apm: remove #ifdef DEBUG.
[qemu/aliguori-queue.git] / exec.c
blob56b5561884d5aa8fbabc9630d9400a6690fa8e8f
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
79 #define SMC_BITMAP_USE_THRESHOLD 10
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
215 static void io_mem_init(void);
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
250 #else
251 static void map_exec(void *addr, long size)
253 unsigned long start, end, page_size;
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
266 #endif
268 static void page_init(void)
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
274 SYSTEM_INFO system_info;
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
291 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
319 free(freep);
320 mmap_unlock();
322 #else
323 FILE *f;
325 last_brk = (unsigned long)sbrk(0);
327 f = fopen("/compat/linux/proc/self/maps", "r");
328 if (f) {
329 mmap_lock();
331 do {
332 unsigned long startaddr, endaddr;
333 int n;
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
347 } while (!feof(f));
349 fclose(f);
350 mmap_unlock();
352 #endif
354 #endif
357 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
359 PageDesc *pd;
360 void **lp;
361 int i;
363 #if defined(CONFIG_USER_ONLY)
364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
365 # define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
369 } while (0)
370 #else
371 # define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
373 #endif
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
402 #undef ALLOC
404 return pd + (index & (L2_SIZE - 1));
407 static inline PageDesc *page_find(tb_page_addr_t index)
409 return page_find_alloc(index, 0);
412 #if !defined(CONFIG_USER_ONLY)
413 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
415 PhysPageDesc *pd;
416 void **lp;
417 int i;
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
434 pd = *lp;
435 if (pd == NULL) {
436 int i;
438 if (!alloc) {
439 return NULL;
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
444 for (i = 0; i < L2_SIZE; i++) {
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
450 return pd + (index & (L2_SIZE - 1));
453 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
455 return phys_page_find_alloc(index, 0);
458 static void tlb_protect_code(ram_addr_t ram_addr);
459 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
460 target_ulong vaddr);
461 #define mmap_lock() do { } while(0)
462 #define mmap_unlock() do { } while(0)
463 #endif
465 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
467 #if defined(CONFIG_USER_ONLY)
468 /* Currently it is not recommended to allocate big chunks of data in
469 user mode. It will change when a dedicated libc will be used */
470 #define USE_STATIC_CODE_GEN_BUFFER
471 #endif
473 #ifdef USE_STATIC_CODE_GEN_BUFFER
474 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
476 #endif
478 static void code_gen_alloc(unsigned long tb_size)
480 #ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484 #else
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
487 #if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490 #else
491 /* XXX: needs adjustments */
492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
493 #endif
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499 #if defined(__linux__)
501 int flags;
502 void *start = NULL;
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505 #if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
510 #elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
516 #elif defined(__arm__)
517 /* Map the buffer below 32M, so we can use direct calls and branches */
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
522 #endif
523 code_gen_buffer = mmap(start, code_gen_buffer_size,
524 PROT_WRITE | PROT_READ | PROT_EXEC,
525 flags, -1, 0);
526 if (code_gen_buffer == MAP_FAILED) {
527 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
528 exit(1);
531 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
533 int flags;
534 void *addr = NULL;
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536 #if defined(__x86_64__)
537 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
538 * 0x40000000 is free */
539 flags |= MAP_FIXED;
540 addr = (void *)0x40000000;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
553 #else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556 #endif
557 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 code_gen_max_block_size();
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
565 /* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568 void cpu_exec_init_all(unsigned long tb_size)
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
573 page_init();
574 #if !defined(CONFIG_USER_ONLY)
575 io_mem_init();
576 #endif
579 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581 static int cpu_common_post_load(void *opaque, int version_id)
583 CPUState *env = opaque;
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
588 tlb_flush(env, 1);
590 return 0;
593 static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
605 #endif
607 CPUState *qemu_get_cpu(int cpu)
609 CPUState *env = first_cpu;
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
617 return env;
620 void cpu_exec_init(CPUState *env)
622 CPUState **penv;
623 int cpu_index;
625 #if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627 #endif
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
632 penv = &(*penv)->next_cpu;
633 cpu_index++;
635 env->cpu_index = cpu_index;
636 env->numa_node = 0;
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
639 *penv = env;
640 #if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642 #endif
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647 #endif
650 static inline void invalidate_page_bitmap(PageDesc *p)
652 if (p->code_bitmap) {
653 qemu_free(p->code_bitmap);
654 p->code_bitmap = NULL;
656 p->code_write_count = 0;
659 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
661 static void page_flush_tb_1 (int level, void **lp)
663 int i;
665 if (*lp == NULL) {
666 return;
668 if (level == 0) {
669 PageDesc *pd = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
674 } else {
675 void **pp = *lp;
676 for (i = 0; i < L2_SIZE; ++i) {
677 page_flush_tb_1 (level - 1, pp + i);
682 static void page_flush_tb(void)
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
690 /* flush all the translation blocks */
691 /* XXX: tb_flush is currently not thread safe */
692 void tb_flush(CPUState *env1)
694 CPUState *env;
695 #if defined(DEBUG_FLUSH)
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
700 #endif
701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
704 nb_tbs = 0;
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
711 page_flush_tb();
713 code_gen_ptr = code_gen_buffer;
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
716 tb_flush_count++;
719 #ifdef DEBUG_TB_CHECK
721 static void tb_invalidate_check(target_ulong address)
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
732 address, (long)tb->pc, tb->size);
738 /* verify that all the pages have correct rights for code */
739 static void tb_page_check(void)
741 TranslationBlock *tb;
742 int i, flags1, flags2;
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
750 (long)tb->pc, tb->size, flags1, flags2);
756 #endif
758 /* invalidate one TB */
759 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
773 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775 TranslationBlock *tb1;
776 unsigned int n1;
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
786 ptb = &tb1->page_next[n1];
790 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
814 tb->jmp_next[n] = NULL;
818 /* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820 static inline void tb_reset_jump(TranslationBlock *tb, int n)
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
825 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
827 CPUState *env;
828 PageDesc *p;
829 unsigned int h, n1;
830 tb_page_addr_t phys_pc;
831 TranslationBlock *tb1, *tb2;
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
836 tb_remove(&tb_phys_hash[h], tb,
837 offsetof(TranslationBlock, phys_hash_next));
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
851 tb_invalidated_flag = 1;
853 /* remove the TB from the hash list */
854 h = tb_jmp_cache_hash_func(tb->pc);
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
878 tb_phys_invalidate_count++;
881 static inline void set_bits(uint8_t *tab, int start, int len)
883 int end, mask, end1;
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
908 static void build_page_bitmap(PageDesc *p)
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
936 TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
944 int code_gen_size;
946 phys_pc = get_page_addr_code(env, pc);
947 tb = tb_alloc(pc);
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
952 tb = tb_alloc(pc);
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
961 cpu_gen_code(env, tb, &code_gen_size);
962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
964 /* check next page if needed */
965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
966 phys_page2 = -1;
967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
968 phys_page2 = get_page_addr_code(env, virt_page2);
970 tb_link_page(tb, phys_pc, phys_page2);
971 return tb;
974 /* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
980 int is_cpu_write_access)
982 TranslationBlock *tb, *tb_next, *saved_tb;
983 CPUState *env = cpu_single_env;
984 tb_page_addr_t tb_start, tb_end;
985 PageDesc *p;
986 int n;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994 #endif /* TARGET_HAS_PRECISE_SMC */
996 p = page_find(start >> TARGET_PAGE_BITS);
997 if (!p)
998 return;
999 if (!p->code_bitmap &&
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 if (!(tb_end <= start || tb_start >= end)) {
1024 #ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
1028 if (env->mem_io_pc) {
1029 /* now we have a real cpu fault */
1030 current_tb = tb_find_pc(env->mem_io_pc);
1033 if (current_tb == tb &&
1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
1041 current_tb_modified = 1;
1042 cpu_restore_state(current_tb, env,
1043 env->mem_io_pc, NULL);
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
1047 #endif /* TARGET_HAS_PRECISE_SMC */
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1055 tb_phys_invalidate(tb, -1);
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1062 tb = tb_next;
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
1068 if (is_cpu_write_access) {
1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1072 #endif
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
1078 env->current_tb = NULL;
1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1080 cpu_resume_from_signal(env, NULL);
1082 #endif
1085 /* len must be <= 8 and start must be a multiple of len */
1086 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1088 PageDesc *p;
1089 int offset, b;
1090 #if 0
1091 if (1) {
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1097 #endif
1098 p = page_find(start >> TARGET_PAGE_BITS);
1099 if (!p)
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
1108 tb_invalidate_phys_page_range(start, start + len, 1);
1112 #if !defined(CONFIG_SOFTMMU)
1113 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1114 unsigned long pc, void *puc)
1116 TranslationBlock *tb;
1117 PageDesc *p;
1118 int n;
1119 #ifdef TARGET_HAS_PRECISE_SMC
1120 TranslationBlock *current_tb = NULL;
1121 CPUState *env = cpu_single_env;
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
1126 #endif
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 tb = p->first_tb;
1133 #ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1137 #endif
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
1141 #ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
1155 #endif /* TARGET_HAS_PRECISE_SMC */
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1159 p->first_tb = NULL;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
1165 env->current_tb = NULL;
1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1167 cpu_resume_from_signal(env, puc);
1169 #endif
1171 #endif
1173 /* add the tb in the target page and protect it if necessary */
1174 static inline void tb_alloc_page(TranslationBlock *tb,
1175 unsigned int n, tb_page_addr_t page_addr)
1177 PageDesc *p;
1178 TranslationBlock *last_first_tb;
1180 tb->page_addr[n] = page_addr;
1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
1187 #if defined(TARGET_HAS_SMC) || 1
1189 #if defined(CONFIG_USER_ONLY)
1190 if (p->flags & PAGE_WRITE) {
1191 target_ulong addr;
1192 PageDesc *p2;
1193 int prot;
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
1197 page_addr &= qemu_host_page_mask;
1198 prot = 0;
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
1208 mprotect(g2h(page_addr), qemu_host_page_size,
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210 #ifdef DEBUG_TB_INVALIDATE
1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1212 page_addr);
1213 #endif
1215 #else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
1220 tlb_protect_code(page_addr);
1222 #endif
1224 #endif /* TARGET_HAS_SMC */
1227 /* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
1229 TranslationBlock *tb_alloc(target_ulong pc)
1231 TranslationBlock *tb;
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1235 return NULL;
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
1238 tb->cflags = 0;
1239 return tb;
1242 void tb_free(TranslationBlock *tb)
1244 /* In practice this is mostly used for single use temporary TB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1253 /* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
1255 void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1258 unsigned int h;
1259 TranslationBlock **ptb;
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
1270 /* add in the page list */
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
1287 #ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289 #endif
1290 mmap_unlock();
1293 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1321 return &tbs[m_max];
1324 static void tb_reset_jump_recursive(TranslationBlock *tb);
1326 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1360 /* suppress jumps in the tb on which we could have jumped */
1361 tb_reset_jump_recursive(tb_next);
1365 static void tb_reset_jump_recursive(TranslationBlock *tb)
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1371 #if defined(TARGET_HAS_ICE)
1372 #if defined(CONFIG_USER_ONLY)
1373 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1377 #else
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 target_phys_addr_t addr;
1381 target_ulong pd;
1382 ram_addr_t ram_addr;
1383 PhysPageDesc *p;
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1395 #endif
1396 #endif /* TARGET_HAS_ICE */
1398 #if defined(CONFIG_USER_ONLY)
1399 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1407 return -ENOSYS;
1409 #else
1410 /* Add a watchpoint. */
1411 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
1414 target_ulong len_mask = ~(len - 1);
1415 CPUWatchpoint *wp;
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1423 wp = qemu_malloc(sizeof(*wp));
1425 wp->vaddr = addr;
1426 wp->len_mask = len_mask;
1427 wp->flags = flags;
1429 /* keep all GDB-injected watchpoints in front */
1430 if (flags & BP_GDB)
1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1432 else
1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1435 tlb_flush_page(env, addr);
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
1442 /* Remove a specific watchpoint. */
1443 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
1446 target_ulong len_mask = ~(len - 1);
1447 CPUWatchpoint *wp;
1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1450 if (addr == wp->vaddr && len_mask == wp->len_mask
1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 return 0;
1456 return -ENOENT;
1459 /* Remove a specific watchpoint by reference. */
1460 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1464 tlb_flush_page(env, watchpoint->vaddr);
1466 qemu_free(watchpoint);
1469 /* Remove all matching watchpoints. */
1470 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1472 CPUWatchpoint *wp, *next;
1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
1479 #endif
1481 /* Add a breakpoint. */
1482 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
1485 #if defined(TARGET_HAS_ICE)
1486 CPUBreakpoint *bp;
1488 bp = qemu_malloc(sizeof(*bp));
1490 bp->pc = pc;
1491 bp->flags = flags;
1493 /* keep all GDB-injected breakpoints in front */
1494 if (flags & BP_GDB)
1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1496 else
1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1499 breakpoint_invalidate(env, pc);
1501 if (breakpoint)
1502 *breakpoint = bp;
1503 return 0;
1504 #else
1505 return -ENOSYS;
1506 #endif
1509 /* Remove a specific breakpoint. */
1510 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1521 return -ENOENT;
1522 #else
1523 return -ENOSYS;
1524 #endif
1527 /* Remove a specific breakpoint by reference. */
1528 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1530 #if defined(TARGET_HAS_ICE)
1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1533 breakpoint_invalidate(env, breakpoint->pc);
1535 qemu_free(breakpoint);
1536 #endif
1539 /* Remove all matching breakpoints. */
1540 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1542 #if defined(TARGET_HAS_ICE)
1543 CPUBreakpoint *bp, *next;
1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
1549 #endif
1552 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554 void cpu_single_step(CPUState *env, int enabled)
1556 #if defined(TARGET_HAS_ICE)
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
1562 /* must flush all the translated code to avoid inconsistencies */
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1567 #endif
1570 /* enable or disable low levels log */
1571 void cpu_set_log(int log_flags)
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
1575 logfile = fopen(logfilename, log_append ? "a" : "w");
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1580 #if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 static char logfile_buf[4096];
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1586 #elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
1588 setvbuf(logfile, NULL, _IOLBF, 0);
1589 #endif
1590 log_append = 1;
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
1598 void cpu_set_log_filename(const char *filename)
1600 logfilename = strdup(filename);
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1605 cpu_set_log(loglevel);
1608 static void cpu_unlink_tb(CPUState *env)
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
1614 TranslationBlock *tb;
1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1617 spin_lock(&interrupt_lock);
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
1621 if (tb) {
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
1625 spin_unlock(&interrupt_lock);
1628 /* mask must never be zero, except for A20 change call */
1629 void cpu_interrupt(CPUState *env, int mask)
1631 int old_mask;
1633 old_mask = env->interrupt_request;
1634 env->interrupt_request |= mask;
1636 #ifndef CONFIG_USER_ONLY
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1645 #endif
1647 if (use_icount) {
1648 env->icount_decr.u16.high = 0xffff;
1649 #ifndef CONFIG_USER_ONLY
1650 if (!can_do_io(env)
1651 && (mask & ~old_mask) != 0) {
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 #endif
1655 } else {
1656 cpu_unlink_tb(env);
1660 void cpu_reset_interrupt(CPUState *env, int mask)
1662 env->interrupt_request &= ~mask;
1665 void cpu_exit(CPUState *env)
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1671 const CPULogItem cpu_log_items[] = {
1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
1676 { CPU_LOG_TB_OP, "op",
1677 "show micro ops for each compiled TB" },
1678 { CPU_LOG_TB_OP_OPT, "op_opt",
1679 "show micro ops "
1680 #ifdef TARGET_I386
1681 "before eflags optimization and "
1682 #endif
1683 "after liveness analysis" },
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
1688 { CPU_LOG_TB_CPU, "cpu",
1689 "show CPU state before block translation" },
1690 #ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
1695 #endif
1696 #ifdef DEBUG_IOPORT
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
1699 #endif
1700 { 0, NULL, NULL },
1703 #ifndef CONFIG_USER_ONLY
1704 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1707 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1717 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1726 return 0;
1729 static int cpu_notify_migration_log(int enable)
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1737 return 0;
1740 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
1743 int i;
1745 if (*lp == NULL) {
1746 return;
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
1750 for (i = 0; i < L2_SIZE; ++i) {
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
1756 } else {
1757 void **pp = *lp;
1758 for (i = 0; i < L2_SIZE; ++i) {
1759 phys_page_for_each_1(client, level - 1, pp + i);
1764 static void phys_page_for_each(CPUPhysMemoryClient *client)
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
1773 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1779 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1781 QLIST_REMOVE(client, list);
1783 #endif
1785 static int cmp1(const char *s1, int n, const char *s2)
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1792 /* takes a comma separated list of log masks. Return 0 if error. */
1793 int cpu_str_to_log_mask(const char *str)
1795 const CPULogItem *item;
1796 int mask;
1797 const char *p, *p1;
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1809 } else {
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1814 return 0;
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1822 return mask;
1825 void cpu_abort(CPUState *env, const char *fmt, ...)
1827 va_list ap;
1828 va_list ap2;
1830 va_start(ap, fmt);
1831 va_copy(ap2, ap);
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835 #ifdef TARGET_I386
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837 #else
1838 cpu_dump_state(env, stderr, fprintf, 0);
1839 #endif
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
1844 #ifdef TARGET_I386
1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1846 #else
1847 log_cpu_state(env, 0);
1848 #endif
1849 qemu_log_flush();
1850 qemu_log_close();
1852 va_end(ap2);
1853 va_end(ap);
1854 #if defined(CONFIG_USER_ONLY)
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1861 #endif
1862 abort();
1865 CPUState *cpu_copy(CPUState *env)
1867 CPUState *new_env = cpu_init(env->cpu_model_str);
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
1870 #if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873 #endif
1875 memcpy(new_env, env, sizeof(CPUState));
1877 /* Preserve chaining and index. */
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
1886 #if defined(TARGET_HAS_ICE)
1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1894 #endif
1896 return new_env;
1899 #if !defined(CONFIG_USER_ONLY)
1901 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1903 unsigned int i;
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1916 static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1923 /* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925 void tlb_flush(CPUState *env, int flush_global)
1927 int i;
1929 #if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931 #endif
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
1947 tlb_flush_count++;
1950 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1952 if (addr == (tlb_entry->addr_read &
1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1954 addr == (tlb_entry->addr_write &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_code &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1958 *tlb_entry = s_cputlb_empty_entry;
1962 void tlb_flush_page(CPUState *env, target_ulong addr)
1964 int i;
1965 int mmu_idx;
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1969 #endif
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976 #endif
1977 tlb_flush(env, 1);
1978 return;
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1989 tlb_flush_jmp_cache(env, addr);
1992 /* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
1994 static void tlb_protect_code(ram_addr_t ram_addr)
1996 cpu_physical_memory_reset_dirty(ram_addr,
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
2001 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2002 tested for self modifying code */
2003 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2004 target_ulong vaddr)
2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2009 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2010 unsigned long start, unsigned long length)
2012 unsigned long addr;
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2015 if ((addr - start) < length) {
2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2021 /* Note: start and end must be within the same ram block. */
2022 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2023 int dirty_flags)
2025 CPUState *env;
2026 unsigned long length, start1;
2027 int i;
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2032 length = end - start;
2033 if (length == 0)
2034 return;
2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2057 int cpu_physical_memory_set_dirty_tracking(int enable)
2059 int ret = 0;
2060 in_migration = enable;
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
2065 int cpu_physical_memory_get_dirty_tracking(void)
2067 return in_migration;
2070 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2073 int ret;
2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2076 return ret;
2079 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081 ram_addr_t ram_addr;
2082 void *p;
2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
2094 /* update the TLB according to the current state of the dirty bits */
2095 void cpu_tlb_update_dirty(CPUState *env)
2097 int i;
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2105 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
2111 /* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2115 int i;
2116 int mmu_idx;
2118 vaddr &= TARGET_PAGE_MASK;
2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2124 /* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2129 target_ulong mask = ~(size - 1);
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2147 /* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150 void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
2154 PhysPageDesc *p;
2155 unsigned long pd;
2156 unsigned int index;
2157 target_ulong address;
2158 target_ulong code_address;
2159 unsigned long addend;
2160 CPUTLBEntry *te;
2161 CPUWatchpoint *wp;
2162 target_phys_addr_t iotlb;
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
2171 } else {
2172 pd = p->phys_offset;
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2177 #endif
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
2193 /* IO handlers are currently passed a physical address.
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
2242 } else {
2243 te->addr_write = address;
2245 } else {
2246 te->addr_write = -1;
2250 #else
2252 void tlb_flush(CPUState *env, int flush_global)
2256 void tlb_flush_page(CPUState *env, target_ulong addr)
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2265 struct walk_memory_regions_data
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2273 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2274 abi_ulong end, int new_prot)
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2286 return 0;
2289 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2290 abi_ulong base, int level, void **lp)
2292 abi_ulong pa;
2293 int i, rc;
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
2301 for (i = 0; i < L2_SIZE; ++i) {
2302 int prot = pd[i].flags;
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
2312 } else {
2313 void **pp = *lp;
2314 for (i = 0; i < L2_SIZE; ++i) {
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2324 return 0;
2327 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2337 for (i = 0; i < V_L1_SIZE; i++) {
2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
2345 return walk_memory_regions_end(&data, 0, 0);
2348 static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
2351 FILE *f = (FILE *)priv;
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2360 return (0);
2363 /* dump memory mappings */
2364 void page_dump(FILE *f)
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
2371 int page_get_flags(target_ulong address)
2373 PageDesc *p;
2375 p = page_find(address >> TARGET_PAGE_BITS);
2376 if (!p)
2377 return 0;
2378 return p->flags;
2381 /* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
2384 void page_set_flags(target_ulong start, target_ulong end, int flags)
2386 target_ulong addr, len;
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
2391 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2393 #endif
2394 assert(start < end);
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
2399 if (flags & PAGE_WRITE) {
2400 flags |= PAGE_WRITE_ORG;
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
2410 if (!(p->flags & PAGE_WRITE) &&
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
2413 tb_invalidate_phys_page(addr, 0, NULL);
2415 p->flags = flags;
2419 int page_check_range(target_ulong start, target_ulong len, int flags)
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
2428 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2430 #endif
2432 if (len == 0) {
2433 return 0;
2435 if (start + len - 1 < start) {
2436 /* We've wrapped around. */
2437 return -1;
2440 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2441 start = start & TARGET_PAGE_MASK;
2443 for (addr = start, len = end - start;
2444 len != 0;
2445 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2446 p = page_find(addr >> TARGET_PAGE_BITS);
2447 if( !p )
2448 return -1;
2449 if( !(p->flags & PAGE_VALID) )
2450 return -1;
2452 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2453 return -1;
2454 if (flags & PAGE_WRITE) {
2455 if (!(p->flags & PAGE_WRITE_ORG))
2456 return -1;
2457 /* unprotect the page if it was put read-only because it
2458 contains translated code */
2459 if (!(p->flags & PAGE_WRITE)) {
2460 if (!page_unprotect(addr, 0, NULL))
2461 return -1;
2463 return 0;
2466 return 0;
2469 /* called from signal handler: invalidate the code and unprotect the
2470 page. Return TRUE if the fault was successfully handled. */
2471 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2473 unsigned int prot;
2474 PageDesc *p;
2475 target_ulong host_start, host_end, addr;
2477 /* Technically this isn't safe inside a signal handler. However we
2478 know this only ever happens in a synchronous SEGV handler, so in
2479 practice it seems to be ok. */
2480 mmap_lock();
2482 p = page_find(address >> TARGET_PAGE_BITS);
2483 if (!p) {
2484 mmap_unlock();
2485 return 0;
2488 /* if the page was really writable, then we change its
2489 protection back to writable */
2490 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2491 host_start = address & qemu_host_page_mask;
2492 host_end = host_start + qemu_host_page_size;
2494 prot = 0;
2495 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2496 p = page_find(addr >> TARGET_PAGE_BITS);
2497 p->flags |= PAGE_WRITE;
2498 prot |= p->flags;
2500 /* and since the content will be modified, we must invalidate
2501 the corresponding translated code. */
2502 tb_invalidate_phys_page(addr, pc, puc);
2503 #ifdef DEBUG_TB_CHECK
2504 tb_invalidate_check(addr);
2505 #endif
2507 mprotect((void *)g2h(host_start), qemu_host_page_size,
2508 prot & PAGE_BITS);
2510 mmap_unlock();
2511 return 1;
2513 mmap_unlock();
2514 return 0;
2517 static inline void tlb_set_dirty(CPUState *env,
2518 unsigned long addr, target_ulong vaddr)
2521 #endif /* defined(CONFIG_USER_ONLY) */
2523 #if !defined(CONFIG_USER_ONLY)
2525 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2526 typedef struct subpage_t {
2527 target_phys_addr_t base;
2528 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2529 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2530 } subpage_t;
2532 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2533 ram_addr_t memory, ram_addr_t region_offset);
2534 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2535 ram_addr_t orig_memory,
2536 ram_addr_t region_offset);
2537 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2538 need_subpage) \
2539 do { \
2540 if (addr > start_addr) \
2541 start_addr2 = 0; \
2542 else { \
2543 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2544 if (start_addr2 > 0) \
2545 need_subpage = 1; \
2548 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2549 end_addr2 = TARGET_PAGE_SIZE - 1; \
2550 else { \
2551 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2552 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2553 need_subpage = 1; \
2555 } while (0)
2557 /* register physical memory.
2558 For RAM, 'size' must be a multiple of the target page size.
2559 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2560 io memory page. The address used when calling the IO function is
2561 the offset from the start of the region, plus region_offset. Both
2562 start_addr and region_offset are rounded down to a page boundary
2563 before calculating this offset. This should not be a problem unless
2564 the low bits of start_addr and region_offset differ. */
2565 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2566 ram_addr_t size,
2567 ram_addr_t phys_offset,
2568 ram_addr_t region_offset)
2570 target_phys_addr_t addr, end_addr;
2571 PhysPageDesc *p;
2572 CPUState *env;
2573 ram_addr_t orig_size = size;
2574 subpage_t *subpage;
2576 cpu_notify_set_memory(start_addr, size, phys_offset);
2578 if (phys_offset == IO_MEM_UNASSIGNED) {
2579 region_offset = start_addr;
2581 region_offset &= TARGET_PAGE_MASK;
2582 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2583 end_addr = start_addr + (target_phys_addr_t)size;
2584 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2586 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2587 ram_addr_t orig_memory = p->phys_offset;
2588 target_phys_addr_t start_addr2, end_addr2;
2589 int need_subpage = 0;
2591 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2592 need_subpage);
2593 if (need_subpage) {
2594 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2595 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2596 &p->phys_offset, orig_memory,
2597 p->region_offset);
2598 } else {
2599 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2600 >> IO_MEM_SHIFT];
2602 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2603 region_offset);
2604 p->region_offset = 0;
2605 } else {
2606 p->phys_offset = phys_offset;
2607 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2608 (phys_offset & IO_MEM_ROMD))
2609 phys_offset += TARGET_PAGE_SIZE;
2611 } else {
2612 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2613 p->phys_offset = phys_offset;
2614 p->region_offset = region_offset;
2615 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2616 (phys_offset & IO_MEM_ROMD)) {
2617 phys_offset += TARGET_PAGE_SIZE;
2618 } else {
2619 target_phys_addr_t start_addr2, end_addr2;
2620 int need_subpage = 0;
2622 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2623 end_addr2, need_subpage);
2625 if (need_subpage) {
2626 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2627 &p->phys_offset, IO_MEM_UNASSIGNED,
2628 addr & TARGET_PAGE_MASK);
2629 subpage_register(subpage, start_addr2, end_addr2,
2630 phys_offset, region_offset);
2631 p->region_offset = 0;
2635 region_offset += TARGET_PAGE_SIZE;
2638 /* since each CPU stores ram addresses in its TLB cache, we must
2639 reset the modified entries */
2640 /* XXX: slow ! */
2641 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2642 tlb_flush(env, 1);
2646 /* XXX: temporary until new memory mapping API */
2647 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2649 PhysPageDesc *p;
2651 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2652 if (!p)
2653 return IO_MEM_UNASSIGNED;
2654 return p->phys_offset;
2657 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2659 if (kvm_enabled())
2660 kvm_coalesce_mmio_region(addr, size);
2663 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2665 if (kvm_enabled())
2666 kvm_uncoalesce_mmio_region(addr, size);
2669 void qemu_flush_coalesced_mmio_buffer(void)
2671 if (kvm_enabled())
2672 kvm_flush_coalesced_mmio_buffer();
2675 #if defined(__linux__) && !defined(TARGET_S390X)
2677 #include <sys/vfs.h>
2679 #define HUGETLBFS_MAGIC 0x958458f6
2681 static long gethugepagesize(const char *path)
2683 struct statfs fs;
2684 int ret;
2686 do {
2687 ret = statfs(path, &fs);
2688 } while (ret != 0 && errno == EINTR);
2690 if (ret != 0) {
2691 perror(path);
2692 return 0;
2695 if (fs.f_type != HUGETLBFS_MAGIC)
2696 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2698 return fs.f_bsize;
2701 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2703 char *filename;
2704 void *area;
2705 int fd;
2706 #ifdef MAP_POPULATE
2707 int flags;
2708 #endif
2709 unsigned long hpagesize;
2711 hpagesize = gethugepagesize(path);
2712 if (!hpagesize) {
2713 return NULL;
2716 if (memory < hpagesize) {
2717 return NULL;
2720 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2721 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2722 return NULL;
2725 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2726 return NULL;
2729 fd = mkstemp(filename);
2730 if (fd < 0) {
2731 perror("unable to create backing store for hugepages");
2732 free(filename);
2733 return NULL;
2735 unlink(filename);
2736 free(filename);
2738 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2741 * ftruncate is not supported by hugetlbfs in older
2742 * hosts, so don't bother bailing out on errors.
2743 * If anything goes wrong with it under other filesystems,
2744 * mmap will fail.
2746 if (ftruncate(fd, memory))
2747 perror("ftruncate");
2749 #ifdef MAP_POPULATE
2750 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2751 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2752 * to sidestep this quirk.
2754 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2755 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2756 #else
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2758 #endif
2759 if (area == MAP_FAILED) {
2760 perror("file_ram_alloc: can't mmap RAM pages");
2761 close(fd);
2762 return (NULL);
2764 return area;
2766 #endif
2768 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2770 RAMBlock *new_block;
2772 size = TARGET_PAGE_ALIGN(size);
2773 new_block = qemu_malloc(sizeof(*new_block));
2775 if (mem_path) {
2776 #if defined (__linux__) && !defined(TARGET_S390X)
2777 new_block->host = file_ram_alloc(size, mem_path);
2778 if (!new_block->host) {
2779 new_block->host = qemu_vmalloc(size);
2780 #ifdef MADV_MERGEABLE
2781 madvise(new_block->host, size, MADV_MERGEABLE);
2782 #endif
2784 #else
2785 fprintf(stderr, "-mem-path option unsupported\n");
2786 exit(1);
2787 #endif
2788 } else {
2789 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2790 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2791 new_block->host = mmap((void*)0x1000000, size,
2792 PROT_EXEC|PROT_READ|PROT_WRITE,
2793 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2794 #else
2795 new_block->host = qemu_vmalloc(size);
2796 #endif
2797 #ifdef MADV_MERGEABLE
2798 madvise(new_block->host, size, MADV_MERGEABLE);
2799 #endif
2801 new_block->offset = last_ram_offset;
2802 new_block->length = size;
2804 new_block->next = ram_blocks;
2805 ram_blocks = new_block;
2807 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2808 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2809 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2810 0xff, size >> TARGET_PAGE_BITS);
2812 last_ram_offset += size;
2814 if (kvm_enabled())
2815 kvm_setup_guest_memory(new_block->host, size);
2817 return new_block->offset;
2820 void qemu_ram_free(ram_addr_t addr)
2822 /* TODO: implement this. */
2825 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2826 With the exception of the softmmu code in this file, this should
2827 only be used for local memory (e.g. video ram) that the device owns,
2828 and knows it isn't going to access beyond the end of the block.
2830 It should not be used for general purpose DMA.
2831 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2833 void *qemu_get_ram_ptr(ram_addr_t addr)
2835 RAMBlock *prev;
2836 RAMBlock **prevp;
2837 RAMBlock *block;
2839 prev = NULL;
2840 prevp = &ram_blocks;
2841 block = ram_blocks;
2842 while (block && (block->offset > addr
2843 || block->offset + block->length <= addr)) {
2844 if (prev)
2845 prevp = &prev->next;
2846 prev = block;
2847 block = block->next;
2849 if (!block) {
2850 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2851 abort();
2853 /* Move this entry to to start of the list. */
2854 if (prev) {
2855 prev->next = block->next;
2856 block->next = *prevp;
2857 *prevp = block;
2859 return block->host + (addr - block->offset);
2862 /* Some of the softmmu routines need to translate from a host pointer
2863 (typically a TLB entry) back to a ram offset. */
2864 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2866 RAMBlock *block;
2867 uint8_t *host = ptr;
2869 block = ram_blocks;
2870 while (block && (block->host > host
2871 || block->host + block->length <= host)) {
2872 block = block->next;
2874 if (!block) {
2875 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2876 abort();
2878 return block->offset + (host - block->host);
2881 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2883 #ifdef DEBUG_UNASSIGNED
2884 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2885 #endif
2886 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2887 do_unassigned_access(addr, 0, 0, 0, 1);
2888 #endif
2889 return 0;
2892 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2894 #ifdef DEBUG_UNASSIGNED
2895 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2896 #endif
2897 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2898 do_unassigned_access(addr, 0, 0, 0, 2);
2899 #endif
2900 return 0;
2903 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2905 #ifdef DEBUG_UNASSIGNED
2906 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2907 #endif
2908 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2909 do_unassigned_access(addr, 0, 0, 0, 4);
2910 #endif
2911 return 0;
2914 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2916 #ifdef DEBUG_UNASSIGNED
2917 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2918 #endif
2919 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2920 do_unassigned_access(addr, 1, 0, 0, 1);
2921 #endif
2924 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2926 #ifdef DEBUG_UNASSIGNED
2927 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2928 #endif
2929 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2930 do_unassigned_access(addr, 1, 0, 0, 2);
2931 #endif
2934 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2936 #ifdef DEBUG_UNASSIGNED
2937 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2938 #endif
2939 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2940 do_unassigned_access(addr, 1, 0, 0, 4);
2941 #endif
2944 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2945 unassigned_mem_readb,
2946 unassigned_mem_readw,
2947 unassigned_mem_readl,
2950 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2951 unassigned_mem_writeb,
2952 unassigned_mem_writew,
2953 unassigned_mem_writel,
2956 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2957 uint32_t val)
2959 int dirty_flags;
2960 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2961 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2962 #if !defined(CONFIG_USER_ONLY)
2963 tb_invalidate_phys_page_fast(ram_addr, 1);
2964 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2965 #endif
2967 stb_p(qemu_get_ram_ptr(ram_addr), val);
2968 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2969 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2970 /* we remove the notdirty callback only if the code has been
2971 flushed */
2972 if (dirty_flags == 0xff)
2973 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2976 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2977 uint32_t val)
2979 int dirty_flags;
2980 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2981 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2982 #if !defined(CONFIG_USER_ONLY)
2983 tb_invalidate_phys_page_fast(ram_addr, 2);
2984 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2985 #endif
2987 stw_p(qemu_get_ram_ptr(ram_addr), val);
2988 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2989 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2990 /* we remove the notdirty callback only if the code has been
2991 flushed */
2992 if (dirty_flags == 0xff)
2993 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2996 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2997 uint32_t val)
2999 int dirty_flags;
3000 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3001 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3002 #if !defined(CONFIG_USER_ONLY)
3003 tb_invalidate_phys_page_fast(ram_addr, 4);
3004 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3005 #endif
3007 stl_p(qemu_get_ram_ptr(ram_addr), val);
3008 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3009 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3010 /* we remove the notdirty callback only if the code has been
3011 flushed */
3012 if (dirty_flags == 0xff)
3013 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3016 static CPUReadMemoryFunc * const error_mem_read[3] = {
3017 NULL, /* never used */
3018 NULL, /* never used */
3019 NULL, /* never used */
3022 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3023 notdirty_mem_writeb,
3024 notdirty_mem_writew,
3025 notdirty_mem_writel,
3028 /* Generate a debug exception if a watchpoint has been hit. */
3029 static void check_watchpoint(int offset, int len_mask, int flags)
3031 CPUState *env = cpu_single_env;
3032 target_ulong pc, cs_base;
3033 TranslationBlock *tb;
3034 target_ulong vaddr;
3035 CPUWatchpoint *wp;
3036 int cpu_flags;
3038 if (env->watchpoint_hit) {
3039 /* We re-entered the check after replacing the TB. Now raise
3040 * the debug interrupt so that is will trigger after the
3041 * current instruction. */
3042 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3043 return;
3045 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3046 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3047 if ((vaddr == (wp->vaddr & len_mask) ||
3048 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3049 wp->flags |= BP_WATCHPOINT_HIT;
3050 if (!env->watchpoint_hit) {
3051 env->watchpoint_hit = wp;
3052 tb = tb_find_pc(env->mem_io_pc);
3053 if (!tb) {
3054 cpu_abort(env, "check_watchpoint: could not find TB for "
3055 "pc=%p", (void *)env->mem_io_pc);
3057 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3058 tb_phys_invalidate(tb, -1);
3059 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3060 env->exception_index = EXCP_DEBUG;
3061 } else {
3062 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3063 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3065 cpu_resume_from_signal(env, NULL);
3067 } else {
3068 wp->flags &= ~BP_WATCHPOINT_HIT;
3073 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3074 so these check for a hit then pass through to the normal out-of-line
3075 phys routines. */
3076 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3078 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3079 return ldub_phys(addr);
3082 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3084 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3085 return lduw_phys(addr);
3088 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3091 return ldl_phys(addr);
3094 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3095 uint32_t val)
3097 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3098 stb_phys(addr, val);
3101 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3102 uint32_t val)
3104 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3105 stw_phys(addr, val);
3108 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3109 uint32_t val)
3111 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3112 stl_phys(addr, val);
3115 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3116 watch_mem_readb,
3117 watch_mem_readw,
3118 watch_mem_readl,
3121 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3122 watch_mem_writeb,
3123 watch_mem_writew,
3124 watch_mem_writel,
3127 static inline uint32_t subpage_readlen (subpage_t *mmio,
3128 target_phys_addr_t addr,
3129 unsigned int len)
3131 unsigned int idx = SUBPAGE_IDX(addr);
3132 #if defined(DEBUG_SUBPAGE)
3133 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3134 mmio, len, addr, idx);
3135 #endif
3137 addr += mmio->region_offset[idx];
3138 idx = mmio->sub_io_index[idx];
3139 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3142 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3143 uint32_t value, unsigned int len)
3145 unsigned int idx = SUBPAGE_IDX(addr);
3146 #if defined(DEBUG_SUBPAGE)
3147 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3148 __func__, mmio, len, addr, idx, value);
3149 #endif
3151 addr += mmio->region_offset[idx];
3152 idx = mmio->sub_io_index[idx];
3153 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3156 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3158 return subpage_readlen(opaque, addr, 0);
3161 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3162 uint32_t value)
3164 subpage_writelen(opaque, addr, value, 0);
3167 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3169 return subpage_readlen(opaque, addr, 1);
3172 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3173 uint32_t value)
3175 subpage_writelen(opaque, addr, value, 1);
3178 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3180 return subpage_readlen(opaque, addr, 2);
3183 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3184 uint32_t value)
3186 subpage_writelen(opaque, addr, value, 2);
3189 static CPUReadMemoryFunc * const subpage_read[] = {
3190 &subpage_readb,
3191 &subpage_readw,
3192 &subpage_readl,
3195 static CPUWriteMemoryFunc * const subpage_write[] = {
3196 &subpage_writeb,
3197 &subpage_writew,
3198 &subpage_writel,
3201 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3202 ram_addr_t memory, ram_addr_t region_offset)
3204 int idx, eidx;
3206 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3207 return -1;
3208 idx = SUBPAGE_IDX(start);
3209 eidx = SUBPAGE_IDX(end);
3210 #if defined(DEBUG_SUBPAGE)
3211 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3212 mmio, start, end, idx, eidx, memory);
3213 #endif
3214 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3215 for (; idx <= eidx; idx++) {
3216 mmio->sub_io_index[idx] = memory;
3217 mmio->region_offset[idx] = region_offset;
3220 return 0;
3223 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3224 ram_addr_t orig_memory,
3225 ram_addr_t region_offset)
3227 subpage_t *mmio;
3228 int subpage_memory;
3230 mmio = qemu_mallocz(sizeof(subpage_t));
3232 mmio->base = base;
3233 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3234 #if defined(DEBUG_SUBPAGE)
3235 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3236 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3237 #endif
3238 *phys = subpage_memory | IO_MEM_SUBPAGE;
3239 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3241 return mmio;
3244 static int get_free_io_mem_idx(void)
3246 int i;
3248 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3249 if (!io_mem_used[i]) {
3250 io_mem_used[i] = 1;
3251 return i;
3253 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3254 return -1;
3257 /* mem_read and mem_write are arrays of functions containing the
3258 function to access byte (index 0), word (index 1) and dword (index
3259 2). Functions can be omitted with a NULL function pointer.
3260 If io_index is non zero, the corresponding io zone is
3261 modified. If it is zero, a new io zone is allocated. The return
3262 value can be used with cpu_register_physical_memory(). (-1) is
3263 returned if error. */
3264 static int cpu_register_io_memory_fixed(int io_index,
3265 CPUReadMemoryFunc * const *mem_read,
3266 CPUWriteMemoryFunc * const *mem_write,
3267 void *opaque)
3269 int i;
3271 if (io_index <= 0) {
3272 io_index = get_free_io_mem_idx();
3273 if (io_index == -1)
3274 return io_index;
3275 } else {
3276 io_index >>= IO_MEM_SHIFT;
3277 if (io_index >= IO_MEM_NB_ENTRIES)
3278 return -1;
3281 for (i = 0; i < 3; ++i) {
3282 io_mem_read[io_index][i]
3283 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3285 for (i = 0; i < 3; ++i) {
3286 io_mem_write[io_index][i]
3287 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3289 io_mem_opaque[io_index] = opaque;
3291 return (io_index << IO_MEM_SHIFT);
3294 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3295 CPUWriteMemoryFunc * const *mem_write,
3296 void *opaque)
3298 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3301 void cpu_unregister_io_memory(int io_table_address)
3303 int i;
3304 int io_index = io_table_address >> IO_MEM_SHIFT;
3306 for (i=0;i < 3; i++) {
3307 io_mem_read[io_index][i] = unassigned_mem_read[i];
3308 io_mem_write[io_index][i] = unassigned_mem_write[i];
3310 io_mem_opaque[io_index] = NULL;
3311 io_mem_used[io_index] = 0;
3314 static void io_mem_init(void)
3316 int i;
3318 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3319 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3320 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3321 for (i=0; i<5; i++)
3322 io_mem_used[i] = 1;
3324 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3325 watch_mem_write, NULL);
3328 #endif /* !defined(CONFIG_USER_ONLY) */
3330 /* physical memory access (slow version, mainly for debug) */
3331 #if defined(CONFIG_USER_ONLY)
3332 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3333 uint8_t *buf, int len, int is_write)
3335 int l, flags;
3336 target_ulong page;
3337 void * p;
3339 while (len > 0) {
3340 page = addr & TARGET_PAGE_MASK;
3341 l = (page + TARGET_PAGE_SIZE) - addr;
3342 if (l > len)
3343 l = len;
3344 flags = page_get_flags(page);
3345 if (!(flags & PAGE_VALID))
3346 return -1;
3347 if (is_write) {
3348 if (!(flags & PAGE_WRITE))
3349 return -1;
3350 /* XXX: this code should not depend on lock_user */
3351 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3352 return -1;
3353 memcpy(p, buf, l);
3354 unlock_user(p, addr, l);
3355 } else {
3356 if (!(flags & PAGE_READ))
3357 return -1;
3358 /* XXX: this code should not depend on lock_user */
3359 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3360 return -1;
3361 memcpy(buf, p, l);
3362 unlock_user(p, addr, 0);
3364 len -= l;
3365 buf += l;
3366 addr += l;
3368 return 0;
3371 #else
3372 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3373 int len, int is_write)
3375 int l, io_index;
3376 uint8_t *ptr;
3377 uint32_t val;
3378 target_phys_addr_t page;
3379 unsigned long pd;
3380 PhysPageDesc *p;
3382 while (len > 0) {
3383 page = addr & TARGET_PAGE_MASK;
3384 l = (page + TARGET_PAGE_SIZE) - addr;
3385 if (l > len)
3386 l = len;
3387 p = phys_page_find(page >> TARGET_PAGE_BITS);
3388 if (!p) {
3389 pd = IO_MEM_UNASSIGNED;
3390 } else {
3391 pd = p->phys_offset;
3394 if (is_write) {
3395 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3396 target_phys_addr_t addr1 = addr;
3397 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3398 if (p)
3399 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3400 /* XXX: could force cpu_single_env to NULL to avoid
3401 potential bugs */
3402 if (l >= 4 && ((addr1 & 3) == 0)) {
3403 /* 32 bit write access */
3404 val = ldl_p(buf);
3405 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3406 l = 4;
3407 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3408 /* 16 bit write access */
3409 val = lduw_p(buf);
3410 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3411 l = 2;
3412 } else {
3413 /* 8 bit write access */
3414 val = ldub_p(buf);
3415 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3416 l = 1;
3418 } else {
3419 unsigned long addr1;
3420 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3421 /* RAM case */
3422 ptr = qemu_get_ram_ptr(addr1);
3423 memcpy(ptr, buf, l);
3424 if (!cpu_physical_memory_is_dirty(addr1)) {
3425 /* invalidate code */
3426 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3427 /* set dirty bit */
3428 cpu_physical_memory_set_dirty_flags(
3429 addr1, (0xff & ~CODE_DIRTY_FLAG));
3432 } else {
3433 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3434 !(pd & IO_MEM_ROMD)) {
3435 target_phys_addr_t addr1 = addr;
3436 /* I/O case */
3437 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3438 if (p)
3439 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3440 if (l >= 4 && ((addr1 & 3) == 0)) {
3441 /* 32 bit read access */
3442 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3443 stl_p(buf, val);
3444 l = 4;
3445 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3446 /* 16 bit read access */
3447 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3448 stw_p(buf, val);
3449 l = 2;
3450 } else {
3451 /* 8 bit read access */
3452 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3453 stb_p(buf, val);
3454 l = 1;
3456 } else {
3457 /* RAM case */
3458 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3459 (addr & ~TARGET_PAGE_MASK);
3460 memcpy(buf, ptr, l);
3463 len -= l;
3464 buf += l;
3465 addr += l;
3469 /* used for ROM loading : can write in RAM and ROM */
3470 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3471 const uint8_t *buf, int len)
3473 int l;
3474 uint8_t *ptr;
3475 target_phys_addr_t page;
3476 unsigned long pd;
3477 PhysPageDesc *p;
3479 while (len > 0) {
3480 page = addr & TARGET_PAGE_MASK;
3481 l = (page + TARGET_PAGE_SIZE) - addr;
3482 if (l > len)
3483 l = len;
3484 p = phys_page_find(page >> TARGET_PAGE_BITS);
3485 if (!p) {
3486 pd = IO_MEM_UNASSIGNED;
3487 } else {
3488 pd = p->phys_offset;
3491 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3492 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3493 !(pd & IO_MEM_ROMD)) {
3494 /* do nothing */
3495 } else {
3496 unsigned long addr1;
3497 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3498 /* ROM/RAM case */
3499 ptr = qemu_get_ram_ptr(addr1);
3500 memcpy(ptr, buf, l);
3502 len -= l;
3503 buf += l;
3504 addr += l;
3508 typedef struct {
3509 void *buffer;
3510 target_phys_addr_t addr;
3511 target_phys_addr_t len;
3512 } BounceBuffer;
3514 static BounceBuffer bounce;
3516 typedef struct MapClient {
3517 void *opaque;
3518 void (*callback)(void *opaque);
3519 QLIST_ENTRY(MapClient) link;
3520 } MapClient;
3522 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3523 = QLIST_HEAD_INITIALIZER(map_client_list);
3525 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3527 MapClient *client = qemu_malloc(sizeof(*client));
3529 client->opaque = opaque;
3530 client->callback = callback;
3531 QLIST_INSERT_HEAD(&map_client_list, client, link);
3532 return client;
3535 void cpu_unregister_map_client(void *_client)
3537 MapClient *client = (MapClient *)_client;
3539 QLIST_REMOVE(client, link);
3540 qemu_free(client);
3543 static void cpu_notify_map_clients(void)
3545 MapClient *client;
3547 while (!QLIST_EMPTY(&map_client_list)) {
3548 client = QLIST_FIRST(&map_client_list);
3549 client->callback(client->opaque);
3550 cpu_unregister_map_client(client);
3554 /* Map a physical memory region into a host virtual address.
3555 * May map a subset of the requested range, given by and returned in *plen.
3556 * May return NULL if resources needed to perform the mapping are exhausted.
3557 * Use only for reads OR writes - not for read-modify-write operations.
3558 * Use cpu_register_map_client() to know when retrying the map operation is
3559 * likely to succeed.
3561 void *cpu_physical_memory_map(target_phys_addr_t addr,
3562 target_phys_addr_t *plen,
3563 int is_write)
3565 target_phys_addr_t len = *plen;
3566 target_phys_addr_t done = 0;
3567 int l;
3568 uint8_t *ret = NULL;
3569 uint8_t *ptr;
3570 target_phys_addr_t page;
3571 unsigned long pd;
3572 PhysPageDesc *p;
3573 unsigned long addr1;
3575 while (len > 0) {
3576 page = addr & TARGET_PAGE_MASK;
3577 l = (page + TARGET_PAGE_SIZE) - addr;
3578 if (l > len)
3579 l = len;
3580 p = phys_page_find(page >> TARGET_PAGE_BITS);
3581 if (!p) {
3582 pd = IO_MEM_UNASSIGNED;
3583 } else {
3584 pd = p->phys_offset;
3587 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3588 if (done || bounce.buffer) {
3589 break;
3591 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3592 bounce.addr = addr;
3593 bounce.len = l;
3594 if (!is_write) {
3595 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3597 ptr = bounce.buffer;
3598 } else {
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3600 ptr = qemu_get_ram_ptr(addr1);
3602 if (!done) {
3603 ret = ptr;
3604 } else if (ret + done != ptr) {
3605 break;
3608 len -= l;
3609 addr += l;
3610 done += l;
3612 *plen = done;
3613 return ret;
3616 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3617 * Will also mark the memory as dirty if is_write == 1. access_len gives
3618 * the amount of memory that was actually read or written by the caller.
3620 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3621 int is_write, target_phys_addr_t access_len)
3623 if (buffer != bounce.buffer) {
3624 if (is_write) {
3625 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3626 while (access_len) {
3627 unsigned l;
3628 l = TARGET_PAGE_SIZE;
3629 if (l > access_len)
3630 l = access_len;
3631 if (!cpu_physical_memory_is_dirty(addr1)) {
3632 /* invalidate code */
3633 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3634 /* set dirty bit */
3635 cpu_physical_memory_set_dirty_flags(
3636 addr1, (0xff & ~CODE_DIRTY_FLAG));
3638 addr1 += l;
3639 access_len -= l;
3642 return;
3644 if (is_write) {
3645 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3647 qemu_vfree(bounce.buffer);
3648 bounce.buffer = NULL;
3649 cpu_notify_map_clients();
3652 /* warning: addr must be aligned */
3653 uint32_t ldl_phys(target_phys_addr_t addr)
3655 int io_index;
3656 uint8_t *ptr;
3657 uint32_t val;
3658 unsigned long pd;
3659 PhysPageDesc *p;
3661 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3662 if (!p) {
3663 pd = IO_MEM_UNASSIGNED;
3664 } else {
3665 pd = p->phys_offset;
3668 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3669 !(pd & IO_MEM_ROMD)) {
3670 /* I/O case */
3671 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3672 if (p)
3673 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3674 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3675 } else {
3676 /* RAM case */
3677 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3678 (addr & ~TARGET_PAGE_MASK);
3679 val = ldl_p(ptr);
3681 return val;
3684 /* warning: addr must be aligned */
3685 uint64_t ldq_phys(target_phys_addr_t addr)
3687 int io_index;
3688 uint8_t *ptr;
3689 uint64_t val;
3690 unsigned long pd;
3691 PhysPageDesc *p;
3693 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3694 if (!p) {
3695 pd = IO_MEM_UNASSIGNED;
3696 } else {
3697 pd = p->phys_offset;
3700 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3701 !(pd & IO_MEM_ROMD)) {
3702 /* I/O case */
3703 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3704 if (p)
3705 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3706 #ifdef TARGET_WORDS_BIGENDIAN
3707 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3708 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3709 #else
3710 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3711 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3712 #endif
3713 } else {
3714 /* RAM case */
3715 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3716 (addr & ~TARGET_PAGE_MASK);
3717 val = ldq_p(ptr);
3719 return val;
3722 /* XXX: optimize */
3723 uint32_t ldub_phys(target_phys_addr_t addr)
3725 uint8_t val;
3726 cpu_physical_memory_read(addr, &val, 1);
3727 return val;
3730 /* warning: addr must be aligned */
3731 uint32_t lduw_phys(target_phys_addr_t addr)
3733 int io_index;
3734 uint8_t *ptr;
3735 uint64_t val;
3736 unsigned long pd;
3737 PhysPageDesc *p;
3739 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3740 if (!p) {
3741 pd = IO_MEM_UNASSIGNED;
3742 } else {
3743 pd = p->phys_offset;
3746 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3747 !(pd & IO_MEM_ROMD)) {
3748 /* I/O case */
3749 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3750 if (p)
3751 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3752 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3753 } else {
3754 /* RAM case */
3755 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3756 (addr & ~TARGET_PAGE_MASK);
3757 val = lduw_p(ptr);
3759 return val;
3762 /* warning: addr must be aligned. The ram page is not masked as dirty
3763 and the code inside is not invalidated. It is useful if the dirty
3764 bits are used to track modified PTEs */
3765 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3767 int io_index;
3768 uint8_t *ptr;
3769 unsigned long pd;
3770 PhysPageDesc *p;
3772 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3773 if (!p) {
3774 pd = IO_MEM_UNASSIGNED;
3775 } else {
3776 pd = p->phys_offset;
3779 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3780 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3781 if (p)
3782 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3783 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3784 } else {
3785 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3786 ptr = qemu_get_ram_ptr(addr1);
3787 stl_p(ptr, val);
3789 if (unlikely(in_migration)) {
3790 if (!cpu_physical_memory_is_dirty(addr1)) {
3791 /* invalidate code */
3792 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3793 /* set dirty bit */
3794 cpu_physical_memory_set_dirty_flags(
3795 addr1, (0xff & ~CODE_DIRTY_FLAG));
3801 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3803 int io_index;
3804 uint8_t *ptr;
3805 unsigned long pd;
3806 PhysPageDesc *p;
3808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3809 if (!p) {
3810 pd = IO_MEM_UNASSIGNED;
3811 } else {
3812 pd = p->phys_offset;
3815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3817 if (p)
3818 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3819 #ifdef TARGET_WORDS_BIGENDIAN
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3821 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3822 #else
3823 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3824 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3825 #endif
3826 } else {
3827 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3828 (addr & ~TARGET_PAGE_MASK);
3829 stq_p(ptr, val);
3833 /* warning: addr must be aligned */
3834 void stl_phys(target_phys_addr_t addr, uint32_t val)
3836 int io_index;
3837 uint8_t *ptr;
3838 unsigned long pd;
3839 PhysPageDesc *p;
3841 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3842 if (!p) {
3843 pd = IO_MEM_UNASSIGNED;
3844 } else {
3845 pd = p->phys_offset;
3848 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3849 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3850 if (p)
3851 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3852 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3853 } else {
3854 unsigned long addr1;
3855 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3856 /* RAM case */
3857 ptr = qemu_get_ram_ptr(addr1);
3858 stl_p(ptr, val);
3859 if (!cpu_physical_memory_is_dirty(addr1)) {
3860 /* invalidate code */
3861 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3862 /* set dirty bit */
3863 cpu_physical_memory_set_dirty_flags(addr1,
3864 (0xff & ~CODE_DIRTY_FLAG));
3869 /* XXX: optimize */
3870 void stb_phys(target_phys_addr_t addr, uint32_t val)
3872 uint8_t v = val;
3873 cpu_physical_memory_write(addr, &v, 1);
3876 /* warning: addr must be aligned */
3877 void stw_phys(target_phys_addr_t addr, uint32_t val)
3879 int io_index;
3880 uint8_t *ptr;
3881 unsigned long pd;
3882 PhysPageDesc *p;
3884 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3885 if (!p) {
3886 pd = IO_MEM_UNASSIGNED;
3887 } else {
3888 pd = p->phys_offset;
3891 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3892 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3893 if (p)
3894 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3895 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3896 } else {
3897 unsigned long addr1;
3898 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3899 /* RAM case */
3900 ptr = qemu_get_ram_ptr(addr1);
3901 stw_p(ptr, val);
3902 if (!cpu_physical_memory_is_dirty(addr1)) {
3903 /* invalidate code */
3904 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3905 /* set dirty bit */
3906 cpu_physical_memory_set_dirty_flags(addr1,
3907 (0xff & ~CODE_DIRTY_FLAG));
3912 /* XXX: optimize */
3913 void stq_phys(target_phys_addr_t addr, uint64_t val)
3915 val = tswap64(val);
3916 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3919 /* virtual memory access for debug (includes writing to ROM) */
3920 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3921 uint8_t *buf, int len, int is_write)
3923 int l;
3924 target_phys_addr_t phys_addr;
3925 target_ulong page;
3927 while (len > 0) {
3928 page = addr & TARGET_PAGE_MASK;
3929 phys_addr = cpu_get_phys_page_debug(env, page);
3930 /* if no physical page mapped, return an error */
3931 if (phys_addr == -1)
3932 return -1;
3933 l = (page + TARGET_PAGE_SIZE) - addr;
3934 if (l > len)
3935 l = len;
3936 phys_addr += (addr & ~TARGET_PAGE_MASK);
3937 if (is_write)
3938 cpu_physical_memory_write_rom(phys_addr, buf, l);
3939 else
3940 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3941 len -= l;
3942 buf += l;
3943 addr += l;
3945 return 0;
3947 #endif
3949 /* in deterministic execution mode, instructions doing device I/Os
3950 must be at the end of the TB */
3951 void cpu_io_recompile(CPUState *env, void *retaddr)
3953 TranslationBlock *tb;
3954 uint32_t n, cflags;
3955 target_ulong pc, cs_base;
3956 uint64_t flags;
3958 tb = tb_find_pc((unsigned long)retaddr);
3959 if (!tb) {
3960 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3961 retaddr);
3963 n = env->icount_decr.u16.low + tb->icount;
3964 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3965 /* Calculate how many instructions had been executed before the fault
3966 occurred. */
3967 n = n - env->icount_decr.u16.low;
3968 /* Generate a new TB ending on the I/O insn. */
3969 n++;
3970 /* On MIPS and SH, delay slot instructions can only be restarted if
3971 they were already the first instruction in the TB. If this is not
3972 the first instruction in a TB then re-execute the preceding
3973 branch. */
3974 #if defined(TARGET_MIPS)
3975 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3976 env->active_tc.PC -= 4;
3977 env->icount_decr.u16.low++;
3978 env->hflags &= ~MIPS_HFLAG_BMASK;
3980 #elif defined(TARGET_SH4)
3981 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3982 && n > 1) {
3983 env->pc -= 2;
3984 env->icount_decr.u16.low++;
3985 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3987 #endif
3988 /* This should never happen. */
3989 if (n > CF_COUNT_MASK)
3990 cpu_abort(env, "TB too big during recompile");
3992 cflags = n | CF_LAST_IO;
3993 pc = tb->pc;
3994 cs_base = tb->cs_base;
3995 flags = tb->flags;
3996 tb_phys_invalidate(tb, -1);
3997 /* FIXME: In theory this could raise an exception. In practice
3998 we have already translated the block once so it's probably ok. */
3999 tb_gen_code(env, pc, cs_base, flags, cflags);
4000 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4001 the first in the TB) then we end up generating a whole new TB and
4002 repeating the fault, which is horribly inefficient.
4003 Better would be to execute just this insn uncached, or generate a
4004 second new TB. */
4005 cpu_resume_from_signal(env, NULL);
4008 #if !defined(CONFIG_USER_ONLY)
4010 void dump_exec_info(FILE *f,
4011 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4013 int i, target_code_size, max_target_code_size;
4014 int direct_jmp_count, direct_jmp2_count, cross_page;
4015 TranslationBlock *tb;
4017 target_code_size = 0;
4018 max_target_code_size = 0;
4019 cross_page = 0;
4020 direct_jmp_count = 0;
4021 direct_jmp2_count = 0;
4022 for(i = 0; i < nb_tbs; i++) {
4023 tb = &tbs[i];
4024 target_code_size += tb->size;
4025 if (tb->size > max_target_code_size)
4026 max_target_code_size = tb->size;
4027 if (tb->page_addr[1] != -1)
4028 cross_page++;
4029 if (tb->tb_next_offset[0] != 0xffff) {
4030 direct_jmp_count++;
4031 if (tb->tb_next_offset[1] != 0xffff) {
4032 direct_jmp2_count++;
4036 /* XXX: avoid using doubles ? */
4037 cpu_fprintf(f, "Translation buffer state:\n");
4038 cpu_fprintf(f, "gen code size %ld/%ld\n",
4039 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4040 cpu_fprintf(f, "TB count %d/%d\n",
4041 nb_tbs, code_gen_max_blocks);
4042 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4043 nb_tbs ? target_code_size / nb_tbs : 0,
4044 max_target_code_size);
4045 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4046 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4047 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4048 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4049 cross_page,
4050 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4051 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4052 direct_jmp_count,
4053 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4054 direct_jmp2_count,
4055 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4056 cpu_fprintf(f, "\nStatistics:\n");
4057 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4058 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4059 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4060 tcg_dump_info(f, cpu_fprintf);
4063 #define MMUSUFFIX _cmmu
4064 #define GETPC() NULL
4065 #define env cpu_single_env
4066 #define SOFTMMU_CODE_ACCESS
4068 #define SHIFT 0
4069 #include "softmmu_template.h"
4071 #define SHIFT 1
4072 #include "softmmu_template.h"
4074 #define SHIFT 2
4075 #include "softmmu_template.h"
4077 #define SHIFT 3
4078 #include "softmmu_template.h"
4080 #undef env
4082 #endif