4 /* CPU interfaces that are target indpendent. */
6 #ifdef TARGET_PHYS_ADDR_BITS
15 #include "qemu-queue.h"
17 #if !defined(CONFIG_USER_ONLY)
25 /* address in the RAM (different from a physical address) */
26 typedef unsigned long ram_addr_t
;
30 typedef void CPUWriteMemoryFunc(void *opaque
, target_phys_addr_t addr
, uint32_t value
);
31 typedef uint32_t CPUReadMemoryFunc(void *opaque
, target_phys_addr_t addr
);
33 void cpu_register_physical_memory_log(target_phys_addr_t start_addr
,
35 ram_addr_t phys_offset
,
36 ram_addr_t region_offset
,
39 static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
41 ram_addr_t phys_offset
,
42 ram_addr_t region_offset
)
44 cpu_register_physical_memory_log(start_addr
, size
, phys_offset
,
45 region_offset
, false);
48 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr
,
50 ram_addr_t phys_offset
)
52 cpu_register_physical_memory_offset(start_addr
, size
, phys_offset
, 0);
55 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
);
56 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
57 ram_addr_t size
, void *host
);
58 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
);
59 void qemu_ram_free(ram_addr_t addr
);
60 void qemu_ram_free_from_ptr(ram_addr_t addr
);
61 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
);
62 /* This should only be used for ram local to a device. */
63 void *qemu_get_ram_ptr(ram_addr_t addr
);
64 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
);
65 /* Same but slower, to use for migration, where the order of
66 * RAMBlocks must not change. */
67 void *qemu_safe_ram_ptr(ram_addr_t addr
);
68 void qemu_put_ram_ptr(void *addr
);
69 /* This should not be used by devices. */
70 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
);
71 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
);
73 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
74 CPUWriteMemoryFunc
* const *mem_write
,
75 void *opaque
, enum device_endian endian
);
76 void cpu_unregister_io_memory(int table_address
);
78 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
79 int len
, int is_write
);
80 static inline void cpu_physical_memory_read(target_phys_addr_t addr
,
83 cpu_physical_memory_rw(addr
, buf
, len
, 0);
85 static inline void cpu_physical_memory_write(target_phys_addr_t addr
,
86 const void *buf
, int len
)
88 cpu_physical_memory_rw(addr
, (void *)buf
, len
, 1);
90 void *cpu_physical_memory_map(target_phys_addr_t addr
,
91 target_phys_addr_t
*plen
,
93 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
94 int is_write
, target_phys_addr_t access_len
);
95 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
));
96 void cpu_unregister_map_client(void *cookie
);
98 struct CPUPhysMemoryClient
;
99 typedef struct CPUPhysMemoryClient CPUPhysMemoryClient
;
100 struct CPUPhysMemoryClient
{
101 void (*set_memory
)(struct CPUPhysMemoryClient
*client
,
102 target_phys_addr_t start_addr
,
104 ram_addr_t phys_offset
,
106 int (*sync_dirty_bitmap
)(struct CPUPhysMemoryClient
*client
,
107 target_phys_addr_t start_addr
,
108 target_phys_addr_t end_addr
);
109 int (*migration_log
)(struct CPUPhysMemoryClient
*client
,
111 int (*log_start
)(struct CPUPhysMemoryClient
*client
,
112 target_phys_addr_t phys_addr
, ram_addr_t size
);
113 int (*log_stop
)(struct CPUPhysMemoryClient
*client
,
114 target_phys_addr_t phys_addr
, ram_addr_t size
);
115 QLIST_ENTRY(CPUPhysMemoryClient
) list
;
118 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*);
119 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*);
121 /* Coalesced MMIO regions are areas where write operations can be reordered.
122 * This usually implies that write operations are side-effect free. This allows
123 * batching which can make a major impact on performance when using
126 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
);
128 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
);
130 void qemu_flush_coalesced_mmio_buffer(void);
132 uint32_t ldub_phys(target_phys_addr_t addr
);
133 uint32_t lduw_le_phys(target_phys_addr_t addr
);
134 uint32_t lduw_be_phys(target_phys_addr_t addr
);
135 uint32_t ldl_le_phys(target_phys_addr_t addr
);
136 uint32_t ldl_be_phys(target_phys_addr_t addr
);
137 uint64_t ldq_le_phys(target_phys_addr_t addr
);
138 uint64_t ldq_be_phys(target_phys_addr_t addr
);
139 void stb_phys(target_phys_addr_t addr
, uint32_t val
);
140 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
);
141 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
);
142 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
);
143 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
);
144 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
);
145 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
);
148 uint32_t lduw_phys(target_phys_addr_t addr
);
149 uint32_t ldl_phys(target_phys_addr_t addr
);
150 uint64_t ldq_phys(target_phys_addr_t addr
);
151 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
);
152 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
);
153 void stw_phys(target_phys_addr_t addr
, uint32_t val
);
154 void stl_phys(target_phys_addr_t addr
, uint32_t val
);
155 void stq_phys(target_phys_addr_t addr
, uint64_t val
);
158 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
159 const uint8_t *buf
, int len
);
161 #define IO_MEM_SHIFT 3
163 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
164 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
165 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
166 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
168 /* Acts like a ROM when read and like a device when written. */
169 #define IO_MEM_ROMD (1)
170 #define IO_MEM_SUBPAGE (2)
174 #endif /* !CPU_COMMON_H */