2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-barrier.h"
26 int tb_invalidated_flag
;
28 //#define CONFIG_DEBUG_EXEC
30 bool qemu_cpu_has_work(CPUArchState
*env
)
32 return cpu_has_work(env
);
35 void cpu_loop_exit(CPUArchState
*env
)
37 env
->current_tb
= NULL
;
38 longjmp(env
->jmp_env
, 1);
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState
*env
, void *puc
)
47 /* XXX: restore cpu registers saved in host registers */
49 env
->exception_index
= -1;
50 longjmp(env
->jmp_env
, 1);
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
57 TranslationBlock
*orig_tb
)
59 tcg_target_ulong next_tb
;
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles
> CF_COUNT_MASK
)
65 max_cycles
= CF_COUNT_MASK
;
67 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
70 /* execute the generated code */
71 next_tb
= tcg_qemu_tb_exec(env
, tb
->tc_ptr
);
72 env
->current_tb
= NULL
;
74 if ((next_tb
& 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env
, tb
);
79 tb_phys_invalidate(tb
, -1);
83 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
88 TranslationBlock
*tb
, **ptb1
;
90 tb_page_addr_t phys_pc
, phys_page1
;
91 target_ulong virt_page2
;
93 tb_invalidated_flag
= 0;
95 /* find translated block using physical mappings */
96 phys_pc
= get_page_addr_code(env
, pc
);
97 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
98 h
= tb_phys_hash_func(phys_pc
);
99 ptb1
= &tb_phys_hash
[h
];
105 tb
->page_addr
[0] == phys_page1
&&
106 tb
->cs_base
== cs_base
&&
107 tb
->flags
== flags
) {
108 /* check next page if needed */
109 if (tb
->page_addr
[1] != -1) {
110 tb_page_addr_t phys_page2
;
112 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
114 phys_page2
= get_page_addr_code(env
, virt_page2
);
115 if (tb
->page_addr
[1] == phys_page2
)
121 ptb1
= &tb
->phys_hash_next
;
124 /* if no translated code available, then translate it now */
125 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
128 /* Move the last found TB to the head of the list */
130 *ptb1
= tb
->phys_hash_next
;
131 tb
->phys_hash_next
= tb_phys_hash
[h
];
132 tb_phys_hash
[h
] = tb
;
134 /* we add the TB in the virtual pc hash table */
135 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
139 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
141 TranslationBlock
*tb
;
142 target_ulong cs_base
, pc
;
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
148 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
149 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
150 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
151 tb
->flags
!= flags
)) {
152 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
157 static CPUDebugExcpHandler
*debug_excp_handler
;
159 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
161 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
163 debug_excp_handler
= handler
;
167 static void cpu_handle_debug_exception(CPUArchState
*env
)
171 if (!env
->watchpoint_hit
) {
172 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
173 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
176 if (debug_excp_handler
) {
177 debug_excp_handler(env
);
181 /* main execution loop */
183 volatile sig_atomic_t exit_request
;
185 int cpu_exec(CPUArchState
*env
)
188 CPUState
*cpu
= ENV_GET_CPU(env
);
190 int ret
, interrupt_request
;
191 TranslationBlock
*tb
;
193 tcg_target_ulong next_tb
;
196 if (!cpu_has_work(env
)) {
203 cpu_single_env
= env
;
205 if (unlikely(exit_request
)) {
206 env
->exit_request
= 1;
209 #if defined(TARGET_I386)
210 /* put eflags in CPU temporary format */
211 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
212 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
213 CC_OP
= CC_OP_EFLAGS
;
214 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
215 #elif defined(TARGET_SPARC)
216 #elif defined(TARGET_M68K)
217 env
->cc_op
= CC_OP_FLAGS
;
218 env
->cc_dest
= env
->sr
& 0xf;
219 env
->cc_x
= (env
->sr
>> 4) & 1;
220 #elif defined(TARGET_ALPHA)
221 #elif defined(TARGET_ARM)
222 #elif defined(TARGET_UNICORE32)
223 #elif defined(TARGET_PPC)
224 env
->reserve_addr
= -1;
225 #elif defined(TARGET_LM32)
226 #elif defined(TARGET_MICROBLAZE)
227 #elif defined(TARGET_MIPS)
228 #elif defined(TARGET_OPENRISC)
229 #elif defined(TARGET_SH4)
230 #elif defined(TARGET_CRIS)
231 #elif defined(TARGET_S390X)
232 #elif defined(TARGET_XTENSA)
235 #error unsupported target CPU
237 env
->exception_index
= -1;
239 /* prepare setjmp context for exception handling */
241 if (setjmp(env
->jmp_env
) == 0) {
242 /* if an exception is pending, we execute it here */
243 if (env
->exception_index
>= 0) {
244 if (env
->exception_index
>= EXCP_INTERRUPT
) {
245 /* exit request from the cpu execution loop */
246 ret
= env
->exception_index
;
247 if (ret
== EXCP_DEBUG
) {
248 cpu_handle_debug_exception(env
);
252 #if defined(CONFIG_USER_ONLY)
253 /* if user mode only, we simulate a fake exception
254 which will be handled outside the cpu execution
256 #if defined(TARGET_I386)
259 ret
= env
->exception_index
;
263 env
->exception_index
= -1;
268 next_tb
= 0; /* force lookup of first TB */
270 interrupt_request
= env
->interrupt_request
;
271 if (unlikely(interrupt_request
)) {
272 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
273 /* Mask out external interrupts for this step. */
274 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
276 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
277 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
278 env
->exception_index
= EXCP_DEBUG
;
281 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
282 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
283 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
284 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
285 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
287 env
->exception_index
= EXCP_HLT
;
291 #if defined(TARGET_I386)
292 #if !defined(CONFIG_USER_ONLY)
293 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
294 env
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
295 apic_poll_irq(env
->apic_state
);
298 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
299 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
,
301 do_cpu_init(x86_env_get_cpu(env
));
302 env
->exception_index
= EXCP_HALTED
;
304 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
305 do_cpu_sipi(x86_env_get_cpu(env
));
306 } else if (env
->hflags2
& HF2_GIF_MASK
) {
307 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
308 !(env
->hflags
& HF_SMM_MASK
)) {
309 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
311 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
314 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
315 !(env
->hflags2
& HF2_NMI_MASK
)) {
316 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
317 env
->hflags2
|= HF2_NMI_MASK
;
318 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
320 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
321 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
322 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
324 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
325 (((env
->hflags2
& HF2_VINTR_MASK
) &&
326 (env
->hflags2
& HF2_HIF_MASK
)) ||
327 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
328 (env
->eflags
& IF_MASK
&&
329 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
331 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
333 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
334 intno
= cpu_get_pic_interrupt(env
);
335 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
336 do_interrupt_x86_hardirq(env
, intno
, 1);
337 /* ensure that no TB jump will be modified as
338 the program flow was changed */
340 #if !defined(CONFIG_USER_ONLY)
341 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
342 (env
->eflags
& IF_MASK
) &&
343 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
345 /* FIXME: this should respect TPR */
346 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
348 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
349 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
350 do_interrupt_x86_hardirq(env
, intno
, 1);
351 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
356 #elif defined(TARGET_PPC)
357 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
360 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
361 ppc_hw_interrupt(env
);
362 if (env
->pending_interrupts
== 0)
363 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
366 #elif defined(TARGET_LM32)
367 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
368 && (env
->ie
& IE_IE
)) {
369 env
->exception_index
= EXCP_IRQ
;
373 #elif defined(TARGET_MICROBLAZE)
374 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
375 && (env
->sregs
[SR_MSR
] & MSR_IE
)
376 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
377 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
378 env
->exception_index
= EXCP_IRQ
;
382 #elif defined(TARGET_MIPS)
383 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
384 cpu_mips_hw_interrupts_pending(env
)) {
386 env
->exception_index
= EXCP_EXT_INTERRUPT
;
391 #elif defined(TARGET_OPENRISC)
394 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
395 && (env
->sr
& SR_IEE
)) {
398 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
399 && (env
->sr
& SR_TEE
)) {
403 env
->exception_index
= idx
;
408 #elif defined(TARGET_SPARC)
409 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
410 if (cpu_interrupts_enabled(env
) &&
411 env
->interrupt_index
> 0) {
412 int pil
= env
->interrupt_index
& 0xf;
413 int type
= env
->interrupt_index
& 0xf0;
415 if (((type
== TT_EXTINT
) &&
416 cpu_pil_allowed(env
, pil
)) ||
418 env
->exception_index
= env
->interrupt_index
;
424 #elif defined(TARGET_ARM)
425 if (interrupt_request
& CPU_INTERRUPT_FIQ
426 && !(env
->uncached_cpsr
& CPSR_F
)) {
427 env
->exception_index
= EXCP_FIQ
;
431 /* ARMv7-M interrupt return works by loading a magic value
432 into the PC. On real hardware the load causes the
433 return to occur. The qemu implementation performs the
434 jump normally, then does the exception return when the
435 CPU tries to execute code at the magic address.
436 This will cause the magic PC value to be pushed to
437 the stack if an interrupt occurred at the wrong time.
438 We avoid this by disabling interrupts when
439 pc contains a magic address. */
440 if (interrupt_request
& CPU_INTERRUPT_HARD
441 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
442 || !(env
->uncached_cpsr
& CPSR_I
))) {
443 env
->exception_index
= EXCP_IRQ
;
447 #elif defined(TARGET_UNICORE32)
448 if (interrupt_request
& CPU_INTERRUPT_HARD
449 && !(env
->uncached_asr
& ASR_I
)) {
453 #elif defined(TARGET_SH4)
454 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
458 #elif defined(TARGET_ALPHA)
461 /* ??? This hard-codes the OSF/1 interrupt levels. */
462 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
464 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
465 idx
= EXCP_DEV_INTERRUPT
;
469 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
470 idx
= EXCP_CLK_INTERRUPT
;
474 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
475 idx
= EXCP_SMP_INTERRUPT
;
479 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
484 env
->exception_index
= idx
;
490 #elif defined(TARGET_CRIS)
491 if (interrupt_request
& CPU_INTERRUPT_HARD
492 && (env
->pregs
[PR_CCS
] & I_FLAG
)
493 && !env
->locked_irq
) {
494 env
->exception_index
= EXCP_IRQ
;
498 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
499 unsigned int m_flag_archval
;
500 if (env
->pregs
[PR_VR
] < 32) {
501 m_flag_archval
= M_FLAG_V10
;
503 m_flag_archval
= M_FLAG_V32
;
505 if ((env
->pregs
[PR_CCS
] & m_flag_archval
)) {
506 env
->exception_index
= EXCP_NMI
;
511 #elif defined(TARGET_M68K)
512 if (interrupt_request
& CPU_INTERRUPT_HARD
513 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
514 < env
->pending_level
) {
515 /* Real hardware gets the interrupt vector via an
516 IACK cycle at this point. Current emulated
517 hardware doesn't rely on this, so we
518 provide/save the vector when the interrupt is
520 env
->exception_index
= env
->pending_vector
;
521 do_interrupt_m68k_hardirq(env
);
524 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
525 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
526 (env
->psw
.mask
& PSW_MASK_EXT
)) {
530 #elif defined(TARGET_XTENSA)
531 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
532 env
->exception_index
= EXC_IRQ
;
537 /* Don't use the cached interrupt_request value,
538 do_interrupt may have updated the EXITTB flag. */
539 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
540 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
541 /* ensure that no TB jump will be modified as
542 the program flow was changed */
546 if (unlikely(env
->exit_request
)) {
547 env
->exit_request
= 0;
548 env
->exception_index
= EXCP_INTERRUPT
;
551 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
552 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
553 /* restore flags in standard format */
554 #if defined(TARGET_I386)
555 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
557 log_cpu_state(env
, X86_DUMP_CCOP
);
558 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
559 #elif defined(TARGET_M68K)
560 cpu_m68k_flush_flags(env
, env
->cc_op
);
561 env
->cc_op
= CC_OP_FLAGS
;
562 env
->sr
= (env
->sr
& 0xffe0)
563 | env
->cc_dest
| (env
->cc_x
<< 4);
564 log_cpu_state(env
, 0);
566 log_cpu_state(env
, 0);
569 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
571 tb
= tb_find_fast(env
);
572 /* Note: we do it here to avoid a gcc bug on Mac OS X when
573 doing it in tb_find_slow */
574 if (tb_invalidated_flag
) {
575 /* as some TB could have been invalidated because
576 of memory exceptions while generating the code, we
577 must recompute the hash index here */
579 tb_invalidated_flag
= 0;
581 #ifdef CONFIG_DEBUG_EXEC
582 qemu_log_mask(CPU_LOG_EXEC
, "Trace %p [" TARGET_FMT_lx
"] %s\n",
584 lookup_symbol(tb
->pc
));
586 /* see if we can patch the calling TB. When the TB
587 spans two pages, we cannot safely do a direct
589 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
590 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
592 spin_unlock(&tb_lock
);
594 /* cpu_interrupt might be called while translating the
595 TB, but before it is linked into a potentially
596 infinite loop and becomes env->current_tb. Avoid
597 starting execution if there is a pending interrupt. */
598 env
->current_tb
= tb
;
600 if (likely(!env
->exit_request
)) {
602 /* execute the generated code */
603 next_tb
= tcg_qemu_tb_exec(env
, tc_ptr
);
604 if ((next_tb
& 3) == 2) {
605 /* Instruction counter expired. */
607 tb
= (TranslationBlock
*)(next_tb
& ~3);
609 cpu_pc_from_tb(env
, tb
);
610 insns_left
= env
->icount_decr
.u32
;
611 if (env
->icount_extra
&& insns_left
>= 0) {
612 /* Refill decrementer and continue execution. */
613 env
->icount_extra
+= insns_left
;
614 if (env
->icount_extra
> 0xffff) {
617 insns_left
= env
->icount_extra
;
619 env
->icount_extra
-= insns_left
;
620 env
->icount_decr
.u16
.low
= insns_left
;
622 if (insns_left
> 0) {
623 /* Execute remaining instructions. */
624 cpu_exec_nocache(env
, insns_left
, tb
);
626 env
->exception_index
= EXCP_INTERRUPT
;
632 env
->current_tb
= NULL
;
633 /* reset soft MMU for next block (it can currently
634 only be set by a memory fault) */
637 /* Reload env after longjmp - the compiler may have smashed all
638 * local variables as longjmp is marked 'noreturn'. */
639 env
= cpu_single_env
;
644 #if defined(TARGET_I386)
645 /* restore flags in standard format */
646 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
648 #elif defined(TARGET_ARM)
649 /* XXX: Save/restore host fpu exception state?. */
650 #elif defined(TARGET_UNICORE32)
651 #elif defined(TARGET_SPARC)
652 #elif defined(TARGET_PPC)
653 #elif defined(TARGET_LM32)
654 #elif defined(TARGET_M68K)
655 cpu_m68k_flush_flags(env
, env
->cc_op
);
656 env
->cc_op
= CC_OP_FLAGS
;
657 env
->sr
= (env
->sr
& 0xffe0)
658 | env
->cc_dest
| (env
->cc_x
<< 4);
659 #elif defined(TARGET_MICROBLAZE)
660 #elif defined(TARGET_MIPS)
661 #elif defined(TARGET_OPENRISC)
662 #elif defined(TARGET_SH4)
663 #elif defined(TARGET_ALPHA)
664 #elif defined(TARGET_CRIS)
665 #elif defined(TARGET_S390X)
666 #elif defined(TARGET_XTENSA)
669 #error unsupported target CPU
672 /* fail safe : never use cpu_single_env outside cpu_exec() */
673 cpu_single_env
= NULL
;