 0, sizeof(*strm));
880 strm->next_in = (uint8_t *)buf;
881 strm->avail_in = buf_size;
882 strm->next_out = out_buf;
883 strm->avail_out = out_buf_size;
885 ret = inflateInit2(strm, -12);
886 if (ret != Z_OK)
887 return -1;
888 ret = inflate(strm, Z_FINISH);
889 out_len = strm->next_out - out_buf;
890 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
891 out_len != out_buf_size) {
892 inflateEnd(strm);
893 return -1;
895 inflateEnd(strm);
896 return 0;
899 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
901 BDRVQcowState *s = bs->opaque;
902 int ret, csize, nb_csectors, sector_offset;
903 uint64_t coffset;
905 coffset = cluster_offset & s->cluster_offset_mask;
906 if (s->cluster_cache_offset != coffset) {
907 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
908 sector_offset = coffset & 511;
909 csize = nb_csectors * 512 - sector_offset;
910 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
911 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
912 if (ret < 0) {
913 return -1;
915 if (decompress_buffer(s->cluster_cache, s->cluster_size,
916 s->cluster_data + sector_offset, csize) < 0) {
917 return -1;
919 s->cluster_cache_offset = coffset;
921 return 0;