2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
40 # define LOG_IRQ(...) do { } while (0)
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
47 # define LOG_TB(...) do { } while (0)
50 static void cpu_ppc_tb_stop (CPUState
*env
);
51 static void cpu_ppc_tb_start (CPUState
*env
);
53 static void ppc_set_irq (CPUState
*env
, int n_IRQ
, int level
)
55 unsigned int old_pending
= env
->pending_interrupts
;
58 env
->pending_interrupts
|= 1 << n_IRQ
;
59 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
61 env
->pending_interrupts
&= ~(1 << n_IRQ
);
62 if (env
->pending_interrupts
== 0)
63 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
66 if (old_pending
!= env
->pending_interrupts
) {
68 kvmppc_set_interrupt(env
, n_IRQ
, level
);
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__
, env
, n_IRQ
, level
,
74 env
->pending_interrupts
, env
->interrupt_request
);
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque
, int pin
, int level
)
80 CPUState
*env
= opaque
;
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
85 cur_level
= (env
->irq_input_state
>> pin
) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
89 case PPC6xx_INPUT_TBEN
:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__
, level
? "start" : "stop");
94 cpu_ppc_tb_start(env
);
98 case PPC6xx_INPUT_INT
:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
102 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
104 case PPC6xx_INPUT_SMI
:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
108 ppc_set_irq(env
, PPC_INTERRUPT_SMI
, level
);
110 case PPC6xx_INPUT_MCP
:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
115 if (cur_level
== 1 && level
== 0) {
116 LOG_IRQ("%s: raise machine check state\n",
118 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
121 case PPC6xx_INPUT_CKSTP_IN
:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
126 LOG_IRQ("%s: stop the CPU\n", __func__
);
130 case PPC6xx_INPUT_HRESET
:
131 /* Level sensitive - active low */
133 LOG_IRQ("%s: reset the CPU\n", __func__
);
134 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
139 qemu_system_reset_request();
143 case PPC6xx_INPUT_SRESET
:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
146 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
154 env
->irq_input_state
|= 1 << pin
;
156 env
->irq_input_state
&= ~(1 << pin
);
160 void ppc6xx_irq_init (CPUState
*env
)
162 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, env
,
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque
, int pin
, int level
)
170 CPUState
*env
= opaque
;
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
175 cur_level
= (env
->irq_input_state
>> pin
) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
179 case PPC970_INPUT_INT
:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
183 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
185 case PPC970_INPUT_THINT
:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
189 ppc_set_irq(env
, PPC_INTERRUPT_THERM
, level
);
191 case PPC970_INPUT_MCP
:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
196 if (cur_level
== 1 && level
== 0) {
197 LOG_IRQ("%s: raise machine check state\n",
199 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
202 case PPC970_INPUT_CKSTP
:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
206 LOG_IRQ("%s: stop the CPU\n", __func__
);
209 LOG_IRQ("%s: restart the CPU\n", __func__
);
213 case PPC970_INPUT_HRESET
:
214 /* Level sensitive - active low */
217 LOG_IRQ("%s: reset the CPU\n", __func__
);
222 case PPC970_INPUT_SRESET
:
223 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
225 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
227 case PPC970_INPUT_TBEN
:
228 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
233 /* Unknown pin - do nothing */
234 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
238 env
->irq_input_state
|= 1 << pin
;
240 env
->irq_input_state
&= ~(1 << pin
);
244 void ppc970_irq_init (CPUState
*env
)
246 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, env
,
249 #endif /* defined(TARGET_PPC64) */
251 /* PowerPC 40x internal IRQ controller */
252 static void ppc40x_set_irq (void *opaque
, int pin
, int level
)
254 CPUState
*env
= opaque
;
257 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
259 cur_level
= (env
->irq_input_state
>> pin
) & 1;
260 /* Don't generate spurious events */
261 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
263 case PPC40x_INPUT_RESET_SYS
:
265 LOG_IRQ("%s: reset the PowerPC system\n",
267 ppc40x_system_reset(env
);
270 case PPC40x_INPUT_RESET_CHIP
:
272 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
273 ppc40x_chip_reset(env
);
276 case PPC40x_INPUT_RESET_CORE
:
277 /* XXX: TODO: update DBSR[MRR] */
279 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
280 ppc40x_core_reset(env
);
283 case PPC40x_INPUT_CINT
:
284 /* Level sensitive - active high */
285 LOG_IRQ("%s: set the critical IRQ state to %d\n",
287 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
289 case PPC40x_INPUT_INT
:
290 /* Level sensitive - active high */
291 LOG_IRQ("%s: set the external IRQ state to %d\n",
293 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
295 case PPC40x_INPUT_HALT
:
296 /* Level sensitive - active low */
298 LOG_IRQ("%s: stop the CPU\n", __func__
);
301 LOG_IRQ("%s: restart the CPU\n", __func__
);
305 case PPC40x_INPUT_DEBUG
:
306 /* Level sensitive - active high */
307 LOG_IRQ("%s: set the debug pin state to %d\n",
309 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
312 /* Unknown pin - do nothing */
313 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
317 env
->irq_input_state
|= 1 << pin
;
319 env
->irq_input_state
&= ~(1 << pin
);
323 void ppc40x_irq_init (CPUState
*env
)
325 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
326 env
, PPC40x_INPUT_NB
);
329 /* PowerPC E500 internal IRQ controller */
330 static void ppce500_set_irq (void *opaque
, int pin
, int level
)
332 CPUState
*env
= opaque
;
335 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
337 cur_level
= (env
->irq_input_state
>> pin
) & 1;
338 /* Don't generate spurious events */
339 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
341 case PPCE500_INPUT_MCK
:
343 LOG_IRQ("%s: reset the PowerPC system\n",
345 qemu_system_reset_request();
348 case PPCE500_INPUT_RESET_CORE
:
350 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
351 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, level
);
354 case PPCE500_INPUT_CINT
:
355 /* Level sensitive - active high */
356 LOG_IRQ("%s: set the critical IRQ state to %d\n",
358 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
360 case PPCE500_INPUT_INT
:
361 /* Level sensitive - active high */
362 LOG_IRQ("%s: set the core IRQ state to %d\n",
364 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
366 case PPCE500_INPUT_DEBUG
:
367 /* Level sensitive - active high */
368 LOG_IRQ("%s: set the debug pin state to %d\n",
370 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
373 /* Unknown pin - do nothing */
374 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
378 env
->irq_input_state
|= 1 << pin
;
380 env
->irq_input_state
&= ~(1 << pin
);
384 void ppce500_irq_init (CPUState
*env
)
386 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
387 env
, PPCE500_INPUT_NB
);
389 /*****************************************************************************/
390 /* PowerPC time base and decrementer emulation */
392 /* Time base management */
393 int64_t tb_offset
; /* Compensation */
394 int64_t atb_offset
; /* Compensation */
395 uint32_t tb_freq
; /* TB frequency */
396 /* Decrementer management */
397 uint64_t decr_next
; /* Tick for next decr interrupt */
398 uint32_t decr_freq
; /* decrementer frequency */
399 struct QEMUTimer
*decr_timer
;
400 /* Hypervisor decrementer management */
401 uint64_t hdecr_next
; /* Tick for next hdecr interrupt */
402 struct QEMUTimer
*hdecr_timer
;
408 static inline uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
411 /* TB time in tb periods */
412 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
415 uint64_t cpu_ppc_load_tbl (CPUState
*env
)
417 ppc_tb_t
*tb_env
= env
->tb_env
;
420 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
421 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
426 static inline uint32_t _cpu_ppc_load_tbu(CPUState
*env
)
428 ppc_tb_t
*tb_env
= env
->tb_env
;
431 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
432 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
437 uint32_t cpu_ppc_load_tbu (CPUState
*env
)
439 return _cpu_ppc_load_tbu(env
);
442 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
443 int64_t *tb_offsetp
, uint64_t value
)
445 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
446 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
447 __func__
, value
, *tb_offsetp
);
450 void cpu_ppc_store_tbl (CPUState
*env
, uint32_t value
)
452 ppc_tb_t
*tb_env
= env
->tb_env
;
455 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
456 tb
&= 0xFFFFFFFF00000000ULL
;
457 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
458 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
461 static inline void _cpu_ppc_store_tbu(CPUState
*env
, uint32_t value
)
463 ppc_tb_t
*tb_env
= env
->tb_env
;
466 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
467 tb
&= 0x00000000FFFFFFFFULL
;
468 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
469 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
472 void cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
474 _cpu_ppc_store_tbu(env
, value
);
477 uint64_t cpu_ppc_load_atbl (CPUState
*env
)
479 ppc_tb_t
*tb_env
= env
->tb_env
;
482 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
483 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
488 uint32_t cpu_ppc_load_atbu (CPUState
*env
)
490 ppc_tb_t
*tb_env
= env
->tb_env
;
493 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
494 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
499 void cpu_ppc_store_atbl (CPUState
*env
, uint32_t value
)
501 ppc_tb_t
*tb_env
= env
->tb_env
;
504 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
505 tb
&= 0xFFFFFFFF00000000ULL
;
506 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
507 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
510 void cpu_ppc_store_atbu (CPUState
*env
, uint32_t value
)
512 ppc_tb_t
*tb_env
= env
->tb_env
;
515 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
516 tb
&= 0x00000000FFFFFFFFULL
;
517 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
518 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
521 static void cpu_ppc_tb_stop (CPUState
*env
)
523 ppc_tb_t
*tb_env
= env
->tb_env
;
524 uint64_t tb
, atb
, vmclk
;
526 /* If the time base is already frozen, do nothing */
527 if (tb_env
->tb_freq
!= 0) {
528 vmclk
= qemu_get_clock(vm_clock
);
529 /* Get the time base */
530 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
531 /* Get the alternate time base */
532 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
533 /* Store the time base value (ie compute the current offset) */
534 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
535 /* Store the alternate time base value (compute the current offset) */
536 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
537 /* Set the time base frequency to zero */
539 /* Now, the time bases are frozen to tb_offset / atb_offset value */
543 static void cpu_ppc_tb_start (CPUState
*env
)
545 ppc_tb_t
*tb_env
= env
->tb_env
;
546 uint64_t tb
, atb
, vmclk
;
548 /* If the time base is not frozen, do nothing */
549 if (tb_env
->tb_freq
== 0) {
550 vmclk
= qemu_get_clock(vm_clock
);
551 /* Get the time base from tb_offset */
552 tb
= tb_env
->tb_offset
;
553 /* Get the alternate time base from atb_offset */
554 atb
= tb_env
->atb_offset
;
555 /* Restore the tb frequency from the decrementer frequency */
556 tb_env
->tb_freq
= tb_env
->decr_freq
;
557 /* Store the time base value */
558 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
559 /* Store the alternate time base value */
560 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
564 static inline uint32_t _cpu_ppc_load_decr(CPUState
*env
, uint64_t next
)
566 ppc_tb_t
*tb_env
= env
->tb_env
;
570 diff
= next
- qemu_get_clock(vm_clock
);
572 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
574 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
575 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
580 uint32_t cpu_ppc_load_decr (CPUState
*env
)
582 ppc_tb_t
*tb_env
= env
->tb_env
;
584 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
587 uint32_t cpu_ppc_load_hdecr (CPUState
*env
)
589 ppc_tb_t
*tb_env
= env
->tb_env
;
591 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
594 uint64_t cpu_ppc_load_purr (CPUState
*env
)
596 ppc_tb_t
*tb_env
= env
->tb_env
;
599 diff
= qemu_get_clock(vm_clock
) - tb_env
->purr_start
;
601 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
604 /* When decrementer expires,
605 * all we need to do is generate or queue a CPU exception
607 static inline void cpu_ppc_decr_excp(CPUState
*env
)
610 LOG_TB("raise decrementer exception\n");
611 ppc_set_irq(env
, PPC_INTERRUPT_DECR
, 1);
614 static inline void cpu_ppc_hdecr_excp(CPUState
*env
)
617 LOG_TB("raise decrementer exception\n");
618 ppc_set_irq(env
, PPC_INTERRUPT_HDECR
, 1);
621 static void __cpu_ppc_store_decr (CPUState
*env
, uint64_t *nextp
,
622 struct QEMUTimer
*timer
,
623 void (*raise_excp
)(CPUState
*),
624 uint32_t decr
, uint32_t value
,
627 ppc_tb_t
*tb_env
= env
->tb_env
;
630 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
632 now
= qemu_get_clock(vm_clock
);
633 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
635 next
+= *nextp
- now
;
640 qemu_mod_timer(timer
, next
);
641 /* If we set a negative value and the decrementer was positive,
642 * raise an exception.
644 if ((value
& 0x80000000) && !(decr
& 0x80000000))
648 static inline void _cpu_ppc_store_decr(CPUState
*env
, uint32_t decr
,
649 uint32_t value
, int is_excp
)
651 ppc_tb_t
*tb_env
= env
->tb_env
;
653 __cpu_ppc_store_decr(env
, &tb_env
->decr_next
, tb_env
->decr_timer
,
654 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
657 void cpu_ppc_store_decr (CPUState
*env
, uint32_t value
)
659 _cpu_ppc_store_decr(env
, cpu_ppc_load_decr(env
), value
, 0);
662 static void cpu_ppc_decr_cb (void *opaque
)
664 _cpu_ppc_store_decr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
667 static inline void _cpu_ppc_store_hdecr(CPUState
*env
, uint32_t hdecr
,
668 uint32_t value
, int is_excp
)
670 ppc_tb_t
*tb_env
= env
->tb_env
;
672 if (tb_env
->hdecr_timer
!= NULL
) {
673 __cpu_ppc_store_decr(env
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
674 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
678 void cpu_ppc_store_hdecr (CPUState
*env
, uint32_t value
)
680 _cpu_ppc_store_hdecr(env
, cpu_ppc_load_hdecr(env
), value
, 0);
683 static void cpu_ppc_hdecr_cb (void *opaque
)
685 _cpu_ppc_store_hdecr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
688 void cpu_ppc_store_purr (CPUState
*env
, uint64_t value
)
690 ppc_tb_t
*tb_env
= env
->tb_env
;
692 tb_env
->purr_load
= value
;
693 tb_env
->purr_start
= qemu_get_clock(vm_clock
);
696 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
698 CPUState
*env
= opaque
;
699 ppc_tb_t
*tb_env
= env
->tb_env
;
701 tb_env
->tb_freq
= freq
;
702 tb_env
->decr_freq
= freq
;
703 /* There is a bug in Linux 2.4 kernels:
704 * if a decrementer exception is pending when it enables msr_ee at startup,
705 * it's not ready to handle it...
707 _cpu_ppc_store_decr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
708 _cpu_ppc_store_hdecr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
709 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
712 /* Set up (once) timebase frequency (in Hz) */
713 clk_setup_cb
cpu_ppc_tb_init (CPUState
*env
, uint32_t freq
)
717 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
718 env
->tb_env
= tb_env
;
719 /* Create new timer */
720 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_decr_cb
, env
);
722 /* XXX: find a suitable condition to enable the hypervisor decrementer
724 tb_env
->hdecr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_hdecr_cb
, env
);
726 tb_env
->hdecr_timer
= NULL
;
728 cpu_ppc_set_tb_clk(env
, freq
);
730 return &cpu_ppc_set_tb_clk
;
733 /* Specific helpers for POWER & PowerPC 601 RTC */
735 static clk_setup_cb
cpu_ppc601_rtc_init (CPUState
*env
)
737 return cpu_ppc_tb_init(env
, 7812500);
741 void cpu_ppc601_store_rtcu (CPUState
*env
, uint32_t value
)
743 _cpu_ppc_store_tbu(env
, value
);
746 uint32_t cpu_ppc601_load_rtcu (CPUState
*env
)
748 return _cpu_ppc_load_tbu(env
);
751 void cpu_ppc601_store_rtcl (CPUState
*env
, uint32_t value
)
753 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
756 uint32_t cpu_ppc601_load_rtcl (CPUState
*env
)
758 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
761 /*****************************************************************************/
762 /* Embedded PowerPC timers */
765 typedef struct ppcemb_timer_t ppcemb_timer_t
;
766 struct ppcemb_timer_t
{
767 uint64_t pit_reload
; /* PIT auto-reload value */
768 uint64_t fit_next
; /* Tick for next FIT interrupt */
769 struct QEMUTimer
*fit_timer
;
770 uint64_t wdt_next
; /* Tick for next WDT interrupt */
771 struct QEMUTimer
*wdt_timer
;
773 /* 405 have the PIT, 440 have a DECR. */
774 unsigned int decr_excp
;
777 /* Fixed interval timer */
778 static void cpu_4xx_fit_cb (void *opaque
)
782 ppcemb_timer_t
*ppcemb_timer
;
786 tb_env
= env
->tb_env
;
787 ppcemb_timer
= tb_env
->opaque
;
788 now
= qemu_get_clock(vm_clock
);
789 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
803 /* Cannot occur, but makes gcc happy */
806 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
809 qemu_mod_timer(ppcemb_timer
->fit_timer
, next
);
810 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
811 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1)
812 ppc_set_irq(env
, PPC_INTERRUPT_FIT
, 1);
813 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
814 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
815 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
818 /* Programmable interval timer */
819 static void start_stop_pit (CPUState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
821 ppcemb_timer_t
*ppcemb_timer
;
824 ppcemb_timer
= tb_env
->opaque
;
825 if (ppcemb_timer
->pit_reload
<= 1 ||
826 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
827 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
829 LOG_TB("%s: stop PIT\n", __func__
);
830 qemu_del_timer(tb_env
->decr_timer
);
832 LOG_TB("%s: start PIT %016" PRIx64
"\n",
833 __func__
, ppcemb_timer
->pit_reload
);
834 now
= qemu_get_clock(vm_clock
);
835 next
= now
+ muldiv64(ppcemb_timer
->pit_reload
,
836 get_ticks_per_sec(), tb_env
->decr_freq
);
838 next
+= tb_env
->decr_next
- now
;
841 qemu_mod_timer(tb_env
->decr_timer
, next
);
842 tb_env
->decr_next
= next
;
846 static void cpu_4xx_pit_cb (void *opaque
)
850 ppcemb_timer_t
*ppcemb_timer
;
853 tb_env
= env
->tb_env
;
854 ppcemb_timer
= tb_env
->opaque
;
855 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
856 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1)
857 ppc_set_irq(env
, ppcemb_timer
->decr_excp
, 1);
858 start_stop_pit(env
, tb_env
, 1);
859 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
860 "%016" PRIx64
"\n", __func__
,
861 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
862 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
863 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
864 ppcemb_timer
->pit_reload
);
868 static void cpu_4xx_wdt_cb (void *opaque
)
872 ppcemb_timer_t
*ppcemb_timer
;
876 tb_env
= env
->tb_env
;
877 ppcemb_timer
= tb_env
->opaque
;
878 now
= qemu_get_clock(vm_clock
);
879 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
893 /* Cannot occur, but makes gcc happy */
896 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
899 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
900 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
901 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
904 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
905 ppcemb_timer
->wdt_next
= next
;
906 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
909 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
910 ppcemb_timer
->wdt_next
= next
;
911 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
912 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1)
913 ppc_set_irq(env
, PPC_INTERRUPT_WDT
, 1);
916 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
917 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
918 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
922 case 0x1: /* Core reset */
923 ppc40x_core_reset(env
);
925 case 0x2: /* Chip reset */
926 ppc40x_chip_reset(env
);
928 case 0x3: /* System reset */
929 ppc40x_system_reset(env
);
935 void store_40x_pit (CPUState
*env
, target_ulong val
)
938 ppcemb_timer_t
*ppcemb_timer
;
940 tb_env
= env
->tb_env
;
941 ppcemb_timer
= tb_env
->opaque
;
942 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
943 ppcemb_timer
->pit_reload
= val
;
944 start_stop_pit(env
, tb_env
, 0);
947 target_ulong
load_40x_pit (CPUState
*env
)
949 return cpu_ppc_load_decr(env
);
952 void store_booke_tsr (CPUState
*env
, target_ulong val
)
954 ppc_tb_t
*tb_env
= env
->tb_env
;
955 ppcemb_timer_t
*ppcemb_timer
;
957 ppcemb_timer
= tb_env
->opaque
;
959 LOG_TB("%s: val " TARGET_FMT_lx
"\n", __func__
, val
);
960 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
961 if (val
& 0x80000000)
962 ppc_set_irq(env
, ppcemb_timer
->decr_excp
, 0);
965 void store_booke_tcr (CPUState
*env
, target_ulong val
)
969 tb_env
= env
->tb_env
;
970 LOG_TB("%s: val " TARGET_FMT_lx
"\n", __func__
, val
);
971 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
972 start_stop_pit(env
, tb_env
, 1);
976 static void ppc_emb_set_tb_clk (void *opaque
, uint32_t freq
)
978 CPUState
*env
= opaque
;
979 ppc_tb_t
*tb_env
= env
->tb_env
;
981 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
983 tb_env
->tb_freq
= freq
;
984 tb_env
->decr_freq
= freq
;
985 /* XXX: we should also update all timers */
988 clk_setup_cb
ppc_emb_timers_init (CPUState
*env
, uint32_t freq
,
989 unsigned int decr_excp
)
992 ppcemb_timer_t
*ppcemb_timer
;
994 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
995 env
->tb_env
= tb_env
;
996 ppcemb_timer
= qemu_mallocz(sizeof(ppcemb_timer_t
));
997 tb_env
->tb_freq
= freq
;
998 tb_env
->decr_freq
= freq
;
999 tb_env
->opaque
= ppcemb_timer
;
1000 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1001 if (ppcemb_timer
!= NULL
) {
1002 /* We use decr timer for PIT */
1003 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_4xx_pit_cb
, env
);
1004 ppcemb_timer
->fit_timer
=
1005 qemu_new_timer(vm_clock
, &cpu_4xx_fit_cb
, env
);
1006 ppcemb_timer
->wdt_timer
=
1007 qemu_new_timer(vm_clock
, &cpu_4xx_wdt_cb
, env
);
1008 ppcemb_timer
->decr_excp
= decr_excp
;
1011 return &ppc_emb_set_tb_clk
;
1014 /*****************************************************************************/
1015 /* Embedded PowerPC Device Control Registers */
1016 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1018 dcr_read_cb dcr_read
;
1019 dcr_write_cb dcr_write
;
1023 /* XXX: on 460, DCR addresses are 32 bits wide,
1024 * using DCRIPR to get the 22 upper bits of the DCR address
1026 #define DCRN_NB 1024
1028 ppc_dcrn_t dcrn
[DCRN_NB
];
1029 int (*read_error
)(int dcrn
);
1030 int (*write_error
)(int dcrn
);
1033 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1037 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1039 dcr
= &dcr_env
->dcrn
[dcrn
];
1040 if (dcr
->dcr_read
== NULL
)
1042 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1047 if (dcr_env
->read_error
!= NULL
)
1048 return (*dcr_env
->read_error
)(dcrn
);
1053 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1057 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1059 dcr
= &dcr_env
->dcrn
[dcrn
];
1060 if (dcr
->dcr_write
== NULL
)
1062 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1067 if (dcr_env
->write_error
!= NULL
)
1068 return (*dcr_env
->write_error
)(dcrn
);
1073 int ppc_dcr_register (CPUState
*env
, int dcrn
, void *opaque
,
1074 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1079 dcr_env
= env
->dcr_env
;
1080 if (dcr_env
== NULL
)
1082 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1084 dcr
= &dcr_env
->dcrn
[dcrn
];
1085 if (dcr
->opaque
!= NULL
||
1086 dcr
->dcr_read
!= NULL
||
1087 dcr
->dcr_write
!= NULL
)
1089 dcr
->opaque
= opaque
;
1090 dcr
->dcr_read
= dcr_read
;
1091 dcr
->dcr_write
= dcr_write
;
1096 int ppc_dcr_init (CPUState
*env
, int (*read_error
)(int dcrn
),
1097 int (*write_error
)(int dcrn
))
1101 dcr_env
= qemu_mallocz(sizeof(ppc_dcr_t
));
1102 dcr_env
->read_error
= read_error
;
1103 dcr_env
->write_error
= write_error
;
1104 env
->dcr_env
= dcr_env
;
1109 /*****************************************************************************/
1111 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1123 printf("Set loglevel to %04" PRIx32
"\n", val
);
1124 cpu_set_log(val
| 0x100);
1129 /*****************************************************************************/
1131 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1133 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);;
1136 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1138 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1141 void NVRAM_set_byte (nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1143 nvram_write(nvram
, addr
, value
);
1146 uint8_t NVRAM_get_byte (nvram_t
*nvram
, uint32_t addr
)
1148 return nvram_read(nvram
, addr
);
1151 void NVRAM_set_word (nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1153 nvram_write(nvram
, addr
, value
>> 8);
1154 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1157 uint16_t NVRAM_get_word (nvram_t
*nvram
, uint32_t addr
)
1161 tmp
= nvram_read(nvram
, addr
) << 8;
1162 tmp
|= nvram_read(nvram
, addr
+ 1);
1167 void NVRAM_set_lword (nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1169 nvram_write(nvram
, addr
, value
>> 24);
1170 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1171 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1172 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1175 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1179 tmp
= nvram_read(nvram
, addr
) << 24;
1180 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1181 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1182 tmp
|= nvram_read(nvram
, addr
+ 3);
1187 void NVRAM_set_string (nvram_t
*nvram
, uint32_t addr
,
1188 const char *str
, uint32_t max
)
1192 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1193 nvram_write(nvram
, addr
+ i
, str
[i
]);
1195 nvram_write(nvram
, addr
+ i
, str
[i
]);
1196 nvram_write(nvram
, addr
+ max
- 1, '\0');
1199 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1203 memset(dst
, 0, max
);
1204 for (i
= 0; i
< max
; i
++) {
1205 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1213 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1216 uint16_t pd
, pd1
, pd2
;
1221 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1222 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1223 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1228 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1231 uint16_t crc
= 0xFFFF;
1236 for (i
= 0; i
!= count
; i
++) {
1237 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1240 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1246 #define CMDLINE_ADDR 0x017ff000
1248 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1250 uint32_t RAM_size
, int boot_device
,
1251 uint32_t kernel_image
, uint32_t kernel_size
,
1252 const char *cmdline
,
1253 uint32_t initrd_image
, uint32_t initrd_size
,
1254 uint32_t NVRAM_image
,
1255 int width
, int height
, int depth
)
1259 /* Set parameters for Open Hack'Ware BIOS */
1260 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1261 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1262 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1263 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1264 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1265 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1266 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1267 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1269 /* XXX: put the cmdline in NVRAM too ? */
1270 pstrcpy_targphys("cmdline", CMDLINE_ADDR
, RAM_size
- CMDLINE_ADDR
, cmdline
);
1271 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1272 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1274 NVRAM_set_lword(nvram
, 0x40, 0);
1275 NVRAM_set_lword(nvram
, 0x44, 0);
1277 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1278 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1279 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1281 NVRAM_set_word(nvram
, 0x54, width
);
1282 NVRAM_set_word(nvram
, 0x56, height
);
1283 NVRAM_set_word(nvram
, 0x58, depth
);
1284 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1285 NVRAM_set_word(nvram
, 0xFC, crc
);