target-arm: convert disas_neon_ls_insn not to use cpu_T
[qemu/aliguori-queue.git] / vl.c
blobeb2744e594fb47495565bca6d803199d6df7005b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef CONFIG_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
76 #include "hpet.h"
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
80 #endif
81 #ifdef __sun__
82 #include <sys/stat.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
92 #include <net/if.h>
93 #include <syslog.h>
94 #include <stropts.h>
95 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
96 discussion about Solaris header problems */
97 extern int madvise(caddr_t, size_t, int);
98 #endif
99 #endif
100 #endif
102 #if defined(__OpenBSD__)
103 #include <util.h>
104 #endif
106 #if defined(CONFIG_VDE)
107 #include <libvdeplug.h>
108 #endif
110 #ifdef _WIN32
111 #include <windows.h>
112 #include <mmsystem.h>
113 #endif
115 #ifdef CONFIG_SDL
116 #if defined(__APPLE__) || defined(main)
117 #include <SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 return qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "hw/qdev.h"
146 #include "hw/loader.h"
147 #include "bt-host.h"
148 #include "net.h"
149 #include "monitor.h"
150 #include "console.h"
151 #include "sysemu.h"
152 #include "gdbstub.h"
153 #include "qemu-timer.h"
154 #include "qemu-char.h"
155 #include "cache-utils.h"
156 #include "block.h"
157 #include "dma.h"
158 #include "audio/audio.h"
159 #include "migration.h"
160 #include "kvm.h"
161 #include "balloon.h"
162 #include "qemu-option.h"
163 #include "qemu-config.h"
165 #include "disas.h"
167 #include "exec-all.h"
169 #include "qemu_socket.h"
171 #include "slirp/libslirp.h"
173 #include "qemu-queue.h"
175 //#define DEBUG_NET
176 //#define DEBUG_SLIRP
178 #define DEFAULT_RAM_SIZE 128
180 /* Maximum number of monitor devices */
181 #define MAX_MONITOR_DEVICES 10
183 static const char *data_dir;
184 const char *bios_name = NULL;
185 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
186 to store the VM snapshots */
187 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
188 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
189 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
190 static DisplayState *display_state;
191 DisplayType display_type = DT_DEFAULT;
192 const char* keyboard_layout = NULL;
193 ram_addr_t ram_size;
194 int nb_nics;
195 NICInfo nd_table[MAX_NICS];
196 int vm_running;
197 int autostart;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 QEMUClock *rtc_clock;
201 int vga_interface_type = VGA_CIRRUS;
202 #ifdef TARGET_SPARC
203 int graphic_width = 1024;
204 int graphic_height = 768;
205 int graphic_depth = 8;
206 #else
207 int graphic_width = 800;
208 int graphic_height = 600;
209 int graphic_depth = 15;
210 #endif
211 static int full_screen = 0;
212 #ifdef CONFIG_SDL
213 static int no_frame = 0;
214 #endif
215 int no_quit = 0;
216 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
217 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
218 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
219 #ifdef TARGET_I386
220 int win2k_install_hack = 0;
221 int rtc_td_hack = 0;
222 #endif
223 int usb_enabled = 0;
224 int singlestep = 0;
225 int smp_cpus = 1;
226 int max_cpus = 0;
227 int smp_cores = 1;
228 int smp_threads = 1;
229 const char *vnc_display;
230 int acpi_enabled = 1;
231 int no_hpet = 0;
232 int fd_bootchk = 1;
233 int no_reboot = 0;
234 int no_shutdown = 0;
235 int cursor_hide = 1;
236 int graphic_rotate = 0;
237 uint8_t irq0override = 1;
238 #ifndef _WIN32
239 int daemonize = 0;
240 #endif
241 const char *watchdog;
242 const char *option_rom[MAX_OPTION_ROMS];
243 int nb_option_roms;
244 int semihosting_enabled = 0;
245 #ifdef TARGET_ARM
246 int old_param = 0;
247 #endif
248 const char *qemu_name;
249 int alt_grab = 0;
250 int ctrl_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int boot_menu;
257 int nb_numa_nodes;
258 uint64_t node_mem[MAX_NODES];
259 uint64_t node_cpumask[MAX_NODES];
261 static CPUState *cur_cpu;
262 static CPUState *next_cpu;
263 static int timer_alarm_pending = 1;
264 /* Conversion factor from emulated instructions to virtual clock ticks. */
265 static int icount_time_shift;
266 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
267 #define MAX_ICOUNT_SHIFT 10
268 /* Compensate for varying guest execution speed. */
269 static int64_t qemu_icount_bias;
270 static QEMUTimer *icount_rt_timer;
271 static QEMUTimer *icount_vm_timer;
272 static QEMUTimer *nographic_timer;
274 uint8_t qemu_uuid[16];
276 static QEMUBootSetHandler *boot_set_handler;
277 static void *boot_set_opaque;
279 /***********************************************************/
280 /* x86 ISA bus support */
282 target_phys_addr_t isa_mem_base = 0;
283 PicState2 *isa_pic;
285 /***********************************************************/
286 void hw_error(const char *fmt, ...)
288 va_list ap;
289 CPUState *env;
291 va_start(ap, fmt);
292 fprintf(stderr, "qemu: hardware error: ");
293 vfprintf(stderr, fmt, ap);
294 fprintf(stderr, "\n");
295 for(env = first_cpu; env != NULL; env = env->next_cpu) {
296 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
297 #ifdef TARGET_I386
298 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
299 #else
300 cpu_dump_state(env, stderr, fprintf, 0);
301 #endif
303 va_end(ap);
304 abort();
307 static void set_proc_name(const char *s)
309 #if defined(__linux__) && defined(PR_SET_NAME)
310 char name[16];
311 if (!s)
312 return;
313 name[sizeof(name) - 1] = 0;
314 strncpy(name, s, sizeof(name));
315 /* Could rewrite argv[0] too, but that's a bit more complicated.
316 This simple way is enough for `top'. */
317 prctl(PR_SET_NAME, name);
318 #endif
321 /***************/
322 /* ballooning */
324 static QEMUBalloonEvent *qemu_balloon_event;
325 void *qemu_balloon_event_opaque;
327 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
329 qemu_balloon_event = func;
330 qemu_balloon_event_opaque = opaque;
333 void qemu_balloon(ram_addr_t target)
335 if (qemu_balloon_event)
336 qemu_balloon_event(qemu_balloon_event_opaque, target);
339 ram_addr_t qemu_balloon_status(void)
341 if (qemu_balloon_event)
342 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
343 return 0;
346 /***********************************************************/
347 /* keyboard/mouse */
349 static QEMUPutKBDEvent *qemu_put_kbd_event;
350 static void *qemu_put_kbd_event_opaque;
351 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
352 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
354 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
356 qemu_put_kbd_event_opaque = opaque;
357 qemu_put_kbd_event = func;
360 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
361 void *opaque, int absolute,
362 const char *name)
364 QEMUPutMouseEntry *s, *cursor;
366 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
368 s->qemu_put_mouse_event = func;
369 s->qemu_put_mouse_event_opaque = opaque;
370 s->qemu_put_mouse_event_absolute = absolute;
371 s->qemu_put_mouse_event_name = qemu_strdup(name);
372 s->next = NULL;
374 if (!qemu_put_mouse_event_head) {
375 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
376 return s;
379 cursor = qemu_put_mouse_event_head;
380 while (cursor->next != NULL)
381 cursor = cursor->next;
383 cursor->next = s;
384 qemu_put_mouse_event_current = s;
386 return s;
389 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
391 QEMUPutMouseEntry *prev = NULL, *cursor;
393 if (!qemu_put_mouse_event_head || entry == NULL)
394 return;
396 cursor = qemu_put_mouse_event_head;
397 while (cursor != NULL && cursor != entry) {
398 prev = cursor;
399 cursor = cursor->next;
402 if (cursor == NULL) // does not exist or list empty
403 return;
404 else if (prev == NULL) { // entry is head
405 qemu_put_mouse_event_head = cursor->next;
406 if (qemu_put_mouse_event_current == entry)
407 qemu_put_mouse_event_current = cursor->next;
408 qemu_free(entry->qemu_put_mouse_event_name);
409 qemu_free(entry);
410 return;
413 prev->next = entry->next;
415 if (qemu_put_mouse_event_current == entry)
416 qemu_put_mouse_event_current = prev;
418 qemu_free(entry->qemu_put_mouse_event_name);
419 qemu_free(entry);
422 void kbd_put_keycode(int keycode)
424 if (qemu_put_kbd_event) {
425 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
429 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
431 QEMUPutMouseEvent *mouse_event;
432 void *mouse_event_opaque;
433 int width;
435 if (!qemu_put_mouse_event_current) {
436 return;
439 mouse_event =
440 qemu_put_mouse_event_current->qemu_put_mouse_event;
441 mouse_event_opaque =
442 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
444 if (mouse_event) {
445 if (graphic_rotate) {
446 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
447 width = 0x7fff;
448 else
449 width = graphic_width - 1;
450 mouse_event(mouse_event_opaque,
451 width - dy, dx, dz, buttons_state);
452 } else
453 mouse_event(mouse_event_opaque,
454 dx, dy, dz, buttons_state);
458 int kbd_mouse_is_absolute(void)
460 if (!qemu_put_mouse_event_current)
461 return 0;
463 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
466 void do_info_mice(Monitor *mon)
468 QEMUPutMouseEntry *cursor;
469 int index = 0;
471 if (!qemu_put_mouse_event_head) {
472 monitor_printf(mon, "No mouse devices connected\n");
473 return;
476 monitor_printf(mon, "Mouse devices available:\n");
477 cursor = qemu_put_mouse_event_head;
478 while (cursor != NULL) {
479 monitor_printf(mon, "%c Mouse #%d: %s\n",
480 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
481 index, cursor->qemu_put_mouse_event_name);
482 index++;
483 cursor = cursor->next;
487 void do_mouse_set(Monitor *mon, const QDict *qdict)
489 QEMUPutMouseEntry *cursor;
490 int i = 0;
491 int index = qdict_get_int(qdict, "index");
493 if (!qemu_put_mouse_event_head) {
494 monitor_printf(mon, "No mouse devices connected\n");
495 return;
498 cursor = qemu_put_mouse_event_head;
499 while (cursor != NULL && index != i) {
500 i++;
501 cursor = cursor->next;
504 if (cursor != NULL)
505 qemu_put_mouse_event_current = cursor;
506 else
507 monitor_printf(mon, "Mouse at given index not found\n");
510 /* compute with 96 bit intermediate result: (a*b)/c */
511 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
513 union {
514 uint64_t ll;
515 struct {
516 #ifdef HOST_WORDS_BIGENDIAN
517 uint32_t high, low;
518 #else
519 uint32_t low, high;
520 #endif
521 } l;
522 } u, res;
523 uint64_t rl, rh;
525 u.ll = a;
526 rl = (uint64_t)u.l.low * (uint64_t)b;
527 rh = (uint64_t)u.l.high * (uint64_t)b;
528 rh += (rl >> 32);
529 res.l.high = rh / c;
530 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
531 return res.ll;
534 /***********************************************************/
535 /* real time host monotonic timer */
537 static int64_t get_clock_realtime(void)
539 struct timeval tv;
541 gettimeofday(&tv, NULL);
542 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
545 #ifdef WIN32
547 static int64_t clock_freq;
549 static void init_get_clock(void)
551 LARGE_INTEGER freq;
552 int ret;
553 ret = QueryPerformanceFrequency(&freq);
554 if (ret == 0) {
555 fprintf(stderr, "Could not calibrate ticks\n");
556 exit(1);
558 clock_freq = freq.QuadPart;
561 static int64_t get_clock(void)
563 LARGE_INTEGER ti;
564 QueryPerformanceCounter(&ti);
565 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
568 #else
570 static int use_rt_clock;
572 static void init_get_clock(void)
574 use_rt_clock = 0;
575 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
576 || defined(__DragonFly__)
578 struct timespec ts;
579 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
580 use_rt_clock = 1;
583 #endif
586 static int64_t get_clock(void)
588 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
589 || defined(__DragonFly__)
590 if (use_rt_clock) {
591 struct timespec ts;
592 clock_gettime(CLOCK_MONOTONIC, &ts);
593 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
594 } else
595 #endif
597 /* XXX: using gettimeofday leads to problems if the date
598 changes, so it should be avoided. */
599 return get_clock_realtime();
602 #endif
604 /* Return the virtual CPU time, based on the instruction counter. */
605 static int64_t cpu_get_icount(void)
607 int64_t icount;
608 CPUState *env = cpu_single_env;;
609 icount = qemu_icount;
610 if (env) {
611 if (!can_do_io(env))
612 fprintf(stderr, "Bad clock read\n");
613 icount -= (env->icount_decr.u16.low + env->icount_extra);
615 return qemu_icount_bias + (icount << icount_time_shift);
618 /***********************************************************/
619 /* guest cycle counter */
621 typedef struct TimersState {
622 int64_t cpu_ticks_prev;
623 int64_t cpu_ticks_offset;
624 int64_t cpu_clock_offset;
625 int32_t cpu_ticks_enabled;
626 int64_t dummy;
627 } TimersState;
629 TimersState timers_state;
631 /* return the host CPU cycle counter and handle stop/restart */
632 int64_t cpu_get_ticks(void)
634 if (use_icount) {
635 return cpu_get_icount();
637 if (!timers_state.cpu_ticks_enabled) {
638 return timers_state.cpu_ticks_offset;
639 } else {
640 int64_t ticks;
641 ticks = cpu_get_real_ticks();
642 if (timers_state.cpu_ticks_prev > ticks) {
643 /* Note: non increasing ticks may happen if the host uses
644 software suspend */
645 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
647 timers_state.cpu_ticks_prev = ticks;
648 return ticks + timers_state.cpu_ticks_offset;
652 /* return the host CPU monotonic timer and handle stop/restart */
653 static int64_t cpu_get_clock(void)
655 int64_t ti;
656 if (!timers_state.cpu_ticks_enabled) {
657 return timers_state.cpu_clock_offset;
658 } else {
659 ti = get_clock();
660 return ti + timers_state.cpu_clock_offset;
664 /* enable cpu_get_ticks() */
665 void cpu_enable_ticks(void)
667 if (!timers_state.cpu_ticks_enabled) {
668 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
669 timers_state.cpu_clock_offset -= get_clock();
670 timers_state.cpu_ticks_enabled = 1;
674 /* disable cpu_get_ticks() : the clock is stopped. You must not call
675 cpu_get_ticks() after that. */
676 void cpu_disable_ticks(void)
678 if (timers_state.cpu_ticks_enabled) {
679 timers_state.cpu_ticks_offset = cpu_get_ticks();
680 timers_state.cpu_clock_offset = cpu_get_clock();
681 timers_state.cpu_ticks_enabled = 0;
685 /***********************************************************/
686 /* timers */
688 #define QEMU_CLOCK_REALTIME 0
689 #define QEMU_CLOCK_VIRTUAL 1
690 #define QEMU_CLOCK_HOST 2
692 struct QEMUClock {
693 int type;
694 /* XXX: add frequency */
697 struct QEMUTimer {
698 QEMUClock *clock;
699 int64_t expire_time;
700 QEMUTimerCB *cb;
701 void *opaque;
702 struct QEMUTimer *next;
705 struct qemu_alarm_timer {
706 char const *name;
707 unsigned int flags;
709 int (*start)(struct qemu_alarm_timer *t);
710 void (*stop)(struct qemu_alarm_timer *t);
711 void (*rearm)(struct qemu_alarm_timer *t);
712 void *priv;
715 #define ALARM_FLAG_DYNTICKS 0x1
716 #define ALARM_FLAG_EXPIRED 0x2
718 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
720 return t && (t->flags & ALARM_FLAG_DYNTICKS);
723 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
725 if (!alarm_has_dynticks(t))
726 return;
728 t->rearm(t);
731 /* TODO: MIN_TIMER_REARM_US should be optimized */
732 #define MIN_TIMER_REARM_US 250
734 static struct qemu_alarm_timer *alarm_timer;
736 #ifdef _WIN32
738 struct qemu_alarm_win32 {
739 MMRESULT timerId;
740 unsigned int period;
741 } alarm_win32_data = {0, -1};
743 static int win32_start_timer(struct qemu_alarm_timer *t);
744 static void win32_stop_timer(struct qemu_alarm_timer *t);
745 static void win32_rearm_timer(struct qemu_alarm_timer *t);
747 #else
749 static int unix_start_timer(struct qemu_alarm_timer *t);
750 static void unix_stop_timer(struct qemu_alarm_timer *t);
752 #ifdef __linux__
754 static int dynticks_start_timer(struct qemu_alarm_timer *t);
755 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
756 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
758 static int hpet_start_timer(struct qemu_alarm_timer *t);
759 static void hpet_stop_timer(struct qemu_alarm_timer *t);
761 static int rtc_start_timer(struct qemu_alarm_timer *t);
762 static void rtc_stop_timer(struct qemu_alarm_timer *t);
764 #endif /* __linux__ */
766 #endif /* _WIN32 */
768 /* Correlation between real and virtual time is always going to be
769 fairly approximate, so ignore small variation.
770 When the guest is idle real and virtual time will be aligned in
771 the IO wait loop. */
772 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
774 static void icount_adjust(void)
776 int64_t cur_time;
777 int64_t cur_icount;
778 int64_t delta;
779 static int64_t last_delta;
780 /* If the VM is not running, then do nothing. */
781 if (!vm_running)
782 return;
784 cur_time = cpu_get_clock();
785 cur_icount = qemu_get_clock(vm_clock);
786 delta = cur_icount - cur_time;
787 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
788 if (delta > 0
789 && last_delta + ICOUNT_WOBBLE < delta * 2
790 && icount_time_shift > 0) {
791 /* The guest is getting too far ahead. Slow time down. */
792 icount_time_shift--;
794 if (delta < 0
795 && last_delta - ICOUNT_WOBBLE > delta * 2
796 && icount_time_shift < MAX_ICOUNT_SHIFT) {
797 /* The guest is getting too far behind. Speed time up. */
798 icount_time_shift++;
800 last_delta = delta;
801 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
804 static void icount_adjust_rt(void * opaque)
806 qemu_mod_timer(icount_rt_timer,
807 qemu_get_clock(rt_clock) + 1000);
808 icount_adjust();
811 static void icount_adjust_vm(void * opaque)
813 qemu_mod_timer(icount_vm_timer,
814 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
815 icount_adjust();
818 static void init_icount_adjust(void)
820 /* Have both realtime and virtual time triggers for speed adjustment.
821 The realtime trigger catches emulated time passing too slowly,
822 the virtual time trigger catches emulated time passing too fast.
823 Realtime triggers occur even when idle, so use them less frequently
824 than VM triggers. */
825 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
826 qemu_mod_timer(icount_rt_timer,
827 qemu_get_clock(rt_clock) + 1000);
828 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
829 qemu_mod_timer(icount_vm_timer,
830 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
833 static struct qemu_alarm_timer alarm_timers[] = {
834 #ifndef _WIN32
835 #ifdef __linux__
836 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
837 dynticks_stop_timer, dynticks_rearm_timer, NULL},
838 /* HPET - if available - is preferred */
839 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
840 /* ...otherwise try RTC */
841 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
842 #endif
843 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
844 #else
845 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
846 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
847 {"win32", 0, win32_start_timer,
848 win32_stop_timer, NULL, &alarm_win32_data},
849 #endif
850 {NULL, }
853 static void show_available_alarms(void)
855 int i;
857 printf("Available alarm timers, in order of precedence:\n");
858 for (i = 0; alarm_timers[i].name; i++)
859 printf("%s\n", alarm_timers[i].name);
862 static void configure_alarms(char const *opt)
864 int i;
865 int cur = 0;
866 int count = ARRAY_SIZE(alarm_timers) - 1;
867 char *arg;
868 char *name;
869 struct qemu_alarm_timer tmp;
871 if (!strcmp(opt, "?")) {
872 show_available_alarms();
873 exit(0);
876 arg = qemu_strdup(opt);
878 /* Reorder the array */
879 name = strtok(arg, ",");
880 while (name) {
881 for (i = 0; i < count && alarm_timers[i].name; i++) {
882 if (!strcmp(alarm_timers[i].name, name))
883 break;
886 if (i == count) {
887 fprintf(stderr, "Unknown clock %s\n", name);
888 goto next;
891 if (i < cur)
892 /* Ignore */
893 goto next;
895 /* Swap */
896 tmp = alarm_timers[i];
897 alarm_timers[i] = alarm_timers[cur];
898 alarm_timers[cur] = tmp;
900 cur++;
901 next:
902 name = strtok(NULL, ",");
905 qemu_free(arg);
907 if (cur) {
908 /* Disable remaining timers */
909 for (i = cur; i < count; i++)
910 alarm_timers[i].name = NULL;
911 } else {
912 show_available_alarms();
913 exit(1);
917 #define QEMU_NUM_CLOCKS 3
919 QEMUClock *rt_clock;
920 QEMUClock *vm_clock;
921 QEMUClock *host_clock;
923 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
925 static QEMUClock *qemu_new_clock(int type)
927 QEMUClock *clock;
928 clock = qemu_mallocz(sizeof(QEMUClock));
929 clock->type = type;
930 return clock;
933 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
935 QEMUTimer *ts;
937 ts = qemu_mallocz(sizeof(QEMUTimer));
938 ts->clock = clock;
939 ts->cb = cb;
940 ts->opaque = opaque;
941 return ts;
944 void qemu_free_timer(QEMUTimer *ts)
946 qemu_free(ts);
949 /* stop a timer, but do not dealloc it */
950 void qemu_del_timer(QEMUTimer *ts)
952 QEMUTimer **pt, *t;
954 /* NOTE: this code must be signal safe because
955 qemu_timer_expired() can be called from a signal. */
956 pt = &active_timers[ts->clock->type];
957 for(;;) {
958 t = *pt;
959 if (!t)
960 break;
961 if (t == ts) {
962 *pt = t->next;
963 break;
965 pt = &t->next;
969 /* modify the current timer so that it will be fired when current_time
970 >= expire_time. The corresponding callback will be called. */
971 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
973 QEMUTimer **pt, *t;
975 qemu_del_timer(ts);
977 /* add the timer in the sorted list */
978 /* NOTE: this code must be signal safe because
979 qemu_timer_expired() can be called from a signal. */
980 pt = &active_timers[ts->clock->type];
981 for(;;) {
982 t = *pt;
983 if (!t)
984 break;
985 if (t->expire_time > expire_time)
986 break;
987 pt = &t->next;
989 ts->expire_time = expire_time;
990 ts->next = *pt;
991 *pt = ts;
993 /* Rearm if necessary */
994 if (pt == &active_timers[ts->clock->type]) {
995 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
996 qemu_rearm_alarm_timer(alarm_timer);
998 /* Interrupt execution to force deadline recalculation. */
999 if (use_icount)
1000 qemu_notify_event();
1004 int qemu_timer_pending(QEMUTimer *ts)
1006 QEMUTimer *t;
1007 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1008 if (t == ts)
1009 return 1;
1011 return 0;
1014 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1016 if (!timer_head)
1017 return 0;
1018 return (timer_head->expire_time <= current_time);
1021 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1023 QEMUTimer *ts;
1025 for(;;) {
1026 ts = *ptimer_head;
1027 if (!ts || ts->expire_time > current_time)
1028 break;
1029 /* remove timer from the list before calling the callback */
1030 *ptimer_head = ts->next;
1031 ts->next = NULL;
1033 /* run the callback (the timer list can be modified) */
1034 ts->cb(ts->opaque);
1038 int64_t qemu_get_clock(QEMUClock *clock)
1040 switch(clock->type) {
1041 case QEMU_CLOCK_REALTIME:
1042 return get_clock() / 1000000;
1043 default:
1044 case QEMU_CLOCK_VIRTUAL:
1045 if (use_icount) {
1046 return cpu_get_icount();
1047 } else {
1048 return cpu_get_clock();
1050 case QEMU_CLOCK_HOST:
1051 return get_clock_realtime();
1055 static void init_clocks(void)
1057 init_get_clock();
1058 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1059 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1060 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1062 rtc_clock = host_clock;
1065 /* save a timer */
1066 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1068 uint64_t expire_time;
1070 if (qemu_timer_pending(ts)) {
1071 expire_time = ts->expire_time;
1072 } else {
1073 expire_time = -1;
1075 qemu_put_be64(f, expire_time);
1078 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1080 uint64_t expire_time;
1082 expire_time = qemu_get_be64(f);
1083 if (expire_time != -1) {
1084 qemu_mod_timer(ts, expire_time);
1085 } else {
1086 qemu_del_timer(ts);
1090 static const VMStateDescription vmstate_timers = {
1091 .name = "timer",
1092 .version_id = 2,
1093 .minimum_version_id = 1,
1094 .minimum_version_id_old = 1,
1095 .fields = (VMStateField []) {
1096 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1097 VMSTATE_INT64(dummy, TimersState),
1098 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1099 VMSTATE_END_OF_LIST()
1103 static void qemu_event_increment(void);
1105 #ifdef _WIN32
1106 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1107 DWORD_PTR dwUser, DWORD_PTR dw1,
1108 DWORD_PTR dw2)
1109 #else
1110 static void host_alarm_handler(int host_signum)
1111 #endif
1113 #if 0
1114 #define DISP_FREQ 1000
1116 static int64_t delta_min = INT64_MAX;
1117 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1118 static int count;
1119 ti = qemu_get_clock(vm_clock);
1120 if (last_clock != 0) {
1121 delta = ti - last_clock;
1122 if (delta < delta_min)
1123 delta_min = delta;
1124 if (delta > delta_max)
1125 delta_max = delta;
1126 delta_cum += delta;
1127 if (++count == DISP_FREQ) {
1128 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1129 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1130 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1131 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1132 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1133 count = 0;
1134 delta_min = INT64_MAX;
1135 delta_max = 0;
1136 delta_cum = 0;
1139 last_clock = ti;
1141 #endif
1142 if (alarm_has_dynticks(alarm_timer) ||
1143 (!use_icount &&
1144 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1145 qemu_get_clock(vm_clock))) ||
1146 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1147 qemu_get_clock(rt_clock)) ||
1148 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1149 qemu_get_clock(host_clock))) {
1150 qemu_event_increment();
1151 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1153 #ifndef CONFIG_IOTHREAD
1154 if (next_cpu) {
1155 /* stop the currently executing cpu because a timer occured */
1156 cpu_exit(next_cpu);
1158 #endif
1159 timer_alarm_pending = 1;
1160 qemu_notify_event();
1164 static int64_t qemu_next_deadline(void)
1166 /* To avoid problems with overflow limit this to 2^32. */
1167 int64_t delta = INT32_MAX;
1169 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1170 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1171 qemu_get_clock(vm_clock);
1173 if (active_timers[QEMU_CLOCK_HOST]) {
1174 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1175 qemu_get_clock(host_clock);
1176 if (hdelta < delta)
1177 delta = hdelta;
1180 if (delta < 0)
1181 delta = 0;
1183 return delta;
1186 #if defined(__linux__)
1187 static uint64_t qemu_next_deadline_dyntick(void)
1189 int64_t delta;
1190 int64_t rtdelta;
1192 if (use_icount)
1193 delta = INT32_MAX;
1194 else
1195 delta = (qemu_next_deadline() + 999) / 1000;
1197 if (active_timers[QEMU_CLOCK_REALTIME]) {
1198 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1199 qemu_get_clock(rt_clock))*1000;
1200 if (rtdelta < delta)
1201 delta = rtdelta;
1204 if (delta < MIN_TIMER_REARM_US)
1205 delta = MIN_TIMER_REARM_US;
1207 return delta;
1209 #endif
1211 #ifndef _WIN32
1213 /* Sets a specific flag */
1214 static int fcntl_setfl(int fd, int flag)
1216 int flags;
1218 flags = fcntl(fd, F_GETFL);
1219 if (flags == -1)
1220 return -errno;
1222 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1223 return -errno;
1225 return 0;
1228 #if defined(__linux__)
1230 #define RTC_FREQ 1024
1232 static void enable_sigio_timer(int fd)
1234 struct sigaction act;
1236 /* timer signal */
1237 sigfillset(&act.sa_mask);
1238 act.sa_flags = 0;
1239 act.sa_handler = host_alarm_handler;
1241 sigaction(SIGIO, &act, NULL);
1242 fcntl_setfl(fd, O_ASYNC);
1243 fcntl(fd, F_SETOWN, getpid());
1246 static int hpet_start_timer(struct qemu_alarm_timer *t)
1248 struct hpet_info info;
1249 int r, fd;
1251 fd = open("/dev/hpet", O_RDONLY);
1252 if (fd < 0)
1253 return -1;
1255 /* Set frequency */
1256 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1257 if (r < 0) {
1258 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1259 "error, but for better emulation accuracy type:\n"
1260 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1261 goto fail;
1264 /* Check capabilities */
1265 r = ioctl(fd, HPET_INFO, &info);
1266 if (r < 0)
1267 goto fail;
1269 /* Enable periodic mode */
1270 r = ioctl(fd, HPET_EPI, 0);
1271 if (info.hi_flags && (r < 0))
1272 goto fail;
1274 /* Enable interrupt */
1275 r = ioctl(fd, HPET_IE_ON, 0);
1276 if (r < 0)
1277 goto fail;
1279 enable_sigio_timer(fd);
1280 t->priv = (void *)(long)fd;
1282 return 0;
1283 fail:
1284 close(fd);
1285 return -1;
1288 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1290 int fd = (long)t->priv;
1292 close(fd);
1295 static int rtc_start_timer(struct qemu_alarm_timer *t)
1297 int rtc_fd;
1298 unsigned long current_rtc_freq = 0;
1300 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1301 if (rtc_fd < 0)
1302 return -1;
1303 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1304 if (current_rtc_freq != RTC_FREQ &&
1305 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1306 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1307 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1308 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1309 goto fail;
1311 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1312 fail:
1313 close(rtc_fd);
1314 return -1;
1317 enable_sigio_timer(rtc_fd);
1319 t->priv = (void *)(long)rtc_fd;
1321 return 0;
1324 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1326 int rtc_fd = (long)t->priv;
1328 close(rtc_fd);
1331 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1333 struct sigevent ev;
1334 timer_t host_timer;
1335 struct sigaction act;
1337 sigfillset(&act.sa_mask);
1338 act.sa_flags = 0;
1339 act.sa_handler = host_alarm_handler;
1341 sigaction(SIGALRM, &act, NULL);
1344 * Initialize ev struct to 0 to avoid valgrind complaining
1345 * about uninitialized data in timer_create call
1347 memset(&ev, 0, sizeof(ev));
1348 ev.sigev_value.sival_int = 0;
1349 ev.sigev_notify = SIGEV_SIGNAL;
1350 ev.sigev_signo = SIGALRM;
1352 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1353 perror("timer_create");
1355 /* disable dynticks */
1356 fprintf(stderr, "Dynamic Ticks disabled\n");
1358 return -1;
1361 t->priv = (void *)(long)host_timer;
1363 return 0;
1366 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1368 timer_t host_timer = (timer_t)(long)t->priv;
1370 timer_delete(host_timer);
1373 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1375 timer_t host_timer = (timer_t)(long)t->priv;
1376 struct itimerspec timeout;
1377 int64_t nearest_delta_us = INT64_MAX;
1378 int64_t current_us;
1380 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1381 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1382 !active_timers[QEMU_CLOCK_HOST])
1383 return;
1385 nearest_delta_us = qemu_next_deadline_dyntick();
1387 /* check whether a timer is already running */
1388 if (timer_gettime(host_timer, &timeout)) {
1389 perror("gettime");
1390 fprintf(stderr, "Internal timer error: aborting\n");
1391 exit(1);
1393 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1394 if (current_us && current_us <= nearest_delta_us)
1395 return;
1397 timeout.it_interval.tv_sec = 0;
1398 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1399 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1400 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1401 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1402 perror("settime");
1403 fprintf(stderr, "Internal timer error: aborting\n");
1404 exit(1);
1408 #endif /* defined(__linux__) */
1410 static int unix_start_timer(struct qemu_alarm_timer *t)
1412 struct sigaction act;
1413 struct itimerval itv;
1414 int err;
1416 /* timer signal */
1417 sigfillset(&act.sa_mask);
1418 act.sa_flags = 0;
1419 act.sa_handler = host_alarm_handler;
1421 sigaction(SIGALRM, &act, NULL);
1423 itv.it_interval.tv_sec = 0;
1424 /* for i386 kernel 2.6 to get 1 ms */
1425 itv.it_interval.tv_usec = 999;
1426 itv.it_value.tv_sec = 0;
1427 itv.it_value.tv_usec = 10 * 1000;
1429 err = setitimer(ITIMER_REAL, &itv, NULL);
1430 if (err)
1431 return -1;
1433 return 0;
1436 static void unix_stop_timer(struct qemu_alarm_timer *t)
1438 struct itimerval itv;
1440 memset(&itv, 0, sizeof(itv));
1441 setitimer(ITIMER_REAL, &itv, NULL);
1444 #endif /* !defined(_WIN32) */
1447 #ifdef _WIN32
1449 static int win32_start_timer(struct qemu_alarm_timer *t)
1451 TIMECAPS tc;
1452 struct qemu_alarm_win32 *data = t->priv;
1453 UINT flags;
1455 memset(&tc, 0, sizeof(tc));
1456 timeGetDevCaps(&tc, sizeof(tc));
1458 if (data->period < tc.wPeriodMin)
1459 data->period = tc.wPeriodMin;
1461 timeBeginPeriod(data->period);
1463 flags = TIME_CALLBACK_FUNCTION;
1464 if (alarm_has_dynticks(t))
1465 flags |= TIME_ONESHOT;
1466 else
1467 flags |= TIME_PERIODIC;
1469 data->timerId = timeSetEvent(1, // interval (ms)
1470 data->period, // resolution
1471 host_alarm_handler, // function
1472 (DWORD)t, // parameter
1473 flags);
1475 if (!data->timerId) {
1476 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1477 GetLastError());
1478 timeEndPeriod(data->period);
1479 return -1;
1482 return 0;
1485 static void win32_stop_timer(struct qemu_alarm_timer *t)
1487 struct qemu_alarm_win32 *data = t->priv;
1489 timeKillEvent(data->timerId);
1490 timeEndPeriod(data->period);
1493 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1495 struct qemu_alarm_win32 *data = t->priv;
1497 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1498 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1499 !active_timers[QEMU_CLOCK_HOST])
1500 return;
1502 timeKillEvent(data->timerId);
1504 data->timerId = timeSetEvent(1,
1505 data->period,
1506 host_alarm_handler,
1507 (DWORD)t,
1508 TIME_ONESHOT | TIME_PERIODIC);
1510 if (!data->timerId) {
1511 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1512 GetLastError());
1514 timeEndPeriod(data->period);
1515 exit(1);
1519 #endif /* _WIN32 */
1521 static int init_timer_alarm(void)
1523 struct qemu_alarm_timer *t = NULL;
1524 int i, err = -1;
1526 for (i = 0; alarm_timers[i].name; i++) {
1527 t = &alarm_timers[i];
1529 err = t->start(t);
1530 if (!err)
1531 break;
1534 if (err) {
1535 err = -ENOENT;
1536 goto fail;
1539 alarm_timer = t;
1541 return 0;
1543 fail:
1544 return err;
1547 static void quit_timers(void)
1549 alarm_timer->stop(alarm_timer);
1550 alarm_timer = NULL;
1553 /***********************************************************/
1554 /* host time/date access */
1555 void qemu_get_timedate(struct tm *tm, int offset)
1557 time_t ti;
1558 struct tm *ret;
1560 time(&ti);
1561 ti += offset;
1562 if (rtc_date_offset == -1) {
1563 if (rtc_utc)
1564 ret = gmtime(&ti);
1565 else
1566 ret = localtime(&ti);
1567 } else {
1568 ti -= rtc_date_offset;
1569 ret = gmtime(&ti);
1572 memcpy(tm, ret, sizeof(struct tm));
1575 int qemu_timedate_diff(struct tm *tm)
1577 time_t seconds;
1579 if (rtc_date_offset == -1)
1580 if (rtc_utc)
1581 seconds = mktimegm(tm);
1582 else
1583 seconds = mktime(tm);
1584 else
1585 seconds = mktimegm(tm) + rtc_date_offset;
1587 return seconds - time(NULL);
1590 static void configure_rtc_date_offset(const char *startdate, int legacy)
1592 time_t rtc_start_date;
1593 struct tm tm;
1595 if (!strcmp(startdate, "now") && legacy) {
1596 rtc_date_offset = -1;
1597 } else {
1598 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1599 &tm.tm_year,
1600 &tm.tm_mon,
1601 &tm.tm_mday,
1602 &tm.tm_hour,
1603 &tm.tm_min,
1604 &tm.tm_sec) == 6) {
1605 /* OK */
1606 } else if (sscanf(startdate, "%d-%d-%d",
1607 &tm.tm_year,
1608 &tm.tm_mon,
1609 &tm.tm_mday) == 3) {
1610 tm.tm_hour = 0;
1611 tm.tm_min = 0;
1612 tm.tm_sec = 0;
1613 } else {
1614 goto date_fail;
1616 tm.tm_year -= 1900;
1617 tm.tm_mon--;
1618 rtc_start_date = mktimegm(&tm);
1619 if (rtc_start_date == -1) {
1620 date_fail:
1621 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1622 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1623 exit(1);
1625 rtc_date_offset = time(NULL) - rtc_start_date;
1629 static void configure_rtc(QemuOpts *opts)
1631 const char *value;
1633 value = qemu_opt_get(opts, "base");
1634 if (value) {
1635 if (!strcmp(value, "utc")) {
1636 rtc_utc = 1;
1637 } else if (!strcmp(value, "localtime")) {
1638 rtc_utc = 0;
1639 } else {
1640 configure_rtc_date_offset(value, 0);
1643 value = qemu_opt_get(opts, "clock");
1644 if (value) {
1645 if (!strcmp(value, "host")) {
1646 rtc_clock = host_clock;
1647 } else if (!strcmp(value, "vm")) {
1648 rtc_clock = vm_clock;
1649 } else {
1650 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1651 exit(1);
1654 #ifdef CONFIG_TARGET_I386
1655 value = qemu_opt_get(opts, "driftfix");
1656 if (value) {
1657 if (!strcmp(buf, "slew")) {
1658 rtc_td_hack = 1;
1659 } else if (!strcmp(buf, "none")) {
1660 rtc_td_hack = 0;
1661 } else {
1662 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1663 exit(1);
1666 #endif
1669 #ifdef _WIN32
1670 static void socket_cleanup(void)
1672 WSACleanup();
1675 static int socket_init(void)
1677 WSADATA Data;
1678 int ret, err;
1680 ret = WSAStartup(MAKEWORD(2,2), &Data);
1681 if (ret != 0) {
1682 err = WSAGetLastError();
1683 fprintf(stderr, "WSAStartup: %d\n", err);
1684 return -1;
1686 atexit(socket_cleanup);
1687 return 0;
1689 #endif
1691 /***********************************************************/
1692 /* Bluetooth support */
1693 static int nb_hcis;
1694 static int cur_hci;
1695 static struct HCIInfo *hci_table[MAX_NICS];
1697 static struct bt_vlan_s {
1698 struct bt_scatternet_s net;
1699 int id;
1700 struct bt_vlan_s *next;
1701 } *first_bt_vlan;
1703 /* find or alloc a new bluetooth "VLAN" */
1704 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1706 struct bt_vlan_s **pvlan, *vlan;
1707 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1708 if (vlan->id == id)
1709 return &vlan->net;
1711 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1712 vlan->id = id;
1713 pvlan = &first_bt_vlan;
1714 while (*pvlan != NULL)
1715 pvlan = &(*pvlan)->next;
1716 *pvlan = vlan;
1717 return &vlan->net;
1720 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1724 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1726 return -ENOTSUP;
1729 static struct HCIInfo null_hci = {
1730 .cmd_send = null_hci_send,
1731 .sco_send = null_hci_send,
1732 .acl_send = null_hci_send,
1733 .bdaddr_set = null_hci_addr_set,
1736 struct HCIInfo *qemu_next_hci(void)
1738 if (cur_hci == nb_hcis)
1739 return &null_hci;
1741 return hci_table[cur_hci++];
1744 static struct HCIInfo *hci_init(const char *str)
1746 char *endp;
1747 struct bt_scatternet_s *vlan = 0;
1749 if (!strcmp(str, "null"))
1750 /* null */
1751 return &null_hci;
1752 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1753 /* host[:hciN] */
1754 return bt_host_hci(str[4] ? str + 5 : "hci0");
1755 else if (!strncmp(str, "hci", 3)) {
1756 /* hci[,vlan=n] */
1757 if (str[3]) {
1758 if (!strncmp(str + 3, ",vlan=", 6)) {
1759 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1760 if (*endp)
1761 vlan = 0;
1763 } else
1764 vlan = qemu_find_bt_vlan(0);
1765 if (vlan)
1766 return bt_new_hci(vlan);
1769 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1771 return 0;
1774 static int bt_hci_parse(const char *str)
1776 struct HCIInfo *hci;
1777 bdaddr_t bdaddr;
1779 if (nb_hcis >= MAX_NICS) {
1780 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1781 return -1;
1784 hci = hci_init(str);
1785 if (!hci)
1786 return -1;
1788 bdaddr.b[0] = 0x52;
1789 bdaddr.b[1] = 0x54;
1790 bdaddr.b[2] = 0x00;
1791 bdaddr.b[3] = 0x12;
1792 bdaddr.b[4] = 0x34;
1793 bdaddr.b[5] = 0x56 + nb_hcis;
1794 hci->bdaddr_set(hci, bdaddr.b);
1796 hci_table[nb_hcis++] = hci;
1798 return 0;
1801 static void bt_vhci_add(int vlan_id)
1803 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1805 if (!vlan->slave)
1806 fprintf(stderr, "qemu: warning: adding a VHCI to "
1807 "an empty scatternet %i\n", vlan_id);
1809 bt_vhci_init(bt_new_hci(vlan));
1812 static struct bt_device_s *bt_device_add(const char *opt)
1814 struct bt_scatternet_s *vlan;
1815 int vlan_id = 0;
1816 char *endp = strstr(opt, ",vlan=");
1817 int len = (endp ? endp - opt : strlen(opt)) + 1;
1818 char devname[10];
1820 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1822 if (endp) {
1823 vlan_id = strtol(endp + 6, &endp, 0);
1824 if (*endp) {
1825 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1826 return 0;
1830 vlan = qemu_find_bt_vlan(vlan_id);
1832 if (!vlan->slave)
1833 fprintf(stderr, "qemu: warning: adding a slave device to "
1834 "an empty scatternet %i\n", vlan_id);
1836 if (!strcmp(devname, "keyboard"))
1837 return bt_keyboard_init(vlan);
1839 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1840 return 0;
1843 static int bt_parse(const char *opt)
1845 const char *endp, *p;
1846 int vlan;
1848 if (strstart(opt, "hci", &endp)) {
1849 if (!*endp || *endp == ',') {
1850 if (*endp)
1851 if (!strstart(endp, ",vlan=", 0))
1852 opt = endp + 1;
1854 return bt_hci_parse(opt);
1856 } else if (strstart(opt, "vhci", &endp)) {
1857 if (!*endp || *endp == ',') {
1858 if (*endp) {
1859 if (strstart(endp, ",vlan=", &p)) {
1860 vlan = strtol(p, (char **) &endp, 0);
1861 if (*endp) {
1862 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1863 return 1;
1865 } else {
1866 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1867 return 1;
1869 } else
1870 vlan = 0;
1872 bt_vhci_add(vlan);
1873 return 0;
1875 } else if (strstart(opt, "device:", &endp))
1876 return !bt_device_add(endp);
1878 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1879 return 1;
1882 /***********************************************************/
1883 /* QEMU Block devices */
1885 #define HD_ALIAS "index=%d,media=disk"
1886 #define CDROM_ALIAS "index=2,media=cdrom"
1887 #define FD_ALIAS "index=%d,if=floppy"
1888 #define PFLASH_ALIAS "if=pflash"
1889 #define MTD_ALIAS "if=mtd"
1890 #define SD_ALIAS "index=0,if=sd"
1892 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1894 va_list ap;
1895 char optstr[1024];
1896 QemuOpts *opts;
1898 va_start(ap, fmt);
1899 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1900 va_end(ap);
1902 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1903 if (!opts) {
1904 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1905 __FUNCTION__, optstr);
1906 return NULL;
1908 if (file)
1909 qemu_opt_set(opts, "file", file);
1910 return opts;
1913 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1915 DriveInfo *dinfo;
1917 /* seek interface, bus and unit */
1919 QTAILQ_FOREACH(dinfo, &drives, next) {
1920 if (dinfo->type == type &&
1921 dinfo->bus == bus &&
1922 dinfo->unit == unit)
1923 return dinfo;
1926 return NULL;
1929 DriveInfo *drive_get_by_id(const char *id)
1931 DriveInfo *dinfo;
1933 QTAILQ_FOREACH(dinfo, &drives, next) {
1934 if (strcmp(id, dinfo->id))
1935 continue;
1936 return dinfo;
1938 return NULL;
1941 int drive_get_max_bus(BlockInterfaceType type)
1943 int max_bus;
1944 DriveInfo *dinfo;
1946 max_bus = -1;
1947 QTAILQ_FOREACH(dinfo, &drives, next) {
1948 if(dinfo->type == type &&
1949 dinfo->bus > max_bus)
1950 max_bus = dinfo->bus;
1952 return max_bus;
1955 const char *drive_get_serial(BlockDriverState *bdrv)
1957 DriveInfo *dinfo;
1959 QTAILQ_FOREACH(dinfo, &drives, next) {
1960 if (dinfo->bdrv == bdrv)
1961 return dinfo->serial;
1964 return "\0";
1967 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1969 DriveInfo *dinfo;
1971 QTAILQ_FOREACH(dinfo, &drives, next) {
1972 if (dinfo->bdrv == bdrv)
1973 return dinfo->onerror;
1976 return BLOCK_ERR_STOP_ENOSPC;
1979 static void bdrv_format_print(void *opaque, const char *name)
1981 fprintf(stderr, " %s", name);
1984 void drive_uninit(DriveInfo *dinfo)
1986 qemu_opts_del(dinfo->opts);
1987 bdrv_delete(dinfo->bdrv);
1988 QTAILQ_REMOVE(&drives, dinfo, next);
1989 qemu_free(dinfo);
1992 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1993 int *fatal_error)
1995 const char *buf;
1996 const char *file = NULL;
1997 char devname[128];
1998 const char *serial;
1999 const char *mediastr = "";
2000 BlockInterfaceType type;
2001 enum { MEDIA_DISK, MEDIA_CDROM } media;
2002 int bus_id, unit_id;
2003 int cyls, heads, secs, translation;
2004 BlockDriver *drv = NULL;
2005 QEMUMachine *machine = opaque;
2006 int max_devs;
2007 int index;
2008 int cache;
2009 int aio = 0;
2010 int bdrv_flags, onerror;
2011 const char *devaddr;
2012 DriveInfo *dinfo;
2013 int snapshot = 0;
2015 *fatal_error = 1;
2017 translation = BIOS_ATA_TRANSLATION_AUTO;
2018 cache = 1;
2020 if (machine && machine->use_scsi) {
2021 type = IF_SCSI;
2022 max_devs = MAX_SCSI_DEVS;
2023 pstrcpy(devname, sizeof(devname), "scsi");
2024 } else {
2025 type = IF_IDE;
2026 max_devs = MAX_IDE_DEVS;
2027 pstrcpy(devname, sizeof(devname), "ide");
2029 media = MEDIA_DISK;
2031 /* extract parameters */
2032 bus_id = qemu_opt_get_number(opts, "bus", 0);
2033 unit_id = qemu_opt_get_number(opts, "unit", -1);
2034 index = qemu_opt_get_number(opts, "index", -1);
2036 cyls = qemu_opt_get_number(opts, "cyls", 0);
2037 heads = qemu_opt_get_number(opts, "heads", 0);
2038 secs = qemu_opt_get_number(opts, "secs", 0);
2040 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2042 file = qemu_opt_get(opts, "file");
2043 serial = qemu_opt_get(opts, "serial");
2045 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2046 pstrcpy(devname, sizeof(devname), buf);
2047 if (!strcmp(buf, "ide")) {
2048 type = IF_IDE;
2049 max_devs = MAX_IDE_DEVS;
2050 } else if (!strcmp(buf, "scsi")) {
2051 type = IF_SCSI;
2052 max_devs = MAX_SCSI_DEVS;
2053 } else if (!strcmp(buf, "floppy")) {
2054 type = IF_FLOPPY;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "pflash")) {
2057 type = IF_PFLASH;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "mtd")) {
2060 type = IF_MTD;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "sd")) {
2063 type = IF_SD;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "virtio")) {
2066 type = IF_VIRTIO;
2067 max_devs = 0;
2068 } else if (!strcmp(buf, "xen")) {
2069 type = IF_XEN;
2070 max_devs = 0;
2071 } else if (!strcmp(buf, "none")) {
2072 type = IF_NONE;
2073 max_devs = 0;
2074 } else {
2075 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2076 return NULL;
2080 if (cyls || heads || secs) {
2081 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2082 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2083 return NULL;
2085 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2086 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2087 return NULL;
2089 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2090 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2091 return NULL;
2095 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2096 if (!cyls) {
2097 fprintf(stderr,
2098 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2099 buf);
2100 return NULL;
2102 if (!strcmp(buf, "none"))
2103 translation = BIOS_ATA_TRANSLATION_NONE;
2104 else if (!strcmp(buf, "lba"))
2105 translation = BIOS_ATA_TRANSLATION_LBA;
2106 else if (!strcmp(buf, "auto"))
2107 translation = BIOS_ATA_TRANSLATION_AUTO;
2108 else {
2109 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2110 return NULL;
2114 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2115 if (!strcmp(buf, "disk")) {
2116 media = MEDIA_DISK;
2117 } else if (!strcmp(buf, "cdrom")) {
2118 if (cyls || secs || heads) {
2119 fprintf(stderr,
2120 "qemu: '%s' invalid physical CHS format\n", buf);
2121 return NULL;
2123 media = MEDIA_CDROM;
2124 } else {
2125 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2126 return NULL;
2130 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2131 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2132 cache = 0;
2133 else if (!strcmp(buf, "writethrough"))
2134 cache = 1;
2135 else if (!strcmp(buf, "writeback"))
2136 cache = 2;
2137 else {
2138 fprintf(stderr, "qemu: invalid cache option\n");
2139 return NULL;
2143 #ifdef CONFIG_LINUX_AIO
2144 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2145 if (!strcmp(buf, "threads"))
2146 aio = 0;
2147 else if (!strcmp(buf, "native"))
2148 aio = 1;
2149 else {
2150 fprintf(stderr, "qemu: invalid aio option\n");
2151 return NULL;
2154 #endif
2156 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2157 if (strcmp(buf, "?") == 0) {
2158 fprintf(stderr, "qemu: Supported formats:");
2159 bdrv_iterate_format(bdrv_format_print, NULL);
2160 fprintf(stderr, "\n");
2161 return NULL;
2163 drv = bdrv_find_format(buf);
2164 if (!drv) {
2165 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2166 return NULL;
2170 onerror = BLOCK_ERR_STOP_ENOSPC;
2171 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2172 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2173 fprintf(stderr, "werror is no supported by this format\n");
2174 return NULL;
2176 if (!strcmp(buf, "ignore"))
2177 onerror = BLOCK_ERR_IGNORE;
2178 else if (!strcmp(buf, "enospc"))
2179 onerror = BLOCK_ERR_STOP_ENOSPC;
2180 else if (!strcmp(buf, "stop"))
2181 onerror = BLOCK_ERR_STOP_ANY;
2182 else if (!strcmp(buf, "report"))
2183 onerror = BLOCK_ERR_REPORT;
2184 else {
2185 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2186 return NULL;
2190 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2191 if (type != IF_VIRTIO) {
2192 fprintf(stderr, "addr is not supported\n");
2193 return NULL;
2197 /* compute bus and unit according index */
2199 if (index != -1) {
2200 if (bus_id != 0 || unit_id != -1) {
2201 fprintf(stderr,
2202 "qemu: index cannot be used with bus and unit\n");
2203 return NULL;
2205 if (max_devs == 0)
2207 unit_id = index;
2208 bus_id = 0;
2209 } else {
2210 unit_id = index % max_devs;
2211 bus_id = index / max_devs;
2215 /* if user doesn't specify a unit_id,
2216 * try to find the first free
2219 if (unit_id == -1) {
2220 unit_id = 0;
2221 while (drive_get(type, bus_id, unit_id) != NULL) {
2222 unit_id++;
2223 if (max_devs && unit_id >= max_devs) {
2224 unit_id -= max_devs;
2225 bus_id++;
2230 /* check unit id */
2232 if (max_devs && unit_id >= max_devs) {
2233 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2234 unit_id, max_devs - 1);
2235 return NULL;
2239 * ignore multiple definitions
2242 if (drive_get(type, bus_id, unit_id) != NULL) {
2243 *fatal_error = 0;
2244 return NULL;
2247 /* init */
2249 dinfo = qemu_mallocz(sizeof(*dinfo));
2250 if ((buf = qemu_opts_id(opts)) != NULL) {
2251 dinfo->id = qemu_strdup(buf);
2252 } else {
2253 /* no id supplied -> create one */
2254 dinfo->id = qemu_mallocz(32);
2255 if (type == IF_IDE || type == IF_SCSI)
2256 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2257 if (max_devs)
2258 snprintf(dinfo->id, 32, "%s%i%s%i",
2259 devname, bus_id, mediastr, unit_id);
2260 else
2261 snprintf(dinfo->id, 32, "%s%s%i",
2262 devname, mediastr, unit_id);
2264 dinfo->bdrv = bdrv_new(dinfo->id);
2265 dinfo->devaddr = devaddr;
2266 dinfo->type = type;
2267 dinfo->bus = bus_id;
2268 dinfo->unit = unit_id;
2269 dinfo->onerror = onerror;
2270 dinfo->opts = opts;
2271 if (serial)
2272 strncpy(dinfo->serial, serial, sizeof(serial));
2273 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2275 switch(type) {
2276 case IF_IDE:
2277 case IF_SCSI:
2278 case IF_XEN:
2279 case IF_NONE:
2280 switch(media) {
2281 case MEDIA_DISK:
2282 if (cyls != 0) {
2283 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2284 bdrv_set_translation_hint(dinfo->bdrv, translation);
2286 break;
2287 case MEDIA_CDROM:
2288 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2289 break;
2291 break;
2292 case IF_SD:
2293 /* FIXME: This isn't really a floppy, but it's a reasonable
2294 approximation. */
2295 case IF_FLOPPY:
2296 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2297 break;
2298 case IF_PFLASH:
2299 case IF_MTD:
2300 break;
2301 case IF_VIRTIO:
2302 /* add virtio block device */
2303 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2304 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2305 qemu_opt_set(opts, "drive", dinfo->id);
2306 if (devaddr)
2307 qemu_opt_set(opts, "addr", devaddr);
2308 break;
2309 case IF_COUNT:
2310 abort();
2312 if (!file) {
2313 *fatal_error = 0;
2314 return NULL;
2316 bdrv_flags = 0;
2317 if (snapshot) {
2318 bdrv_flags |= BDRV_O_SNAPSHOT;
2319 cache = 2; /* always use write-back with snapshot */
2321 if (cache == 0) /* no caching */
2322 bdrv_flags |= BDRV_O_NOCACHE;
2323 else if (cache == 2) /* write-back */
2324 bdrv_flags |= BDRV_O_CACHE_WB;
2326 if (aio == 1) {
2327 bdrv_flags |= BDRV_O_NATIVE_AIO;
2328 } else {
2329 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2332 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2333 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2334 file, strerror(errno));
2335 return NULL;
2338 if (bdrv_key_required(dinfo->bdrv))
2339 autostart = 0;
2340 *fatal_error = 0;
2341 return dinfo;
2344 static int drive_init_func(QemuOpts *opts, void *opaque)
2346 QEMUMachine *machine = opaque;
2347 int fatal_error = 0;
2349 if (drive_init(opts, machine, &fatal_error) == NULL) {
2350 if (fatal_error)
2351 return 1;
2353 return 0;
2356 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2358 if (NULL == qemu_opt_get(opts, "snapshot")) {
2359 qemu_opt_set(opts, "snapshot", "on");
2361 return 0;
2364 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2366 boot_set_handler = func;
2367 boot_set_opaque = opaque;
2370 int qemu_boot_set(const char *boot_devices)
2372 if (!boot_set_handler) {
2373 return -EINVAL;
2375 return boot_set_handler(boot_set_opaque, boot_devices);
2378 static int parse_bootdevices(char *devices)
2380 /* We just do some generic consistency checks */
2381 const char *p;
2382 int bitmap = 0;
2384 for (p = devices; *p != '\0'; p++) {
2385 /* Allowed boot devices are:
2386 * a-b: floppy disk drives
2387 * c-f: IDE disk drives
2388 * g-m: machine implementation dependant drives
2389 * n-p: network devices
2390 * It's up to each machine implementation to check if the given boot
2391 * devices match the actual hardware implementation and firmware
2392 * features.
2394 if (*p < 'a' || *p > 'p') {
2395 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2396 exit(1);
2398 if (bitmap & (1 << (*p - 'a'))) {
2399 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2400 exit(1);
2402 bitmap |= 1 << (*p - 'a');
2404 return bitmap;
2407 static void restore_boot_devices(void *opaque)
2409 char *standard_boot_devices = opaque;
2411 qemu_boot_set(standard_boot_devices);
2413 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2414 qemu_free(standard_boot_devices);
2417 static void numa_add(const char *optarg)
2419 char option[128];
2420 char *endptr;
2421 unsigned long long value, endvalue;
2422 int nodenr;
2424 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2425 if (!strcmp(option, "node")) {
2426 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2427 nodenr = nb_numa_nodes;
2428 } else {
2429 nodenr = strtoull(option, NULL, 10);
2432 if (get_param_value(option, 128, "mem", optarg) == 0) {
2433 node_mem[nodenr] = 0;
2434 } else {
2435 value = strtoull(option, &endptr, 0);
2436 switch (*endptr) {
2437 case 0: case 'M': case 'm':
2438 value <<= 20;
2439 break;
2440 case 'G': case 'g':
2441 value <<= 30;
2442 break;
2444 node_mem[nodenr] = value;
2446 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2447 node_cpumask[nodenr] = 0;
2448 } else {
2449 value = strtoull(option, &endptr, 10);
2450 if (value >= 64) {
2451 value = 63;
2452 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2453 } else {
2454 if (*endptr == '-') {
2455 endvalue = strtoull(endptr+1, &endptr, 10);
2456 if (endvalue >= 63) {
2457 endvalue = 62;
2458 fprintf(stderr,
2459 "only 63 CPUs in NUMA mode supported.\n");
2461 value = (1 << (endvalue + 1)) - (1 << value);
2462 } else {
2463 value = 1 << value;
2466 node_cpumask[nodenr] = value;
2468 nb_numa_nodes++;
2470 return;
2473 static void smp_parse(const char *optarg)
2475 int smp, sockets = 0, threads = 0, cores = 0;
2476 char *endptr;
2477 char option[128];
2479 smp = strtoul(optarg, &endptr, 10);
2480 if (endptr != optarg) {
2481 if (*endptr == ',') {
2482 endptr++;
2485 if (get_param_value(option, 128, "sockets", endptr) != 0)
2486 sockets = strtoull(option, NULL, 10);
2487 if (get_param_value(option, 128, "cores", endptr) != 0)
2488 cores = strtoull(option, NULL, 10);
2489 if (get_param_value(option, 128, "threads", endptr) != 0)
2490 threads = strtoull(option, NULL, 10);
2491 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2492 max_cpus = strtoull(option, NULL, 10);
2494 /* compute missing values, prefer sockets over cores over threads */
2495 if (smp == 0 || sockets == 0) {
2496 sockets = sockets > 0 ? sockets : 1;
2497 cores = cores > 0 ? cores : 1;
2498 threads = threads > 0 ? threads : 1;
2499 if (smp == 0) {
2500 smp = cores * threads * sockets;
2501 } else {
2502 sockets = smp / (cores * threads);
2504 } else {
2505 if (cores == 0) {
2506 threads = threads > 0 ? threads : 1;
2507 cores = smp / (sockets * threads);
2508 } else {
2509 if (sockets == 0) {
2510 sockets = smp / (cores * threads);
2511 } else {
2512 threads = smp / (cores * sockets);
2516 smp_cpus = smp;
2517 smp_cores = cores > 0 ? cores : 1;
2518 smp_threads = threads > 0 ? threads : 1;
2519 if (max_cpus == 0)
2520 max_cpus = smp_cpus;
2523 /***********************************************************/
2524 /* USB devices */
2526 static void usb_msd_password_cb(void *opaque, int err)
2528 USBDevice *dev = opaque;
2530 if (!err)
2531 usb_device_attach(dev);
2532 else
2533 dev->info->handle_destroy(dev);
2536 static struct {
2537 const char *name;
2538 const char *qdev;
2539 } usbdevs[] = {
2541 .name = "mouse",
2542 .qdev = "QEMU USB Mouse",
2544 .name = "tablet",
2545 .qdev = "QEMU USB Tablet",
2547 .name = "keyboard",
2548 .qdev = "QEMU USB Keyboard",
2550 .name = "wacom-tablet",
2551 .qdev = "QEMU PenPartner Tablet",
2555 static int usb_device_add(const char *devname, int is_hotplug)
2557 const char *p;
2558 USBBus *bus = usb_bus_find(-1 /* any */);
2559 USBDevice *dev = NULL;
2560 int i;
2562 if (!usb_enabled)
2563 return -1;
2565 /* simple devices which don't need extra care */
2566 for (i = 0; i < ARRAY_SIZE(usbdevs); i++) {
2567 if (strcmp(devname, usbdevs[i].name) != 0)
2568 continue;
2569 dev = usb_create_simple(bus, usbdevs[i].qdev);
2570 goto done;
2573 /* the other ones */
2574 if (strstart(devname, "host:", &p)) {
2575 dev = usb_host_device_open(p);
2576 } else if (strstart(devname, "disk:", &p)) {
2577 BlockDriverState *bs;
2579 dev = usb_msd_init(p);
2580 if (!dev)
2581 return -1;
2582 bs = usb_msd_get_bdrv(dev);
2583 if (bdrv_key_required(bs)) {
2584 autostart = 0;
2585 if (is_hotplug) {
2586 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2587 dev);
2588 return 0;
2591 } else if (strstart(devname, "serial:", &p)) {
2592 dev = usb_serial_init(p);
2593 #ifdef CONFIG_BRLAPI
2594 } else if (!strcmp(devname, "braille")) {
2595 dev = usb_baum_init();
2596 #endif
2597 } else if (strstart(devname, "net:", &p)) {
2598 QemuOpts *opts;
2599 int idx;
2601 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2602 if (!opts) {
2603 return -1;
2606 qemu_opt_set(opts, "type", "nic");
2607 qemu_opt_set(opts, "model", "usb");
2609 idx = net_client_init(NULL, opts, 0);
2610 if (idx == -1) {
2611 return -1;
2614 dev = usb_net_init(&nd_table[idx]);
2615 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2616 dev = usb_bt_init(devname[2] ? hci_init(p) :
2617 bt_new_hci(qemu_find_bt_vlan(0)));
2618 } else {
2619 return -1;
2621 if (!dev)
2622 return -1;
2624 done:
2625 return 0;
2628 static int usb_device_del(const char *devname)
2630 int bus_num, addr;
2631 const char *p;
2633 if (strstart(devname, "host:", &p))
2634 return usb_host_device_close(p);
2636 if (!usb_enabled)
2637 return -1;
2639 p = strchr(devname, '.');
2640 if (!p)
2641 return -1;
2642 bus_num = strtoul(devname, NULL, 0);
2643 addr = strtoul(p + 1, NULL, 0);
2645 return usb_device_delete_addr(bus_num, addr);
2648 static int usb_parse(const char *cmdline)
2650 return usb_device_add(cmdline, 0);
2653 void do_usb_add(Monitor *mon, const QDict *qdict)
2655 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2658 void do_usb_del(Monitor *mon, const QDict *qdict)
2660 usb_device_del(qdict_get_str(qdict, "devname"));
2663 /***********************************************************/
2664 /* PCMCIA/Cardbus */
2666 static struct pcmcia_socket_entry_s {
2667 PCMCIASocket *socket;
2668 struct pcmcia_socket_entry_s *next;
2669 } *pcmcia_sockets = 0;
2671 void pcmcia_socket_register(PCMCIASocket *socket)
2673 struct pcmcia_socket_entry_s *entry;
2675 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2676 entry->socket = socket;
2677 entry->next = pcmcia_sockets;
2678 pcmcia_sockets = entry;
2681 void pcmcia_socket_unregister(PCMCIASocket *socket)
2683 struct pcmcia_socket_entry_s *entry, **ptr;
2685 ptr = &pcmcia_sockets;
2686 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2687 if (entry->socket == socket) {
2688 *ptr = entry->next;
2689 qemu_free(entry);
2693 void pcmcia_info(Monitor *mon)
2695 struct pcmcia_socket_entry_s *iter;
2697 if (!pcmcia_sockets)
2698 monitor_printf(mon, "No PCMCIA sockets\n");
2700 for (iter = pcmcia_sockets; iter; iter = iter->next)
2701 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2702 iter->socket->attached ? iter->socket->card_string :
2703 "Empty");
2706 /***********************************************************/
2707 /* register display */
2709 struct DisplayAllocator default_allocator = {
2710 defaultallocator_create_displaysurface,
2711 defaultallocator_resize_displaysurface,
2712 defaultallocator_free_displaysurface
2715 void register_displaystate(DisplayState *ds)
2717 DisplayState **s;
2718 s = &display_state;
2719 while (*s != NULL)
2720 s = &(*s)->next;
2721 ds->next = NULL;
2722 *s = ds;
2725 DisplayState *get_displaystate(void)
2727 return display_state;
2730 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2732 if(ds->allocator == &default_allocator) ds->allocator = da;
2733 return ds->allocator;
2736 /* dumb display */
2738 static void dumb_display_init(void)
2740 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2741 ds->allocator = &default_allocator;
2742 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2743 register_displaystate(ds);
2746 /***********************************************************/
2747 /* I/O handling */
2749 typedef struct IOHandlerRecord {
2750 int fd;
2751 IOCanRWHandler *fd_read_poll;
2752 IOHandler *fd_read;
2753 IOHandler *fd_write;
2754 int deleted;
2755 void *opaque;
2756 /* temporary data */
2757 struct pollfd *ufd;
2758 struct IOHandlerRecord *next;
2759 } IOHandlerRecord;
2761 static IOHandlerRecord *first_io_handler;
2763 /* XXX: fd_read_poll should be suppressed, but an API change is
2764 necessary in the character devices to suppress fd_can_read(). */
2765 int qemu_set_fd_handler2(int fd,
2766 IOCanRWHandler *fd_read_poll,
2767 IOHandler *fd_read,
2768 IOHandler *fd_write,
2769 void *opaque)
2771 IOHandlerRecord **pioh, *ioh;
2773 if (!fd_read && !fd_write) {
2774 pioh = &first_io_handler;
2775 for(;;) {
2776 ioh = *pioh;
2777 if (ioh == NULL)
2778 break;
2779 if (ioh->fd == fd) {
2780 ioh->deleted = 1;
2781 break;
2783 pioh = &ioh->next;
2785 } else {
2786 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2787 if (ioh->fd == fd)
2788 goto found;
2790 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2791 ioh->next = first_io_handler;
2792 first_io_handler = ioh;
2793 found:
2794 ioh->fd = fd;
2795 ioh->fd_read_poll = fd_read_poll;
2796 ioh->fd_read = fd_read;
2797 ioh->fd_write = fd_write;
2798 ioh->opaque = opaque;
2799 ioh->deleted = 0;
2801 return 0;
2804 int qemu_set_fd_handler(int fd,
2805 IOHandler *fd_read,
2806 IOHandler *fd_write,
2807 void *opaque)
2809 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2812 #ifdef _WIN32
2813 /***********************************************************/
2814 /* Polling handling */
2816 typedef struct PollingEntry {
2817 PollingFunc *func;
2818 void *opaque;
2819 struct PollingEntry *next;
2820 } PollingEntry;
2822 static PollingEntry *first_polling_entry;
2824 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2826 PollingEntry **ppe, *pe;
2827 pe = qemu_mallocz(sizeof(PollingEntry));
2828 pe->func = func;
2829 pe->opaque = opaque;
2830 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2831 *ppe = pe;
2832 return 0;
2835 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2837 PollingEntry **ppe, *pe;
2838 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2839 pe = *ppe;
2840 if (pe->func == func && pe->opaque == opaque) {
2841 *ppe = pe->next;
2842 qemu_free(pe);
2843 break;
2848 /***********************************************************/
2849 /* Wait objects support */
2850 typedef struct WaitObjects {
2851 int num;
2852 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2853 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2854 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2855 } WaitObjects;
2857 static WaitObjects wait_objects = {0};
2859 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2861 WaitObjects *w = &wait_objects;
2863 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2864 return -1;
2865 w->events[w->num] = handle;
2866 w->func[w->num] = func;
2867 w->opaque[w->num] = opaque;
2868 w->num++;
2869 return 0;
2872 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2874 int i, found;
2875 WaitObjects *w = &wait_objects;
2877 found = 0;
2878 for (i = 0; i < w->num; i++) {
2879 if (w->events[i] == handle)
2880 found = 1;
2881 if (found) {
2882 w->events[i] = w->events[i + 1];
2883 w->func[i] = w->func[i + 1];
2884 w->opaque[i] = w->opaque[i + 1];
2887 if (found)
2888 w->num--;
2890 #endif
2892 /***********************************************************/
2893 /* ram save/restore */
2895 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2896 #define RAM_SAVE_FLAG_COMPRESS 0x02
2897 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2898 #define RAM_SAVE_FLAG_PAGE 0x08
2899 #define RAM_SAVE_FLAG_EOS 0x10
2901 static int is_dup_page(uint8_t *page, uint8_t ch)
2903 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2904 uint32_t *array = (uint32_t *)page;
2905 int i;
2907 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2908 if (array[i] != val)
2909 return 0;
2912 return 1;
2915 static int ram_save_block(QEMUFile *f)
2917 static ram_addr_t current_addr = 0;
2918 ram_addr_t saved_addr = current_addr;
2919 ram_addr_t addr = 0;
2920 int found = 0;
2922 while (addr < last_ram_offset) {
2923 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2924 uint8_t *p;
2926 cpu_physical_memory_reset_dirty(current_addr,
2927 current_addr + TARGET_PAGE_SIZE,
2928 MIGRATION_DIRTY_FLAG);
2930 p = qemu_get_ram_ptr(current_addr);
2932 if (is_dup_page(p, *p)) {
2933 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2934 qemu_put_byte(f, *p);
2935 } else {
2936 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2937 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2940 found = 1;
2941 break;
2943 addr += TARGET_PAGE_SIZE;
2944 current_addr = (saved_addr + addr) % last_ram_offset;
2947 return found;
2950 static uint64_t bytes_transferred = 0;
2952 static ram_addr_t ram_save_remaining(void)
2954 ram_addr_t addr;
2955 ram_addr_t count = 0;
2957 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2958 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2959 count++;
2962 return count;
2965 uint64_t ram_bytes_remaining(void)
2967 return ram_save_remaining() * TARGET_PAGE_SIZE;
2970 uint64_t ram_bytes_transferred(void)
2972 return bytes_transferred;
2975 uint64_t ram_bytes_total(void)
2977 return last_ram_offset;
2980 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2982 ram_addr_t addr;
2983 uint64_t bytes_transferred_last;
2984 double bwidth = 0;
2985 uint64_t expected_time = 0;
2987 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2988 qemu_file_set_error(f);
2989 return 0;
2992 if (stage == 1) {
2993 /* Make sure all dirty bits are set */
2994 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2995 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2996 cpu_physical_memory_set_dirty(addr);
2999 /* Enable dirty memory tracking */
3000 cpu_physical_memory_set_dirty_tracking(1);
3002 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3005 bytes_transferred_last = bytes_transferred;
3006 bwidth = get_clock();
3008 while (!qemu_file_rate_limit(f)) {
3009 int ret;
3011 ret = ram_save_block(f);
3012 bytes_transferred += ret * TARGET_PAGE_SIZE;
3013 if (ret == 0) /* no more blocks */
3014 break;
3017 bwidth = get_clock() - bwidth;
3018 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3020 /* if we haven't transferred anything this round, force expected_time to a
3021 * a very high value, but without crashing */
3022 if (bwidth == 0)
3023 bwidth = 0.000001;
3025 /* try transferring iterative blocks of memory */
3027 if (stage == 3) {
3029 /* flush all remaining blocks regardless of rate limiting */
3030 while (ram_save_block(f) != 0) {
3031 bytes_transferred += TARGET_PAGE_SIZE;
3033 cpu_physical_memory_set_dirty_tracking(0);
3036 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3038 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3040 return (stage == 2) && (expected_time <= migrate_max_downtime());
3043 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3045 ram_addr_t addr;
3046 int flags;
3048 if (version_id != 3)
3049 return -EINVAL;
3051 do {
3052 addr = qemu_get_be64(f);
3054 flags = addr & ~TARGET_PAGE_MASK;
3055 addr &= TARGET_PAGE_MASK;
3057 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3058 if (addr != last_ram_offset)
3059 return -EINVAL;
3062 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3063 uint8_t ch = qemu_get_byte(f);
3064 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3065 #ifndef _WIN32
3066 if (ch == 0 &&
3067 (!kvm_enabled() || kvm_has_sync_mmu())) {
3068 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3070 #endif
3071 } else if (flags & RAM_SAVE_FLAG_PAGE)
3072 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3073 } while (!(flags & RAM_SAVE_FLAG_EOS));
3075 return 0;
3078 void qemu_service_io(void)
3080 qemu_notify_event();
3083 /***********************************************************/
3084 /* bottom halves (can be seen as timers which expire ASAP) */
3086 struct QEMUBH {
3087 QEMUBHFunc *cb;
3088 void *opaque;
3089 int scheduled;
3090 int idle;
3091 int deleted;
3092 QEMUBH *next;
3095 static QEMUBH *first_bh = NULL;
3097 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3099 QEMUBH *bh;
3100 bh = qemu_mallocz(sizeof(QEMUBH));
3101 bh->cb = cb;
3102 bh->opaque = opaque;
3103 bh->next = first_bh;
3104 first_bh = bh;
3105 return bh;
3108 int qemu_bh_poll(void)
3110 QEMUBH *bh, **bhp;
3111 int ret;
3113 ret = 0;
3114 for (bh = first_bh; bh; bh = bh->next) {
3115 if (!bh->deleted && bh->scheduled) {
3116 bh->scheduled = 0;
3117 if (!bh->idle)
3118 ret = 1;
3119 bh->idle = 0;
3120 bh->cb(bh->opaque);
3124 /* remove deleted bhs */
3125 bhp = &first_bh;
3126 while (*bhp) {
3127 bh = *bhp;
3128 if (bh->deleted) {
3129 *bhp = bh->next;
3130 qemu_free(bh);
3131 } else
3132 bhp = &bh->next;
3135 return ret;
3138 void qemu_bh_schedule_idle(QEMUBH *bh)
3140 if (bh->scheduled)
3141 return;
3142 bh->scheduled = 1;
3143 bh->idle = 1;
3146 void qemu_bh_schedule(QEMUBH *bh)
3148 if (bh->scheduled)
3149 return;
3150 bh->scheduled = 1;
3151 bh->idle = 0;
3152 /* stop the currently executing CPU to execute the BH ASAP */
3153 qemu_notify_event();
3156 void qemu_bh_cancel(QEMUBH *bh)
3158 bh->scheduled = 0;
3161 void qemu_bh_delete(QEMUBH *bh)
3163 bh->scheduled = 0;
3164 bh->deleted = 1;
3167 static void qemu_bh_update_timeout(int *timeout)
3169 QEMUBH *bh;
3171 for (bh = first_bh; bh; bh = bh->next) {
3172 if (!bh->deleted && bh->scheduled) {
3173 if (bh->idle) {
3174 /* idle bottom halves will be polled at least
3175 * every 10ms */
3176 *timeout = MIN(10, *timeout);
3177 } else {
3178 /* non-idle bottom halves will be executed
3179 * immediately */
3180 *timeout = 0;
3181 break;
3187 /***********************************************************/
3188 /* machine registration */
3190 static QEMUMachine *first_machine = NULL;
3191 QEMUMachine *current_machine = NULL;
3193 int qemu_register_machine(QEMUMachine *m)
3195 QEMUMachine **pm;
3196 pm = &first_machine;
3197 while (*pm != NULL)
3198 pm = &(*pm)->next;
3199 m->next = NULL;
3200 *pm = m;
3201 return 0;
3204 static QEMUMachine *find_machine(const char *name)
3206 QEMUMachine *m;
3208 for(m = first_machine; m != NULL; m = m->next) {
3209 if (!strcmp(m->name, name))
3210 return m;
3211 if (m->alias && !strcmp(m->alias, name))
3212 return m;
3214 return NULL;
3217 static QEMUMachine *find_default_machine(void)
3219 QEMUMachine *m;
3221 for(m = first_machine; m != NULL; m = m->next) {
3222 if (m->is_default) {
3223 return m;
3226 return NULL;
3229 /***********************************************************/
3230 /* main execution loop */
3232 static void gui_update(void *opaque)
3234 uint64_t interval = GUI_REFRESH_INTERVAL;
3235 DisplayState *ds = opaque;
3236 DisplayChangeListener *dcl = ds->listeners;
3238 dpy_refresh(ds);
3240 while (dcl != NULL) {
3241 if (dcl->gui_timer_interval &&
3242 dcl->gui_timer_interval < interval)
3243 interval = dcl->gui_timer_interval;
3244 dcl = dcl->next;
3246 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3249 static void nographic_update(void *opaque)
3251 uint64_t interval = GUI_REFRESH_INTERVAL;
3253 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3256 struct vm_change_state_entry {
3257 VMChangeStateHandler *cb;
3258 void *opaque;
3259 QLIST_ENTRY (vm_change_state_entry) entries;
3262 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3264 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3265 void *opaque)
3267 VMChangeStateEntry *e;
3269 e = qemu_mallocz(sizeof (*e));
3271 e->cb = cb;
3272 e->opaque = opaque;
3273 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3274 return e;
3277 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3279 QLIST_REMOVE (e, entries);
3280 qemu_free (e);
3283 static void vm_state_notify(int running, int reason)
3285 VMChangeStateEntry *e;
3287 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3288 e->cb(e->opaque, running, reason);
3292 static void resume_all_vcpus(void);
3293 static void pause_all_vcpus(void);
3295 void vm_start(void)
3297 if (!vm_running) {
3298 cpu_enable_ticks();
3299 vm_running = 1;
3300 vm_state_notify(1, 0);
3301 qemu_rearm_alarm_timer(alarm_timer);
3302 resume_all_vcpus();
3306 /* reset/shutdown handler */
3308 typedef struct QEMUResetEntry {
3309 QTAILQ_ENTRY(QEMUResetEntry) entry;
3310 QEMUResetHandler *func;
3311 void *opaque;
3312 } QEMUResetEntry;
3314 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3315 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3316 static int reset_requested;
3317 static int shutdown_requested;
3318 static int powerdown_requested;
3319 static int debug_requested;
3320 static int vmstop_requested;
3322 int qemu_shutdown_requested(void)
3324 int r = shutdown_requested;
3325 shutdown_requested = 0;
3326 return r;
3329 int qemu_reset_requested(void)
3331 int r = reset_requested;
3332 reset_requested = 0;
3333 return r;
3336 int qemu_powerdown_requested(void)
3338 int r = powerdown_requested;
3339 powerdown_requested = 0;
3340 return r;
3343 static int qemu_debug_requested(void)
3345 int r = debug_requested;
3346 debug_requested = 0;
3347 return r;
3350 static int qemu_vmstop_requested(void)
3352 int r = vmstop_requested;
3353 vmstop_requested = 0;
3354 return r;
3357 static void do_vm_stop(int reason)
3359 if (vm_running) {
3360 cpu_disable_ticks();
3361 vm_running = 0;
3362 pause_all_vcpus();
3363 vm_state_notify(0, reason);
3367 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3369 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3371 re->func = func;
3372 re->opaque = opaque;
3373 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3376 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3378 QEMUResetEntry *re;
3380 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3381 if (re->func == func && re->opaque == opaque) {
3382 QTAILQ_REMOVE(&reset_handlers, re, entry);
3383 qemu_free(re);
3384 return;
3389 void qemu_system_reset(void)
3391 QEMUResetEntry *re, *nre;
3393 /* reset all devices */
3394 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3395 re->func(re->opaque);
3399 void qemu_system_reset_request(void)
3401 if (no_reboot) {
3402 shutdown_requested = 1;
3403 } else {
3404 reset_requested = 1;
3406 qemu_notify_event();
3409 void qemu_system_shutdown_request(void)
3411 shutdown_requested = 1;
3412 qemu_notify_event();
3415 void qemu_system_powerdown_request(void)
3417 powerdown_requested = 1;
3418 qemu_notify_event();
3421 #ifdef CONFIG_IOTHREAD
3422 static void qemu_system_vmstop_request(int reason)
3424 vmstop_requested = reason;
3425 qemu_notify_event();
3427 #endif
3429 #ifndef _WIN32
3430 static int io_thread_fd = -1;
3432 static void qemu_event_increment(void)
3434 static const char byte = 0;
3436 if (io_thread_fd == -1)
3437 return;
3439 write(io_thread_fd, &byte, sizeof(byte));
3442 static void qemu_event_read(void *opaque)
3444 int fd = (unsigned long)opaque;
3445 ssize_t len;
3447 /* Drain the notify pipe */
3448 do {
3449 char buffer[512];
3450 len = read(fd, buffer, sizeof(buffer));
3451 } while ((len == -1 && errno == EINTR) || len > 0);
3454 static int qemu_event_init(void)
3456 int err;
3457 int fds[2];
3459 err = pipe(fds);
3460 if (err == -1)
3461 return -errno;
3463 err = fcntl_setfl(fds[0], O_NONBLOCK);
3464 if (err < 0)
3465 goto fail;
3467 err = fcntl_setfl(fds[1], O_NONBLOCK);
3468 if (err < 0)
3469 goto fail;
3471 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3472 (void *)(unsigned long)fds[0]);
3474 io_thread_fd = fds[1];
3475 return 0;
3477 fail:
3478 close(fds[0]);
3479 close(fds[1]);
3480 return err;
3482 #else
3483 HANDLE qemu_event_handle;
3485 static void dummy_event_handler(void *opaque)
3489 static int qemu_event_init(void)
3491 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3492 if (!qemu_event_handle) {
3493 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3494 return -1;
3496 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3497 return 0;
3500 static void qemu_event_increment(void)
3502 if (!SetEvent(qemu_event_handle)) {
3503 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3504 GetLastError());
3505 exit (1);
3508 #endif
3510 static int cpu_can_run(CPUState *env)
3512 if (env->stop)
3513 return 0;
3514 if (env->stopped)
3515 return 0;
3516 return 1;
3519 #ifndef CONFIG_IOTHREAD
3520 static int qemu_init_main_loop(void)
3522 return qemu_event_init();
3525 void qemu_init_vcpu(void *_env)
3527 CPUState *env = _env;
3529 if (kvm_enabled())
3530 kvm_init_vcpu(env);
3531 env->nr_cores = smp_cores;
3532 env->nr_threads = smp_threads;
3533 return;
3536 int qemu_cpu_self(void *env)
3538 return 1;
3541 static void resume_all_vcpus(void)
3545 static void pause_all_vcpus(void)
3549 void qemu_cpu_kick(void *env)
3551 return;
3554 void qemu_notify_event(void)
3556 CPUState *env = cpu_single_env;
3558 if (env) {
3559 cpu_exit(env);
3563 void qemu_mutex_lock_iothread(void) {}
3564 void qemu_mutex_unlock_iothread(void) {}
3566 void vm_stop(int reason)
3568 do_vm_stop(reason);
3571 #else /* CONFIG_IOTHREAD */
3573 #include "qemu-thread.h"
3575 QemuMutex qemu_global_mutex;
3576 static QemuMutex qemu_fair_mutex;
3578 static QemuThread io_thread;
3580 static QemuThread *tcg_cpu_thread;
3581 static QemuCond *tcg_halt_cond;
3583 static int qemu_system_ready;
3584 /* cpu creation */
3585 static QemuCond qemu_cpu_cond;
3586 /* system init */
3587 static QemuCond qemu_system_cond;
3588 static QemuCond qemu_pause_cond;
3590 static void block_io_signals(void);
3591 static void unblock_io_signals(void);
3592 static int tcg_has_work(void);
3594 static int qemu_init_main_loop(void)
3596 int ret;
3598 ret = qemu_event_init();
3599 if (ret)
3600 return ret;
3602 qemu_cond_init(&qemu_pause_cond);
3603 qemu_mutex_init(&qemu_fair_mutex);
3604 qemu_mutex_init(&qemu_global_mutex);
3605 qemu_mutex_lock(&qemu_global_mutex);
3607 unblock_io_signals();
3608 qemu_thread_self(&io_thread);
3610 return 0;
3613 static void qemu_wait_io_event(CPUState *env)
3615 while (!tcg_has_work())
3616 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3618 qemu_mutex_unlock(&qemu_global_mutex);
3621 * Users of qemu_global_mutex can be starved, having no chance
3622 * to acquire it since this path will get to it first.
3623 * So use another lock to provide fairness.
3625 qemu_mutex_lock(&qemu_fair_mutex);
3626 qemu_mutex_unlock(&qemu_fair_mutex);
3628 qemu_mutex_lock(&qemu_global_mutex);
3629 if (env->stop) {
3630 env->stop = 0;
3631 env->stopped = 1;
3632 qemu_cond_signal(&qemu_pause_cond);
3636 static int qemu_cpu_exec(CPUState *env);
3638 static void *kvm_cpu_thread_fn(void *arg)
3640 CPUState *env = arg;
3642 block_io_signals();
3643 qemu_thread_self(env->thread);
3644 if (kvm_enabled())
3645 kvm_init_vcpu(env);
3647 /* signal CPU creation */
3648 qemu_mutex_lock(&qemu_global_mutex);
3649 env->created = 1;
3650 qemu_cond_signal(&qemu_cpu_cond);
3652 /* and wait for machine initialization */
3653 while (!qemu_system_ready)
3654 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3656 while (1) {
3657 if (cpu_can_run(env))
3658 qemu_cpu_exec(env);
3659 qemu_wait_io_event(env);
3662 return NULL;
3665 static void tcg_cpu_exec(void);
3667 static void *tcg_cpu_thread_fn(void *arg)
3669 CPUState *env = arg;
3671 block_io_signals();
3672 qemu_thread_self(env->thread);
3674 /* signal CPU creation */
3675 qemu_mutex_lock(&qemu_global_mutex);
3676 for (env = first_cpu; env != NULL; env = env->next_cpu)
3677 env->created = 1;
3678 qemu_cond_signal(&qemu_cpu_cond);
3680 /* and wait for machine initialization */
3681 while (!qemu_system_ready)
3682 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3684 while (1) {
3685 tcg_cpu_exec();
3686 qemu_wait_io_event(cur_cpu);
3689 return NULL;
3692 void qemu_cpu_kick(void *_env)
3694 CPUState *env = _env;
3695 qemu_cond_broadcast(env->halt_cond);
3696 if (kvm_enabled())
3697 qemu_thread_signal(env->thread, SIGUSR1);
3700 int qemu_cpu_self(void *_env)
3702 CPUState *env = _env;
3703 QemuThread this;
3705 qemu_thread_self(&this);
3707 return qemu_thread_equal(&this, env->thread);
3710 static void cpu_signal(int sig)
3712 if (cpu_single_env)
3713 cpu_exit(cpu_single_env);
3716 static void block_io_signals(void)
3718 sigset_t set;
3719 struct sigaction sigact;
3721 sigemptyset(&set);
3722 sigaddset(&set, SIGUSR2);
3723 sigaddset(&set, SIGIO);
3724 sigaddset(&set, SIGALRM);
3725 pthread_sigmask(SIG_BLOCK, &set, NULL);
3727 sigemptyset(&set);
3728 sigaddset(&set, SIGUSR1);
3729 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3731 memset(&sigact, 0, sizeof(sigact));
3732 sigact.sa_handler = cpu_signal;
3733 sigaction(SIGUSR1, &sigact, NULL);
3736 static void unblock_io_signals(void)
3738 sigset_t set;
3740 sigemptyset(&set);
3741 sigaddset(&set, SIGUSR2);
3742 sigaddset(&set, SIGIO);
3743 sigaddset(&set, SIGALRM);
3744 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3746 sigemptyset(&set);
3747 sigaddset(&set, SIGUSR1);
3748 pthread_sigmask(SIG_BLOCK, &set, NULL);
3751 static void qemu_signal_lock(unsigned int msecs)
3753 qemu_mutex_lock(&qemu_fair_mutex);
3755 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3756 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3757 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3758 break;
3760 qemu_mutex_unlock(&qemu_fair_mutex);
3763 void qemu_mutex_lock_iothread(void)
3765 if (kvm_enabled()) {
3766 qemu_mutex_lock(&qemu_fair_mutex);
3767 qemu_mutex_lock(&qemu_global_mutex);
3768 qemu_mutex_unlock(&qemu_fair_mutex);
3769 } else
3770 qemu_signal_lock(100);
3773 void qemu_mutex_unlock_iothread(void)
3775 qemu_mutex_unlock(&qemu_global_mutex);
3778 static int all_vcpus_paused(void)
3780 CPUState *penv = first_cpu;
3782 while (penv) {
3783 if (!penv->stopped)
3784 return 0;
3785 penv = (CPUState *)penv->next_cpu;
3788 return 1;
3791 static void pause_all_vcpus(void)
3793 CPUState *penv = first_cpu;
3795 while (penv) {
3796 penv->stop = 1;
3797 qemu_thread_signal(penv->thread, SIGUSR1);
3798 qemu_cpu_kick(penv);
3799 penv = (CPUState *)penv->next_cpu;
3802 while (!all_vcpus_paused()) {
3803 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3804 penv = first_cpu;
3805 while (penv) {
3806 qemu_thread_signal(penv->thread, SIGUSR1);
3807 penv = (CPUState *)penv->next_cpu;
3812 static void resume_all_vcpus(void)
3814 CPUState *penv = first_cpu;
3816 while (penv) {
3817 penv->stop = 0;
3818 penv->stopped = 0;
3819 qemu_thread_signal(penv->thread, SIGUSR1);
3820 qemu_cpu_kick(penv);
3821 penv = (CPUState *)penv->next_cpu;
3825 static void tcg_init_vcpu(void *_env)
3827 CPUState *env = _env;
3828 /* share a single thread for all cpus with TCG */
3829 if (!tcg_cpu_thread) {
3830 env->thread = qemu_mallocz(sizeof(QemuThread));
3831 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3832 qemu_cond_init(env->halt_cond);
3833 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3834 while (env->created == 0)
3835 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3836 tcg_cpu_thread = env->thread;
3837 tcg_halt_cond = env->halt_cond;
3838 } else {
3839 env->thread = tcg_cpu_thread;
3840 env->halt_cond = tcg_halt_cond;
3844 static void kvm_start_vcpu(CPUState *env)
3846 env->thread = qemu_mallocz(sizeof(QemuThread));
3847 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3848 qemu_cond_init(env->halt_cond);
3849 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3850 while (env->created == 0)
3851 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3854 void qemu_init_vcpu(void *_env)
3856 CPUState *env = _env;
3858 if (kvm_enabled())
3859 kvm_start_vcpu(env);
3860 else
3861 tcg_init_vcpu(env);
3862 env->nr_cores = smp_cores;
3863 env->nr_threads = smp_threads;
3866 void qemu_notify_event(void)
3868 qemu_event_increment();
3871 void vm_stop(int reason)
3873 QemuThread me;
3874 qemu_thread_self(&me);
3876 if (!qemu_thread_equal(&me, &io_thread)) {
3877 qemu_system_vmstop_request(reason);
3879 * FIXME: should not return to device code in case
3880 * vm_stop() has been requested.
3882 if (cpu_single_env) {
3883 cpu_exit(cpu_single_env);
3884 cpu_single_env->stop = 1;
3886 return;
3888 do_vm_stop(reason);
3891 #endif
3894 #ifdef _WIN32
3895 static void host_main_loop_wait(int *timeout)
3897 int ret, ret2, i;
3898 PollingEntry *pe;
3901 /* XXX: need to suppress polling by better using win32 events */
3902 ret = 0;
3903 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3904 ret |= pe->func(pe->opaque);
3906 if (ret == 0) {
3907 int err;
3908 WaitObjects *w = &wait_objects;
3910 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3911 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3912 if (w->func[ret - WAIT_OBJECT_0])
3913 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3915 /* Check for additional signaled events */
3916 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3918 /* Check if event is signaled */
3919 ret2 = WaitForSingleObject(w->events[i], 0);
3920 if(ret2 == WAIT_OBJECT_0) {
3921 if (w->func[i])
3922 w->func[i](w->opaque[i]);
3923 } else if (ret2 == WAIT_TIMEOUT) {
3924 } else {
3925 err = GetLastError();
3926 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3929 } else if (ret == WAIT_TIMEOUT) {
3930 } else {
3931 err = GetLastError();
3932 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3936 *timeout = 0;
3938 #else
3939 static void host_main_loop_wait(int *timeout)
3942 #endif
3944 void main_loop_wait(int timeout)
3946 IOHandlerRecord *ioh;
3947 fd_set rfds, wfds, xfds;
3948 int ret, nfds;
3949 struct timeval tv;
3951 qemu_bh_update_timeout(&timeout);
3953 host_main_loop_wait(&timeout);
3955 /* poll any events */
3956 /* XXX: separate device handlers from system ones */
3957 nfds = -1;
3958 FD_ZERO(&rfds);
3959 FD_ZERO(&wfds);
3960 FD_ZERO(&xfds);
3961 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3962 if (ioh->deleted)
3963 continue;
3964 if (ioh->fd_read &&
3965 (!ioh->fd_read_poll ||
3966 ioh->fd_read_poll(ioh->opaque) != 0)) {
3967 FD_SET(ioh->fd, &rfds);
3968 if (ioh->fd > nfds)
3969 nfds = ioh->fd;
3971 if (ioh->fd_write) {
3972 FD_SET(ioh->fd, &wfds);
3973 if (ioh->fd > nfds)
3974 nfds = ioh->fd;
3978 tv.tv_sec = timeout / 1000;
3979 tv.tv_usec = (timeout % 1000) * 1000;
3981 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3983 qemu_mutex_unlock_iothread();
3984 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3985 qemu_mutex_lock_iothread();
3986 if (ret > 0) {
3987 IOHandlerRecord **pioh;
3989 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3990 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3991 ioh->fd_read(ioh->opaque);
3993 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3994 ioh->fd_write(ioh->opaque);
3998 /* remove deleted IO handlers */
3999 pioh = &first_io_handler;
4000 while (*pioh) {
4001 ioh = *pioh;
4002 if (ioh->deleted) {
4003 *pioh = ioh->next;
4004 qemu_free(ioh);
4005 } else
4006 pioh = &ioh->next;
4010 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4012 /* rearm timer, if not periodic */
4013 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4014 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4015 qemu_rearm_alarm_timer(alarm_timer);
4018 /* vm time timers */
4019 if (vm_running) {
4020 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4021 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
4022 qemu_get_clock(vm_clock));
4025 /* real time timers */
4026 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
4027 qemu_get_clock(rt_clock));
4029 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
4030 qemu_get_clock(host_clock));
4032 /* Check bottom-halves last in case any of the earlier events triggered
4033 them. */
4034 qemu_bh_poll();
4038 static int qemu_cpu_exec(CPUState *env)
4040 int ret;
4041 #ifdef CONFIG_PROFILER
4042 int64_t ti;
4043 #endif
4045 #ifdef CONFIG_PROFILER
4046 ti = profile_getclock();
4047 #endif
4048 if (use_icount) {
4049 int64_t count;
4050 int decr;
4051 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4052 env->icount_decr.u16.low = 0;
4053 env->icount_extra = 0;
4054 count = qemu_next_deadline();
4055 count = (count + (1 << icount_time_shift) - 1)
4056 >> icount_time_shift;
4057 qemu_icount += count;
4058 decr = (count > 0xffff) ? 0xffff : count;
4059 count -= decr;
4060 env->icount_decr.u16.low = decr;
4061 env->icount_extra = count;
4063 ret = cpu_exec(env);
4064 #ifdef CONFIG_PROFILER
4065 qemu_time += profile_getclock() - ti;
4066 #endif
4067 if (use_icount) {
4068 /* Fold pending instructions back into the
4069 instruction counter, and clear the interrupt flag. */
4070 qemu_icount -= (env->icount_decr.u16.low
4071 + env->icount_extra);
4072 env->icount_decr.u32 = 0;
4073 env->icount_extra = 0;
4075 return ret;
4078 static void tcg_cpu_exec(void)
4080 int ret = 0;
4082 if (next_cpu == NULL)
4083 next_cpu = first_cpu;
4084 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4085 CPUState *env = cur_cpu = next_cpu;
4087 if (!vm_running)
4088 break;
4089 if (timer_alarm_pending) {
4090 timer_alarm_pending = 0;
4091 break;
4093 if (cpu_can_run(env))
4094 ret = qemu_cpu_exec(env);
4095 if (ret == EXCP_DEBUG) {
4096 gdb_set_stop_cpu(env);
4097 debug_requested = 1;
4098 break;
4103 static int cpu_has_work(CPUState *env)
4105 if (env->stop)
4106 return 1;
4107 if (env->stopped)
4108 return 0;
4109 if (!env->halted)
4110 return 1;
4111 if (qemu_cpu_has_work(env))
4112 return 1;
4113 return 0;
4116 static int tcg_has_work(void)
4118 CPUState *env;
4120 for (env = first_cpu; env != NULL; env = env->next_cpu)
4121 if (cpu_has_work(env))
4122 return 1;
4123 return 0;
4126 static int qemu_calculate_timeout(void)
4128 #ifndef CONFIG_IOTHREAD
4129 int timeout;
4131 if (!vm_running)
4132 timeout = 5000;
4133 else if (tcg_has_work())
4134 timeout = 0;
4135 else if (!use_icount)
4136 timeout = 5000;
4137 else {
4138 /* XXX: use timeout computed from timers */
4139 int64_t add;
4140 int64_t delta;
4141 /* Advance virtual time to the next event. */
4142 if (use_icount == 1) {
4143 /* When not using an adaptive execution frequency
4144 we tend to get badly out of sync with real time,
4145 so just delay for a reasonable amount of time. */
4146 delta = 0;
4147 } else {
4148 delta = cpu_get_icount() - cpu_get_clock();
4150 if (delta > 0) {
4151 /* If virtual time is ahead of real time then just
4152 wait for IO. */
4153 timeout = (delta / 1000000) + 1;
4154 } else {
4155 /* Wait for either IO to occur or the next
4156 timer event. */
4157 add = qemu_next_deadline();
4158 /* We advance the timer before checking for IO.
4159 Limit the amount we advance so that early IO
4160 activity won't get the guest too far ahead. */
4161 if (add > 10000000)
4162 add = 10000000;
4163 delta += add;
4164 add = (add + (1 << icount_time_shift) - 1)
4165 >> icount_time_shift;
4166 qemu_icount += add;
4167 timeout = delta / 1000000;
4168 if (timeout < 0)
4169 timeout = 0;
4173 return timeout;
4174 #else /* CONFIG_IOTHREAD */
4175 return 1000;
4176 #endif
4179 static int vm_can_run(void)
4181 if (powerdown_requested)
4182 return 0;
4183 if (reset_requested)
4184 return 0;
4185 if (shutdown_requested)
4186 return 0;
4187 if (debug_requested)
4188 return 0;
4189 return 1;
4192 qemu_irq qemu_system_powerdown;
4194 static void main_loop(void)
4196 int r;
4198 #ifdef CONFIG_IOTHREAD
4199 qemu_system_ready = 1;
4200 qemu_cond_broadcast(&qemu_system_cond);
4201 #endif
4203 for (;;) {
4204 do {
4205 #ifdef CONFIG_PROFILER
4206 int64_t ti;
4207 #endif
4208 #ifndef CONFIG_IOTHREAD
4209 tcg_cpu_exec();
4210 #endif
4211 #ifdef CONFIG_PROFILER
4212 ti = profile_getclock();
4213 #endif
4214 main_loop_wait(qemu_calculate_timeout());
4215 #ifdef CONFIG_PROFILER
4216 dev_time += profile_getclock() - ti;
4217 #endif
4218 } while (vm_can_run());
4220 if (qemu_debug_requested())
4221 vm_stop(EXCP_DEBUG);
4222 if (qemu_shutdown_requested()) {
4223 if (no_shutdown) {
4224 vm_stop(0);
4225 no_shutdown = 0;
4226 } else
4227 break;
4229 if (qemu_reset_requested()) {
4230 pause_all_vcpus();
4231 qemu_system_reset();
4232 resume_all_vcpus();
4234 if (qemu_powerdown_requested()) {
4235 qemu_irq_raise(qemu_system_powerdown);
4237 if ((r = qemu_vmstop_requested()))
4238 vm_stop(r);
4240 pause_all_vcpus();
4243 static void version(void)
4245 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4248 static void help(int exitcode)
4250 version();
4251 printf("usage: %s [options] [disk_image]\n"
4252 "\n"
4253 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4254 "\n"
4255 #define DEF(option, opt_arg, opt_enum, opt_help) \
4256 opt_help
4257 #define DEFHEADING(text) stringify(text) "\n"
4258 #include "qemu-options.h"
4259 #undef DEF
4260 #undef DEFHEADING
4261 #undef GEN_DOCS
4262 "\n"
4263 "During emulation, the following keys are useful:\n"
4264 "ctrl-alt-f toggle full screen\n"
4265 "ctrl-alt-n switch to virtual console 'n'\n"
4266 "ctrl-alt toggle mouse and keyboard grab\n"
4267 "\n"
4268 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4270 "qemu",
4271 DEFAULT_RAM_SIZE,
4272 #ifndef _WIN32
4273 DEFAULT_NETWORK_SCRIPT,
4274 DEFAULT_NETWORK_DOWN_SCRIPT,
4275 #endif
4276 DEFAULT_GDBSTUB_PORT,
4277 "/tmp/qemu.log");
4278 exit(exitcode);
4281 #define HAS_ARG 0x0001
4283 enum {
4284 #define DEF(option, opt_arg, opt_enum, opt_help) \
4285 opt_enum,
4286 #define DEFHEADING(text)
4287 #include "qemu-options.h"
4288 #undef DEF
4289 #undef DEFHEADING
4290 #undef GEN_DOCS
4293 typedef struct QEMUOption {
4294 const char *name;
4295 int flags;
4296 int index;
4297 } QEMUOption;
4299 static const QEMUOption qemu_options[] = {
4300 { "h", 0, QEMU_OPTION_h },
4301 #define DEF(option, opt_arg, opt_enum, opt_help) \
4302 { option, opt_arg, opt_enum },
4303 #define DEFHEADING(text)
4304 #include "qemu-options.h"
4305 #undef DEF
4306 #undef DEFHEADING
4307 #undef GEN_DOCS
4308 { NULL },
4311 #ifdef HAS_AUDIO
4312 struct soundhw soundhw[] = {
4313 #ifdef HAS_AUDIO_CHOICE
4314 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4316 "pcspk",
4317 "PC speaker",
4320 { .init_isa = pcspk_audio_init }
4322 #endif
4324 #ifdef CONFIG_SB16
4326 "sb16",
4327 "Creative Sound Blaster 16",
4330 { .init_isa = SB16_init }
4332 #endif
4334 #ifdef CONFIG_CS4231A
4336 "cs4231a",
4337 "CS4231A",
4340 { .init_isa = cs4231a_init }
4342 #endif
4344 #ifdef CONFIG_ADLIB
4346 "adlib",
4347 #ifdef HAS_YMF262
4348 "Yamaha YMF262 (OPL3)",
4349 #else
4350 "Yamaha YM3812 (OPL2)",
4351 #endif
4354 { .init_isa = Adlib_init }
4356 #endif
4358 #ifdef CONFIG_GUS
4360 "gus",
4361 "Gravis Ultrasound GF1",
4364 { .init_isa = GUS_init }
4366 #endif
4368 #ifdef CONFIG_AC97
4370 "ac97",
4371 "Intel 82801AA AC97 Audio",
4374 { .init_pci = ac97_init }
4376 #endif
4378 #ifdef CONFIG_ES1370
4380 "es1370",
4381 "ENSONIQ AudioPCI ES1370",
4384 { .init_pci = es1370_init }
4386 #endif
4388 #endif /* HAS_AUDIO_CHOICE */
4390 { NULL, NULL, 0, 0, { NULL } }
4393 static void select_soundhw (const char *optarg)
4395 struct soundhw *c;
4397 if (*optarg == '?') {
4398 show_valid_cards:
4400 printf ("Valid sound card names (comma separated):\n");
4401 for (c = soundhw; c->name; ++c) {
4402 printf ("%-11s %s\n", c->name, c->descr);
4404 printf ("\n-soundhw all will enable all of the above\n");
4405 exit (*optarg != '?');
4407 else {
4408 size_t l;
4409 const char *p;
4410 char *e;
4411 int bad_card = 0;
4413 if (!strcmp (optarg, "all")) {
4414 for (c = soundhw; c->name; ++c) {
4415 c->enabled = 1;
4417 return;
4420 p = optarg;
4421 while (*p) {
4422 e = strchr (p, ',');
4423 l = !e ? strlen (p) : (size_t) (e - p);
4425 for (c = soundhw; c->name; ++c) {
4426 if (!strncmp (c->name, p, l) && !c->name[l]) {
4427 c->enabled = 1;
4428 break;
4432 if (!c->name) {
4433 if (l > 80) {
4434 fprintf (stderr,
4435 "Unknown sound card name (too big to show)\n");
4437 else {
4438 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4439 (int) l, p);
4441 bad_card = 1;
4443 p += l + (e != NULL);
4446 if (bad_card)
4447 goto show_valid_cards;
4450 #endif
4452 static void select_vgahw (const char *p)
4454 const char *opts;
4456 vga_interface_type = VGA_NONE;
4457 if (strstart(p, "std", &opts)) {
4458 vga_interface_type = VGA_STD;
4459 } else if (strstart(p, "cirrus", &opts)) {
4460 vga_interface_type = VGA_CIRRUS;
4461 } else if (strstart(p, "vmware", &opts)) {
4462 vga_interface_type = VGA_VMWARE;
4463 } else if (strstart(p, "xenfb", &opts)) {
4464 vga_interface_type = VGA_XENFB;
4465 } else if (!strstart(p, "none", &opts)) {
4466 invalid_vga:
4467 fprintf(stderr, "Unknown vga type: %s\n", p);
4468 exit(1);
4470 while (*opts) {
4471 const char *nextopt;
4473 if (strstart(opts, ",retrace=", &nextopt)) {
4474 opts = nextopt;
4475 if (strstart(opts, "dumb", &nextopt))
4476 vga_retrace_method = VGA_RETRACE_DUMB;
4477 else if (strstart(opts, "precise", &nextopt))
4478 vga_retrace_method = VGA_RETRACE_PRECISE;
4479 else goto invalid_vga;
4480 } else goto invalid_vga;
4481 opts = nextopt;
4485 #ifdef TARGET_I386
4486 static int balloon_parse(const char *arg)
4488 QemuOpts *opts;
4490 if (strcmp(arg, "none") == 0) {
4491 return 0;
4494 if (!strncmp(arg, "virtio", 6)) {
4495 if (arg[6] == ',') {
4496 /* have params -> parse them */
4497 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4498 if (!opts)
4499 return -1;
4500 } else {
4501 /* create empty opts */
4502 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4504 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4505 return 0;
4508 return -1;
4510 #endif
4512 #ifdef _WIN32
4513 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4515 exit(STATUS_CONTROL_C_EXIT);
4516 return TRUE;
4518 #endif
4520 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4522 int ret;
4524 if(strlen(str) != 36)
4525 return -1;
4527 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4528 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4529 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4531 if(ret != 16)
4532 return -1;
4534 #ifdef TARGET_I386
4535 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4536 #endif
4538 return 0;
4541 #ifndef _WIN32
4543 static void termsig_handler(int signal)
4545 qemu_system_shutdown_request();
4548 static void sigchld_handler(int signal)
4550 waitpid(-1, NULL, WNOHANG);
4553 static void sighandler_setup(void)
4555 struct sigaction act;
4557 memset(&act, 0, sizeof(act));
4558 act.sa_handler = termsig_handler;
4559 sigaction(SIGINT, &act, NULL);
4560 sigaction(SIGHUP, &act, NULL);
4561 sigaction(SIGTERM, &act, NULL);
4563 act.sa_handler = sigchld_handler;
4564 act.sa_flags = SA_NOCLDSTOP;
4565 sigaction(SIGCHLD, &act, NULL);
4568 #endif
4570 #ifdef _WIN32
4571 /* Look for support files in the same directory as the executable. */
4572 static char *find_datadir(const char *argv0)
4574 char *p;
4575 char buf[MAX_PATH];
4576 DWORD len;
4578 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4579 if (len == 0) {
4580 return NULL;
4583 buf[len] = 0;
4584 p = buf + len - 1;
4585 while (p != buf && *p != '\\')
4586 p--;
4587 *p = 0;
4588 if (access(buf, R_OK) == 0) {
4589 return qemu_strdup(buf);
4591 return NULL;
4593 #else /* !_WIN32 */
4595 /* Find a likely location for support files using the location of the binary.
4596 For installed binaries this will be "$bindir/../share/qemu". When
4597 running from the build tree this will be "$bindir/../pc-bios". */
4598 #define SHARE_SUFFIX "/share/qemu"
4599 #define BUILD_SUFFIX "/pc-bios"
4600 static char *find_datadir(const char *argv0)
4602 char *dir;
4603 char *p = NULL;
4604 char *res;
4605 char buf[PATH_MAX];
4606 size_t max_len;
4608 #if defined(__linux__)
4610 int len;
4611 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4612 if (len > 0) {
4613 buf[len] = 0;
4614 p = buf;
4617 #elif defined(__FreeBSD__)
4619 int len;
4620 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4621 if (len > 0) {
4622 buf[len] = 0;
4623 p = buf;
4626 #endif
4627 /* If we don't have any way of figuring out the actual executable
4628 location then try argv[0]. */
4629 if (!p) {
4630 p = realpath(argv0, buf);
4631 if (!p) {
4632 return NULL;
4635 dir = dirname(p);
4636 dir = dirname(dir);
4638 max_len = strlen(dir) +
4639 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4640 res = qemu_mallocz(max_len);
4641 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4642 if (access(res, R_OK)) {
4643 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4644 if (access(res, R_OK)) {
4645 qemu_free(res);
4646 res = NULL;
4650 return res;
4652 #undef SHARE_SUFFIX
4653 #undef BUILD_SUFFIX
4654 #endif
4656 char *qemu_find_file(int type, const char *name)
4658 int len;
4659 const char *subdir;
4660 char *buf;
4662 /* If name contains path separators then try it as a straight path. */
4663 if ((strchr(name, '/') || strchr(name, '\\'))
4664 && access(name, R_OK) == 0) {
4665 return qemu_strdup(name);
4667 switch (type) {
4668 case QEMU_FILE_TYPE_BIOS:
4669 subdir = "";
4670 break;
4671 case QEMU_FILE_TYPE_KEYMAP:
4672 subdir = "keymaps/";
4673 break;
4674 default:
4675 abort();
4677 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4678 buf = qemu_mallocz(len);
4679 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4680 if (access(buf, R_OK)) {
4681 qemu_free(buf);
4682 return NULL;
4684 return buf;
4687 static int device_init_func(QemuOpts *opts, void *opaque)
4689 DeviceState *dev;
4691 dev = qdev_device_add(opts);
4692 if (!dev)
4693 return -1;
4694 return 0;
4697 struct device_config {
4698 enum {
4699 DEV_USB, /* -usbdevice */
4700 DEV_BT, /* -bt */
4701 } type;
4702 const char *cmdline;
4703 QTAILQ_ENTRY(device_config) next;
4705 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4707 static void add_device_config(int type, const char *cmdline)
4709 struct device_config *conf;
4711 conf = qemu_mallocz(sizeof(*conf));
4712 conf->type = type;
4713 conf->cmdline = cmdline;
4714 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4717 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4719 struct device_config *conf;
4720 int rc;
4722 QTAILQ_FOREACH(conf, &device_configs, next) {
4723 if (conf->type != type)
4724 continue;
4725 rc = func(conf->cmdline);
4726 if (0 != rc)
4727 return rc;
4729 return 0;
4732 int main(int argc, char **argv, char **envp)
4734 const char *gdbstub_dev = NULL;
4735 uint32_t boot_devices_bitmap = 0;
4736 int i;
4737 int snapshot, linux_boot, net_boot;
4738 const char *initrd_filename;
4739 const char *kernel_filename, *kernel_cmdline;
4740 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4741 DisplayState *ds;
4742 DisplayChangeListener *dcl;
4743 int cyls, heads, secs, translation;
4744 QemuOpts *hda_opts = NULL, *opts;
4745 int optind;
4746 const char *r, *optarg;
4747 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4748 const char *monitor_devices[MAX_MONITOR_DEVICES];
4749 int monitor_device_index;
4750 const char *serial_devices[MAX_SERIAL_PORTS];
4751 int serial_device_index;
4752 const char *parallel_devices[MAX_PARALLEL_PORTS];
4753 int parallel_device_index;
4754 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4755 int virtio_console_index;
4756 const char *loadvm = NULL;
4757 QEMUMachine *machine;
4758 const char *cpu_model;
4759 #ifndef _WIN32
4760 int fds[2];
4761 #endif
4762 int tb_size;
4763 const char *pid_file = NULL;
4764 const char *incoming = NULL;
4765 #ifndef _WIN32
4766 int fd = 0;
4767 struct passwd *pwd = NULL;
4768 const char *chroot_dir = NULL;
4769 const char *run_as = NULL;
4770 #endif
4771 CPUState *env;
4772 int show_vnc_port = 0;
4774 init_clocks();
4776 qemu_errors_to_file(stderr);
4777 qemu_cache_utils_init(envp);
4779 QLIST_INIT (&vm_change_state_head);
4780 #ifndef _WIN32
4782 struct sigaction act;
4783 sigfillset(&act.sa_mask);
4784 act.sa_flags = 0;
4785 act.sa_handler = SIG_IGN;
4786 sigaction(SIGPIPE, &act, NULL);
4788 #else
4789 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4790 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4791 QEMU to run on a single CPU */
4793 HANDLE h;
4794 DWORD mask, smask;
4795 int i;
4796 h = GetCurrentProcess();
4797 if (GetProcessAffinityMask(h, &mask, &smask)) {
4798 for(i = 0; i < 32; i++) {
4799 if (mask & (1 << i))
4800 break;
4802 if (i != 32) {
4803 mask = 1 << i;
4804 SetProcessAffinityMask(h, mask);
4808 #endif
4810 module_call_init(MODULE_INIT_MACHINE);
4811 machine = find_default_machine();
4812 cpu_model = NULL;
4813 initrd_filename = NULL;
4814 ram_size = 0;
4815 snapshot = 0;
4816 kernel_filename = NULL;
4817 kernel_cmdline = "";
4818 cyls = heads = secs = 0;
4819 translation = BIOS_ATA_TRANSLATION_AUTO;
4821 serial_devices[0] = "vc:80Cx24C";
4822 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4823 serial_devices[i] = NULL;
4824 serial_device_index = 0;
4826 parallel_devices[0] = "vc:80Cx24C";
4827 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4828 parallel_devices[i] = NULL;
4829 parallel_device_index = 0;
4831 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4832 virtio_consoles[i] = NULL;
4833 virtio_console_index = 0;
4835 monitor_devices[0] = "vc:80Cx24C";
4836 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4837 monitor_devices[i] = NULL;
4839 monitor_device_index = 0;
4841 for (i = 0; i < MAX_NODES; i++) {
4842 node_mem[i] = 0;
4843 node_cpumask[i] = 0;
4846 nb_numa_nodes = 0;
4847 nb_nics = 0;
4849 tb_size = 0;
4850 autostart= 1;
4852 optind = 1;
4853 for(;;) {
4854 if (optind >= argc)
4855 break;
4856 r = argv[optind];
4857 if (r[0] != '-') {
4858 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4859 } else {
4860 const QEMUOption *popt;
4862 optind++;
4863 /* Treat --foo the same as -foo. */
4864 if (r[1] == '-')
4865 r++;
4866 popt = qemu_options;
4867 for(;;) {
4868 if (!popt->name) {
4869 fprintf(stderr, "%s: invalid option -- '%s'\n",
4870 argv[0], r);
4871 exit(1);
4873 if (!strcmp(popt->name, r + 1))
4874 break;
4875 popt++;
4877 if (popt->flags & HAS_ARG) {
4878 if (optind >= argc) {
4879 fprintf(stderr, "%s: option '%s' requires an argument\n",
4880 argv[0], r);
4881 exit(1);
4883 optarg = argv[optind++];
4884 } else {
4885 optarg = NULL;
4888 switch(popt->index) {
4889 case QEMU_OPTION_M:
4890 machine = find_machine(optarg);
4891 if (!machine) {
4892 QEMUMachine *m;
4893 printf("Supported machines are:\n");
4894 for(m = first_machine; m != NULL; m = m->next) {
4895 if (m->alias)
4896 printf("%-10s %s (alias of %s)\n",
4897 m->alias, m->desc, m->name);
4898 printf("%-10s %s%s\n",
4899 m->name, m->desc,
4900 m->is_default ? " (default)" : "");
4902 exit(*optarg != '?');
4904 break;
4905 case QEMU_OPTION_cpu:
4906 /* hw initialization will check this */
4907 if (*optarg == '?') {
4908 /* XXX: implement xxx_cpu_list for targets that still miss it */
4909 #if defined(cpu_list)
4910 cpu_list(stdout, &fprintf);
4911 #endif
4912 exit(0);
4913 } else {
4914 cpu_model = optarg;
4916 break;
4917 case QEMU_OPTION_initrd:
4918 initrd_filename = optarg;
4919 break;
4920 case QEMU_OPTION_hda:
4921 if (cyls == 0)
4922 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4923 else
4924 hda_opts = drive_add(optarg, HD_ALIAS
4925 ",cyls=%d,heads=%d,secs=%d%s",
4926 0, cyls, heads, secs,
4927 translation == BIOS_ATA_TRANSLATION_LBA ?
4928 ",trans=lba" :
4929 translation == BIOS_ATA_TRANSLATION_NONE ?
4930 ",trans=none" : "");
4931 break;
4932 case QEMU_OPTION_hdb:
4933 case QEMU_OPTION_hdc:
4934 case QEMU_OPTION_hdd:
4935 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4936 break;
4937 case QEMU_OPTION_drive:
4938 drive_add(NULL, "%s", optarg);
4939 break;
4940 case QEMU_OPTION_set:
4941 if (qemu_set_option(optarg) != 0)
4942 exit(1);
4943 break;
4944 case QEMU_OPTION_mtdblock:
4945 drive_add(optarg, MTD_ALIAS);
4946 break;
4947 case QEMU_OPTION_sd:
4948 drive_add(optarg, SD_ALIAS);
4949 break;
4950 case QEMU_OPTION_pflash:
4951 drive_add(optarg, PFLASH_ALIAS);
4952 break;
4953 case QEMU_OPTION_snapshot:
4954 snapshot = 1;
4955 break;
4956 case QEMU_OPTION_hdachs:
4958 const char *p;
4959 p = optarg;
4960 cyls = strtol(p, (char **)&p, 0);
4961 if (cyls < 1 || cyls > 16383)
4962 goto chs_fail;
4963 if (*p != ',')
4964 goto chs_fail;
4965 p++;
4966 heads = strtol(p, (char **)&p, 0);
4967 if (heads < 1 || heads > 16)
4968 goto chs_fail;
4969 if (*p != ',')
4970 goto chs_fail;
4971 p++;
4972 secs = strtol(p, (char **)&p, 0);
4973 if (secs < 1 || secs > 63)
4974 goto chs_fail;
4975 if (*p == ',') {
4976 p++;
4977 if (!strcmp(p, "none"))
4978 translation = BIOS_ATA_TRANSLATION_NONE;
4979 else if (!strcmp(p, "lba"))
4980 translation = BIOS_ATA_TRANSLATION_LBA;
4981 else if (!strcmp(p, "auto"))
4982 translation = BIOS_ATA_TRANSLATION_AUTO;
4983 else
4984 goto chs_fail;
4985 } else if (*p != '\0') {
4986 chs_fail:
4987 fprintf(stderr, "qemu: invalid physical CHS format\n");
4988 exit(1);
4990 if (hda_opts != NULL) {
4991 char num[16];
4992 snprintf(num, sizeof(num), "%d", cyls);
4993 qemu_opt_set(hda_opts, "cyls", num);
4994 snprintf(num, sizeof(num), "%d", heads);
4995 qemu_opt_set(hda_opts, "heads", num);
4996 snprintf(num, sizeof(num), "%d", secs);
4997 qemu_opt_set(hda_opts, "secs", num);
4998 if (translation == BIOS_ATA_TRANSLATION_LBA)
4999 qemu_opt_set(hda_opts, "trans", "lba");
5000 if (translation == BIOS_ATA_TRANSLATION_NONE)
5001 qemu_opt_set(hda_opts, "trans", "none");
5004 break;
5005 case QEMU_OPTION_numa:
5006 if (nb_numa_nodes >= MAX_NODES) {
5007 fprintf(stderr, "qemu: too many NUMA nodes\n");
5008 exit(1);
5010 numa_add(optarg);
5011 break;
5012 case QEMU_OPTION_nographic:
5013 display_type = DT_NOGRAPHIC;
5014 break;
5015 #ifdef CONFIG_CURSES
5016 case QEMU_OPTION_curses:
5017 display_type = DT_CURSES;
5018 break;
5019 #endif
5020 case QEMU_OPTION_portrait:
5021 graphic_rotate = 1;
5022 break;
5023 case QEMU_OPTION_kernel:
5024 kernel_filename = optarg;
5025 break;
5026 case QEMU_OPTION_append:
5027 kernel_cmdline = optarg;
5028 break;
5029 case QEMU_OPTION_cdrom:
5030 drive_add(optarg, CDROM_ALIAS);
5031 break;
5032 case QEMU_OPTION_boot:
5034 static const char * const params[] = {
5035 "order", "once", "menu", NULL
5037 char buf[sizeof(boot_devices)];
5038 char *standard_boot_devices;
5039 int legacy = 0;
5041 if (!strchr(optarg, '=')) {
5042 legacy = 1;
5043 pstrcpy(buf, sizeof(buf), optarg);
5044 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5045 fprintf(stderr,
5046 "qemu: unknown boot parameter '%s' in '%s'\n",
5047 buf, optarg);
5048 exit(1);
5051 if (legacy ||
5052 get_param_value(buf, sizeof(buf), "order", optarg)) {
5053 boot_devices_bitmap = parse_bootdevices(buf);
5054 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5056 if (!legacy) {
5057 if (get_param_value(buf, sizeof(buf),
5058 "once", optarg)) {
5059 boot_devices_bitmap |= parse_bootdevices(buf);
5060 standard_boot_devices = qemu_strdup(boot_devices);
5061 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5062 qemu_register_reset(restore_boot_devices,
5063 standard_boot_devices);
5065 if (get_param_value(buf, sizeof(buf),
5066 "menu", optarg)) {
5067 if (!strcmp(buf, "on")) {
5068 boot_menu = 1;
5069 } else if (!strcmp(buf, "off")) {
5070 boot_menu = 0;
5071 } else {
5072 fprintf(stderr,
5073 "qemu: invalid option value '%s'\n",
5074 buf);
5075 exit(1);
5080 break;
5081 case QEMU_OPTION_fda:
5082 case QEMU_OPTION_fdb:
5083 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5084 break;
5085 #ifdef TARGET_I386
5086 case QEMU_OPTION_no_fd_bootchk:
5087 fd_bootchk = 0;
5088 break;
5089 #endif
5090 case QEMU_OPTION_netdev:
5091 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5092 exit(1);
5094 break;
5095 case QEMU_OPTION_net:
5096 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5097 exit(1);
5099 break;
5100 #ifdef CONFIG_SLIRP
5101 case QEMU_OPTION_tftp:
5102 legacy_tftp_prefix = optarg;
5103 break;
5104 case QEMU_OPTION_bootp:
5105 legacy_bootp_filename = optarg;
5106 break;
5107 #ifndef _WIN32
5108 case QEMU_OPTION_smb:
5109 if (net_slirp_smb(optarg) < 0)
5110 exit(1);
5111 break;
5112 #endif
5113 case QEMU_OPTION_redir:
5114 if (net_slirp_redir(optarg) < 0)
5115 exit(1);
5116 break;
5117 #endif
5118 case QEMU_OPTION_bt:
5119 add_device_config(DEV_BT, optarg);
5120 break;
5121 #ifdef HAS_AUDIO
5122 case QEMU_OPTION_audio_help:
5123 AUD_help ();
5124 exit (0);
5125 break;
5126 case QEMU_OPTION_soundhw:
5127 select_soundhw (optarg);
5128 break;
5129 #endif
5130 case QEMU_OPTION_h:
5131 help(0);
5132 break;
5133 case QEMU_OPTION_version:
5134 version();
5135 exit(0);
5136 break;
5137 case QEMU_OPTION_m: {
5138 uint64_t value;
5139 char *ptr;
5141 value = strtoul(optarg, &ptr, 10);
5142 switch (*ptr) {
5143 case 0: case 'M': case 'm':
5144 value <<= 20;
5145 break;
5146 case 'G': case 'g':
5147 value <<= 30;
5148 break;
5149 default:
5150 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5151 exit(1);
5154 /* On 32-bit hosts, QEMU is limited by virtual address space */
5155 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5156 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5157 exit(1);
5159 if (value != (uint64_t)(ram_addr_t)value) {
5160 fprintf(stderr, "qemu: ram size too large\n");
5161 exit(1);
5163 ram_size = value;
5164 break;
5166 case QEMU_OPTION_d:
5168 int mask;
5169 const CPULogItem *item;
5171 mask = cpu_str_to_log_mask(optarg);
5172 if (!mask) {
5173 printf("Log items (comma separated):\n");
5174 for(item = cpu_log_items; item->mask != 0; item++) {
5175 printf("%-10s %s\n", item->name, item->help);
5177 exit(1);
5179 cpu_set_log(mask);
5181 break;
5182 case QEMU_OPTION_s:
5183 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5184 break;
5185 case QEMU_OPTION_gdb:
5186 gdbstub_dev = optarg;
5187 break;
5188 case QEMU_OPTION_L:
5189 data_dir = optarg;
5190 break;
5191 case QEMU_OPTION_bios:
5192 bios_name = optarg;
5193 break;
5194 case QEMU_OPTION_singlestep:
5195 singlestep = 1;
5196 break;
5197 case QEMU_OPTION_S:
5198 autostart = 0;
5199 break;
5200 #ifndef _WIN32
5201 case QEMU_OPTION_k:
5202 keyboard_layout = optarg;
5203 break;
5204 #endif
5205 case QEMU_OPTION_localtime:
5206 rtc_utc = 0;
5207 break;
5208 case QEMU_OPTION_vga:
5209 select_vgahw (optarg);
5210 break;
5211 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5212 case QEMU_OPTION_g:
5214 const char *p;
5215 int w, h, depth;
5216 p = optarg;
5217 w = strtol(p, (char **)&p, 10);
5218 if (w <= 0) {
5219 graphic_error:
5220 fprintf(stderr, "qemu: invalid resolution or depth\n");
5221 exit(1);
5223 if (*p != 'x')
5224 goto graphic_error;
5225 p++;
5226 h = strtol(p, (char **)&p, 10);
5227 if (h <= 0)
5228 goto graphic_error;
5229 if (*p == 'x') {
5230 p++;
5231 depth = strtol(p, (char **)&p, 10);
5232 if (depth != 8 && depth != 15 && depth != 16 &&
5233 depth != 24 && depth != 32)
5234 goto graphic_error;
5235 } else if (*p == '\0') {
5236 depth = graphic_depth;
5237 } else {
5238 goto graphic_error;
5241 graphic_width = w;
5242 graphic_height = h;
5243 graphic_depth = depth;
5245 break;
5246 #endif
5247 case QEMU_OPTION_echr:
5249 char *r;
5250 term_escape_char = strtol(optarg, &r, 0);
5251 if (r == optarg)
5252 printf("Bad argument to echr\n");
5253 break;
5255 case QEMU_OPTION_monitor:
5256 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5257 fprintf(stderr, "qemu: too many monitor devices\n");
5258 exit(1);
5260 monitor_devices[monitor_device_index] = optarg;
5261 monitor_device_index++;
5262 break;
5263 case QEMU_OPTION_chardev:
5264 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5265 if (!opts) {
5266 fprintf(stderr, "parse error: %s\n", optarg);
5267 exit(1);
5269 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5270 exit(1);
5272 break;
5273 case QEMU_OPTION_serial:
5274 if (serial_device_index >= MAX_SERIAL_PORTS) {
5275 fprintf(stderr, "qemu: too many serial ports\n");
5276 exit(1);
5278 serial_devices[serial_device_index] = optarg;
5279 serial_device_index++;
5280 break;
5281 case QEMU_OPTION_watchdog:
5282 if (watchdog) {
5283 fprintf(stderr,
5284 "qemu: only one watchdog option may be given\n");
5285 return 1;
5287 watchdog = optarg;
5288 break;
5289 case QEMU_OPTION_watchdog_action:
5290 if (select_watchdog_action(optarg) == -1) {
5291 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5292 exit(1);
5294 break;
5295 case QEMU_OPTION_virtiocon:
5296 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5297 fprintf(stderr, "qemu: too many virtio consoles\n");
5298 exit(1);
5300 virtio_consoles[virtio_console_index] = optarg;
5301 virtio_console_index++;
5302 break;
5303 case QEMU_OPTION_parallel:
5304 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5305 fprintf(stderr, "qemu: too many parallel ports\n");
5306 exit(1);
5308 parallel_devices[parallel_device_index] = optarg;
5309 parallel_device_index++;
5310 break;
5311 case QEMU_OPTION_loadvm:
5312 loadvm = optarg;
5313 break;
5314 case QEMU_OPTION_full_screen:
5315 full_screen = 1;
5316 break;
5317 #ifdef CONFIG_SDL
5318 case QEMU_OPTION_no_frame:
5319 no_frame = 1;
5320 break;
5321 case QEMU_OPTION_alt_grab:
5322 alt_grab = 1;
5323 break;
5324 case QEMU_OPTION_ctrl_grab:
5325 ctrl_grab = 1;
5326 break;
5327 case QEMU_OPTION_no_quit:
5328 no_quit = 1;
5329 break;
5330 case QEMU_OPTION_sdl:
5331 display_type = DT_SDL;
5332 break;
5333 #endif
5334 case QEMU_OPTION_pidfile:
5335 pid_file = optarg;
5336 break;
5337 #ifdef TARGET_I386
5338 case QEMU_OPTION_win2k_hack:
5339 win2k_install_hack = 1;
5340 break;
5341 case QEMU_OPTION_rtc_td_hack:
5342 rtc_td_hack = 1;
5343 break;
5344 case QEMU_OPTION_acpitable:
5345 if(acpi_table_add(optarg) < 0) {
5346 fprintf(stderr, "Wrong acpi table provided\n");
5347 exit(1);
5349 break;
5350 case QEMU_OPTION_smbios:
5351 if(smbios_entry_add(optarg) < 0) {
5352 fprintf(stderr, "Wrong smbios provided\n");
5353 exit(1);
5355 break;
5356 #endif
5357 #ifdef CONFIG_KVM
5358 case QEMU_OPTION_enable_kvm:
5359 kvm_allowed = 1;
5360 break;
5361 #endif
5362 case QEMU_OPTION_usb:
5363 usb_enabled = 1;
5364 break;
5365 case QEMU_OPTION_usbdevice:
5366 usb_enabled = 1;
5367 add_device_config(DEV_USB, optarg);
5368 break;
5369 case QEMU_OPTION_device:
5370 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5371 exit(1);
5373 break;
5374 case QEMU_OPTION_smp:
5375 smp_parse(optarg);
5376 if (smp_cpus < 1) {
5377 fprintf(stderr, "Invalid number of CPUs\n");
5378 exit(1);
5380 if (max_cpus < smp_cpus) {
5381 fprintf(stderr, "maxcpus must be equal to or greater than "
5382 "smp\n");
5383 exit(1);
5385 if (max_cpus > 255) {
5386 fprintf(stderr, "Unsupported number of maxcpus\n");
5387 exit(1);
5389 break;
5390 case QEMU_OPTION_vnc:
5391 display_type = DT_VNC;
5392 vnc_display = optarg;
5393 break;
5394 #ifdef TARGET_I386
5395 case QEMU_OPTION_no_acpi:
5396 acpi_enabled = 0;
5397 break;
5398 case QEMU_OPTION_no_hpet:
5399 no_hpet = 1;
5400 break;
5401 case QEMU_OPTION_balloon:
5402 if (balloon_parse(optarg) < 0) {
5403 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5404 exit(1);
5406 break;
5407 #endif
5408 case QEMU_OPTION_no_reboot:
5409 no_reboot = 1;
5410 break;
5411 case QEMU_OPTION_no_shutdown:
5412 no_shutdown = 1;
5413 break;
5414 case QEMU_OPTION_show_cursor:
5415 cursor_hide = 0;
5416 break;
5417 case QEMU_OPTION_uuid:
5418 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5419 fprintf(stderr, "Fail to parse UUID string."
5420 " Wrong format.\n");
5421 exit(1);
5423 break;
5424 #ifndef _WIN32
5425 case QEMU_OPTION_daemonize:
5426 daemonize = 1;
5427 break;
5428 #endif
5429 case QEMU_OPTION_option_rom:
5430 if (nb_option_roms >= MAX_OPTION_ROMS) {
5431 fprintf(stderr, "Too many option ROMs\n");
5432 exit(1);
5434 option_rom[nb_option_roms] = optarg;
5435 nb_option_roms++;
5436 break;
5437 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5438 case QEMU_OPTION_semihosting:
5439 semihosting_enabled = 1;
5440 break;
5441 #endif
5442 case QEMU_OPTION_name:
5443 qemu_name = qemu_strdup(optarg);
5445 char *p = strchr(qemu_name, ',');
5446 if (p != NULL) {
5447 *p++ = 0;
5448 if (strncmp(p, "process=", 8)) {
5449 fprintf(stderr, "Unknown subargument %s to -name", p);
5450 exit(1);
5452 p += 8;
5453 set_proc_name(p);
5456 break;
5457 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5458 case QEMU_OPTION_prom_env:
5459 if (nb_prom_envs >= MAX_PROM_ENVS) {
5460 fprintf(stderr, "Too many prom variables\n");
5461 exit(1);
5463 prom_envs[nb_prom_envs] = optarg;
5464 nb_prom_envs++;
5465 break;
5466 #endif
5467 #ifdef TARGET_ARM
5468 case QEMU_OPTION_old_param:
5469 old_param = 1;
5470 break;
5471 #endif
5472 case QEMU_OPTION_clock:
5473 configure_alarms(optarg);
5474 break;
5475 case QEMU_OPTION_startdate:
5476 configure_rtc_date_offset(optarg, 1);
5477 break;
5478 case QEMU_OPTION_rtc:
5479 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5480 if (!opts) {
5481 fprintf(stderr, "parse error: %s\n", optarg);
5482 exit(1);
5484 configure_rtc(opts);
5485 break;
5486 case QEMU_OPTION_tb_size:
5487 tb_size = strtol(optarg, NULL, 0);
5488 if (tb_size < 0)
5489 tb_size = 0;
5490 break;
5491 case QEMU_OPTION_icount:
5492 use_icount = 1;
5493 if (strcmp(optarg, "auto") == 0) {
5494 icount_time_shift = -1;
5495 } else {
5496 icount_time_shift = strtol(optarg, NULL, 0);
5498 break;
5499 case QEMU_OPTION_incoming:
5500 incoming = optarg;
5501 break;
5502 #ifndef _WIN32
5503 case QEMU_OPTION_chroot:
5504 chroot_dir = optarg;
5505 break;
5506 case QEMU_OPTION_runas:
5507 run_as = optarg;
5508 break;
5509 #endif
5510 #ifdef CONFIG_XEN
5511 case QEMU_OPTION_xen_domid:
5512 xen_domid = atoi(optarg);
5513 break;
5514 case QEMU_OPTION_xen_create:
5515 xen_mode = XEN_CREATE;
5516 break;
5517 case QEMU_OPTION_xen_attach:
5518 xen_mode = XEN_ATTACH;
5519 break;
5520 #endif
5525 /* If no data_dir is specified then try to find it relative to the
5526 executable path. */
5527 if (!data_dir) {
5528 data_dir = find_datadir(argv[0]);
5530 /* If all else fails use the install patch specified when building. */
5531 if (!data_dir) {
5532 data_dir = CONFIG_QEMU_SHAREDIR;
5536 * Default to max_cpus = smp_cpus, in case the user doesn't
5537 * specify a max_cpus value.
5539 if (!max_cpus)
5540 max_cpus = smp_cpus;
5542 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5543 if (smp_cpus > machine->max_cpus) {
5544 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5545 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5546 machine->max_cpus);
5547 exit(1);
5550 if (display_type == DT_NOGRAPHIC) {
5551 if (serial_device_index == 0)
5552 serial_devices[0] = "stdio";
5553 if (parallel_device_index == 0)
5554 parallel_devices[0] = "null";
5555 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5556 monitor_devices[0] = "stdio";
5560 #ifndef _WIN32
5561 if (daemonize) {
5562 pid_t pid;
5564 if (pipe(fds) == -1)
5565 exit(1);
5567 pid = fork();
5568 if (pid > 0) {
5569 uint8_t status;
5570 ssize_t len;
5572 close(fds[1]);
5574 again:
5575 len = read(fds[0], &status, 1);
5576 if (len == -1 && (errno == EINTR))
5577 goto again;
5579 if (len != 1)
5580 exit(1);
5581 else if (status == 1) {
5582 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5583 exit(1);
5584 } else
5585 exit(0);
5586 } else if (pid < 0)
5587 exit(1);
5589 setsid();
5591 pid = fork();
5592 if (pid > 0)
5593 exit(0);
5594 else if (pid < 0)
5595 exit(1);
5597 umask(027);
5599 signal(SIGTSTP, SIG_IGN);
5600 signal(SIGTTOU, SIG_IGN);
5601 signal(SIGTTIN, SIG_IGN);
5604 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5605 if (daemonize) {
5606 uint8_t status = 1;
5607 write(fds[1], &status, 1);
5608 } else
5609 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5610 exit(1);
5612 #endif
5614 if (kvm_enabled()) {
5615 int ret;
5617 ret = kvm_init(smp_cpus);
5618 if (ret < 0) {
5619 fprintf(stderr, "failed to initialize KVM\n");
5620 exit(1);
5624 if (qemu_init_main_loop()) {
5625 fprintf(stderr, "qemu_init_main_loop failed\n");
5626 exit(1);
5628 linux_boot = (kernel_filename != NULL);
5630 if (!linux_boot && *kernel_cmdline != '\0') {
5631 fprintf(stderr, "-append only allowed with -kernel option\n");
5632 exit(1);
5635 if (!linux_boot && initrd_filename != NULL) {
5636 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5637 exit(1);
5640 #ifndef _WIN32
5641 /* Win32 doesn't support line-buffering and requires size >= 2 */
5642 setvbuf(stdout, NULL, _IOLBF, 0);
5643 #endif
5645 if (init_timer_alarm() < 0) {
5646 fprintf(stderr, "could not initialize alarm timer\n");
5647 exit(1);
5649 if (use_icount && icount_time_shift < 0) {
5650 use_icount = 2;
5651 /* 125MIPS seems a reasonable initial guess at the guest speed.
5652 It will be corrected fairly quickly anyway. */
5653 icount_time_shift = 3;
5654 init_icount_adjust();
5657 #ifdef _WIN32
5658 socket_init();
5659 #endif
5661 if (net_init_clients() < 0) {
5662 exit(1);
5665 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5666 net_set_boot_mask(net_boot);
5668 /* init the bluetooth world */
5669 if (foreach_device_config(DEV_BT, bt_parse))
5670 exit(1);
5672 /* init the memory */
5673 if (ram_size == 0)
5674 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5676 /* init the dynamic translator */
5677 cpu_exec_init_all(tb_size * 1024 * 1024);
5679 bdrv_init();
5681 /* we always create the cdrom drive, even if no disk is there */
5682 drive_add(NULL, CDROM_ALIAS);
5684 /* we always create at least one floppy */
5685 drive_add(NULL, FD_ALIAS, 0);
5687 /* we always create one sd slot, even if no card is in it */
5688 drive_add(NULL, SD_ALIAS);
5690 /* open the virtual block devices */
5691 if (snapshot)
5692 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5693 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5694 exit(1);
5696 vmstate_register(0, &vmstate_timers ,&timers_state);
5697 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5699 /* Maintain compatibility with multiple stdio monitors */
5700 if (!strcmp(monitor_devices[0],"stdio")) {
5701 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5702 const char *devname = serial_devices[i];
5703 if (devname && !strcmp(devname,"mon:stdio")) {
5704 monitor_devices[0] = NULL;
5705 break;
5706 } else if (devname && !strcmp(devname,"stdio")) {
5707 monitor_devices[0] = NULL;
5708 serial_devices[i] = "mon:stdio";
5709 break;
5714 if (nb_numa_nodes > 0) {
5715 int i;
5717 if (nb_numa_nodes > smp_cpus) {
5718 nb_numa_nodes = smp_cpus;
5721 /* If no memory size if given for any node, assume the default case
5722 * and distribute the available memory equally across all nodes
5724 for (i = 0; i < nb_numa_nodes; i++) {
5725 if (node_mem[i] != 0)
5726 break;
5728 if (i == nb_numa_nodes) {
5729 uint64_t usedmem = 0;
5731 /* On Linux, the each node's border has to be 8MB aligned,
5732 * the final node gets the rest.
5734 for (i = 0; i < nb_numa_nodes - 1; i++) {
5735 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5736 usedmem += node_mem[i];
5738 node_mem[i] = ram_size - usedmem;
5741 for (i = 0; i < nb_numa_nodes; i++) {
5742 if (node_cpumask[i] != 0)
5743 break;
5745 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5746 * must cope with this anyway, because there are BIOSes out there in
5747 * real machines which also use this scheme.
5749 if (i == nb_numa_nodes) {
5750 for (i = 0; i < smp_cpus; i++) {
5751 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5756 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5757 const char *devname = monitor_devices[i];
5758 if (devname && strcmp(devname, "none")) {
5759 char label[32];
5760 if (i == 0) {
5761 snprintf(label, sizeof(label), "monitor");
5762 } else {
5763 snprintf(label, sizeof(label), "monitor%d", i);
5765 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5766 if (!monitor_hds[i]) {
5767 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5768 devname);
5769 exit(1);
5774 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5775 const char *devname = serial_devices[i];
5776 if (devname && strcmp(devname, "none")) {
5777 char label[32];
5778 snprintf(label, sizeof(label), "serial%d", i);
5779 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5780 if (!serial_hds[i]) {
5781 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5782 devname, strerror(errno));
5783 exit(1);
5788 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5789 const char *devname = parallel_devices[i];
5790 if (devname && strcmp(devname, "none")) {
5791 char label[32];
5792 snprintf(label, sizeof(label), "parallel%d", i);
5793 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5794 if (!parallel_hds[i]) {
5795 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5796 devname, strerror(errno));
5797 exit(1);
5802 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5803 const char *devname = virtio_consoles[i];
5804 if (devname && strcmp(devname, "none")) {
5805 char label[32];
5806 snprintf(label, sizeof(label), "virtcon%d", i);
5807 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5808 if (!virtcon_hds[i]) {
5809 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5810 devname, strerror(errno));
5811 exit(1);
5816 module_call_init(MODULE_INIT_DEVICE);
5818 if (watchdog) {
5819 i = select_watchdog(watchdog);
5820 if (i > 0)
5821 exit (i == 1 ? 1 : 0);
5824 if (machine->compat_props) {
5825 qdev_prop_register_compat(machine->compat_props);
5827 machine->init(ram_size, boot_devices,
5828 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5831 #ifndef _WIN32
5832 /* must be after terminal init, SDL library changes signal handlers */
5833 sighandler_setup();
5834 #endif
5836 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5837 for (i = 0; i < nb_numa_nodes; i++) {
5838 if (node_cpumask[i] & (1 << env->cpu_index)) {
5839 env->numa_node = i;
5844 current_machine = machine;
5846 /* init USB devices */
5847 if (usb_enabled) {
5848 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5849 exit(1);
5852 /* init generic devices */
5853 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5854 exit(1);
5856 if (!display_state)
5857 dumb_display_init();
5858 /* just use the first displaystate for the moment */
5859 ds = display_state;
5861 if (display_type == DT_DEFAULT) {
5862 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5863 display_type = DT_SDL;
5864 #else
5865 display_type = DT_VNC;
5866 vnc_display = "localhost:0,to=99";
5867 show_vnc_port = 1;
5868 #endif
5872 switch (display_type) {
5873 case DT_NOGRAPHIC:
5874 break;
5875 #if defined(CONFIG_CURSES)
5876 case DT_CURSES:
5877 curses_display_init(ds, full_screen);
5878 break;
5879 #endif
5880 #if defined(CONFIG_SDL)
5881 case DT_SDL:
5882 sdl_display_init(ds, full_screen, no_frame);
5883 break;
5884 #elif defined(CONFIG_COCOA)
5885 case DT_SDL:
5886 cocoa_display_init(ds, full_screen);
5887 break;
5888 #endif
5889 case DT_VNC:
5890 vnc_display_init(ds);
5891 if (vnc_display_open(ds, vnc_display) < 0)
5892 exit(1);
5894 if (show_vnc_port) {
5895 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5897 break;
5898 default:
5899 break;
5901 dpy_resize(ds);
5903 dcl = ds->listeners;
5904 while (dcl != NULL) {
5905 if (dcl->dpy_refresh != NULL) {
5906 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5907 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5909 dcl = dcl->next;
5912 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5913 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5914 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5917 text_consoles_set_display(display_state);
5918 qemu_chr_initial_reset();
5920 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5921 if (monitor_devices[i] && monitor_hds[i]) {
5922 monitor_init(monitor_hds[i],
5923 MONITOR_USE_READLINE |
5924 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5928 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5929 const char *devname = serial_devices[i];
5930 if (devname && strcmp(devname, "none")) {
5931 if (strstart(devname, "vc", 0))
5932 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5936 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5937 const char *devname = parallel_devices[i];
5938 if (devname && strcmp(devname, "none")) {
5939 if (strstart(devname, "vc", 0))
5940 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5944 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5945 const char *devname = virtio_consoles[i];
5946 if (virtcon_hds[i] && devname) {
5947 if (strstart(devname, "vc", 0))
5948 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5952 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5953 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5954 gdbstub_dev);
5955 exit(1);
5958 qdev_machine_creation_done();
5960 rom_load_all();
5962 if (loadvm) {
5963 if (load_vmstate(cur_mon, loadvm) < 0) {
5964 autostart = 0;
5968 if (incoming) {
5969 qemu_start_incoming_migration(incoming);
5970 } else if (autostart) {
5971 vm_start();
5974 #ifndef _WIN32
5975 if (daemonize) {
5976 uint8_t status = 0;
5977 ssize_t len;
5979 again1:
5980 len = write(fds[1], &status, 1);
5981 if (len == -1 && (errno == EINTR))
5982 goto again1;
5984 if (len != 1)
5985 exit(1);
5987 chdir("/");
5988 TFR(fd = open("/dev/null", O_RDWR));
5989 if (fd == -1)
5990 exit(1);
5993 if (run_as) {
5994 pwd = getpwnam(run_as);
5995 if (!pwd) {
5996 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5997 exit(1);
6001 if (chroot_dir) {
6002 if (chroot(chroot_dir) < 0) {
6003 fprintf(stderr, "chroot failed\n");
6004 exit(1);
6006 chdir("/");
6009 if (run_as) {
6010 if (setgid(pwd->pw_gid) < 0) {
6011 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6012 exit(1);
6014 if (setuid(pwd->pw_uid) < 0) {
6015 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6016 exit(1);
6018 if (setuid(0) != -1) {
6019 fprintf(stderr, "Dropping privileges failed\n");
6020 exit(1);
6024 if (daemonize) {
6025 dup2(fd, 0);
6026 dup2(fd, 1);
6027 dup2(fd, 2);
6029 close(fd);
6031 #endif
6033 main_loop();
6034 quit_timers();
6035 net_cleanup();
6037 return 0;