target-arm: convert NEON VZIP/VUZP/VTRN helper functions to pure TCG
[qemu/aliguori-queue.git] / hw / slavio_misc.c
blobca95b105815b7c48a0c85739af4d5d1c354bfcc5
1 /*
2 * QEMU Sparc SLAVIO aux io port emulation
4 * Copyright (c) 2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sun4m.h"
26 #include "sysemu.h"
27 #include "sysbus.h"
29 /* debug misc */
30 //#define DEBUG_MISC
33 * This is the auxio port, chip control and system control part of
34 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
35 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
37 * This also includes the PMC CPU idle controller.
40 #ifdef DEBUG_MISC
41 #define MISC_DPRINTF(fmt, ...) \
42 do { printf("MISC: " fmt , ## __VA_ARGS__); } while (0)
43 #else
44 #define MISC_DPRINTF(fmt, ...)
45 #endif
47 typedef struct MiscState {
48 SysBusDevice busdev;
49 qemu_irq irq;
50 uint32_t dummy;
51 uint8_t config;
52 uint8_t aux1, aux2;
53 uint8_t diag, mctrl;
54 uint8_t sysctrl;
55 uint16_t leds;
56 qemu_irq fdc_tc;
57 } MiscState;
59 typedef struct APCState {
60 SysBusDevice busdev;
61 qemu_irq cpu_halt;
62 } APCState;
64 #define MISC_SIZE 1
65 #define SYSCTRL_SIZE 4
67 #define AUX1_TC 0x02
69 #define AUX2_PWROFF 0x01
70 #define AUX2_PWRINTCLR 0x02
71 #define AUX2_PWRFAIL 0x20
73 #define CFG_PWRINTEN 0x08
75 #define SYS_RESET 0x01
76 #define SYS_RESETSTAT 0x02
78 static void slavio_misc_update_irq(void *opaque)
80 MiscState *s = opaque;
82 if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
83 MISC_DPRINTF("Raise IRQ\n");
84 qemu_irq_raise(s->irq);
85 } else {
86 MISC_DPRINTF("Lower IRQ\n");
87 qemu_irq_lower(s->irq);
91 static void slavio_misc_reset(void *opaque)
93 MiscState *s = opaque;
95 // Diagnostic and system control registers not cleared in reset
96 s->config = s->aux1 = s->aux2 = s->mctrl = 0;
99 static void slavio_set_power_fail(void *opaque, int irq, int power_failing)
101 MiscState *s = opaque;
103 MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
104 if (power_failing && (s->config & CFG_PWRINTEN)) {
105 s->aux2 |= AUX2_PWRFAIL;
106 } else {
107 s->aux2 &= ~AUX2_PWRFAIL;
109 slavio_misc_update_irq(s);
112 static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
113 uint32_t val)
115 MiscState *s = opaque;
117 MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
118 s->config = val & 0xff;
119 slavio_misc_update_irq(s);
122 static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
124 MiscState *s = opaque;
125 uint32_t ret = 0;
127 ret = s->config;
128 MISC_DPRINTF("Read config %2.2x\n", ret);
129 return ret;
132 static CPUReadMemoryFunc * const slavio_cfg_mem_read[3] = {
133 slavio_cfg_mem_readb,
134 NULL,
135 NULL,
138 static CPUWriteMemoryFunc * const slavio_cfg_mem_write[3] = {
139 slavio_cfg_mem_writeb,
140 NULL,
141 NULL,
144 static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
145 uint32_t val)
147 MiscState *s = opaque;
149 MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
150 s->diag = val & 0xff;
153 static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
155 MiscState *s = opaque;
156 uint32_t ret = 0;
158 ret = s->diag;
159 MISC_DPRINTF("Read diag %2.2x\n", ret);
160 return ret;
163 static CPUReadMemoryFunc * const slavio_diag_mem_read[3] = {
164 slavio_diag_mem_readb,
165 NULL,
166 NULL,
169 static CPUWriteMemoryFunc * const slavio_diag_mem_write[3] = {
170 slavio_diag_mem_writeb,
171 NULL,
172 NULL,
175 static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
176 uint32_t val)
178 MiscState *s = opaque;
180 MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
181 s->mctrl = val & 0xff;
184 static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
186 MiscState *s = opaque;
187 uint32_t ret = 0;
189 ret = s->mctrl;
190 MISC_DPRINTF("Read modem control %2.2x\n", ret);
191 return ret;
194 static CPUReadMemoryFunc * const slavio_mdm_mem_read[3] = {
195 slavio_mdm_mem_readb,
196 NULL,
197 NULL,
200 static CPUWriteMemoryFunc * const slavio_mdm_mem_write[3] = {
201 slavio_mdm_mem_writeb,
202 NULL,
203 NULL,
206 static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
207 uint32_t val)
209 MiscState *s = opaque;
211 MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
212 if (val & AUX1_TC) {
213 // Send a pulse to floppy terminal count line
214 if (s->fdc_tc) {
215 qemu_irq_raise(s->fdc_tc);
216 qemu_irq_lower(s->fdc_tc);
218 val &= ~AUX1_TC;
220 s->aux1 = val & 0xff;
223 static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
225 MiscState *s = opaque;
226 uint32_t ret = 0;
228 ret = s->aux1;
229 MISC_DPRINTF("Read aux1 %2.2x\n", ret);
231 return ret;
234 static CPUReadMemoryFunc * const slavio_aux1_mem_read[3] = {
235 slavio_aux1_mem_readb,
236 NULL,
237 NULL,
240 static CPUWriteMemoryFunc * const slavio_aux1_mem_write[3] = {
241 slavio_aux1_mem_writeb,
242 NULL,
243 NULL,
246 static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
247 uint32_t val)
249 MiscState *s = opaque;
251 val &= AUX2_PWRINTCLR | AUX2_PWROFF;
252 MISC_DPRINTF("Write aux2 %2.2x\n", val);
253 val |= s->aux2 & AUX2_PWRFAIL;
254 if (val & AUX2_PWRINTCLR) // Clear Power Fail int
255 val &= AUX2_PWROFF;
256 s->aux2 = val;
257 if (val & AUX2_PWROFF)
258 qemu_system_shutdown_request();
259 slavio_misc_update_irq(s);
262 static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
264 MiscState *s = opaque;
265 uint32_t ret = 0;
267 ret = s->aux2;
268 MISC_DPRINTF("Read aux2 %2.2x\n", ret);
270 return ret;
273 static CPUReadMemoryFunc * const slavio_aux2_mem_read[3] = {
274 slavio_aux2_mem_readb,
275 NULL,
276 NULL,
279 static CPUWriteMemoryFunc * const slavio_aux2_mem_write[3] = {
280 slavio_aux2_mem_writeb,
281 NULL,
282 NULL,
285 static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
287 APCState *s = opaque;
289 MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
290 qemu_irq_raise(s->cpu_halt);
293 static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
295 uint32_t ret = 0;
297 MISC_DPRINTF("Read power management %2.2x\n", ret);
298 return ret;
301 static CPUReadMemoryFunc * const apc_mem_read[3] = {
302 apc_mem_readb,
303 NULL,
304 NULL,
307 static CPUWriteMemoryFunc * const apc_mem_write[3] = {
308 apc_mem_writeb,
309 NULL,
310 NULL,
313 static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
315 MiscState *s = opaque;
316 uint32_t ret = 0;
318 switch (addr) {
319 case 0:
320 ret = s->sysctrl;
321 break;
322 default:
323 break;
325 MISC_DPRINTF("Read system control %08x\n", ret);
326 return ret;
329 static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
330 uint32_t val)
332 MiscState *s = opaque;
334 MISC_DPRINTF("Write system control %08x\n", val);
335 switch (addr) {
336 case 0:
337 if (val & SYS_RESET) {
338 s->sysctrl = SYS_RESETSTAT;
339 qemu_system_reset_request();
341 break;
342 default:
343 break;
347 static CPUReadMemoryFunc * const slavio_sysctrl_mem_read[3] = {
348 NULL,
349 NULL,
350 slavio_sysctrl_mem_readl,
353 static CPUWriteMemoryFunc * const slavio_sysctrl_mem_write[3] = {
354 NULL,
355 NULL,
356 slavio_sysctrl_mem_writel,
359 static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
361 MiscState *s = opaque;
362 uint32_t ret = 0;
364 switch (addr) {
365 case 0:
366 ret = s->leds;
367 break;
368 default:
369 break;
371 MISC_DPRINTF("Read diagnostic LED %04x\n", ret);
372 return ret;
375 static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
376 uint32_t val)
378 MiscState *s = opaque;
380 MISC_DPRINTF("Write diagnostic LED %04x\n", val & 0xffff);
381 switch (addr) {
382 case 0:
383 s->leds = val;
384 break;
385 default:
386 break;
390 static CPUReadMemoryFunc * const slavio_led_mem_read[3] = {
391 NULL,
392 slavio_led_mem_readw,
393 NULL,
396 static CPUWriteMemoryFunc * const slavio_led_mem_write[3] = {
397 NULL,
398 slavio_led_mem_writew,
399 NULL,
402 static const VMStateDescription vmstate_misc = {
403 .name ="slavio_misc",
404 .version_id = 1,
405 .minimum_version_id = 1,
406 .minimum_version_id_old = 1,
407 .fields = (VMStateField []) {
408 VMSTATE_UINT32(dummy, MiscState),
409 VMSTATE_UINT8(config, MiscState),
410 VMSTATE_UINT8(aux1, MiscState),
411 VMSTATE_UINT8(aux2, MiscState),
412 VMSTATE_UINT8(diag, MiscState),
413 VMSTATE_UINT8(mctrl, MiscState),
414 VMSTATE_UINT8(sysctrl, MiscState),
415 VMSTATE_END_OF_LIST()
419 static int apc_init1(SysBusDevice *dev)
421 APCState *s = FROM_SYSBUS(APCState, dev);
422 int io;
424 sysbus_init_irq(dev, &s->cpu_halt);
426 /* Power management (APC) XXX: not a Slavio device */
427 io = cpu_register_io_memory(apc_mem_read, apc_mem_write, s);
428 sysbus_init_mmio(dev, MISC_SIZE, io);
429 return 0;
432 static int slavio_misc_init1(SysBusDevice *dev)
434 MiscState *s = FROM_SYSBUS(MiscState, dev);
435 int io;
437 sysbus_init_irq(dev, &s->irq);
438 sysbus_init_irq(dev, &s->fdc_tc);
440 /* 8 bit registers */
441 /* Slavio control */
442 io = cpu_register_io_memory(slavio_cfg_mem_read,
443 slavio_cfg_mem_write, s);
444 sysbus_init_mmio(dev, MISC_SIZE, io);
446 /* Diagnostics */
447 io = cpu_register_io_memory(slavio_diag_mem_read,
448 slavio_diag_mem_write, s);
449 sysbus_init_mmio(dev, MISC_SIZE, io);
451 /* Modem control */
452 io = cpu_register_io_memory(slavio_mdm_mem_read,
453 slavio_mdm_mem_write, s);
454 sysbus_init_mmio(dev, MISC_SIZE, io);
456 /* 16 bit registers */
457 /* ss600mp diag LEDs */
458 io = cpu_register_io_memory(slavio_led_mem_read,
459 slavio_led_mem_write, s);
460 sysbus_init_mmio(dev, MISC_SIZE, io);
462 /* 32 bit registers */
463 /* System control */
464 io = cpu_register_io_memory(slavio_sysctrl_mem_read,
465 slavio_sysctrl_mem_write, s);
466 sysbus_init_mmio(dev, SYSCTRL_SIZE, io);
468 /* AUX 1 (Misc System Functions) */
469 io = cpu_register_io_memory(slavio_aux1_mem_read,
470 slavio_aux1_mem_write, s);
471 sysbus_init_mmio(dev, MISC_SIZE, io);
473 /* AUX 2 (Software Powerdown Control) */
474 io = cpu_register_io_memory(slavio_aux2_mem_read,
475 slavio_aux2_mem_write, s);
476 sysbus_init_mmio(dev, MISC_SIZE, io);
478 qdev_init_gpio_in(&dev->qdev, slavio_set_power_fail, 1);
480 vmstate_register(-1, &vmstate_misc, s);
481 qemu_register_reset(slavio_misc_reset, s);
482 slavio_misc_reset(s);
483 return 0;
486 static SysBusDeviceInfo slavio_misc_info = {
487 .init = slavio_misc_init1,
488 .qdev.name = "slavio_misc",
489 .qdev.size = sizeof(MiscState),
492 static SysBusDeviceInfo apc_info = {
493 .init = apc_init1,
494 .qdev.name = "apc",
495 .qdev.size = sizeof(MiscState),
498 static void slavio_misc_register_devices(void)
500 sysbus_register_withprop(&slavio_misc_info);
501 sysbus_register_withprop(&apc_info);
504 device_init(slavio_misc_register_devices)