microblaze: Add CPU interrupt wrapper logic.
[qemu/aliguori-queue.git] / exec.c
blob723de89bf4e25ebbadaf5d3ac387891eb02196fb
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 uint8_t *phys_ram_dirty;
112 static int in_migration;
114 typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119 } RAMBlock;
121 static RAMBlock *ram_blocks;
122 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longer assume contiguous ram offsets, and external uses
124 of this variable will break. */
125 ram_addr_t last_ram_offset;
126 #endif
128 CPUState *first_cpu;
129 /* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
131 CPUState *cpu_single_env;
132 /* 0 = Do not count executed instructions.
133 1 = Precise instruction counting.
134 2 = Adaptive rate instruction counting. */
135 int use_icount = 0;
136 /* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138 int64_t qemu_icount;
140 typedef struct PageDesc {
141 /* list of TBs intersecting this ram page */
142 TranslationBlock *first_tb;
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147 #if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149 #endif
150 } PageDesc;
152 typedef struct PhysPageDesc {
153 /* offset in host memory of the page + io_index in the low bits */
154 ram_addr_t phys_offset;
155 ram_addr_t region_offset;
156 } PhysPageDesc;
158 #define L2_BITS 10
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165 #else
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
167 #endif
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
172 unsigned long qemu_real_host_page_size;
173 unsigned long qemu_host_page_bits;
174 unsigned long qemu_host_page_size;
175 unsigned long qemu_host_page_mask;
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc *l1_map[L1_SIZE];
179 static PhysPageDesc **l1_phys_map;
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
184 /* io memory support */
185 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
187 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
188 static char io_mem_used[IO_MEM_NB_ENTRIES];
189 static int io_mem_watch;
190 #endif
192 /* log support */
193 static const char *logfilename = "/tmp/qemu.log";
194 FILE *logfile;
195 int loglevel;
196 static int log_append = 0;
198 /* statistics */
199 static int tlb_flush_count;
200 static int tb_flush_count;
201 static int tb_phys_invalidate_count;
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t {
205 target_phys_addr_t base;
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
210 } subpage_t;
212 #ifdef _WIN32
213 static void map_exec(void *addr, long size)
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
220 #else
221 static void map_exec(void *addr, long size)
223 unsigned long start, end, page_size;
225 page_size = getpagesize();
226 start = (unsigned long)addr;
227 start &= ~(page_size - 1);
229 end = (unsigned long)addr + size;
230 end += page_size - 1;
231 end &= ~(page_size - 1);
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
236 #endif
238 static void page_init(void)
240 /* NOTE: we can always suppose that qemu_host_page_size >=
241 TARGET_PAGE_SIZE */
242 #ifdef _WIN32
244 SYSTEM_INFO system_info;
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
249 #else
250 qemu_real_host_page_size = getpagesize();
251 #endif
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
269 mmap_lock();
270 last_brk = (unsigned long)sbrk(0);
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 page_set_flags(startaddr & TARGET_PAGE_MASK,
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
284 } while (!feof(f));
285 fclose(f);
287 mmap_unlock();
289 #endif
292 static inline PageDesc **page_l1_map(target_ulong index)
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
298 return NULL;
299 #endif
300 return &l1_map[index >> L2_BITS];
303 static inline PageDesc *page_find_alloc(target_ulong index)
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
318 *lp = p;
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
325 #else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328 #endif
330 return p + (index & (L2_SIZE - 1));
333 static inline PageDesc *page_find(target_ulong index)
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
340 p = *lp;
341 if (!p)
342 return 0;
343 return p + (index & (L2_SIZE - 1));
346 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
348 void **lp, **p;
349 PhysPageDesc *pd;
351 p = (void **)l1_phys_map;
352 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
354 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356 #endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
367 #endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
369 pd = *lp;
370 if (!pd) {
371 int i;
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
377 for (i = 0; i < L2_SIZE; i++) {
378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
385 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
387 return phys_page_find_alloc(index, 0);
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr);
392 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
393 target_ulong vaddr);
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
396 #endif
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommended to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
404 #endif
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408 #endif
410 static void code_gen_alloc(unsigned long tb_size)
412 #ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416 #else
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
419 #if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 #else
423 /* XXX: needs adjustments */
424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
425 #endif
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431 #if defined(__linux__)
433 int flags;
434 void *start = NULL;
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437 #if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
442 #elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
448 #elif defined(__arm__)
449 /* Map the buffer below 32M, so we can use direct calls and branches */
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
454 #endif
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
463 #elif defined(__FreeBSD__) || defined(__DragonFly__)
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 #if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476 #endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
485 #else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488 #endif
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500 void cpu_exec_init_all(unsigned long tb_size)
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
505 page_init();
506 #if !defined(CONFIG_USER_ONLY)
507 io_mem_init();
508 #endif
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
513 #define CPU_COMMON_SAVE_VERSION 1
515 static void cpu_common_save(QEMUFile *f, void *opaque)
517 CPUState *env = opaque;
519 cpu_synchronize_state(env, 0);
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
525 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
527 CPUState *env = opaque;
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
532 qemu_get_be32s(f, &env->halted);
533 qemu_get_be32s(f, &env->interrupt_request);
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
537 tlb_flush(env, 1);
538 cpu_synchronize_state(env, 1);
540 return 0;
542 #endif
544 void cpu_exec_init(CPUState *env)
546 CPUState **penv;
547 int cpu_index;
549 #if defined(CONFIG_USER_ONLY)
550 cpu_list_lock();
551 #endif
552 env->next_cpu = NULL;
553 penv = &first_cpu;
554 cpu_index = 0;
555 while (*penv != NULL) {
556 penv = (CPUState **)&(*penv)->next_cpu;
557 cpu_index++;
559 env->cpu_index = cpu_index;
560 env->numa_node = 0;
561 TAILQ_INIT(&env->breakpoints);
562 TAILQ_INIT(&env->watchpoints);
563 *penv = env;
564 #if defined(CONFIG_USER_ONLY)
565 cpu_list_unlock();
566 #endif
567 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
568 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
569 cpu_common_save, cpu_common_load, env);
570 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
571 cpu_save, cpu_load, env);
572 #endif
575 static inline void invalidate_page_bitmap(PageDesc *p)
577 if (p->code_bitmap) {
578 qemu_free(p->code_bitmap);
579 p->code_bitmap = NULL;
581 p->code_write_count = 0;
584 /* set to NULL all the 'first_tb' fields in all PageDescs */
585 static void page_flush_tb(void)
587 int i, j;
588 PageDesc *p;
590 for(i = 0; i < L1_SIZE; i++) {
591 p = l1_map[i];
592 if (p) {
593 for(j = 0; j < L2_SIZE; j++) {
594 p->first_tb = NULL;
595 invalidate_page_bitmap(p);
596 p++;
602 /* flush all the translation blocks */
603 /* XXX: tb_flush is currently not thread safe */
604 void tb_flush(CPUState *env1)
606 CPUState *env;
607 #if defined(DEBUG_FLUSH)
608 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
609 (unsigned long)(code_gen_ptr - code_gen_buffer),
610 nb_tbs, nb_tbs > 0 ?
611 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
612 #endif
613 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
614 cpu_abort(env1, "Internal error: code buffer overflow\n");
616 nb_tbs = 0;
618 for(env = first_cpu; env != NULL; env = env->next_cpu) {
619 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
622 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
623 page_flush_tb();
625 code_gen_ptr = code_gen_buffer;
626 /* XXX: flush processor icache at this point if cache flush is
627 expensive */
628 tb_flush_count++;
631 #ifdef DEBUG_TB_CHECK
633 static void tb_invalidate_check(target_ulong address)
635 TranslationBlock *tb;
636 int i;
637 address &= TARGET_PAGE_MASK;
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
640 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
641 address >= tb->pc + tb->size)) {
642 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
643 address, (long)tb->pc, tb->size);
649 /* verify that all the pages have correct rights for code */
650 static void tb_page_check(void)
652 TranslationBlock *tb;
653 int i, flags1, flags2;
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
657 flags1 = page_get_flags(tb->pc);
658 flags2 = page_get_flags(tb->pc + tb->size - 1);
659 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
660 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
661 (long)tb->pc, tb->size, flags1, flags2);
667 static void tb_jmp_check(TranslationBlock *tb)
669 TranslationBlock *tb1;
670 unsigned int n1;
672 /* suppress any remaining jumps to this TB */
673 tb1 = tb->jmp_first;
674 for(;;) {
675 n1 = (long)tb1 & 3;
676 tb1 = (TranslationBlock *)((long)tb1 & ~3);
677 if (n1 == 2)
678 break;
679 tb1 = tb1->jmp_next[n1];
681 /* check end of list */
682 if (tb1 != tb) {
683 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
687 #endif
689 /* invalidate one TB */
690 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
691 int next_offset)
693 TranslationBlock *tb1;
694 for(;;) {
695 tb1 = *ptb;
696 if (tb1 == tb) {
697 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
698 break;
700 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
704 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
706 TranslationBlock *tb1;
707 unsigned int n1;
709 for(;;) {
710 tb1 = *ptb;
711 n1 = (long)tb1 & 3;
712 tb1 = (TranslationBlock *)((long)tb1 & ~3);
713 if (tb1 == tb) {
714 *ptb = tb1->page_next[n1];
715 break;
717 ptb = &tb1->page_next[n1];
721 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
723 TranslationBlock *tb1, **ptb;
724 unsigned int n1;
726 ptb = &tb->jmp_next[n];
727 tb1 = *ptb;
728 if (tb1) {
729 /* find tb(n) in circular list */
730 for(;;) {
731 tb1 = *ptb;
732 n1 = (long)tb1 & 3;
733 tb1 = (TranslationBlock *)((long)tb1 & ~3);
734 if (n1 == n && tb1 == tb)
735 break;
736 if (n1 == 2) {
737 ptb = &tb1->jmp_first;
738 } else {
739 ptb = &tb1->jmp_next[n1];
742 /* now we can suppress tb(n) from the list */
743 *ptb = tb->jmp_next[n];
745 tb->jmp_next[n] = NULL;
749 /* reset the jump entry 'n' of a TB so that it is not chained to
750 another TB */
751 static inline void tb_reset_jump(TranslationBlock *tb, int n)
753 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
756 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
758 CPUState *env;
759 PageDesc *p;
760 unsigned int h, n1;
761 target_phys_addr_t phys_pc;
762 TranslationBlock *tb1, *tb2;
764 /* remove the TB from the hash list */
765 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
766 h = tb_phys_hash_func(phys_pc);
767 tb_remove(&tb_phys_hash[h], tb,
768 offsetof(TranslationBlock, phys_hash_next));
770 /* remove the TB from the page list */
771 if (tb->page_addr[0] != page_addr) {
772 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
773 tb_page_remove(&p->first_tb, tb);
774 invalidate_page_bitmap(p);
776 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
777 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
778 tb_page_remove(&p->first_tb, tb);
779 invalidate_page_bitmap(p);
782 tb_invalidated_flag = 1;
784 /* remove the TB from the hash list */
785 h = tb_jmp_cache_hash_func(tb->pc);
786 for(env = first_cpu; env != NULL; env = env->next_cpu) {
787 if (env->tb_jmp_cache[h] == tb)
788 env->tb_jmp_cache[h] = NULL;
791 /* suppress this TB from the two jump lists */
792 tb_jmp_remove(tb, 0);
793 tb_jmp_remove(tb, 1);
795 /* suppress any remaining jumps to this TB */
796 tb1 = tb->jmp_first;
797 for(;;) {
798 n1 = (long)tb1 & 3;
799 if (n1 == 2)
800 break;
801 tb1 = (TranslationBlock *)((long)tb1 & ~3);
802 tb2 = tb1->jmp_next[n1];
803 tb_reset_jump(tb1, n1);
804 tb1->jmp_next[n1] = NULL;
805 tb1 = tb2;
807 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
809 tb_phys_invalidate_count++;
812 static inline void set_bits(uint8_t *tab, int start, int len)
814 int end, mask, end1;
816 end = start + len;
817 tab += start >> 3;
818 mask = 0xff << (start & 7);
819 if ((start & ~7) == (end & ~7)) {
820 if (start < end) {
821 mask &= ~(0xff << (end & 7));
822 *tab |= mask;
824 } else {
825 *tab++ |= mask;
826 start = (start + 8) & ~7;
827 end1 = end & ~7;
828 while (start < end1) {
829 *tab++ = 0xff;
830 start += 8;
832 if (start < end) {
833 mask = ~(0xff << (end & 7));
834 *tab |= mask;
839 static void build_page_bitmap(PageDesc *p)
841 int n, tb_start, tb_end;
842 TranslationBlock *tb;
844 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
846 tb = p->first_tb;
847 while (tb != NULL) {
848 n = (long)tb & 3;
849 tb = (TranslationBlock *)((long)tb & ~3);
850 /* NOTE: this is subtle as a TB may span two physical pages */
851 if (n == 0) {
852 /* NOTE: tb_end may be after the end of the page, but
853 it is not a problem */
854 tb_start = tb->pc & ~TARGET_PAGE_MASK;
855 tb_end = tb_start + tb->size;
856 if (tb_end > TARGET_PAGE_SIZE)
857 tb_end = TARGET_PAGE_SIZE;
858 } else {
859 tb_start = 0;
860 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
862 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
863 tb = tb->page_next[n];
867 TranslationBlock *tb_gen_code(CPUState *env,
868 target_ulong pc, target_ulong cs_base,
869 int flags, int cflags)
871 TranslationBlock *tb;
872 uint8_t *tc_ptr;
873 target_ulong phys_pc, phys_page2, virt_page2;
874 int code_gen_size;
876 phys_pc = get_phys_addr_code(env, pc);
877 tb = tb_alloc(pc);
878 if (!tb) {
879 /* flush must be done */
880 tb_flush(env);
881 /* cannot fail at this point */
882 tb = tb_alloc(pc);
883 /* Don't forget to invalidate previous TB info. */
884 tb_invalidated_flag = 1;
886 tc_ptr = code_gen_ptr;
887 tb->tc_ptr = tc_ptr;
888 tb->cs_base = cs_base;
889 tb->flags = flags;
890 tb->cflags = cflags;
891 cpu_gen_code(env, tb, &code_gen_size);
892 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
894 /* check next page if needed */
895 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
896 phys_page2 = -1;
897 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
898 phys_page2 = get_phys_addr_code(env, virt_page2);
900 tb_link_phys(tb, phys_pc, phys_page2);
901 return tb;
904 /* invalidate all TBs which intersect with the target physical page
905 starting in range [start;end[. NOTE: start and end must refer to
906 the same physical page. 'is_cpu_write_access' should be true if called
907 from a real cpu write access: the virtual CPU will exit the current
908 TB if code is modified inside this TB. */
909 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
910 int is_cpu_write_access)
912 TranslationBlock *tb, *tb_next, *saved_tb;
913 CPUState *env = cpu_single_env;
914 target_ulong tb_start, tb_end;
915 PageDesc *p;
916 int n;
917 #ifdef TARGET_HAS_PRECISE_SMC
918 int current_tb_not_found = is_cpu_write_access;
919 TranslationBlock *current_tb = NULL;
920 int current_tb_modified = 0;
921 target_ulong current_pc = 0;
922 target_ulong current_cs_base = 0;
923 int current_flags = 0;
924 #endif /* TARGET_HAS_PRECISE_SMC */
926 p = page_find(start >> TARGET_PAGE_BITS);
927 if (!p)
928 return;
929 if (!p->code_bitmap &&
930 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
931 is_cpu_write_access) {
932 /* build code bitmap */
933 build_page_bitmap(p);
936 /* we remove all the TBs in the range [start, end[ */
937 /* XXX: see if in some cases it could be faster to invalidate all the code */
938 tb = p->first_tb;
939 while (tb != NULL) {
940 n = (long)tb & 3;
941 tb = (TranslationBlock *)((long)tb & ~3);
942 tb_next = tb->page_next[n];
943 /* NOTE: this is subtle as a TB may span two physical pages */
944 if (n == 0) {
945 /* NOTE: tb_end may be after the end of the page, but
946 it is not a problem */
947 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
948 tb_end = tb_start + tb->size;
949 } else {
950 tb_start = tb->page_addr[1];
951 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
953 if (!(tb_end <= start || tb_start >= end)) {
954 #ifdef TARGET_HAS_PRECISE_SMC
955 if (current_tb_not_found) {
956 current_tb_not_found = 0;
957 current_tb = NULL;
958 if (env->mem_io_pc) {
959 /* now we have a real cpu fault */
960 current_tb = tb_find_pc(env->mem_io_pc);
963 if (current_tb == tb &&
964 (current_tb->cflags & CF_COUNT_MASK) != 1) {
965 /* If we are modifying the current TB, we must stop
966 its execution. We could be more precise by checking
967 that the modification is after the current PC, but it
968 would require a specialized function to partially
969 restore the CPU state */
971 current_tb_modified = 1;
972 cpu_restore_state(current_tb, env,
973 env->mem_io_pc, NULL);
974 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
975 &current_flags);
977 #endif /* TARGET_HAS_PRECISE_SMC */
978 /* we need to do that to handle the case where a signal
979 occurs while doing tb_phys_invalidate() */
980 saved_tb = NULL;
981 if (env) {
982 saved_tb = env->current_tb;
983 env->current_tb = NULL;
985 tb_phys_invalidate(tb, -1);
986 if (env) {
987 env->current_tb = saved_tb;
988 if (env->interrupt_request && env->current_tb)
989 cpu_interrupt(env, env->interrupt_request);
992 tb = tb_next;
994 #if !defined(CONFIG_USER_ONLY)
995 /* if no code remaining, no need to continue to use slow writes */
996 if (!p->first_tb) {
997 invalidate_page_bitmap(p);
998 if (is_cpu_write_access) {
999 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1002 #endif
1003 #ifdef TARGET_HAS_PRECISE_SMC
1004 if (current_tb_modified) {
1005 /* we generate a block containing just the instruction
1006 modifying the memory. It will ensure that it cannot modify
1007 itself */
1008 env->current_tb = NULL;
1009 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1010 cpu_resume_from_signal(env, NULL);
1012 #endif
1015 /* len must be <= 8 and start must be a multiple of len */
1016 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1018 PageDesc *p;
1019 int offset, b;
1020 #if 0
1021 if (1) {
1022 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1023 cpu_single_env->mem_io_vaddr, len,
1024 cpu_single_env->eip,
1025 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1027 #endif
1028 p = page_find(start >> TARGET_PAGE_BITS);
1029 if (!p)
1030 return;
1031 if (p->code_bitmap) {
1032 offset = start & ~TARGET_PAGE_MASK;
1033 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1034 if (b & ((1 << len) - 1))
1035 goto do_invalidate;
1036 } else {
1037 do_invalidate:
1038 tb_invalidate_phys_page_range(start, start + len, 1);
1042 #if !defined(CONFIG_SOFTMMU)
1043 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1044 unsigned long pc, void *puc)
1046 TranslationBlock *tb;
1047 PageDesc *p;
1048 int n;
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 TranslationBlock *current_tb = NULL;
1051 CPUState *env = cpu_single_env;
1052 int current_tb_modified = 0;
1053 target_ulong current_pc = 0;
1054 target_ulong current_cs_base = 0;
1055 int current_flags = 0;
1056 #endif
1058 addr &= TARGET_PAGE_MASK;
1059 p = page_find(addr >> TARGET_PAGE_BITS);
1060 if (!p)
1061 return;
1062 tb = p->first_tb;
1063 #ifdef TARGET_HAS_PRECISE_SMC
1064 if (tb && pc != 0) {
1065 current_tb = tb_find_pc(pc);
1067 #endif
1068 while (tb != NULL) {
1069 n = (long)tb & 3;
1070 tb = (TranslationBlock *)((long)tb & ~3);
1071 #ifdef TARGET_HAS_PRECISE_SMC
1072 if (current_tb == tb &&
1073 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1074 /* If we are modifying the current TB, we must stop
1075 its execution. We could be more precise by checking
1076 that the modification is after the current PC, but it
1077 would require a specialized function to partially
1078 restore the CPU state */
1080 current_tb_modified = 1;
1081 cpu_restore_state(current_tb, env, pc, puc);
1082 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1083 &current_flags);
1085 #endif /* TARGET_HAS_PRECISE_SMC */
1086 tb_phys_invalidate(tb, addr);
1087 tb = tb->page_next[n];
1089 p->first_tb = NULL;
1090 #ifdef TARGET_HAS_PRECISE_SMC
1091 if (current_tb_modified) {
1092 /* we generate a block containing just the instruction
1093 modifying the memory. It will ensure that it cannot modify
1094 itself */
1095 env->current_tb = NULL;
1096 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1097 cpu_resume_from_signal(env, puc);
1099 #endif
1101 #endif
1103 /* add the tb in the target page and protect it if necessary */
1104 static inline void tb_alloc_page(TranslationBlock *tb,
1105 unsigned int n, target_ulong page_addr)
1107 PageDesc *p;
1108 TranslationBlock *last_first_tb;
1110 tb->page_addr[n] = page_addr;
1111 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1112 tb->page_next[n] = p->first_tb;
1113 last_first_tb = p->first_tb;
1114 p->first_tb = (TranslationBlock *)((long)tb | n);
1115 invalidate_page_bitmap(p);
1117 #if defined(TARGET_HAS_SMC) || 1
1119 #if defined(CONFIG_USER_ONLY)
1120 if (p->flags & PAGE_WRITE) {
1121 target_ulong addr;
1122 PageDesc *p2;
1123 int prot;
1125 /* force the host page as non writable (writes will have a
1126 page fault + mprotect overhead) */
1127 page_addr &= qemu_host_page_mask;
1128 prot = 0;
1129 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1130 addr += TARGET_PAGE_SIZE) {
1132 p2 = page_find (addr >> TARGET_PAGE_BITS);
1133 if (!p2)
1134 continue;
1135 prot |= p2->flags;
1136 p2->flags &= ~PAGE_WRITE;
1137 page_get_flags(addr);
1139 mprotect(g2h(page_addr), qemu_host_page_size,
1140 (prot & PAGE_BITS) & ~PAGE_WRITE);
1141 #ifdef DEBUG_TB_INVALIDATE
1142 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1143 page_addr);
1144 #endif
1146 #else
1147 /* if some code is already present, then the pages are already
1148 protected. So we handle the case where only the first TB is
1149 allocated in a physical page */
1150 if (!last_first_tb) {
1151 tlb_protect_code(page_addr);
1153 #endif
1155 #endif /* TARGET_HAS_SMC */
1158 /* Allocate a new translation block. Flush the translation buffer if
1159 too many translation blocks or too much generated code. */
1160 TranslationBlock *tb_alloc(target_ulong pc)
1162 TranslationBlock *tb;
1164 if (nb_tbs >= code_gen_max_blocks ||
1165 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1166 return NULL;
1167 tb = &tbs[nb_tbs++];
1168 tb->pc = pc;
1169 tb->cflags = 0;
1170 return tb;
1173 void tb_free(TranslationBlock *tb)
1175 /* In practice this is mostly used for single use temporary TB
1176 Ignore the hard cases and just back up if this TB happens to
1177 be the last one generated. */
1178 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1179 code_gen_ptr = tb->tc_ptr;
1180 nb_tbs--;
1184 /* add a new TB and link it to the physical page tables. phys_page2 is
1185 (-1) to indicate that only one page contains the TB. */
1186 void tb_link_phys(TranslationBlock *tb,
1187 target_ulong phys_pc, target_ulong phys_page2)
1189 unsigned int h;
1190 TranslationBlock **ptb;
1192 /* Grab the mmap lock to stop another thread invalidating this TB
1193 before we are done. */
1194 mmap_lock();
1195 /* add in the physical hash table */
1196 h = tb_phys_hash_func(phys_pc);
1197 ptb = &tb_phys_hash[h];
1198 tb->phys_hash_next = *ptb;
1199 *ptb = tb;
1201 /* add in the page list */
1202 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1203 if (phys_page2 != -1)
1204 tb_alloc_page(tb, 1, phys_page2);
1205 else
1206 tb->page_addr[1] = -1;
1208 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1209 tb->jmp_next[0] = NULL;
1210 tb->jmp_next[1] = NULL;
1212 /* init original jump addresses */
1213 if (tb->tb_next_offset[0] != 0xffff)
1214 tb_reset_jump(tb, 0);
1215 if (tb->tb_next_offset[1] != 0xffff)
1216 tb_reset_jump(tb, 1);
1218 #ifdef DEBUG_TB_CHECK
1219 tb_page_check();
1220 #endif
1221 mmap_unlock();
1224 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1225 tb[1].tc_ptr. Return NULL if not found */
1226 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1228 int m_min, m_max, m;
1229 unsigned long v;
1230 TranslationBlock *tb;
1232 if (nb_tbs <= 0)
1233 return NULL;
1234 if (tc_ptr < (unsigned long)code_gen_buffer ||
1235 tc_ptr >= (unsigned long)code_gen_ptr)
1236 return NULL;
1237 /* binary search (cf Knuth) */
1238 m_min = 0;
1239 m_max = nb_tbs - 1;
1240 while (m_min <= m_max) {
1241 m = (m_min + m_max) >> 1;
1242 tb = &tbs[m];
1243 v = (unsigned long)tb->tc_ptr;
1244 if (v == tc_ptr)
1245 return tb;
1246 else if (tc_ptr < v) {
1247 m_max = m - 1;
1248 } else {
1249 m_min = m + 1;
1252 return &tbs[m_max];
1255 static void tb_reset_jump_recursive(TranslationBlock *tb);
1257 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1259 TranslationBlock *tb1, *tb_next, **ptb;
1260 unsigned int n1;
1262 tb1 = tb->jmp_next[n];
1263 if (tb1 != NULL) {
1264 /* find head of list */
1265 for(;;) {
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == 2)
1269 break;
1270 tb1 = tb1->jmp_next[n1];
1272 /* we are now sure now that tb jumps to tb1 */
1273 tb_next = tb1;
1275 /* remove tb from the jmp_first list */
1276 ptb = &tb_next->jmp_first;
1277 for(;;) {
1278 tb1 = *ptb;
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == n && tb1 == tb)
1282 break;
1283 ptb = &tb1->jmp_next[n1];
1285 *ptb = tb->jmp_next[n];
1286 tb->jmp_next[n] = NULL;
1288 /* suppress the jump to next tb in generated code */
1289 tb_reset_jump(tb, n);
1291 /* suppress jumps in the tb on which we could have jumped */
1292 tb_reset_jump_recursive(tb_next);
1296 static void tb_reset_jump_recursive(TranslationBlock *tb)
1298 tb_reset_jump_recursive2(tb, 0);
1299 tb_reset_jump_recursive2(tb, 1);
1302 #if defined(TARGET_HAS_ICE)
1303 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1305 target_phys_addr_t addr;
1306 target_ulong pd;
1307 ram_addr_t ram_addr;
1308 PhysPageDesc *p;
1310 addr = cpu_get_phys_page_debug(env, pc);
1311 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1312 if (!p) {
1313 pd = IO_MEM_UNASSIGNED;
1314 } else {
1315 pd = p->phys_offset;
1317 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1318 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1320 #endif
1322 /* Add a watchpoint. */
1323 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1324 int flags, CPUWatchpoint **watchpoint)
1326 target_ulong len_mask = ~(len - 1);
1327 CPUWatchpoint *wp;
1329 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1330 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1331 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1332 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1333 return -EINVAL;
1335 wp = qemu_malloc(sizeof(*wp));
1337 wp->vaddr = addr;
1338 wp->len_mask = len_mask;
1339 wp->flags = flags;
1341 /* keep all GDB-injected watchpoints in front */
1342 if (flags & BP_GDB)
1343 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1344 else
1345 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1347 tlb_flush_page(env, addr);
1349 if (watchpoint)
1350 *watchpoint = wp;
1351 return 0;
1354 /* Remove a specific watchpoint. */
1355 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1356 int flags)
1358 target_ulong len_mask = ~(len - 1);
1359 CPUWatchpoint *wp;
1361 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1362 if (addr == wp->vaddr && len_mask == wp->len_mask
1363 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1364 cpu_watchpoint_remove_by_ref(env, wp);
1365 return 0;
1368 return -ENOENT;
1371 /* Remove a specific watchpoint by reference. */
1372 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1374 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1376 tlb_flush_page(env, watchpoint->vaddr);
1378 qemu_free(watchpoint);
1381 /* Remove all matching watchpoints. */
1382 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1384 CPUWatchpoint *wp, *next;
1386 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1387 if (wp->flags & mask)
1388 cpu_watchpoint_remove_by_ref(env, wp);
1392 /* Add a breakpoint. */
1393 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1394 CPUBreakpoint **breakpoint)
1396 #if defined(TARGET_HAS_ICE)
1397 CPUBreakpoint *bp;
1399 bp = qemu_malloc(sizeof(*bp));
1401 bp->pc = pc;
1402 bp->flags = flags;
1404 /* keep all GDB-injected breakpoints in front */
1405 if (flags & BP_GDB)
1406 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1407 else
1408 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1410 breakpoint_invalidate(env, pc);
1412 if (breakpoint)
1413 *breakpoint = bp;
1414 return 0;
1415 #else
1416 return -ENOSYS;
1417 #endif
1420 /* Remove a specific breakpoint. */
1421 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1423 #if defined(TARGET_HAS_ICE)
1424 CPUBreakpoint *bp;
1426 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1427 if (bp->pc == pc && bp->flags == flags) {
1428 cpu_breakpoint_remove_by_ref(env, bp);
1429 return 0;
1432 return -ENOENT;
1433 #else
1434 return -ENOSYS;
1435 #endif
1438 /* Remove a specific breakpoint by reference. */
1439 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1441 #if defined(TARGET_HAS_ICE)
1442 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1444 breakpoint_invalidate(env, breakpoint->pc);
1446 qemu_free(breakpoint);
1447 #endif
1450 /* Remove all matching breakpoints. */
1451 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1453 #if defined(TARGET_HAS_ICE)
1454 CPUBreakpoint *bp, *next;
1456 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1457 if (bp->flags & mask)
1458 cpu_breakpoint_remove_by_ref(env, bp);
1460 #endif
1463 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1464 CPU loop after each instruction */
1465 void cpu_single_step(CPUState *env, int enabled)
1467 #if defined(TARGET_HAS_ICE)
1468 if (env->singlestep_enabled != enabled) {
1469 env->singlestep_enabled = enabled;
1470 if (kvm_enabled())
1471 kvm_update_guest_debug(env, 0);
1472 else {
1473 /* must flush all the translated code to avoid inconsistencies */
1474 /* XXX: only flush what is necessary */
1475 tb_flush(env);
1478 #endif
1481 /* enable or disable low levels log */
1482 void cpu_set_log(int log_flags)
1484 loglevel = log_flags;
1485 if (loglevel && !logfile) {
1486 logfile = fopen(logfilename, log_append ? "a" : "w");
1487 if (!logfile) {
1488 perror(logfilename);
1489 _exit(1);
1491 #if !defined(CONFIG_SOFTMMU)
1492 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1494 static char logfile_buf[4096];
1495 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1497 #else
1498 setvbuf(logfile, NULL, _IOLBF, 0);
1499 #endif
1500 log_append = 1;
1502 if (!loglevel && logfile) {
1503 fclose(logfile);
1504 logfile = NULL;
1508 void cpu_set_log_filename(const char *filename)
1510 logfilename = strdup(filename);
1511 if (logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
1515 cpu_set_log(loglevel);
1518 static void cpu_unlink_tb(CPUState *env)
1520 #if defined(USE_NPTL)
1521 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1522 problem and hope the cpu will stop of its own accord. For userspace
1523 emulation this often isn't actually as bad as it sounds. Often
1524 signals are used primarily to interrupt blocking syscalls. */
1525 #else
1526 TranslationBlock *tb;
1527 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1529 tb = env->current_tb;
1530 /* if the cpu is currently executing code, we must unlink it and
1531 all the potentially executing TB */
1532 if (tb && !testandset(&interrupt_lock)) {
1533 env->current_tb = NULL;
1534 tb_reset_jump_recursive(tb);
1535 resetlock(&interrupt_lock);
1537 #endif
1540 /* mask must never be zero, except for A20 change call */
1541 void cpu_interrupt(CPUState *env, int mask)
1543 int old_mask;
1545 old_mask = env->interrupt_request;
1546 env->interrupt_request |= mask;
1548 #ifndef CONFIG_USER_ONLY
1550 * If called from iothread context, wake the target cpu in
1551 * case its halted.
1553 if (!qemu_cpu_self(env)) {
1554 qemu_cpu_kick(env);
1555 return;
1557 #endif
1559 if (use_icount) {
1560 env->icount_decr.u16.high = 0xffff;
1561 #ifndef CONFIG_USER_ONLY
1562 if (!can_do_io(env)
1563 && (mask & ~old_mask) != 0) {
1564 cpu_abort(env, "Raised interrupt while not in I/O function");
1566 #endif
1567 } else {
1568 cpu_unlink_tb(env);
1572 void cpu_reset_interrupt(CPUState *env, int mask)
1574 env->interrupt_request &= ~mask;
1577 void cpu_exit(CPUState *env)
1579 env->exit_request = 1;
1580 cpu_unlink_tb(env);
1583 const CPULogItem cpu_log_items[] = {
1584 { CPU_LOG_TB_OUT_ASM, "out_asm",
1585 "show generated host assembly code for each compiled TB" },
1586 { CPU_LOG_TB_IN_ASM, "in_asm",
1587 "show target assembly code for each compiled TB" },
1588 { CPU_LOG_TB_OP, "op",
1589 "show micro ops for each compiled TB" },
1590 { CPU_LOG_TB_OP_OPT, "op_opt",
1591 "show micro ops "
1592 #ifdef TARGET_I386
1593 "before eflags optimization and "
1594 #endif
1595 "after liveness analysis" },
1596 { CPU_LOG_INT, "int",
1597 "show interrupts/exceptions in short format" },
1598 { CPU_LOG_EXEC, "exec",
1599 "show trace before each executed TB (lots of logs)" },
1600 { CPU_LOG_TB_CPU, "cpu",
1601 "show CPU state before block translation" },
1602 #ifdef TARGET_I386
1603 { CPU_LOG_PCALL, "pcall",
1604 "show protected mode far calls/returns/exceptions" },
1605 { CPU_LOG_RESET, "cpu_reset",
1606 "show CPU state before CPU resets" },
1607 #endif
1608 #ifdef DEBUG_IOPORT
1609 { CPU_LOG_IOPORT, "ioport",
1610 "show all i/o ports accesses" },
1611 #endif
1612 { 0, NULL, NULL },
1615 static int cmp1(const char *s1, int n, const char *s2)
1617 if (strlen(s2) != n)
1618 return 0;
1619 return memcmp(s1, s2, n) == 0;
1622 /* takes a comma separated list of log masks. Return 0 if error. */
1623 int cpu_str_to_log_mask(const char *str)
1625 const CPULogItem *item;
1626 int mask;
1627 const char *p, *p1;
1629 p = str;
1630 mask = 0;
1631 for(;;) {
1632 p1 = strchr(p, ',');
1633 if (!p1)
1634 p1 = p + strlen(p);
1635 if(cmp1(p,p1-p,"all")) {
1636 for(item = cpu_log_items; item->mask != 0; item++) {
1637 mask |= item->mask;
1639 } else {
1640 for(item = cpu_log_items; item->mask != 0; item++) {
1641 if (cmp1(p, p1 - p, item->name))
1642 goto found;
1644 return 0;
1646 found:
1647 mask |= item->mask;
1648 if (*p1 != ',')
1649 break;
1650 p = p1 + 1;
1652 return mask;
1655 void cpu_abort(CPUState *env, const char *fmt, ...)
1657 va_list ap;
1658 va_list ap2;
1660 va_start(ap, fmt);
1661 va_copy(ap2, ap);
1662 fprintf(stderr, "qemu: fatal: ");
1663 vfprintf(stderr, fmt, ap);
1664 fprintf(stderr, "\n");
1665 #ifdef TARGET_I386
1666 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1667 #else
1668 cpu_dump_state(env, stderr, fprintf, 0);
1669 #endif
1670 if (qemu_log_enabled()) {
1671 qemu_log("qemu: fatal: ");
1672 qemu_log_vprintf(fmt, ap2);
1673 qemu_log("\n");
1674 #ifdef TARGET_I386
1675 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1676 #else
1677 log_cpu_state(env, 0);
1678 #endif
1679 qemu_log_flush();
1680 qemu_log_close();
1682 va_end(ap2);
1683 va_end(ap);
1684 abort();
1687 CPUState *cpu_copy(CPUState *env)
1689 CPUState *new_env = cpu_init(env->cpu_model_str);
1690 CPUState *next_cpu = new_env->next_cpu;
1691 int cpu_index = new_env->cpu_index;
1692 #if defined(TARGET_HAS_ICE)
1693 CPUBreakpoint *bp;
1694 CPUWatchpoint *wp;
1695 #endif
1697 memcpy(new_env, env, sizeof(CPUState));
1699 /* Preserve chaining and index. */
1700 new_env->next_cpu = next_cpu;
1701 new_env->cpu_index = cpu_index;
1703 /* Clone all break/watchpoints.
1704 Note: Once we support ptrace with hw-debug register access, make sure
1705 BP_CPU break/watchpoints are handled correctly on clone. */
1706 TAILQ_INIT(&env->breakpoints);
1707 TAILQ_INIT(&env->watchpoints);
1708 #if defined(TARGET_HAS_ICE)
1709 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1710 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1712 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1713 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1714 wp->flags, NULL);
1716 #endif
1718 return new_env;
1721 #if !defined(CONFIG_USER_ONLY)
1723 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1725 unsigned int i;
1727 /* Discard jump cache entries for any tb which might potentially
1728 overlap the flushed page. */
1729 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1730 memset (&env->tb_jmp_cache[i], 0,
1731 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1733 i = tb_jmp_cache_hash_page(addr);
1734 memset (&env->tb_jmp_cache[i], 0,
1735 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1738 /* NOTE: if flush_global is true, also flush global entries (not
1739 implemented yet) */
1740 void tlb_flush(CPUState *env, int flush_global)
1742 int i;
1744 #if defined(DEBUG_TLB)
1745 printf("tlb_flush:\n");
1746 #endif
1747 /* must reset current TB so that interrupts cannot modify the
1748 links while we are modifying them */
1749 env->current_tb = NULL;
1751 for(i = 0; i < CPU_TLB_SIZE; i++) {
1752 env->tlb_table[0][i].addr_read = -1;
1753 env->tlb_table[0][i].addr_write = -1;
1754 env->tlb_table[0][i].addr_code = -1;
1755 env->tlb_table[1][i].addr_read = -1;
1756 env->tlb_table[1][i].addr_write = -1;
1757 env->tlb_table[1][i].addr_code = -1;
1758 #if (NB_MMU_MODES >= 3)
1759 env->tlb_table[2][i].addr_read = -1;
1760 env->tlb_table[2][i].addr_write = -1;
1761 env->tlb_table[2][i].addr_code = -1;
1762 #endif
1763 #if (NB_MMU_MODES >= 4)
1764 env->tlb_table[3][i].addr_read = -1;
1765 env->tlb_table[3][i].addr_write = -1;
1766 env->tlb_table[3][i].addr_code = -1;
1767 #endif
1768 #if (NB_MMU_MODES >= 5)
1769 env->tlb_table[4][i].addr_read = -1;
1770 env->tlb_table[4][i].addr_write = -1;
1771 env->tlb_table[4][i].addr_code = -1;
1772 #endif
1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1778 #ifdef CONFIG_KQEMU
1779 if (env->kqemu_enabled) {
1780 kqemu_flush(env, flush_global);
1782 #endif
1783 tlb_flush_count++;
1786 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1788 if (addr == (tlb_entry->addr_read &
1789 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1790 addr == (tlb_entry->addr_write &
1791 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1792 addr == (tlb_entry->addr_code &
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1794 tlb_entry->addr_read = -1;
1795 tlb_entry->addr_write = -1;
1796 tlb_entry->addr_code = -1;
1800 void tlb_flush_page(CPUState *env, target_ulong addr)
1802 int i;
1804 #if defined(DEBUG_TLB)
1805 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1806 #endif
1807 /* must reset current TB so that interrupts cannot modify the
1808 links while we are modifying them */
1809 env->current_tb = NULL;
1811 addr &= TARGET_PAGE_MASK;
1812 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1813 tlb_flush_entry(&env->tlb_table[0][i], addr);
1814 tlb_flush_entry(&env->tlb_table[1][i], addr);
1815 #if (NB_MMU_MODES >= 3)
1816 tlb_flush_entry(&env->tlb_table[2][i], addr);
1817 #endif
1818 #if (NB_MMU_MODES >= 4)
1819 tlb_flush_entry(&env->tlb_table[3][i], addr);
1820 #endif
1821 #if (NB_MMU_MODES >= 5)
1822 tlb_flush_entry(&env->tlb_table[4][i], addr);
1823 #endif
1825 tlb_flush_jmp_cache(env, addr);
1827 #ifdef CONFIG_KQEMU
1828 if (env->kqemu_enabled) {
1829 kqemu_flush_page(env, addr);
1831 #endif
1834 /* update the TLBs so that writes to code in the virtual page 'addr'
1835 can be detected */
1836 static void tlb_protect_code(ram_addr_t ram_addr)
1838 cpu_physical_memory_reset_dirty(ram_addr,
1839 ram_addr + TARGET_PAGE_SIZE,
1840 CODE_DIRTY_FLAG);
1843 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1844 tested for self modifying code */
1845 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1846 target_ulong vaddr)
1848 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1851 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1852 unsigned long start, unsigned long length)
1854 unsigned long addr;
1855 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1856 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1857 if ((addr - start) < length) {
1858 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1863 /* Note: start and end must be within the same ram block. */
1864 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1865 int dirty_flags)
1867 CPUState *env;
1868 unsigned long length, start1;
1869 int i, mask, len;
1870 uint8_t *p;
1872 start &= TARGET_PAGE_MASK;
1873 end = TARGET_PAGE_ALIGN(end);
1875 length = end - start;
1876 if (length == 0)
1877 return;
1878 len = length >> TARGET_PAGE_BITS;
1879 #ifdef CONFIG_KQEMU
1880 /* XXX: should not depend on cpu context */
1881 env = first_cpu;
1882 if (env->kqemu_enabled) {
1883 ram_addr_t addr;
1884 addr = start;
1885 for(i = 0; i < len; i++) {
1886 kqemu_set_notdirty(env, addr);
1887 addr += TARGET_PAGE_SIZE;
1890 #endif
1891 mask = ~dirty_flags;
1892 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1893 for(i = 0; i < len; i++)
1894 p[i] &= mask;
1896 /* we modify the TLB cache so that the dirty bit will be set again
1897 when accessing the range */
1898 start1 = (unsigned long)qemu_get_ram_ptr(start);
1899 /* Chek that we don't span multiple blocks - this breaks the
1900 address comparisons below. */
1901 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1902 != (end - 1) - start) {
1903 abort();
1906 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1907 for(i = 0; i < CPU_TLB_SIZE; i++)
1908 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1909 for(i = 0; i < CPU_TLB_SIZE; i++)
1910 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1911 #if (NB_MMU_MODES >= 3)
1912 for(i = 0; i < CPU_TLB_SIZE; i++)
1913 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1914 #endif
1915 #if (NB_MMU_MODES >= 4)
1916 for(i = 0; i < CPU_TLB_SIZE; i++)
1917 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1918 #endif
1919 #if (NB_MMU_MODES >= 5)
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
1921 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1922 #endif
1926 int cpu_physical_memory_set_dirty_tracking(int enable)
1928 in_migration = enable;
1929 if (kvm_enabled()) {
1930 return kvm_set_migration_log(enable);
1932 return 0;
1935 int cpu_physical_memory_get_dirty_tracking(void)
1937 return in_migration;
1940 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1941 target_phys_addr_t end_addr)
1943 int ret = 0;
1945 if (kvm_enabled())
1946 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1947 return ret;
1950 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1952 ram_addr_t ram_addr;
1953 void *p;
1955 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1956 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1957 + tlb_entry->addend);
1958 ram_addr = qemu_ram_addr_from_host(p);
1959 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1960 tlb_entry->addr_write |= TLB_NOTDIRTY;
1965 /* update the TLB according to the current state of the dirty bits */
1966 void cpu_tlb_update_dirty(CPUState *env)
1968 int i;
1969 for(i = 0; i < CPU_TLB_SIZE; i++)
1970 tlb_update_dirty(&env->tlb_table[0][i]);
1971 for(i = 0; i < CPU_TLB_SIZE; i++)
1972 tlb_update_dirty(&env->tlb_table[1][i]);
1973 #if (NB_MMU_MODES >= 3)
1974 for(i = 0; i < CPU_TLB_SIZE; i++)
1975 tlb_update_dirty(&env->tlb_table[2][i]);
1976 #endif
1977 #if (NB_MMU_MODES >= 4)
1978 for(i = 0; i < CPU_TLB_SIZE; i++)
1979 tlb_update_dirty(&env->tlb_table[3][i]);
1980 #endif
1981 #if (NB_MMU_MODES >= 5)
1982 for(i = 0; i < CPU_TLB_SIZE; i++)
1983 tlb_update_dirty(&env->tlb_table[4][i]);
1984 #endif
1987 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1989 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1990 tlb_entry->addr_write = vaddr;
1993 /* update the TLB corresponding to virtual page vaddr
1994 so that it is no longer dirty */
1995 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1997 int i;
1999 vaddr &= TARGET_PAGE_MASK;
2000 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2001 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
2002 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
2003 #if (NB_MMU_MODES >= 3)
2004 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2005 #endif
2006 #if (NB_MMU_MODES >= 4)
2007 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2008 #endif
2009 #if (NB_MMU_MODES >= 5)
2010 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
2011 #endif
2014 /* add a new TLB entry. At most one entry for a given virtual address
2015 is permitted. Return 0 if OK or 2 if the page could not be mapped
2016 (can only happen in non SOFTMMU mode for I/O pages or pages
2017 conflicting with the host address space). */
2018 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2019 target_phys_addr_t paddr, int prot,
2020 int mmu_idx, int is_softmmu)
2022 PhysPageDesc *p;
2023 unsigned long pd;
2024 unsigned int index;
2025 target_ulong address;
2026 target_ulong code_address;
2027 target_phys_addr_t addend;
2028 int ret;
2029 CPUTLBEntry *te;
2030 CPUWatchpoint *wp;
2031 target_phys_addr_t iotlb;
2033 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2034 if (!p) {
2035 pd = IO_MEM_UNASSIGNED;
2036 } else {
2037 pd = p->phys_offset;
2039 #if defined(DEBUG_TLB)
2040 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2041 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2042 #endif
2044 ret = 0;
2045 address = vaddr;
2046 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2047 /* IO memory case (romd handled later) */
2048 address |= TLB_MMIO;
2050 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2051 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2052 /* Normal RAM. */
2053 iotlb = pd & TARGET_PAGE_MASK;
2054 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2055 iotlb |= IO_MEM_NOTDIRTY;
2056 else
2057 iotlb |= IO_MEM_ROM;
2058 } else {
2059 /* IO handlers are currently passed a physical address.
2060 It would be nice to pass an offset from the base address
2061 of that region. This would avoid having to special case RAM,
2062 and avoid full address decoding in every device.
2063 We can't use the high bits of pd for this because
2064 IO_MEM_ROMD uses these as a ram address. */
2065 iotlb = (pd & ~TARGET_PAGE_MASK);
2066 if (p) {
2067 iotlb += p->region_offset;
2068 } else {
2069 iotlb += paddr;
2073 code_address = address;
2074 /* Make accesses to pages with watchpoints go via the
2075 watchpoint trap routines. */
2076 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2077 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2078 iotlb = io_mem_watch + paddr;
2079 /* TODO: The memory case can be optimized by not trapping
2080 reads of pages with a write breakpoint. */
2081 address |= TLB_MMIO;
2085 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2086 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2087 te = &env->tlb_table[mmu_idx][index];
2088 te->addend = addend - vaddr;
2089 if (prot & PAGE_READ) {
2090 te->addr_read = address;
2091 } else {
2092 te->addr_read = -1;
2095 if (prot & PAGE_EXEC) {
2096 te->addr_code = code_address;
2097 } else {
2098 te->addr_code = -1;
2100 if (prot & PAGE_WRITE) {
2101 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2102 (pd & IO_MEM_ROMD)) {
2103 /* Write access calls the I/O callback. */
2104 te->addr_write = address | TLB_MMIO;
2105 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2106 !cpu_physical_memory_is_dirty(pd)) {
2107 te->addr_write = address | TLB_NOTDIRTY;
2108 } else {
2109 te->addr_write = address;
2111 } else {
2112 te->addr_write = -1;
2114 return ret;
2117 #else
2119 void tlb_flush(CPUState *env, int flush_global)
2123 void tlb_flush_page(CPUState *env, target_ulong addr)
2127 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2128 target_phys_addr_t paddr, int prot,
2129 int mmu_idx, int is_softmmu)
2131 return 0;
2134 /* dump memory mappings */
2135 void page_dump(FILE *f)
2137 unsigned long start, end;
2138 int i, j, prot, prot1;
2139 PageDesc *p;
2141 fprintf(f, "%-8s %-8s %-8s %s\n",
2142 "start", "end", "size", "prot");
2143 start = -1;
2144 end = -1;
2145 prot = 0;
2146 for(i = 0; i <= L1_SIZE; i++) {
2147 if (i < L1_SIZE)
2148 p = l1_map[i];
2149 else
2150 p = NULL;
2151 for(j = 0;j < L2_SIZE; j++) {
2152 if (!p)
2153 prot1 = 0;
2154 else
2155 prot1 = p[j].flags;
2156 if (prot1 != prot) {
2157 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2158 if (start != -1) {
2159 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2160 start, end, end - start,
2161 prot & PAGE_READ ? 'r' : '-',
2162 prot & PAGE_WRITE ? 'w' : '-',
2163 prot & PAGE_EXEC ? 'x' : '-');
2165 if (prot1 != 0)
2166 start = end;
2167 else
2168 start = -1;
2169 prot = prot1;
2171 if (!p)
2172 break;
2177 int page_get_flags(target_ulong address)
2179 PageDesc *p;
2181 p = page_find(address >> TARGET_PAGE_BITS);
2182 if (!p)
2183 return 0;
2184 return p->flags;
2187 /* modify the flags of a page and invalidate the code if
2188 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2189 depending on PAGE_WRITE */
2190 void page_set_flags(target_ulong start, target_ulong end, int flags)
2192 PageDesc *p;
2193 target_ulong addr;
2195 /* mmap_lock should already be held. */
2196 start = start & TARGET_PAGE_MASK;
2197 end = TARGET_PAGE_ALIGN(end);
2198 if (flags & PAGE_WRITE)
2199 flags |= PAGE_WRITE_ORG;
2200 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2201 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2202 /* We may be called for host regions that are outside guest
2203 address space. */
2204 if (!p)
2205 return;
2206 /* if the write protection is set, then we invalidate the code
2207 inside */
2208 if (!(p->flags & PAGE_WRITE) &&
2209 (flags & PAGE_WRITE) &&
2210 p->first_tb) {
2211 tb_invalidate_phys_page(addr, 0, NULL);
2213 p->flags = flags;
2217 int page_check_range(target_ulong start, target_ulong len, int flags)
2219 PageDesc *p;
2220 target_ulong end;
2221 target_ulong addr;
2223 if (start + len < start)
2224 /* we've wrapped around */
2225 return -1;
2227 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2228 start = start & TARGET_PAGE_MASK;
2230 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2231 p = page_find(addr >> TARGET_PAGE_BITS);
2232 if( !p )
2233 return -1;
2234 if( !(p->flags & PAGE_VALID) )
2235 return -1;
2237 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2238 return -1;
2239 if (flags & PAGE_WRITE) {
2240 if (!(p->flags & PAGE_WRITE_ORG))
2241 return -1;
2242 /* unprotect the page if it was put read-only because it
2243 contains translated code */
2244 if (!(p->flags & PAGE_WRITE)) {
2245 if (!page_unprotect(addr, 0, NULL))
2246 return -1;
2248 return 0;
2251 return 0;
2254 /* called from signal handler: invalidate the code and unprotect the
2255 page. Return TRUE if the fault was successfully handled. */
2256 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2258 unsigned int page_index, prot, pindex;
2259 PageDesc *p, *p1;
2260 target_ulong host_start, host_end, addr;
2262 /* Technically this isn't safe inside a signal handler. However we
2263 know this only ever happens in a synchronous SEGV handler, so in
2264 practice it seems to be ok. */
2265 mmap_lock();
2267 host_start = address & qemu_host_page_mask;
2268 page_index = host_start >> TARGET_PAGE_BITS;
2269 p1 = page_find(page_index);
2270 if (!p1) {
2271 mmap_unlock();
2272 return 0;
2274 host_end = host_start + qemu_host_page_size;
2275 p = p1;
2276 prot = 0;
2277 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2278 prot |= p->flags;
2279 p++;
2281 /* if the page was really writable, then we change its
2282 protection back to writable */
2283 if (prot & PAGE_WRITE_ORG) {
2284 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2285 if (!(p1[pindex].flags & PAGE_WRITE)) {
2286 mprotect((void *)g2h(host_start), qemu_host_page_size,
2287 (prot & PAGE_BITS) | PAGE_WRITE);
2288 p1[pindex].flags |= PAGE_WRITE;
2289 /* and since the content will be modified, we must invalidate
2290 the corresponding translated code. */
2291 tb_invalidate_phys_page(address, pc, puc);
2292 #ifdef DEBUG_TB_CHECK
2293 tb_invalidate_check(address);
2294 #endif
2295 mmap_unlock();
2296 return 1;
2299 mmap_unlock();
2300 return 0;
2303 static inline void tlb_set_dirty(CPUState *env,
2304 unsigned long addr, target_ulong vaddr)
2307 #endif /* defined(CONFIG_USER_ONLY) */
2309 #if !defined(CONFIG_USER_ONLY)
2311 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2312 ram_addr_t memory, ram_addr_t region_offset);
2313 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2314 ram_addr_t orig_memory, ram_addr_t region_offset);
2315 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2316 need_subpage) \
2317 do { \
2318 if (addr > start_addr) \
2319 start_addr2 = 0; \
2320 else { \
2321 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2322 if (start_addr2 > 0) \
2323 need_subpage = 1; \
2326 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2327 end_addr2 = TARGET_PAGE_SIZE - 1; \
2328 else { \
2329 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2330 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2331 need_subpage = 1; \
2333 } while (0)
2335 /* register physical memory. 'size' must be a multiple of the target
2336 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2337 io memory page. The address used when calling the IO function is
2338 the offset from the start of the region, plus region_offset. Both
2339 start_addr and region_offset are rounded down to a page boundary
2340 before calculating this offset. This should not be a problem unless
2341 the low bits of start_addr and region_offset differ. */
2342 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2343 ram_addr_t size,
2344 ram_addr_t phys_offset,
2345 ram_addr_t region_offset)
2347 target_phys_addr_t addr, end_addr;
2348 PhysPageDesc *p;
2349 CPUState *env;
2350 ram_addr_t orig_size = size;
2351 void *subpage;
2353 #ifdef CONFIG_KQEMU
2354 /* XXX: should not depend on cpu context */
2355 env = first_cpu;
2356 if (env->kqemu_enabled) {
2357 kqemu_set_phys_mem(start_addr, size, phys_offset);
2359 #endif
2360 if (kvm_enabled())
2361 kvm_set_phys_mem(start_addr, size, phys_offset);
2363 if (phys_offset == IO_MEM_UNASSIGNED) {
2364 region_offset = start_addr;
2366 region_offset &= TARGET_PAGE_MASK;
2367 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2368 end_addr = start_addr + (target_phys_addr_t)size;
2369 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2370 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2371 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2372 ram_addr_t orig_memory = p->phys_offset;
2373 target_phys_addr_t start_addr2, end_addr2;
2374 int need_subpage = 0;
2376 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2377 need_subpage);
2378 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2379 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2380 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2381 &p->phys_offset, orig_memory,
2382 p->region_offset);
2383 } else {
2384 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2385 >> IO_MEM_SHIFT];
2387 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2388 region_offset);
2389 p->region_offset = 0;
2390 } else {
2391 p->phys_offset = phys_offset;
2392 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2393 (phys_offset & IO_MEM_ROMD))
2394 phys_offset += TARGET_PAGE_SIZE;
2396 } else {
2397 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2398 p->phys_offset = phys_offset;
2399 p->region_offset = region_offset;
2400 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2401 (phys_offset & IO_MEM_ROMD)) {
2402 phys_offset += TARGET_PAGE_SIZE;
2403 } else {
2404 target_phys_addr_t start_addr2, end_addr2;
2405 int need_subpage = 0;
2407 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2408 end_addr2, need_subpage);
2410 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2411 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2412 &p->phys_offset, IO_MEM_UNASSIGNED,
2413 addr & TARGET_PAGE_MASK);
2414 subpage_register(subpage, start_addr2, end_addr2,
2415 phys_offset, region_offset);
2416 p->region_offset = 0;
2420 region_offset += TARGET_PAGE_SIZE;
2423 /* since each CPU stores ram addresses in its TLB cache, we must
2424 reset the modified entries */
2425 /* XXX: slow ! */
2426 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2427 tlb_flush(env, 1);
2431 /* XXX: temporary until new memory mapping API */
2432 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2434 PhysPageDesc *p;
2436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2437 if (!p)
2438 return IO_MEM_UNASSIGNED;
2439 return p->phys_offset;
2442 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2444 if (kvm_enabled())
2445 kvm_coalesce_mmio_region(addr, size);
2448 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2450 if (kvm_enabled())
2451 kvm_uncoalesce_mmio_region(addr, size);
2454 #ifdef CONFIG_KQEMU
2455 /* XXX: better than nothing */
2456 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2458 ram_addr_t addr;
2459 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2460 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2461 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2462 abort();
2464 addr = last_ram_offset;
2465 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2466 return addr;
2468 #endif
2470 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2472 RAMBlock *new_block;
2474 #ifdef CONFIG_KQEMU
2475 if (kqemu_phys_ram_base) {
2476 return kqemu_ram_alloc(size);
2478 #endif
2480 size = TARGET_PAGE_ALIGN(size);
2481 new_block = qemu_malloc(sizeof(*new_block));
2483 new_block->host = qemu_vmalloc(size);
2484 new_block->offset = last_ram_offset;
2485 new_block->length = size;
2487 new_block->next = ram_blocks;
2488 ram_blocks = new_block;
2490 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2491 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2492 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2493 0xff, size >> TARGET_PAGE_BITS);
2495 last_ram_offset += size;
2497 if (kvm_enabled())
2498 kvm_setup_guest_memory(new_block->host, size);
2500 return new_block->offset;
2503 void qemu_ram_free(ram_addr_t addr)
2505 /* TODO: implement this. */
2508 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2509 With the exception of the softmmu code in this file, this should
2510 only be used for local memory (e.g. video ram) that the device owns,
2511 and knows it isn't going to access beyond the end of the block.
2513 It should not be used for general purpose DMA.
2514 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2516 void *qemu_get_ram_ptr(ram_addr_t addr)
2518 RAMBlock *prev;
2519 RAMBlock **prevp;
2520 RAMBlock *block;
2522 #ifdef CONFIG_KQEMU
2523 if (kqemu_phys_ram_base) {
2524 return kqemu_phys_ram_base + addr;
2526 #endif
2528 prev = NULL;
2529 prevp = &ram_blocks;
2530 block = ram_blocks;
2531 while (block && (block->offset > addr
2532 || block->offset + block->length <= addr)) {
2533 if (prev)
2534 prevp = &prev->next;
2535 prev = block;
2536 block = block->next;
2538 if (!block) {
2539 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2540 abort();
2542 /* Move this entry to to start of the list. */
2543 if (prev) {
2544 prev->next = block->next;
2545 block->next = *prevp;
2546 *prevp = block;
2548 return block->host + (addr - block->offset);
2551 /* Some of the softmmu routines need to translate from a host pointer
2552 (typically a TLB entry) back to a ram offset. */
2553 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2555 RAMBlock *prev;
2556 RAMBlock **prevp;
2557 RAMBlock *block;
2558 uint8_t *host = ptr;
2560 #ifdef CONFIG_KQEMU
2561 if (kqemu_phys_ram_base) {
2562 return host - kqemu_phys_ram_base;
2564 #endif
2566 prev = NULL;
2567 prevp = &ram_blocks;
2568 block = ram_blocks;
2569 while (block && (block->host > host
2570 || block->host + block->length <= host)) {
2571 if (prev)
2572 prevp = &prev->next;
2573 prev = block;
2574 block = block->next;
2576 if (!block) {
2577 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2578 abort();
2580 return block->offset + (host - block->host);
2583 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2585 #ifdef DEBUG_UNASSIGNED
2586 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2587 #endif
2588 #if defined(TARGET_SPARC)
2589 do_unassigned_access(addr, 0, 0, 0, 1);
2590 #endif
2591 return 0;
2594 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2596 #ifdef DEBUG_UNASSIGNED
2597 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2598 #endif
2599 #if defined(TARGET_SPARC)
2600 do_unassigned_access(addr, 0, 0, 0, 2);
2601 #endif
2602 return 0;
2605 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2607 #ifdef DEBUG_UNASSIGNED
2608 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2609 #endif
2610 #if defined(TARGET_SPARC)
2611 do_unassigned_access(addr, 0, 0, 0, 4);
2612 #endif
2613 return 0;
2616 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2618 #ifdef DEBUG_UNASSIGNED
2619 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2620 #endif
2621 #if defined(TARGET_SPARC)
2622 do_unassigned_access(addr, 1, 0, 0, 1);
2623 #endif
2626 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2628 #ifdef DEBUG_UNASSIGNED
2629 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2630 #endif
2631 #if defined(TARGET_SPARC)
2632 do_unassigned_access(addr, 1, 0, 0, 2);
2633 #endif
2636 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2638 #ifdef DEBUG_UNASSIGNED
2639 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2640 #endif
2641 #if defined(TARGET_SPARC)
2642 do_unassigned_access(addr, 1, 0, 0, 4);
2643 #endif
2646 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2647 unassigned_mem_readb,
2648 unassigned_mem_readw,
2649 unassigned_mem_readl,
2652 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2653 unassigned_mem_writeb,
2654 unassigned_mem_writew,
2655 unassigned_mem_writel,
2658 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2659 uint32_t val)
2661 int dirty_flags;
2662 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2663 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2664 #if !defined(CONFIG_USER_ONLY)
2665 tb_invalidate_phys_page_fast(ram_addr, 1);
2666 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2667 #endif
2669 stb_p(qemu_get_ram_ptr(ram_addr), val);
2670 #ifdef CONFIG_KQEMU
2671 if (cpu_single_env->kqemu_enabled &&
2672 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2673 kqemu_modify_page(cpu_single_env, ram_addr);
2674 #endif
2675 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2676 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2677 /* we remove the notdirty callback only if the code has been
2678 flushed */
2679 if (dirty_flags == 0xff)
2680 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2683 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2684 uint32_t val)
2686 int dirty_flags;
2687 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2688 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2689 #if !defined(CONFIG_USER_ONLY)
2690 tb_invalidate_phys_page_fast(ram_addr, 2);
2691 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2692 #endif
2694 stw_p(qemu_get_ram_ptr(ram_addr), val);
2695 #ifdef CONFIG_KQEMU
2696 if (cpu_single_env->kqemu_enabled &&
2697 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2698 kqemu_modify_page(cpu_single_env, ram_addr);
2699 #endif
2700 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2701 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2702 /* we remove the notdirty callback only if the code has been
2703 flushed */
2704 if (dirty_flags == 0xff)
2705 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2708 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2709 uint32_t val)
2711 int dirty_flags;
2712 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2713 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2714 #if !defined(CONFIG_USER_ONLY)
2715 tb_invalidate_phys_page_fast(ram_addr, 4);
2716 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2717 #endif
2719 stl_p(qemu_get_ram_ptr(ram_addr), val);
2720 #ifdef CONFIG_KQEMU
2721 if (cpu_single_env->kqemu_enabled &&
2722 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2723 kqemu_modify_page(cpu_single_env, ram_addr);
2724 #endif
2725 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2726 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2727 /* we remove the notdirty callback only if the code has been
2728 flushed */
2729 if (dirty_flags == 0xff)
2730 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2733 static CPUReadMemoryFunc *error_mem_read[3] = {
2734 NULL, /* never used */
2735 NULL, /* never used */
2736 NULL, /* never used */
2739 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2740 notdirty_mem_writeb,
2741 notdirty_mem_writew,
2742 notdirty_mem_writel,
2745 /* Generate a debug exception if a watchpoint has been hit. */
2746 static void check_watchpoint(int offset, int len_mask, int flags)
2748 CPUState *env = cpu_single_env;
2749 target_ulong pc, cs_base;
2750 TranslationBlock *tb;
2751 target_ulong vaddr;
2752 CPUWatchpoint *wp;
2753 int cpu_flags;
2755 if (env->watchpoint_hit) {
2756 /* We re-entered the check after replacing the TB. Now raise
2757 * the debug interrupt so that is will trigger after the
2758 * current instruction. */
2759 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2760 return;
2762 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2763 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2764 if ((vaddr == (wp->vaddr & len_mask) ||
2765 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2766 wp->flags |= BP_WATCHPOINT_HIT;
2767 if (!env->watchpoint_hit) {
2768 env->watchpoint_hit = wp;
2769 tb = tb_find_pc(env->mem_io_pc);
2770 if (!tb) {
2771 cpu_abort(env, "check_watchpoint: could not find TB for "
2772 "pc=%p", (void *)env->mem_io_pc);
2774 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2775 tb_phys_invalidate(tb, -1);
2776 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2777 env->exception_index = EXCP_DEBUG;
2778 } else {
2779 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2780 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2782 cpu_resume_from_signal(env, NULL);
2784 } else {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2790 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2791 so these check for a hit then pass through to the normal out-of-line
2792 phys routines. */
2793 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2795 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2796 return ldub_phys(addr);
2799 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2801 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2802 return lduw_phys(addr);
2805 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2807 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2808 return ldl_phys(addr);
2811 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2812 uint32_t val)
2814 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2815 stb_phys(addr, val);
2818 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2819 uint32_t val)
2821 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2822 stw_phys(addr, val);
2825 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2826 uint32_t val)
2828 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2829 stl_phys(addr, val);
2832 static CPUReadMemoryFunc *watch_mem_read[3] = {
2833 watch_mem_readb,
2834 watch_mem_readw,
2835 watch_mem_readl,
2838 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2839 watch_mem_writeb,
2840 watch_mem_writew,
2841 watch_mem_writel,
2844 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2845 unsigned int len)
2847 uint32_t ret;
2848 unsigned int idx;
2850 idx = SUBPAGE_IDX(addr);
2851 #if defined(DEBUG_SUBPAGE)
2852 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2853 mmio, len, addr, idx);
2854 #endif
2855 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2856 addr + mmio->region_offset[idx][0][len]);
2858 return ret;
2861 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2862 uint32_t value, unsigned int len)
2864 unsigned int idx;
2866 idx = SUBPAGE_IDX(addr);
2867 #if defined(DEBUG_SUBPAGE)
2868 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2869 mmio, len, addr, idx, value);
2870 #endif
2871 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2872 addr + mmio->region_offset[idx][1][len],
2873 value);
2876 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2878 #if defined(DEBUG_SUBPAGE)
2879 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2880 #endif
2882 return subpage_readlen(opaque, addr, 0);
2885 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2886 uint32_t value)
2888 #if defined(DEBUG_SUBPAGE)
2889 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2890 #endif
2891 subpage_writelen(opaque, addr, value, 0);
2894 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2898 #endif
2900 return subpage_readlen(opaque, addr, 1);
2903 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2904 uint32_t value)
2906 #if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2908 #endif
2909 subpage_writelen(opaque, addr, value, 1);
2912 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2916 #endif
2918 return subpage_readlen(opaque, addr, 2);
2921 static void subpage_writel (void *opaque,
2922 target_phys_addr_t addr, uint32_t value)
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2926 #endif
2927 subpage_writelen(opaque, addr, value, 2);
2930 static CPUReadMemoryFunc *subpage_read[] = {
2931 &subpage_readb,
2932 &subpage_readw,
2933 &subpage_readl,
2936 static CPUWriteMemoryFunc *subpage_write[] = {
2937 &subpage_writeb,
2938 &subpage_writew,
2939 &subpage_writel,
2942 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2943 ram_addr_t memory, ram_addr_t region_offset)
2945 int idx, eidx;
2946 unsigned int i;
2948 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2949 return -1;
2950 idx = SUBPAGE_IDX(start);
2951 eidx = SUBPAGE_IDX(end);
2952 #if defined(DEBUG_SUBPAGE)
2953 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2954 mmio, start, end, idx, eidx, memory);
2955 #endif
2956 memory >>= IO_MEM_SHIFT;
2957 for (; idx <= eidx; idx++) {
2958 for (i = 0; i < 4; i++) {
2959 if (io_mem_read[memory][i]) {
2960 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2961 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2962 mmio->region_offset[idx][0][i] = region_offset;
2964 if (io_mem_write[memory][i]) {
2965 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2966 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2967 mmio->region_offset[idx][1][i] = region_offset;
2972 return 0;
2975 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2976 ram_addr_t orig_memory, ram_addr_t region_offset)
2978 subpage_t *mmio;
2979 int subpage_memory;
2981 mmio = qemu_mallocz(sizeof(subpage_t));
2983 mmio->base = base;
2984 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2985 #if defined(DEBUG_SUBPAGE)
2986 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2987 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2988 #endif
2989 *phys = subpage_memory | IO_MEM_SUBPAGE;
2990 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2991 region_offset);
2993 return mmio;
2996 static int get_free_io_mem_idx(void)
2998 int i;
3000 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3001 if (!io_mem_used[i]) {
3002 io_mem_used[i] = 1;
3003 return i;
3006 return -1;
3009 static void io_mem_init(void)
3011 int i;
3013 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
3014 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3015 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
3016 for (i=0; i<5; i++)
3017 io_mem_used[i] = 1;
3019 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
3020 watch_mem_write, NULL);
3021 #ifdef CONFIG_KQEMU
3022 if (kqemu_phys_ram_base) {
3023 /* alloc dirty bits array */
3024 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3025 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3027 #endif
3030 /* mem_read and mem_write are arrays of functions containing the
3031 function to access byte (index 0), word (index 1) and dword (index
3032 2). Functions can be omitted with a NULL function pointer.
3033 If io_index is non zero, the corresponding io zone is
3034 modified. If it is zero, a new io zone is allocated. The return
3035 value can be used with cpu_register_physical_memory(). (-1) is
3036 returned if error. */
3037 int cpu_register_io_memory(int io_index,
3038 CPUReadMemoryFunc **mem_read,
3039 CPUWriteMemoryFunc **mem_write,
3040 void *opaque)
3042 int i, subwidth = 0;
3044 if (io_index <= 0) {
3045 io_index = get_free_io_mem_idx();
3046 if (io_index == -1)
3047 return io_index;
3048 } else {
3049 if (io_index >= IO_MEM_NB_ENTRIES)
3050 return -1;
3053 for(i = 0;i < 3; i++) {
3054 if (!mem_read[i] || !mem_write[i])
3055 subwidth = IO_MEM_SUBWIDTH;
3056 io_mem_read[io_index][i] = mem_read[i];
3057 io_mem_write[io_index][i] = mem_write[i];
3059 io_mem_opaque[io_index] = opaque;
3060 return (io_index << IO_MEM_SHIFT) | subwidth;
3063 void cpu_unregister_io_memory(int io_table_address)
3065 int i;
3066 int io_index = io_table_address >> IO_MEM_SHIFT;
3068 for (i=0;i < 3; i++) {
3069 io_mem_read[io_index][i] = unassigned_mem_read[i];
3070 io_mem_write[io_index][i] = unassigned_mem_write[i];
3072 io_mem_opaque[io_index] = NULL;
3073 io_mem_used[io_index] = 0;
3076 #endif /* !defined(CONFIG_USER_ONLY) */
3078 /* physical memory access (slow version, mainly for debug) */
3079 #if defined(CONFIG_USER_ONLY)
3080 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3081 int len, int is_write)
3083 int l, flags;
3084 target_ulong page;
3085 void * p;
3087 while (len > 0) {
3088 page = addr & TARGET_PAGE_MASK;
3089 l = (page + TARGET_PAGE_SIZE) - addr;
3090 if (l > len)
3091 l = len;
3092 flags = page_get_flags(page);
3093 if (!(flags & PAGE_VALID))
3094 return;
3095 if (is_write) {
3096 if (!(flags & PAGE_WRITE))
3097 return;
3098 /* XXX: this code should not depend on lock_user */
3099 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3100 /* FIXME - should this return an error rather than just fail? */
3101 return;
3102 memcpy(p, buf, l);
3103 unlock_user(p, addr, l);
3104 } else {
3105 if (!(flags & PAGE_READ))
3106 return;
3107 /* XXX: this code should not depend on lock_user */
3108 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3109 /* FIXME - should this return an error rather than just fail? */
3110 return;
3111 memcpy(buf, p, l);
3112 unlock_user(p, addr, 0);
3114 len -= l;
3115 buf += l;
3116 addr += l;
3120 #else
3121 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3122 int len, int is_write)
3124 int l, io_index;
3125 uint8_t *ptr;
3126 uint32_t val;
3127 target_phys_addr_t page;
3128 unsigned long pd;
3129 PhysPageDesc *p;
3131 while (len > 0) {
3132 page = addr & TARGET_PAGE_MASK;
3133 l = (page + TARGET_PAGE_SIZE) - addr;
3134 if (l > len)
3135 l = len;
3136 p = phys_page_find(page >> TARGET_PAGE_BITS);
3137 if (!p) {
3138 pd = IO_MEM_UNASSIGNED;
3139 } else {
3140 pd = p->phys_offset;
3143 if (is_write) {
3144 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3145 target_phys_addr_t addr1 = addr;
3146 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3147 if (p)
3148 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3149 /* XXX: could force cpu_single_env to NULL to avoid
3150 potential bugs */
3151 if (l >= 4 && ((addr1 & 3) == 0)) {
3152 /* 32 bit write access */
3153 val = ldl_p(buf);
3154 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3155 l = 4;
3156 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3157 /* 16 bit write access */
3158 val = lduw_p(buf);
3159 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3160 l = 2;
3161 } else {
3162 /* 8 bit write access */
3163 val = ldub_p(buf);
3164 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3165 l = 1;
3167 } else {
3168 unsigned long addr1;
3169 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3170 /* RAM case */
3171 ptr = qemu_get_ram_ptr(addr1);
3172 memcpy(ptr, buf, l);
3173 if (!cpu_physical_memory_is_dirty(addr1)) {
3174 /* invalidate code */
3175 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3176 /* set dirty bit */
3177 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3178 (0xff & ~CODE_DIRTY_FLAG);
3181 } else {
3182 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3183 !(pd & IO_MEM_ROMD)) {
3184 target_phys_addr_t addr1 = addr;
3185 /* I/O case */
3186 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3187 if (p)
3188 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3189 if (l >= 4 && ((addr1 & 3) == 0)) {
3190 /* 32 bit read access */
3191 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3192 stl_p(buf, val);
3193 l = 4;
3194 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3195 /* 16 bit read access */
3196 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3197 stw_p(buf, val);
3198 l = 2;
3199 } else {
3200 /* 8 bit read access */
3201 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3202 stb_p(buf, val);
3203 l = 1;
3205 } else {
3206 /* RAM case */
3207 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3208 (addr & ~TARGET_PAGE_MASK);
3209 memcpy(buf, ptr, l);
3212 len -= l;
3213 buf += l;
3214 addr += l;
3218 /* used for ROM loading : can write in RAM and ROM */
3219 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3220 const uint8_t *buf, int len)
3222 int l;
3223 uint8_t *ptr;
3224 target_phys_addr_t page;
3225 unsigned long pd;
3226 PhysPageDesc *p;
3228 while (len > 0) {
3229 page = addr & TARGET_PAGE_MASK;
3230 l = (page + TARGET_PAGE_SIZE) - addr;
3231 if (l > len)
3232 l = len;
3233 p = phys_page_find(page >> TARGET_PAGE_BITS);
3234 if (!p) {
3235 pd = IO_MEM_UNASSIGNED;
3236 } else {
3237 pd = p->phys_offset;
3240 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3241 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3242 !(pd & IO_MEM_ROMD)) {
3243 /* do nothing */
3244 } else {
3245 unsigned long addr1;
3246 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3247 /* ROM/RAM case */
3248 ptr = qemu_get_ram_ptr(addr1);
3249 memcpy(ptr, buf, l);
3251 len -= l;
3252 buf += l;
3253 addr += l;
3257 typedef struct {
3258 void *buffer;
3259 target_phys_addr_t addr;
3260 target_phys_addr_t len;
3261 } BounceBuffer;
3263 static BounceBuffer bounce;
3265 typedef struct MapClient {
3266 void *opaque;
3267 void (*callback)(void *opaque);
3268 LIST_ENTRY(MapClient) link;
3269 } MapClient;
3271 static LIST_HEAD(map_client_list, MapClient) map_client_list
3272 = LIST_HEAD_INITIALIZER(map_client_list);
3274 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3276 MapClient *client = qemu_malloc(sizeof(*client));
3278 client->opaque = opaque;
3279 client->callback = callback;
3280 LIST_INSERT_HEAD(&map_client_list, client, link);
3281 return client;
3284 void cpu_unregister_map_client(void *_client)
3286 MapClient *client = (MapClient *)_client;
3288 LIST_REMOVE(client, link);
3291 static void cpu_notify_map_clients(void)
3293 MapClient *client;
3295 while (!LIST_EMPTY(&map_client_list)) {
3296 client = LIST_FIRST(&map_client_list);
3297 client->callback(client->opaque);
3298 LIST_REMOVE(client, link);
3302 /* Map a physical memory region into a host virtual address.
3303 * May map a subset of the requested range, given by and returned in *plen.
3304 * May return NULL if resources needed to perform the mapping are exhausted.
3305 * Use only for reads OR writes - not for read-modify-write operations.
3306 * Use cpu_register_map_client() to know when retrying the map operation is
3307 * likely to succeed.
3309 void *cpu_physical_memory_map(target_phys_addr_t addr,
3310 target_phys_addr_t *plen,
3311 int is_write)
3313 target_phys_addr_t len = *plen;
3314 target_phys_addr_t done = 0;
3315 int l;
3316 uint8_t *ret = NULL;
3317 uint8_t *ptr;
3318 target_phys_addr_t page;
3319 unsigned long pd;
3320 PhysPageDesc *p;
3321 unsigned long addr1;
3323 while (len > 0) {
3324 page = addr & TARGET_PAGE_MASK;
3325 l = (page + TARGET_PAGE_SIZE) - addr;
3326 if (l > len)
3327 l = len;
3328 p = phys_page_find(page >> TARGET_PAGE_BITS);
3329 if (!p) {
3330 pd = IO_MEM_UNASSIGNED;
3331 } else {
3332 pd = p->phys_offset;
3335 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3336 if (done || bounce.buffer) {
3337 break;
3339 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3340 bounce.addr = addr;
3341 bounce.len = l;
3342 if (!is_write) {
3343 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3345 ptr = bounce.buffer;
3346 } else {
3347 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3348 ptr = qemu_get_ram_ptr(addr1);
3350 if (!done) {
3351 ret = ptr;
3352 } else if (ret + done != ptr) {
3353 break;
3356 len -= l;
3357 addr += l;
3358 done += l;
3360 *plen = done;
3361 return ret;
3364 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3365 * Will also mark the memory as dirty if is_write == 1. access_len gives
3366 * the amount of memory that was actually read or written by the caller.
3368 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3369 int is_write, target_phys_addr_t access_len)
3371 if (buffer != bounce.buffer) {
3372 if (is_write) {
3373 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3374 while (access_len) {
3375 unsigned l;
3376 l = TARGET_PAGE_SIZE;
3377 if (l > access_len)
3378 l = access_len;
3379 if (!cpu_physical_memory_is_dirty(addr1)) {
3380 /* invalidate code */
3381 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3382 /* set dirty bit */
3383 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3384 (0xff & ~CODE_DIRTY_FLAG);
3386 addr1 += l;
3387 access_len -= l;
3390 return;
3392 if (is_write) {
3393 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3395 qemu_free(bounce.buffer);
3396 bounce.buffer = NULL;
3397 cpu_notify_map_clients();
3400 /* warning: addr must be aligned */
3401 uint32_t ldl_phys(target_phys_addr_t addr)
3403 int io_index;
3404 uint8_t *ptr;
3405 uint32_t val;
3406 unsigned long pd;
3407 PhysPageDesc *p;
3409 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3410 if (!p) {
3411 pd = IO_MEM_UNASSIGNED;
3412 } else {
3413 pd = p->phys_offset;
3416 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3417 !(pd & IO_MEM_ROMD)) {
3418 /* I/O case */
3419 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3420 if (p)
3421 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3422 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3423 } else {
3424 /* RAM case */
3425 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3426 (addr & ~TARGET_PAGE_MASK);
3427 val = ldl_p(ptr);
3429 return val;
3432 /* warning: addr must be aligned */
3433 uint64_t ldq_phys(target_phys_addr_t addr)
3435 int io_index;
3436 uint8_t *ptr;
3437 uint64_t val;
3438 unsigned long pd;
3439 PhysPageDesc *p;
3441 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3442 if (!p) {
3443 pd = IO_MEM_UNASSIGNED;
3444 } else {
3445 pd = p->phys_offset;
3448 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3449 !(pd & IO_MEM_ROMD)) {
3450 /* I/O case */
3451 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3452 if (p)
3453 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3454 #ifdef TARGET_WORDS_BIGENDIAN
3455 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3456 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3457 #else
3458 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3459 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3460 #endif
3461 } else {
3462 /* RAM case */
3463 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3464 (addr & ~TARGET_PAGE_MASK);
3465 val = ldq_p(ptr);
3467 return val;
3470 /* XXX: optimize */
3471 uint32_t ldub_phys(target_phys_addr_t addr)
3473 uint8_t val;
3474 cpu_physical_memory_read(addr, &val, 1);
3475 return val;
3478 /* XXX: optimize */
3479 uint32_t lduw_phys(target_phys_addr_t addr)
3481 uint16_t val;
3482 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3483 return tswap16(val);
3486 /* warning: addr must be aligned. The ram page is not masked as dirty
3487 and the code inside is not invalidated. It is useful if the dirty
3488 bits are used to track modified PTEs */
3489 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3491 int io_index;
3492 uint8_t *ptr;
3493 unsigned long pd;
3494 PhysPageDesc *p;
3496 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3497 if (!p) {
3498 pd = IO_MEM_UNASSIGNED;
3499 } else {
3500 pd = p->phys_offset;
3503 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3504 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3505 if (p)
3506 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3507 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3508 } else {
3509 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3510 ptr = qemu_get_ram_ptr(addr1);
3511 stl_p(ptr, val);
3513 if (unlikely(in_migration)) {
3514 if (!cpu_physical_memory_is_dirty(addr1)) {
3515 /* invalidate code */
3516 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3517 /* set dirty bit */
3518 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3519 (0xff & ~CODE_DIRTY_FLAG);
3525 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3527 int io_index;
3528 uint8_t *ptr;
3529 unsigned long pd;
3530 PhysPageDesc *p;
3532 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3533 if (!p) {
3534 pd = IO_MEM_UNASSIGNED;
3535 } else {
3536 pd = p->phys_offset;
3539 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3540 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3541 if (p)
3542 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3543 #ifdef TARGET_WORDS_BIGENDIAN
3544 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3545 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3546 #else
3547 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3548 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3549 #endif
3550 } else {
3551 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3552 (addr & ~TARGET_PAGE_MASK);
3553 stq_p(ptr, val);
3557 /* warning: addr must be aligned */
3558 void stl_phys(target_phys_addr_t addr, uint32_t val)
3560 int io_index;
3561 uint8_t *ptr;
3562 unsigned long pd;
3563 PhysPageDesc *p;
3565 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3566 if (!p) {
3567 pd = IO_MEM_UNASSIGNED;
3568 } else {
3569 pd = p->phys_offset;
3572 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3573 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3574 if (p)
3575 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3576 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3577 } else {
3578 unsigned long addr1;
3579 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3580 /* RAM case */
3581 ptr = qemu_get_ram_ptr(addr1);
3582 stl_p(ptr, val);
3583 if (!cpu_physical_memory_is_dirty(addr1)) {
3584 /* invalidate code */
3585 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3586 /* set dirty bit */
3587 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3588 (0xff & ~CODE_DIRTY_FLAG);
3593 /* XXX: optimize */
3594 void stb_phys(target_phys_addr_t addr, uint32_t val)
3596 uint8_t v = val;
3597 cpu_physical_memory_write(addr, &v, 1);
3600 /* XXX: optimize */
3601 void stw_phys(target_phys_addr_t addr, uint32_t val)
3603 uint16_t v = tswap16(val);
3604 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3607 /* XXX: optimize */
3608 void stq_phys(target_phys_addr_t addr, uint64_t val)
3610 val = tswap64(val);
3611 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3614 #endif
3616 /* virtual memory access for debug (includes writing to ROM) */
3617 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3618 uint8_t *buf, int len, int is_write)
3620 int l;
3621 target_phys_addr_t phys_addr;
3622 target_ulong page;
3624 while (len > 0) {
3625 page = addr & TARGET_PAGE_MASK;
3626 phys_addr = cpu_get_phys_page_debug(env, page);
3627 /* if no physical page mapped, return an error */
3628 if (phys_addr == -1)
3629 return -1;
3630 l = (page + TARGET_PAGE_SIZE) - addr;
3631 if (l > len)
3632 l = len;
3633 phys_addr += (addr & ~TARGET_PAGE_MASK);
3634 #if !defined(CONFIG_USER_ONLY)
3635 if (is_write)
3636 cpu_physical_memory_write_rom(phys_addr, buf, l);
3637 else
3638 #endif
3639 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3640 len -= l;
3641 buf += l;
3642 addr += l;
3644 return 0;
3647 /* in deterministic execution mode, instructions doing device I/Os
3648 must be at the end of the TB */
3649 void cpu_io_recompile(CPUState *env, void *retaddr)
3651 TranslationBlock *tb;
3652 uint32_t n, cflags;
3653 target_ulong pc, cs_base;
3654 uint64_t flags;
3656 tb = tb_find_pc((unsigned long)retaddr);
3657 if (!tb) {
3658 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3659 retaddr);
3661 n = env->icount_decr.u16.low + tb->icount;
3662 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3663 /* Calculate how many instructions had been executed before the fault
3664 occurred. */
3665 n = n - env->icount_decr.u16.low;
3666 /* Generate a new TB ending on the I/O insn. */
3667 n++;
3668 /* On MIPS and SH, delay slot instructions can only be restarted if
3669 they were already the first instruction in the TB. If this is not
3670 the first instruction in a TB then re-execute the preceding
3671 branch. */
3672 #if defined(TARGET_MIPS)
3673 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3674 env->active_tc.PC -= 4;
3675 env->icount_decr.u16.low++;
3676 env->hflags &= ~MIPS_HFLAG_BMASK;
3678 #elif defined(TARGET_SH4)
3679 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3680 && n > 1) {
3681 env->pc -= 2;
3682 env->icount_decr.u16.low++;
3683 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3685 #endif
3686 /* This should never happen. */
3687 if (n > CF_COUNT_MASK)
3688 cpu_abort(env, "TB too big during recompile");
3690 cflags = n | CF_LAST_IO;
3691 pc = tb->pc;
3692 cs_base = tb->cs_base;
3693 flags = tb->flags;
3694 tb_phys_invalidate(tb, -1);
3695 /* FIXME: In theory this could raise an exception. In practice
3696 we have already translated the block once so it's probably ok. */
3697 tb_gen_code(env, pc, cs_base, flags, cflags);
3698 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3699 the first in the TB) then we end up generating a whole new TB and
3700 repeating the fault, which is horribly inefficient.
3701 Better would be to execute just this insn uncached, or generate a
3702 second new TB. */
3703 cpu_resume_from_signal(env, NULL);
3706 void dump_exec_info(FILE *f,
3707 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3709 int i, target_code_size, max_target_code_size;
3710 int direct_jmp_count, direct_jmp2_count, cross_page;
3711 TranslationBlock *tb;
3713 target_code_size = 0;
3714 max_target_code_size = 0;
3715 cross_page = 0;
3716 direct_jmp_count = 0;
3717 direct_jmp2_count = 0;
3718 for(i = 0; i < nb_tbs; i++) {
3719 tb = &tbs[i];
3720 target_code_size += tb->size;
3721 if (tb->size > max_target_code_size)
3722 max_target_code_size = tb->size;
3723 if (tb->page_addr[1] != -1)
3724 cross_page++;
3725 if (tb->tb_next_offset[0] != 0xffff) {
3726 direct_jmp_count++;
3727 if (tb->tb_next_offset[1] != 0xffff) {
3728 direct_jmp2_count++;
3732 /* XXX: avoid using doubles ? */
3733 cpu_fprintf(f, "Translation buffer state:\n");
3734 cpu_fprintf(f, "gen code size %ld/%ld\n",
3735 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3736 cpu_fprintf(f, "TB count %d/%d\n",
3737 nb_tbs, code_gen_max_blocks);
3738 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3739 nb_tbs ? target_code_size / nb_tbs : 0,
3740 max_target_code_size);
3741 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3742 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3743 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3744 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3745 cross_page,
3746 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3747 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3748 direct_jmp_count,
3749 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3750 direct_jmp2_count,
3751 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3752 cpu_fprintf(f, "\nStatistics:\n");
3753 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3754 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3755 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3756 tcg_dump_info(f, cpu_fprintf);
3759 #if !defined(CONFIG_USER_ONLY)
3761 #define MMUSUFFIX _cmmu
3762 #define GETPC() NULL
3763 #define env cpu_single_env
3764 #define SOFTMMU_CODE_ACCESS
3766 #define SHIFT 0
3767 #include "softmmu_template.h"
3769 #define SHIFT 1
3770 #include "softmmu_template.h"
3772 #define SHIFT 2
3773 #include "softmmu_template.h"
3775 #define SHIFT 3
3776 #include "softmmu_template.h"
3778 #undef env
3780 #endif