net: Remove vlan code from net.c
[qemu/agraf.git] / cpu-exec.c
blob543460c34c49dff09d15ddf662c69dc8400deca9
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24 #include "qtest.h"
26 int tb_invalidated_flag;
28 //#define CONFIG_DEBUG_EXEC
30 bool qemu_cpu_has_work(CPUArchState *env)
32 return cpu_has_work(env);
35 void cpu_loop_exit(CPUArchState *env)
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
47 /* XXX: restore cpu registers saved in host registers */
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
52 #endif
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
93 tb_invalidated_flag = 0;
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
121 ptb1 = &tb->phys_hash_next;
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
154 return tb;
157 static CPUDebugExcpHandler *debug_excp_handler;
159 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
161 CPUDebugExcpHandler *old_handler = debug_excp_handler;
163 debug_excp_handler = handler;
164 return old_handler;
167 static void cpu_handle_debug_exception(CPUArchState *env)
169 CPUWatchpoint *wp;
171 if (!env->watchpoint_hit) {
172 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
173 wp->flags &= ~BP_WATCHPOINT_HIT;
176 if (debug_excp_handler) {
177 debug_excp_handler(env);
181 /* main execution loop */
183 volatile sig_atomic_t exit_request;
185 int cpu_exec(CPUArchState *env)
187 #ifdef TARGET_PPC
188 CPUState *cpu = ENV_GET_CPU(env);
189 #endif
190 int ret, interrupt_request;
191 TranslationBlock *tb;
192 uint8_t *tc_ptr;
193 tcg_target_ulong next_tb;
195 if (env->halted) {
196 if (!cpu_has_work(env)) {
197 return EXCP_HALTED;
200 env->halted = 0;
203 cpu_single_env = env;
205 if (unlikely(exit_request)) {
206 env->exit_request = 1;
209 #if defined(TARGET_I386)
210 /* put eflags in CPU temporary format */
211 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
212 DF = 1 - (2 * ((env->eflags >> 10) & 1));
213 CC_OP = CC_OP_EFLAGS;
214 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
215 #elif defined(TARGET_SPARC)
216 #elif defined(TARGET_M68K)
217 env->cc_op = CC_OP_FLAGS;
218 env->cc_dest = env->sr & 0xf;
219 env->cc_x = (env->sr >> 4) & 1;
220 #elif defined(TARGET_ALPHA)
221 #elif defined(TARGET_ARM)
222 #elif defined(TARGET_UNICORE32)
223 #elif defined(TARGET_PPC)
224 env->reserve_addr = -1;
225 #elif defined(TARGET_LM32)
226 #elif defined(TARGET_MICROBLAZE)
227 #elif defined(TARGET_MIPS)
228 #elif defined(TARGET_OPENRISC)
229 #elif defined(TARGET_SH4)
230 #elif defined(TARGET_CRIS)
231 #elif defined(TARGET_S390X)
232 #elif defined(TARGET_XTENSA)
233 /* XXXXX */
234 #else
235 #error unsupported target CPU
236 #endif
237 env->exception_index = -1;
239 /* prepare setjmp context for exception handling */
240 for(;;) {
241 if (setjmp(env->jmp_env) == 0) {
242 /* if an exception is pending, we execute it here */
243 if (env->exception_index >= 0) {
244 if (env->exception_index >= EXCP_INTERRUPT) {
245 /* exit request from the cpu execution loop */
246 ret = env->exception_index;
247 if (ret == EXCP_DEBUG) {
248 cpu_handle_debug_exception(env);
250 break;
251 } else {
252 #if defined(CONFIG_USER_ONLY)
253 /* if user mode only, we simulate a fake exception
254 which will be handled outside the cpu execution
255 loop */
256 #if defined(TARGET_I386)
257 do_interrupt(env);
258 #endif
259 ret = env->exception_index;
260 break;
261 #else
262 do_interrupt(env);
263 env->exception_index = -1;
264 #endif
268 next_tb = 0; /* force lookup of first TB */
269 for(;;) {
270 interrupt_request = env->interrupt_request;
271 if (unlikely(interrupt_request)) {
272 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
273 /* Mask out external interrupts for this step. */
274 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
276 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
277 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
278 env->exception_index = EXCP_DEBUG;
279 cpu_loop_exit(env);
281 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
282 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
283 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
284 if (interrupt_request & CPU_INTERRUPT_HALT) {
285 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
286 env->halted = 1;
287 env->exception_index = EXCP_HLT;
288 cpu_loop_exit(env);
290 #endif
291 #if defined(TARGET_I386)
292 #if !defined(CONFIG_USER_ONLY)
293 if (interrupt_request & CPU_INTERRUPT_POLL) {
294 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
295 apic_poll_irq(env->apic_state);
297 #endif
298 if (interrupt_request & CPU_INTERRUPT_INIT) {
299 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
301 do_cpu_init(x86_env_get_cpu(env));
302 env->exception_index = EXCP_HALTED;
303 cpu_loop_exit(env);
304 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
305 do_cpu_sipi(x86_env_get_cpu(env));
306 } else if (env->hflags2 & HF2_GIF_MASK) {
307 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
308 !(env->hflags & HF_SMM_MASK)) {
309 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
311 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
312 do_smm_enter(env);
313 next_tb = 0;
314 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
315 !(env->hflags2 & HF2_NMI_MASK)) {
316 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
317 env->hflags2 |= HF2_NMI_MASK;
318 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
319 next_tb = 0;
320 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
321 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
322 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
323 next_tb = 0;
324 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
325 (((env->hflags2 & HF2_VINTR_MASK) &&
326 (env->hflags2 & HF2_HIF_MASK)) ||
327 (!(env->hflags2 & HF2_VINTR_MASK) &&
328 (env->eflags & IF_MASK &&
329 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
330 int intno;
331 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
333 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
334 intno = cpu_get_pic_interrupt(env);
335 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
336 do_interrupt_x86_hardirq(env, intno, 1);
337 /* ensure that no TB jump will be modified as
338 the program flow was changed */
339 next_tb = 0;
340 #if !defined(CONFIG_USER_ONLY)
341 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
342 (env->eflags & IF_MASK) &&
343 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
344 int intno;
345 /* FIXME: this should respect TPR */
346 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
348 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
349 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
350 do_interrupt_x86_hardirq(env, intno, 1);
351 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
352 next_tb = 0;
353 #endif
356 #elif defined(TARGET_PPC)
357 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
358 cpu_reset(cpu);
360 if (interrupt_request & CPU_INTERRUPT_HARD) {
361 ppc_hw_interrupt(env);
362 if (env->pending_interrupts == 0)
363 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
364 next_tb = 0;
366 #elif defined(TARGET_LM32)
367 if ((interrupt_request & CPU_INTERRUPT_HARD)
368 && (env->ie & IE_IE)) {
369 env->exception_index = EXCP_IRQ;
370 do_interrupt(env);
371 next_tb = 0;
373 #elif defined(TARGET_MICROBLAZE)
374 if ((interrupt_request & CPU_INTERRUPT_HARD)
375 && (env->sregs[SR_MSR] & MSR_IE)
376 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
377 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
378 env->exception_index = EXCP_IRQ;
379 do_interrupt(env);
380 next_tb = 0;
382 #elif defined(TARGET_MIPS)
383 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
384 cpu_mips_hw_interrupts_pending(env)) {
385 /* Raise it */
386 env->exception_index = EXCP_EXT_INTERRUPT;
387 env->error_code = 0;
388 do_interrupt(env);
389 next_tb = 0;
391 #elif defined(TARGET_OPENRISC)
393 int idx = -1;
394 if ((interrupt_request & CPU_INTERRUPT_HARD)
395 && (env->sr & SR_IEE)) {
396 idx = EXCP_INT;
398 if ((interrupt_request & CPU_INTERRUPT_TIMER)
399 && (env->sr & SR_TEE)) {
400 idx = EXCP_TICK;
402 if (idx >= 0) {
403 env->exception_index = idx;
404 do_interrupt(env);
405 next_tb = 0;
408 #elif defined(TARGET_SPARC)
409 if (interrupt_request & CPU_INTERRUPT_HARD) {
410 if (cpu_interrupts_enabled(env) &&
411 env->interrupt_index > 0) {
412 int pil = env->interrupt_index & 0xf;
413 int type = env->interrupt_index & 0xf0;
415 if (((type == TT_EXTINT) &&
416 cpu_pil_allowed(env, pil)) ||
417 type != TT_EXTINT) {
418 env->exception_index = env->interrupt_index;
419 do_interrupt(env);
420 next_tb = 0;
424 #elif defined(TARGET_ARM)
425 if (interrupt_request & CPU_INTERRUPT_FIQ
426 && !(env->uncached_cpsr & CPSR_F)) {
427 env->exception_index = EXCP_FIQ;
428 do_interrupt(env);
429 next_tb = 0;
431 /* ARMv7-M interrupt return works by loading a magic value
432 into the PC. On real hardware the load causes the
433 return to occur. The qemu implementation performs the
434 jump normally, then does the exception return when the
435 CPU tries to execute code at the magic address.
436 This will cause the magic PC value to be pushed to
437 the stack if an interrupt occurred at the wrong time.
438 We avoid this by disabling interrupts when
439 pc contains a magic address. */
440 if (interrupt_request & CPU_INTERRUPT_HARD
441 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
442 || !(env->uncached_cpsr & CPSR_I))) {
443 env->exception_index = EXCP_IRQ;
444 do_interrupt(env);
445 next_tb = 0;
447 #elif defined(TARGET_UNICORE32)
448 if (interrupt_request & CPU_INTERRUPT_HARD
449 && !(env->uncached_asr & ASR_I)) {
450 do_interrupt(env);
451 next_tb = 0;
453 #elif defined(TARGET_SH4)
454 if (interrupt_request & CPU_INTERRUPT_HARD) {
455 do_interrupt(env);
456 next_tb = 0;
458 #elif defined(TARGET_ALPHA)
460 int idx = -1;
461 /* ??? This hard-codes the OSF/1 interrupt levels. */
462 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
463 case 0 ... 3:
464 if (interrupt_request & CPU_INTERRUPT_HARD) {
465 idx = EXCP_DEV_INTERRUPT;
467 /* FALLTHRU */
468 case 4:
469 if (interrupt_request & CPU_INTERRUPT_TIMER) {
470 idx = EXCP_CLK_INTERRUPT;
472 /* FALLTHRU */
473 case 5:
474 if (interrupt_request & CPU_INTERRUPT_SMP) {
475 idx = EXCP_SMP_INTERRUPT;
477 /* FALLTHRU */
478 case 6:
479 if (interrupt_request & CPU_INTERRUPT_MCHK) {
480 idx = EXCP_MCHK;
483 if (idx >= 0) {
484 env->exception_index = idx;
485 env->error_code = 0;
486 do_interrupt(env);
487 next_tb = 0;
490 #elif defined(TARGET_CRIS)
491 if (interrupt_request & CPU_INTERRUPT_HARD
492 && (env->pregs[PR_CCS] & I_FLAG)
493 && !env->locked_irq) {
494 env->exception_index = EXCP_IRQ;
495 do_interrupt(env);
496 next_tb = 0;
498 if (interrupt_request & CPU_INTERRUPT_NMI) {
499 unsigned int m_flag_archval;
500 if (env->pregs[PR_VR] < 32) {
501 m_flag_archval = M_FLAG_V10;
502 } else {
503 m_flag_archval = M_FLAG_V32;
505 if ((env->pregs[PR_CCS] & m_flag_archval)) {
506 env->exception_index = EXCP_NMI;
507 do_interrupt(env);
508 next_tb = 0;
511 #elif defined(TARGET_M68K)
512 if (interrupt_request & CPU_INTERRUPT_HARD
513 && ((env->sr & SR_I) >> SR_I_SHIFT)
514 < env->pending_level) {
515 /* Real hardware gets the interrupt vector via an
516 IACK cycle at this point. Current emulated
517 hardware doesn't rely on this, so we
518 provide/save the vector when the interrupt is
519 first signalled. */
520 env->exception_index = env->pending_vector;
521 do_interrupt_m68k_hardirq(env);
522 next_tb = 0;
524 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
525 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
526 (env->psw.mask & PSW_MASK_EXT)) {
527 do_interrupt(env);
528 next_tb = 0;
530 #elif defined(TARGET_XTENSA)
531 if (interrupt_request & CPU_INTERRUPT_HARD) {
532 env->exception_index = EXC_IRQ;
533 do_interrupt(env);
534 next_tb = 0;
536 #endif
537 /* Don't use the cached interrupt_request value,
538 do_interrupt may have updated the EXITTB flag. */
539 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
540 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
541 /* ensure that no TB jump will be modified as
542 the program flow was changed */
543 next_tb = 0;
546 if (unlikely(env->exit_request)) {
547 env->exit_request = 0;
548 env->exception_index = EXCP_INTERRUPT;
549 cpu_loop_exit(env);
551 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
552 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
553 /* restore flags in standard format */
554 #if defined(TARGET_I386)
555 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
556 | (DF & DF_MASK);
557 log_cpu_state(env, X86_DUMP_CCOP);
558 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
559 #elif defined(TARGET_M68K)
560 cpu_m68k_flush_flags(env, env->cc_op);
561 env->cc_op = CC_OP_FLAGS;
562 env->sr = (env->sr & 0xffe0)
563 | env->cc_dest | (env->cc_x << 4);
564 log_cpu_state(env, 0);
565 #else
566 log_cpu_state(env, 0);
567 #endif
569 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
570 spin_lock(&tb_lock);
571 tb = tb_find_fast(env);
572 /* Note: we do it here to avoid a gcc bug on Mac OS X when
573 doing it in tb_find_slow */
574 if (tb_invalidated_flag) {
575 /* as some TB could have been invalidated because
576 of memory exceptions while generating the code, we
577 must recompute the hash index here */
578 next_tb = 0;
579 tb_invalidated_flag = 0;
581 #ifdef CONFIG_DEBUG_EXEC
582 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
583 tb->tc_ptr, tb->pc,
584 lookup_symbol(tb->pc));
585 #endif
586 /* see if we can patch the calling TB. When the TB
587 spans two pages, we cannot safely do a direct
588 jump. */
589 if (next_tb != 0 && tb->page_addr[1] == -1) {
590 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
592 spin_unlock(&tb_lock);
594 /* cpu_interrupt might be called while translating the
595 TB, but before it is linked into a potentially
596 infinite loop and becomes env->current_tb. Avoid
597 starting execution if there is a pending interrupt. */
598 env->current_tb = tb;
599 barrier();
600 if (likely(!env->exit_request)) {
601 tc_ptr = tb->tc_ptr;
602 /* execute the generated code */
603 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
604 if ((next_tb & 3) == 2) {
605 /* Instruction counter expired. */
606 int insns_left;
607 tb = (TranslationBlock *)(next_tb & ~3);
608 /* Restore PC. */
609 cpu_pc_from_tb(env, tb);
610 insns_left = env->icount_decr.u32;
611 if (env->icount_extra && insns_left >= 0) {
612 /* Refill decrementer and continue execution. */
613 env->icount_extra += insns_left;
614 if (env->icount_extra > 0xffff) {
615 insns_left = 0xffff;
616 } else {
617 insns_left = env->icount_extra;
619 env->icount_extra -= insns_left;
620 env->icount_decr.u16.low = insns_left;
621 } else {
622 if (insns_left > 0) {
623 /* Execute remaining instructions. */
624 cpu_exec_nocache(env, insns_left, tb);
626 env->exception_index = EXCP_INTERRUPT;
627 next_tb = 0;
628 cpu_loop_exit(env);
632 env->current_tb = NULL;
633 /* reset soft MMU for next block (it can currently
634 only be set by a memory fault) */
635 } /* for(;;) */
636 } else {
637 /* Reload env after longjmp - the compiler may have smashed all
638 * local variables as longjmp is marked 'noreturn'. */
639 env = cpu_single_env;
641 } /* for(;;) */
644 #if defined(TARGET_I386)
645 /* restore flags in standard format */
646 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
647 | (DF & DF_MASK);
648 #elif defined(TARGET_ARM)
649 /* XXX: Save/restore host fpu exception state?. */
650 #elif defined(TARGET_UNICORE32)
651 #elif defined(TARGET_SPARC)
652 #elif defined(TARGET_PPC)
653 #elif defined(TARGET_LM32)
654 #elif defined(TARGET_M68K)
655 cpu_m68k_flush_flags(env, env->cc_op);
656 env->cc_op = CC_OP_FLAGS;
657 env->sr = (env->sr & 0xffe0)
658 | env->cc_dest | (env->cc_x << 4);
659 #elif defined(TARGET_MICROBLAZE)
660 #elif defined(TARGET_MIPS)
661 #elif defined(TARGET_OPENRISC)
662 #elif defined(TARGET_SH4)
663 #elif defined(TARGET_ALPHA)
664 #elif defined(TARGET_CRIS)
665 #elif defined(TARGET_S390X)
666 #elif defined(TARGET_XTENSA)
667 /* XXXXX */
668 #else
669 #error unsupported target CPU
670 #endif
672 /* fail safe : never use cpu_single_env outside cpu_exec() */
673 cpu_single_env = NULL;
674 return ret;