rtc: make rtc_xxx accept/return ISADevice instead of RTCState.
[qemu/aliguori-queue.git] / hw / mips_malta.c
blob792709bf5a9fc0e66e5dded060a3bc5dd3e110c2
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "audio/audio.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
49 //#define DEBUG_BOARD_INIT
51 #define ENVP_ADDR 0x80002000l
52 #define ENVP_NB_ENTRIES 16
53 #define ENVP_ENTRY_SIZE 256
55 #define MAX_IDE_BUS 2
57 typedef struct {
58 uint32_t leds;
59 uint32_t brk;
60 uint32_t gpout;
61 uint32_t i2cin;
62 uint32_t i2coe;
63 uint32_t i2cout;
64 uint32_t i2csel;
65 CharDriverState *display;
66 char display_text[9];
67 SerialState *uart;
68 } MaltaFPGAState;
70 static PITState *pit;
72 static struct _loaderparams {
73 int ram_size;
74 const char *kernel_filename;
75 const char *kernel_cmdline;
76 const char *initrd_filename;
77 } loaderparams;
79 /* Malta FPGA */
80 static void malta_fpga_update_display(void *opaque)
82 char leds_text[9];
83 int i;
84 MaltaFPGAState *s = opaque;
86 for (i = 7 ; i >= 0 ; i--) {
87 if (s->leds & (1 << i))
88 leds_text[i] = '#';
89 else
90 leds_text[i] = ' ';
92 leds_text[8] = '\0';
94 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
95 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
99 * EEPROM 24C01 / 24C02 emulation.
101 * Emulation for serial EEPROMs:
102 * 24C01 - 1024 bit (128 x 8)
103 * 24C02 - 2048 bit (256 x 8)
105 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
108 //~ #define DEBUG
110 #if defined(DEBUG)
111 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
112 #else
113 # define logout(fmt, ...) ((void)0)
114 #endif
116 struct _eeprom24c0x_t {
117 uint8_t tick;
118 uint8_t address;
119 uint8_t command;
120 uint8_t ack;
121 uint8_t scl;
122 uint8_t sda;
123 uint8_t data;
124 //~ uint16_t size;
125 uint8_t contents[256];
128 typedef struct _eeprom24c0x_t eeprom24c0x_t;
130 static eeprom24c0x_t eeprom = {
131 .contents = {
132 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
133 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
134 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
135 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
136 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
137 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
138 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
140 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
151 static uint8_t eeprom24c0x_read(void)
153 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
154 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
155 return eeprom.sda;
158 static void eeprom24c0x_write(int scl, int sda)
160 if (eeprom.scl && scl && (eeprom.sda != sda)) {
161 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
162 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
163 if (!sda) {
164 eeprom.tick = 1;
165 eeprom.command = 0;
167 } else if (eeprom.tick == 0 && !eeprom.ack) {
168 /* Waiting for start. */
169 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
170 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
171 } else if (!eeprom.scl && scl) {
172 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
173 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
174 if (eeprom.ack) {
175 logout("\ti2c ack bit = 0\n");
176 sda = 0;
177 eeprom.ack = 0;
178 } else if (eeprom.sda == sda) {
179 uint8_t bit = (sda != 0);
180 logout("\ti2c bit = %d\n", bit);
181 if (eeprom.tick < 9) {
182 eeprom.command <<= 1;
183 eeprom.command += bit;
184 eeprom.tick++;
185 if (eeprom.tick == 9) {
186 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
187 eeprom.ack = 1;
189 } else if (eeprom.tick < 17) {
190 if (eeprom.command & 1) {
191 sda = ((eeprom.data & 0x80) != 0);
193 eeprom.address <<= 1;
194 eeprom.address += bit;
195 eeprom.tick++;
196 eeprom.data <<= 1;
197 if (eeprom.tick == 17) {
198 eeprom.data = eeprom.contents[eeprom.address];
199 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
200 eeprom.ack = 1;
201 eeprom.tick = 0;
203 } else if (eeprom.tick >= 17) {
204 sda = 0;
206 } else {
207 logout("\tsda changed with raising scl\n");
209 } else {
210 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212 eeprom.scl = scl;
213 eeprom.sda = sda;
216 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218 MaltaFPGAState *s = opaque;
219 uint32_t val = 0;
220 uint32_t saddr;
222 saddr = (addr & 0xfffff);
224 switch (saddr) {
226 /* SWITCH Register */
227 case 0x00200:
228 val = 0x00000000; /* All switches closed */
229 break;
231 /* STATUS Register */
232 case 0x00208:
233 #ifdef TARGET_WORDS_BIGENDIAN
234 val = 0x00000012;
235 #else
236 val = 0x00000010;
237 #endif
238 break;
240 /* JMPRS Register */
241 case 0x00210:
242 val = 0x00;
243 break;
245 /* LEDBAR Register */
246 case 0x00408:
247 val = s->leds;
248 break;
250 /* BRKRES Register */
251 case 0x00508:
252 val = s->brk;
253 break;
255 /* UART Registers are handled directly by the serial device */
257 /* GPOUT Register */
258 case 0x00a00:
259 val = s->gpout;
260 break;
262 /* XXX: implement a real I2C controller */
264 /* GPINP Register */
265 case 0x00a08:
266 /* IN = OUT until a real I2C control is implemented */
267 if (s->i2csel)
268 val = s->i2cout;
269 else
270 val = 0x00;
271 break;
273 /* I2CINP Register */
274 case 0x00b00:
275 val = ((s->i2cin & ~1) | eeprom24c0x_read());
276 break;
278 /* I2COE Register */
279 case 0x00b08:
280 val = s->i2coe;
281 break;
283 /* I2COUT Register */
284 case 0x00b10:
285 val = s->i2cout;
286 break;
288 /* I2CSEL Register */
289 case 0x00b18:
290 val = s->i2csel;
291 break;
293 default:
294 #if 0
295 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
296 addr);
297 #endif
298 break;
300 return val;
303 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
304 uint32_t val)
306 MaltaFPGAState *s = opaque;
307 uint32_t saddr;
309 saddr = (addr & 0xfffff);
311 switch (saddr) {
313 /* SWITCH Register */
314 case 0x00200:
315 break;
317 /* JMPRS Register */
318 case 0x00210:
319 break;
321 /* LEDBAR Register */
322 /* XXX: implement a 8-LED array */
323 case 0x00408:
324 s->leds = val & 0xff;
325 break;
327 /* ASCIIWORD Register */
328 case 0x00410:
329 snprintf(s->display_text, 9, "%08X", val);
330 malta_fpga_update_display(s);
331 break;
333 /* ASCIIPOS0 to ASCIIPOS7 Registers */
334 case 0x00418:
335 case 0x00420:
336 case 0x00428:
337 case 0x00430:
338 case 0x00438:
339 case 0x00440:
340 case 0x00448:
341 case 0x00450:
342 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
343 malta_fpga_update_display(s);
344 break;
346 /* SOFTRES Register */
347 case 0x00500:
348 if (val == 0x42)
349 qemu_system_reset_request ();
350 break;
352 /* BRKRES Register */
353 case 0x00508:
354 s->brk = val & 0xff;
355 break;
357 /* UART Registers are handled directly by the serial device */
359 /* GPOUT Register */
360 case 0x00a00:
361 s->gpout = val & 0xff;
362 break;
364 /* I2COE Register */
365 case 0x00b08:
366 s->i2coe = val & 0x03;
367 break;
369 /* I2COUT Register */
370 case 0x00b10:
371 eeprom24c0x_write(val & 0x02, val & 0x01);
372 s->i2cout = val;
373 break;
375 /* I2CSEL Register */
376 case 0x00b18:
377 s->i2csel = val & 0x01;
378 break;
380 default:
381 #if 0
382 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
383 addr);
384 #endif
385 break;
389 static CPUReadMemoryFunc * const malta_fpga_read[] = {
390 malta_fpga_readl,
391 malta_fpga_readl,
392 malta_fpga_readl
395 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
396 malta_fpga_writel,
397 malta_fpga_writel,
398 malta_fpga_writel
401 static void malta_fpga_reset(void *opaque)
403 MaltaFPGAState *s = opaque;
405 s->leds = 0x00;
406 s->brk = 0x0a;
407 s->gpout = 0x00;
408 s->i2cin = 0x3;
409 s->i2coe = 0x0;
410 s->i2cout = 0x3;
411 s->i2csel = 0x1;
413 s->display_text[8] = '\0';
414 snprintf(s->display_text, 9, " ");
417 static void malta_fpga_led_init(CharDriverState *chr)
419 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
420 qemu_chr_printf(chr, "+--------+\r\n");
421 qemu_chr_printf(chr, "+ +\r\n");
422 qemu_chr_printf(chr, "+--------+\r\n");
423 qemu_chr_printf(chr, "\n");
424 qemu_chr_printf(chr, "Malta ASCII\r\n");
425 qemu_chr_printf(chr, "+--------+\r\n");
426 qemu_chr_printf(chr, "+ +\r\n");
427 qemu_chr_printf(chr, "+--------+\r\n");
430 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432 MaltaFPGAState *s;
433 int malta;
435 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437 malta = cpu_register_io_memory(malta_fpga_read,
438 malta_fpga_write, s);
440 cpu_register_physical_memory(base, 0x900, malta);
441 /* 0xa00 is less than a page, so will still get the right offsets. */
442 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
444 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
446 #ifdef TARGET_WORDS_BIGENDIAN
447 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
448 #else
449 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
450 #endif
452 malta_fpga_reset(s);
453 qemu_register_reset(malta_fpga_reset, s);
455 return s;
458 /* Audio support */
459 #ifdef HAS_AUDIO
460 static void audio_init (PCIBus *pci_bus)
462 struct soundhw *c;
463 int audio_enabled = 0;
465 for (c = soundhw; !audio_enabled && c->name; ++c) {
466 audio_enabled = c->enabled;
469 if (audio_enabled) {
470 for (c = soundhw; c->name; ++c) {
471 if (c->enabled) {
472 c->init.init_pci(pci_bus);
477 #endif
479 /* Network support */
480 static void network_init(void)
482 int i;
484 for(i = 0; i < nb_nics; i++) {
485 NICInfo *nd = &nd_table[i];
486 const char *default_devaddr = NULL;
488 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
489 /* The malta board has a PCNet card using PCI SLOT 11 */
490 default_devaddr = "0b";
492 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
496 /* ROM and pseudo bootloader
498 The following code implements a very very simple bootloader. It first
499 loads the registers a0 to a3 to the values expected by the OS, and
500 then jump at the kernel address.
502 The bootloader should pass the locations of the kernel arguments and
503 environment variables tables. Those tables contain the 32-bit address
504 of NULL terminated strings. The environment variables table should be
505 terminated by a NULL address.
507 For a simpler implementation, the number of kernel arguments is fixed
508 to two (the name of the kernel and the command line), and the two
509 tables are actually the same one.
511 The registers a0 to a3 should contain the following values:
512 a0 - number of kernel arguments
513 a1 - 32-bit address of the kernel arguments table
514 a2 - 32-bit address of the environment variables table
515 a3 - RAM size in bytes
518 static void write_bootloader (CPUState *env, uint8_t *base,
519 int64_t kernel_entry)
521 uint32_t *p;
523 /* Small bootloader */
524 p = (uint32_t *)base;
525 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
526 stl_raw(p++, 0x00000000); /* nop */
528 /* YAMON service vector */
529 stl_raw(base + 0x500, 0xbfc00580); /* start: */
530 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
531 stl_raw(base + 0x520, 0xbfc00580); /* start: */
532 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
533 stl_raw(base + 0x534, 0xbfc00808); /* print: */
534 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
535 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
536 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
537 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
538 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
539 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
540 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
541 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
544 /* Second part of the bootloader */
545 p = (uint32_t *) (base + 0x580);
546 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
547 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
548 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
550 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
551 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
552 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
553 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
554 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
556 /* Load BAR registers as done by YAMON */
557 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
559 #ifdef TARGET_WORDS_BIGENDIAN
560 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
561 #else
562 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
563 #endif
564 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
566 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
570 #else
571 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
572 #endif
573 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
574 #ifdef TARGET_WORDS_BIGENDIAN
575 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
576 #else
577 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
578 #endif
579 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
581 #ifdef TARGET_WORDS_BIGENDIAN
582 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
583 #else
584 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
585 #endif
586 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
587 #ifdef TARGET_WORDS_BIGENDIAN
588 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
589 #else
590 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
591 #endif
592 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
594 #ifdef TARGET_WORDS_BIGENDIAN
595 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
596 #else
597 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
598 #endif
599 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
600 #ifdef TARGET_WORDS_BIGENDIAN
601 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
602 #else
603 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
604 #endif
605 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
607 /* Jump to kernel code */
608 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
609 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
610 stl_raw(p++, 0x03e00008); /* jr ra */
611 stl_raw(p++, 0x00000000); /* nop */
613 /* YAMON subroutines */
614 p = (uint32_t *) (base + 0x800);
615 stl_raw(p++, 0x03e00008); /* jr ra */
616 stl_raw(p++, 0x24020000); /* li v0,0 */
617 /* 808 YAMON print */
618 stl_raw(p++, 0x03e06821); /* move t5,ra */
619 stl_raw(p++, 0x00805821); /* move t3,a0 */
620 stl_raw(p++, 0x00a05021); /* move t2,a1 */
621 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
622 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
623 stl_raw(p++, 0x10800005); /* beqz a0,834 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x0ff0021c); /* jal 870 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x08000205); /* j 814 */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x01a00008); /* jr t5 */
630 stl_raw(p++, 0x01602021); /* move a0,t3 */
631 /* 0x83c YAMON print_count */
632 stl_raw(p++, 0x03e06821); /* move t5,ra */
633 stl_raw(p++, 0x00805821); /* move t3,a0 */
634 stl_raw(p++, 0x00a05021); /* move t2,a1 */
635 stl_raw(p++, 0x00c06021); /* move t4,a2 */
636 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
637 stl_raw(p++, 0x0ff0021c); /* jal 870 */
638 stl_raw(p++, 0x00000000); /* nop */
639 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
640 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
641 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
642 stl_raw(p++, 0x00000000); /* nop */
643 stl_raw(p++, 0x01a00008); /* jr t5 */
644 stl_raw(p++, 0x01602021); /* move a0,t3 */
645 /* 0x870 */
646 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
647 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
648 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
649 stl_raw(p++, 0x00000000); /* nop */
650 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
651 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
652 stl_raw(p++, 0x00000000); /* nop */
653 stl_raw(p++, 0x03e00008); /* jr ra */
654 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
658 static void prom_set(uint32_t* prom_buf, int index, const char *string, ...)
660 va_list ap;
661 int32_t table_addr;
663 if (index >= ENVP_NB_ENTRIES)
664 return;
666 if (string == NULL) {
667 prom_buf[index] = 0;
668 return;
671 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
672 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
674 va_start(ap, string);
675 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
676 va_end(ap);
679 /* Kernel */
680 static int64_t load_kernel (void)
682 int64_t kernel_entry, kernel_high;
683 long initrd_size;
684 ram_addr_t initrd_offset;
685 int big_endian;
686 uint32_t *prom_buf;
687 long prom_size;
688 int prom_index = 0;
690 #ifdef TARGET_WORDS_BIGENDIAN
691 big_endian = 1;
692 #else
693 big_endian = 0;
694 #endif
696 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
697 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
698 big_endian, ELF_MACHINE, 1) < 0) {
699 fprintf(stderr, "qemu: could not load kernel '%s'\n",
700 loaderparams.kernel_filename);
701 exit(1);
704 /* load initrd */
705 initrd_size = 0;
706 initrd_offset = 0;
707 if (loaderparams.initrd_filename) {
708 initrd_size = get_image_size (loaderparams.initrd_filename);
709 if (initrd_size > 0) {
710 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
711 if (initrd_offset + initrd_size > ram_size) {
712 fprintf(stderr,
713 "qemu: memory too small for initial ram disk '%s'\n",
714 loaderparams.initrd_filename);
715 exit(1);
717 initrd_size = load_image_targphys(loaderparams.initrd_filename,
718 initrd_offset,
719 ram_size - initrd_offset);
721 if (initrd_size == (target_ulong) -1) {
722 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
723 loaderparams.initrd_filename);
724 exit(1);
728 /* Setup prom parameters. */
729 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
730 prom_buf = qemu_malloc(prom_size);
732 prom_set(prom_buf, prom_index++, loaderparams.kernel_filename);
733 if (initrd_size > 0) {
734 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
735 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
736 loaderparams.kernel_cmdline);
737 } else {
738 prom_set(prom_buf, prom_index++, loaderparams.kernel_cmdline);
741 prom_set(prom_buf, prom_index++, "memsize");
742 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
743 prom_set(prom_buf, prom_index++, "modetty0");
744 prom_set(prom_buf, prom_index++, "38400n8r");
745 prom_set(prom_buf, prom_index++, NULL);
747 rom_add_blob_fixed("prom", prom_buf, prom_size,
748 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
750 return kernel_entry;
753 static void main_cpu_reset(void *opaque)
755 CPUState *env = opaque;
756 cpu_reset(env);
758 /* The bootloader does not need to be rewritten as it is located in a
759 read only location. The kernel location and the arguments table
760 location does not change. */
761 if (loaderparams.kernel_filename) {
762 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
766 static
767 void mips_malta_init (ram_addr_t ram_size,
768 const char *boot_device,
769 const char *kernel_filename, const char *kernel_cmdline,
770 const char *initrd_filename, const char *cpu_model)
772 char *filename;
773 ram_addr_t ram_offset;
774 ram_addr_t bios_offset;
775 target_long bios_size;
776 int64_t kernel_entry;
777 PCIBus *pci_bus;
778 ISADevice *isa_dev;
779 CPUState *env;
780 ISADevice *rtc_state;
781 FDCtrl *floppy_controller;
782 MaltaFPGAState *malta_fpga;
783 qemu_irq *i8259;
784 int piix4_devfn;
785 uint8_t *eeprom_buf;
786 i2c_bus *smbus;
787 int i;
788 DriveInfo *dinfo;
789 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
790 DriveInfo *fd[MAX_FD];
791 int fl_idx = 0;
792 int fl_sectors = 0;
793 int be;
795 /* Make sure the first 3 serial ports are associated with a device. */
796 for(i = 0; i < 3; i++) {
797 if (!serial_hds[i]) {
798 char label[32];
799 snprintf(label, sizeof(label), "serial%d", i);
800 serial_hds[i] = qemu_chr_open(label, "null", NULL);
804 /* init CPUs */
805 if (cpu_model == NULL) {
806 #ifdef TARGET_MIPS64
807 cpu_model = "20Kc";
808 #else
809 cpu_model = "24Kf";
810 #endif
812 env = cpu_init(cpu_model);
813 if (!env) {
814 fprintf(stderr, "Unable to find CPU definition\n");
815 exit(1);
817 qemu_register_reset(main_cpu_reset, env);
819 /* allocate RAM */
820 if (ram_size > (256 << 20)) {
821 fprintf(stderr,
822 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
823 ((unsigned int)ram_size / (1 << 20)));
824 exit(1);
826 ram_offset = qemu_ram_alloc(ram_size);
827 bios_offset = qemu_ram_alloc(BIOS_SIZE);
830 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
832 /* Map the bios at two physical locations, as on the real board. */
833 cpu_register_physical_memory(0x1e000000LL,
834 BIOS_SIZE, bios_offset | IO_MEM_ROM);
835 cpu_register_physical_memory(0x1fc00000LL,
836 BIOS_SIZE, bios_offset | IO_MEM_ROM);
838 #ifdef TARGET_WORDS_BIGENDIAN
839 be = 1;
840 #else
841 be = 0;
842 #endif
843 /* FPGA */
844 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
846 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
847 if (kernel_filename) {
848 /* Write a small bootloader to the flash location. */
849 loaderparams.ram_size = ram_size;
850 loaderparams.kernel_filename = kernel_filename;
851 loaderparams.kernel_cmdline = kernel_cmdline;
852 loaderparams.initrd_filename = initrd_filename;
853 kernel_entry = load_kernel();
854 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
855 } else {
856 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
857 if (dinfo) {
858 /* Load firmware from flash. */
859 bios_size = 0x400000;
860 fl_sectors = bios_size >> 16;
861 #ifdef DEBUG_BOARD_INIT
862 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
863 "offset %08lx addr %08llx '%s' %x\n",
864 fl_idx, bios_size, bios_offset, 0x1e000000LL,
865 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
866 #endif
867 pflash_cfi01_register(0x1e000000LL, bios_offset,
868 dinfo->bdrv, 65536, fl_sectors,
869 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
870 fl_idx++;
871 } else {
872 /* Load a BIOS image. */
873 if (bios_name == NULL)
874 bios_name = BIOS_FILENAME;
875 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
876 if (filename) {
877 bios_size = load_image_targphys(filename, 0x1fc00000LL,
878 BIOS_SIZE);
879 qemu_free(filename);
880 } else {
881 bios_size = -1;
883 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
884 fprintf(stderr,
885 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
886 bios_name);
887 exit(1);
890 /* In little endian mode the 32bit words in the bios are swapped,
891 a neat trick which allows bi-endian firmware. */
892 #ifndef TARGET_WORDS_BIGENDIAN
894 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
895 uint32_t *end = addr + bios_size;
896 while (addr < end) {
897 bswap32s(addr);
900 #endif
903 /* Board ID = 0x420 (Malta Board with CoreLV)
904 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
905 map to the board ID. */
906 stl_phys(0x1fc00010LL, 0x00000420);
908 /* Init internal devices */
909 cpu_mips_irq_init_cpu(env);
910 cpu_mips_clock_init(env);
912 /* Interrupt controller */
913 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
914 i8259 = i8259_init(env->irq[2]);
916 /* Northbridge */
917 pci_bus = pci_gt64120_init(i8259);
919 /* Southbridge */
921 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
922 fprintf(stderr, "qemu: too many IDE bus\n");
923 exit(1);
926 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
927 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
930 piix4_devfn = piix4_init(pci_bus, 80);
931 isa_bus_irqs(i8259);
932 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
933 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
934 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
935 NULL, NULL, 0);
936 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
937 for (i = 0; i < 8; i++) {
938 /* TODO: Populate SPD eeprom data. */
939 DeviceState *eeprom;
940 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
941 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
942 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
943 qdev_init_nofail(eeprom);
945 pit = pit_init(0x40, isa_reserve_irq(0));
946 DMA_init(0);
948 /* Super I/O */
949 isa_dev = isa_create_simple("i8042");
951 rtc_state = rtc_init(2000);
952 serial_isa_init(0, serial_hds[0]);
953 serial_isa_init(1, serial_hds[1]);
954 if (parallel_hds[0])
955 parallel_init(0, parallel_hds[0]);
956 for(i = 0; i < MAX_FD; i++) {
957 fd[i] = drive_get(IF_FLOPPY, 0, i);
959 floppy_controller = fdctrl_init_isa(fd);
961 /* Sound card */
962 #ifdef HAS_AUDIO
963 audio_init(pci_bus);
964 #endif
966 /* Network card */
967 network_init();
969 /* Optional PCI video card */
970 if (cirrus_vga_enabled) {
971 pci_cirrus_vga_init(pci_bus);
972 } else if (vmsvga_enabled) {
973 pci_vmsvga_init(pci_bus);
974 } else if (std_vga_enabled) {
975 pci_vga_init(pci_bus, 0, 0);
979 static QEMUMachine mips_malta_machine = {
980 .name = "malta",
981 .desc = "MIPS Malta Core LV",
982 .init = mips_malta_init,
983 .is_default = 1,
986 static void mips_malta_machine_init(void)
988 qemu_register_machine(&mips_malta_machine);
991 machine_init(mips_malta_machine_init);