monitor: Refactor acl commnds
[qemu/aliguori-queue.git] / kvm-all.c
blob8567ac91631cf13697f608780fbd7f18544199bb
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
68 static KVMState *kvm_state;
70 static KVMSlot *kvm_alloc_slot(KVMState *s)
72 int i;
74 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75 /* KVM private memory slots */
76 if (i >= 8 && i < 12)
77 continue;
78 if (s->slots[i].memory_size == 0)
79 return &s->slots[i];
82 fprintf(stderr, "%s: no free slot available\n", __func__);
83 abort();
86 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87 target_phys_addr_t start_addr,
88 target_phys_addr_t end_addr)
90 int i;
92 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93 KVMSlot *mem = &s->slots[i];
95 if (start_addr == mem->start_addr &&
96 end_addr == mem->start_addr + mem->memory_size) {
97 return mem;
101 return NULL;
105 * Find overlapping slot with lowest start address
107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
111 KVMSlot *found = NULL;
112 int i;
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
117 if (mem->memory_size == 0 ||
118 (found && found->start_addr < mem->start_addr)) {
119 continue;
122 if (end_addr > mem->start_addr &&
123 start_addr < mem->start_addr + mem->memory_size) {
124 found = mem;
128 return found;
131 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
133 struct kvm_userspace_memory_region mem;
135 mem.slot = slot->slot;
136 mem.guest_phys_addr = slot->start_addr;
137 mem.memory_size = slot->memory_size;
138 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139 mem.flags = slot->flags;
140 if (s->migration_log) {
141 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
143 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
146 static void kvm_reset_vcpu(void *opaque)
148 CPUState *env = opaque;
150 if (kvm_arch_put_registers(env)) {
151 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
152 abort();
156 int kvm_init_vcpu(CPUState *env)
158 KVMState *s = kvm_state;
159 long mmap_size;
160 int ret;
162 dprintf("kvm_init_vcpu\n");
164 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
165 if (ret < 0) {
166 dprintf("kvm_create_vcpu failed\n");
167 goto err;
170 env->kvm_fd = ret;
171 env->kvm_state = s;
173 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
174 if (mmap_size < 0) {
175 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
176 goto err;
179 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
180 env->kvm_fd, 0);
181 if (env->kvm_run == MAP_FAILED) {
182 ret = -errno;
183 dprintf("mmap'ing vcpu state failed\n");
184 goto err;
187 ret = kvm_arch_init_vcpu(env);
188 if (ret == 0) {
189 qemu_register_reset(kvm_reset_vcpu, env);
190 ret = kvm_arch_put_registers(env);
192 err:
193 return ret;
196 int kvm_put_mp_state(CPUState *env)
198 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
200 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
203 int kvm_get_mp_state(CPUState *env)
205 struct kvm_mp_state mp_state;
206 int ret;
208 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
209 if (ret < 0) {
210 return ret;
212 env->mp_state = mp_state.mp_state;
213 return 0;
217 * dirty pages logging control
219 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
220 ram_addr_t size, int flags, int mask)
222 KVMState *s = kvm_state;
223 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
224 int old_flags;
226 if (mem == NULL) {
227 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
228 TARGET_FMT_plx "\n", __func__, phys_addr,
229 phys_addr + size - 1);
230 return -EINVAL;
233 old_flags = mem->flags;
235 flags = (mem->flags & ~mask) | flags;
236 mem->flags = flags;
238 /* If nothing changed effectively, no need to issue ioctl */
239 if (s->migration_log) {
240 flags |= KVM_MEM_LOG_DIRTY_PAGES;
242 if (flags == old_flags) {
243 return 0;
246 return kvm_set_user_memory_region(s, mem);
249 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
251 return kvm_dirty_pages_log_change(phys_addr, size,
252 KVM_MEM_LOG_DIRTY_PAGES,
253 KVM_MEM_LOG_DIRTY_PAGES);
256 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
258 return kvm_dirty_pages_log_change(phys_addr, size,
260 KVM_MEM_LOG_DIRTY_PAGES);
263 int kvm_set_migration_log(int enable)
265 KVMState *s = kvm_state;
266 KVMSlot *mem;
267 int i, err;
269 s->migration_log = enable;
271 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
272 mem = &s->slots[i];
274 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
275 continue;
277 err = kvm_set_user_memory_region(s, mem);
278 if (err) {
279 return err;
282 return 0;
286 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
287 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
288 * This means all bits are set to dirty.
290 * @start_add: start of logged region.
291 * @end_addr: end of logged region.
293 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
294 target_phys_addr_t end_addr)
296 KVMState *s = kvm_state;
297 unsigned long size, allocated_size = 0;
298 target_phys_addr_t phys_addr;
299 ram_addr_t addr;
300 KVMDirtyLog d;
301 KVMSlot *mem;
302 int ret = 0;
304 d.dirty_bitmap = NULL;
305 while (start_addr < end_addr) {
306 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
307 if (mem == NULL) {
308 break;
311 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
312 if (!d.dirty_bitmap) {
313 d.dirty_bitmap = qemu_malloc(size);
314 } else if (size > allocated_size) {
315 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
317 allocated_size = size;
318 memset(d.dirty_bitmap, 0, allocated_size);
320 d.slot = mem->slot;
322 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
323 dprintf("ioctl failed %d\n", errno);
324 ret = -1;
325 break;
328 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
329 phys_addr < mem->start_addr + mem->memory_size;
330 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
331 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
332 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
333 unsigned word = nr / (sizeof(*bitmap) * 8);
334 unsigned bit = nr % (sizeof(*bitmap) * 8);
336 if ((bitmap[word] >> bit) & 1) {
337 cpu_physical_memory_set_dirty(addr);
340 start_addr = phys_addr;
342 qemu_free(d.dirty_bitmap);
344 return ret;
347 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
349 int ret = -ENOSYS;
350 #ifdef KVM_CAP_COALESCED_MMIO
351 KVMState *s = kvm_state;
353 if (s->coalesced_mmio) {
354 struct kvm_coalesced_mmio_zone zone;
356 zone.addr = start;
357 zone.size = size;
359 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
361 #endif
363 return ret;
366 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
368 int ret = -ENOSYS;
369 #ifdef KVM_CAP_COALESCED_MMIO
370 KVMState *s = kvm_state;
372 if (s->coalesced_mmio) {
373 struct kvm_coalesced_mmio_zone zone;
375 zone.addr = start;
376 zone.size = size;
378 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
380 #endif
382 return ret;
385 int kvm_check_extension(KVMState *s, unsigned int extension)
387 int ret;
389 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
390 if (ret < 0) {
391 ret = 0;
394 return ret;
397 int kvm_init(int smp_cpus)
399 static const char upgrade_note[] =
400 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
401 "(see http://sourceforge.net/projects/kvm).\n";
402 KVMState *s;
403 int ret;
404 int i;
406 if (smp_cpus > 1) {
407 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
408 return -EINVAL;
411 s = qemu_mallocz(sizeof(KVMState));
413 #ifdef KVM_CAP_SET_GUEST_DEBUG
414 TAILQ_INIT(&s->kvm_sw_breakpoints);
415 #endif
416 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
417 s->slots[i].slot = i;
419 s->vmfd = -1;
420 s->fd = open("/dev/kvm", O_RDWR);
421 if (s->fd == -1) {
422 fprintf(stderr, "Could not access KVM kernel module: %m\n");
423 ret = -errno;
424 goto err;
427 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
428 if (ret < KVM_API_VERSION) {
429 if (ret > 0)
430 ret = -EINVAL;
431 fprintf(stderr, "kvm version too old\n");
432 goto err;
435 if (ret > KVM_API_VERSION) {
436 ret = -EINVAL;
437 fprintf(stderr, "kvm version not supported\n");
438 goto err;
441 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
442 if (s->vmfd < 0)
443 goto err;
445 /* initially, KVM allocated its own memory and we had to jump through
446 * hooks to make phys_ram_base point to this. Modern versions of KVM
447 * just use a user allocated buffer so we can use regular pages
448 * unmodified. Make sure we have a sufficiently modern version of KVM.
450 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
451 ret = -EINVAL;
452 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
453 upgrade_note);
454 goto err;
457 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
458 * destroyed properly. Since we rely on this capability, refuse to work
459 * with any kernel without this capability. */
460 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
461 ret = -EINVAL;
463 fprintf(stderr,
464 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
465 upgrade_note);
466 goto err;
469 #ifdef KVM_CAP_COALESCED_MMIO
470 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
471 #else
472 s->coalesced_mmio = 0;
473 #endif
475 s->broken_set_mem_region = 1;
476 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
477 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
478 if (ret > 0) {
479 s->broken_set_mem_region = 0;
481 #endif
483 ret = kvm_arch_init(s, smp_cpus);
484 if (ret < 0)
485 goto err;
487 kvm_state = s;
489 return 0;
491 err:
492 if (s) {
493 if (s->vmfd != -1)
494 close(s->vmfd);
495 if (s->fd != -1)
496 close(s->fd);
498 qemu_free(s);
500 return ret;
503 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
504 int direction, int size, uint32_t count)
506 int i;
507 uint8_t *ptr = data;
509 for (i = 0; i < count; i++) {
510 if (direction == KVM_EXIT_IO_IN) {
511 switch (size) {
512 case 1:
513 stb_p(ptr, cpu_inb(env, port));
514 break;
515 case 2:
516 stw_p(ptr, cpu_inw(env, port));
517 break;
518 case 4:
519 stl_p(ptr, cpu_inl(env, port));
520 break;
522 } else {
523 switch (size) {
524 case 1:
525 cpu_outb(env, port, ldub_p(ptr));
526 break;
527 case 2:
528 cpu_outw(env, port, lduw_p(ptr));
529 break;
530 case 4:
531 cpu_outl(env, port, ldl_p(ptr));
532 break;
536 ptr += size;
539 return 1;
542 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
544 #ifdef KVM_CAP_COALESCED_MMIO
545 KVMState *s = kvm_state;
546 if (s->coalesced_mmio) {
547 struct kvm_coalesced_mmio_ring *ring;
549 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
550 while (ring->first != ring->last) {
551 struct kvm_coalesced_mmio *ent;
553 ent = &ring->coalesced_mmio[ring->first];
555 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
556 /* FIXME smp_wmb() */
557 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
560 #endif
563 int kvm_cpu_exec(CPUState *env)
565 struct kvm_run *run = env->kvm_run;
566 int ret;
568 dprintf("kvm_cpu_exec()\n");
570 do {
571 if (env->exit_request) {
572 dprintf("interrupt exit requested\n");
573 ret = 0;
574 break;
577 kvm_arch_pre_run(env, run);
578 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
579 kvm_arch_post_run(env, run);
581 if (ret == -EINTR || ret == -EAGAIN) {
582 dprintf("io window exit\n");
583 ret = 0;
584 break;
587 if (ret < 0) {
588 dprintf("kvm run failed %s\n", strerror(-ret));
589 abort();
592 kvm_run_coalesced_mmio(env, run);
594 ret = 0; /* exit loop */
595 switch (run->exit_reason) {
596 case KVM_EXIT_IO:
597 dprintf("handle_io\n");
598 ret = kvm_handle_io(env, run->io.port,
599 (uint8_t *)run + run->io.data_offset,
600 run->io.direction,
601 run->io.size,
602 run->io.count);
603 break;
604 case KVM_EXIT_MMIO:
605 dprintf("handle_mmio\n");
606 cpu_physical_memory_rw(run->mmio.phys_addr,
607 run->mmio.data,
608 run->mmio.len,
609 run->mmio.is_write);
610 ret = 1;
611 break;
612 case KVM_EXIT_IRQ_WINDOW_OPEN:
613 dprintf("irq_window_open\n");
614 break;
615 case KVM_EXIT_SHUTDOWN:
616 dprintf("shutdown\n");
617 qemu_system_reset_request();
618 ret = 1;
619 break;
620 case KVM_EXIT_UNKNOWN:
621 dprintf("kvm_exit_unknown\n");
622 break;
623 case KVM_EXIT_FAIL_ENTRY:
624 dprintf("kvm_exit_fail_entry\n");
625 break;
626 case KVM_EXIT_EXCEPTION:
627 dprintf("kvm_exit_exception\n");
628 break;
629 case KVM_EXIT_DEBUG:
630 dprintf("kvm_exit_debug\n");
631 #ifdef KVM_CAP_SET_GUEST_DEBUG
632 if (kvm_arch_debug(&run->debug.arch)) {
633 gdb_set_stop_cpu(env);
634 vm_stop(EXCP_DEBUG);
635 env->exception_index = EXCP_DEBUG;
636 return 0;
638 /* re-enter, this exception was guest-internal */
639 ret = 1;
640 #endif /* KVM_CAP_SET_GUEST_DEBUG */
641 break;
642 default:
643 dprintf("kvm_arch_handle_exit\n");
644 ret = kvm_arch_handle_exit(env, run);
645 break;
647 } while (ret > 0);
649 if (env->exit_request) {
650 env->exit_request = 0;
651 env->exception_index = EXCP_INTERRUPT;
654 return ret;
657 void kvm_set_phys_mem(target_phys_addr_t start_addr,
658 ram_addr_t size,
659 ram_addr_t phys_offset)
661 KVMState *s = kvm_state;
662 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
663 KVMSlot *mem, old;
664 int err;
666 if (start_addr & ~TARGET_PAGE_MASK) {
667 if (flags >= IO_MEM_UNASSIGNED) {
668 if (!kvm_lookup_overlapping_slot(s, start_addr,
669 start_addr + size)) {
670 return;
672 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
673 } else {
674 fprintf(stderr, "Only page-aligned memory slots supported\n");
676 abort();
679 /* KVM does not support read-only slots */
680 phys_offset &= ~IO_MEM_ROM;
682 while (1) {
683 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
684 if (!mem) {
685 break;
688 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
689 (start_addr + size <= mem->start_addr + mem->memory_size) &&
690 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
691 /* The new slot fits into the existing one and comes with
692 * identical parameters - nothing to be done. */
693 return;
696 old = *mem;
698 /* unregister the overlapping slot */
699 mem->memory_size = 0;
700 err = kvm_set_user_memory_region(s, mem);
701 if (err) {
702 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
703 __func__, strerror(-err));
704 abort();
707 /* Workaround for older KVM versions: we can't join slots, even not by
708 * unregistering the previous ones and then registering the larger
709 * slot. We have to maintain the existing fragmentation. Sigh.
711 * This workaround assumes that the new slot starts at the same
712 * address as the first existing one. If not or if some overlapping
713 * slot comes around later, we will fail (not seen in practice so far)
714 * - and actually require a recent KVM version. */
715 if (s->broken_set_mem_region &&
716 old.start_addr == start_addr && old.memory_size < size &&
717 flags < IO_MEM_UNASSIGNED) {
718 mem = kvm_alloc_slot(s);
719 mem->memory_size = old.memory_size;
720 mem->start_addr = old.start_addr;
721 mem->phys_offset = old.phys_offset;
722 mem->flags = 0;
724 err = kvm_set_user_memory_region(s, mem);
725 if (err) {
726 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
727 strerror(-err));
728 abort();
731 start_addr += old.memory_size;
732 phys_offset += old.memory_size;
733 size -= old.memory_size;
734 continue;
737 /* register prefix slot */
738 if (old.start_addr < start_addr) {
739 mem = kvm_alloc_slot(s);
740 mem->memory_size = start_addr - old.start_addr;
741 mem->start_addr = old.start_addr;
742 mem->phys_offset = old.phys_offset;
743 mem->flags = 0;
745 err = kvm_set_user_memory_region(s, mem);
746 if (err) {
747 fprintf(stderr, "%s: error registering prefix slot: %s\n",
748 __func__, strerror(-err));
749 abort();
753 /* register suffix slot */
754 if (old.start_addr + old.memory_size > start_addr + size) {
755 ram_addr_t size_delta;
757 mem = kvm_alloc_slot(s);
758 mem->start_addr = start_addr + size;
759 size_delta = mem->start_addr - old.start_addr;
760 mem->memory_size = old.memory_size - size_delta;
761 mem->phys_offset = old.phys_offset + size_delta;
762 mem->flags = 0;
764 err = kvm_set_user_memory_region(s, mem);
765 if (err) {
766 fprintf(stderr, "%s: error registering suffix slot: %s\n",
767 __func__, strerror(-err));
768 abort();
773 /* in case the KVM bug workaround already "consumed" the new slot */
774 if (!size)
775 return;
777 /* KVM does not need to know about this memory */
778 if (flags >= IO_MEM_UNASSIGNED)
779 return;
781 mem = kvm_alloc_slot(s);
782 mem->memory_size = size;
783 mem->start_addr = start_addr;
784 mem->phys_offset = phys_offset;
785 mem->flags = 0;
787 err = kvm_set_user_memory_region(s, mem);
788 if (err) {
789 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
790 strerror(-err));
791 abort();
795 int kvm_ioctl(KVMState *s, int type, ...)
797 int ret;
798 void *arg;
799 va_list ap;
801 va_start(ap, type);
802 arg = va_arg(ap, void *);
803 va_end(ap);
805 ret = ioctl(s->fd, type, arg);
806 if (ret == -1)
807 ret = -errno;
809 return ret;
812 int kvm_vm_ioctl(KVMState *s, int type, ...)
814 int ret;
815 void *arg;
816 va_list ap;
818 va_start(ap, type);
819 arg = va_arg(ap, void *);
820 va_end(ap);
822 ret = ioctl(s->vmfd, type, arg);
823 if (ret == -1)
824 ret = -errno;
826 return ret;
829 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
831 int ret;
832 void *arg;
833 va_list ap;
835 va_start(ap, type);
836 arg = va_arg(ap, void *);
837 va_end(ap);
839 ret = ioctl(env->kvm_fd, type, arg);
840 if (ret == -1)
841 ret = -errno;
843 return ret;
846 int kvm_has_sync_mmu(void)
848 #ifdef KVM_CAP_SYNC_MMU
849 KVMState *s = kvm_state;
851 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
852 #else
853 return 0;
854 #endif
857 void kvm_setup_guest_memory(void *start, size_t size)
859 if (!kvm_has_sync_mmu()) {
860 #ifdef MADV_DONTFORK
861 int ret = madvise(start, size, MADV_DONTFORK);
863 if (ret) {
864 perror("madvice");
865 exit(1);
867 #else
868 fprintf(stderr,
869 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
870 exit(1);
871 #endif
875 #ifdef KVM_CAP_SET_GUEST_DEBUG
876 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
877 target_ulong pc)
879 struct kvm_sw_breakpoint *bp;
881 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
882 if (bp->pc == pc)
883 return bp;
885 return NULL;
888 int kvm_sw_breakpoints_active(CPUState *env)
890 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
893 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
895 struct kvm_guest_debug dbg;
897 dbg.control = 0;
898 if (env->singlestep_enabled)
899 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
901 kvm_arch_update_guest_debug(env, &dbg);
902 dbg.control |= reinject_trap;
904 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
907 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
908 target_ulong len, int type)
910 struct kvm_sw_breakpoint *bp;
911 CPUState *env;
912 int err;
914 if (type == GDB_BREAKPOINT_SW) {
915 bp = kvm_find_sw_breakpoint(current_env, addr);
916 if (bp) {
917 bp->use_count++;
918 return 0;
921 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
922 if (!bp)
923 return -ENOMEM;
925 bp->pc = addr;
926 bp->use_count = 1;
927 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
928 if (err) {
929 free(bp);
930 return err;
933 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
934 bp, entry);
935 } else {
936 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
937 if (err)
938 return err;
941 for (env = first_cpu; env != NULL; env = env->next_cpu) {
942 err = kvm_update_guest_debug(env, 0);
943 if (err)
944 return err;
946 return 0;
949 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
950 target_ulong len, int type)
952 struct kvm_sw_breakpoint *bp;
953 CPUState *env;
954 int err;
956 if (type == GDB_BREAKPOINT_SW) {
957 bp = kvm_find_sw_breakpoint(current_env, addr);
958 if (!bp)
959 return -ENOENT;
961 if (bp->use_count > 1) {
962 bp->use_count--;
963 return 0;
966 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
967 if (err)
968 return err;
970 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
971 qemu_free(bp);
972 } else {
973 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
974 if (err)
975 return err;
978 for (env = first_cpu; env != NULL; env = env->next_cpu) {
979 err = kvm_update_guest_debug(env, 0);
980 if (err)
981 return err;
983 return 0;
986 void kvm_remove_all_breakpoints(CPUState *current_env)
988 struct kvm_sw_breakpoint *bp, *next;
989 KVMState *s = current_env->kvm_state;
990 CPUState *env;
992 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
993 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
994 /* Try harder to find a CPU that currently sees the breakpoint. */
995 for (env = first_cpu; env != NULL; env = env->next_cpu) {
996 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
997 break;
1001 kvm_arch_remove_all_hw_breakpoints();
1003 for (env = first_cpu; env != NULL; env = env->next_cpu)
1004 kvm_update_guest_debug(env, 0);
1007 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1009 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1011 return -EINVAL;
1014 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1015 target_ulong len, int type)
1017 return -EINVAL;
1020 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1021 target_ulong len, int type)
1023 return -EINVAL;
1026 void kvm_remove_all_breakpoints(CPUState *current_env)
1029 #endif /* !KVM_CAP_SET_GUEST_DEBUG */