hda-intel: convert to pci_register_bar_simple()
[qemu/agraf.git] / kvm-all.c
blob7ace9a2d7cd316e8b4615db65c37b84630fc5fd3
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
81 KVMState *kvm_state;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
91 int i;
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
107 int i;
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
118 return NULL;
122 * Find overlapping slot with lowest start address
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
128 KVMSlot *found = NULL;
129 int i;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
145 return found;
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
151 int i;
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
163 return 0;
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207 if (ret < 0) {
208 DPRINTF("kvm_create_vcpu failed\n");
209 goto err;
212 env->kvm_fd = ret;
213 env->kvm_state = s;
214 env->kvm_vcpu_dirty = 1;
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
218 ret = mmap_size;
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
220 goto err;
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
227 DPRINTF("mmap'ing vcpu state failed\n");
228 goto err;
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
236 ret = kvm_arch_init_vcpu(env);
237 if (ret == 0) {
238 qemu_register_reset(kvm_reset_vcpu, env);
239 kvm_arch_reset_vcpu(env);
241 err:
242 return ret;
246 * dirty pages logging control
249 static int kvm_mem_flags(KVMState *s, bool log_dirty)
251 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
254 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
256 KVMState *s = kvm_state;
257 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
258 int old_flags;
260 old_flags = mem->flags;
262 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
263 mem->flags = flags;
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 if (flags == old_flags) {
271 return 0;
274 return kvm_set_user_memory_region(s, mem);
277 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
278 ram_addr_t size, bool log_dirty)
280 KVMState *s = kvm_state;
281 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
283 if (mem == NULL) {
284 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
285 TARGET_FMT_plx "\n", __func__, phys_addr,
286 (target_phys_addr_t)(phys_addr + size - 1));
287 return -EINVAL;
289 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
292 static int kvm_log_start(CPUPhysMemoryClient *client,
293 target_phys_addr_t phys_addr, ram_addr_t size)
295 return kvm_dirty_pages_log_change(phys_addr, size, true);
298 static int kvm_log_stop(CPUPhysMemoryClient *client,
299 target_phys_addr_t phys_addr, ram_addr_t size)
301 return kvm_dirty_pages_log_change(phys_addr, size, false);
304 static int kvm_set_migration_log(int enable)
306 KVMState *s = kvm_state;
307 KVMSlot *mem;
308 int i, err;
310 s->migration_log = enable;
312 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
313 mem = &s->slots[i];
315 if (!mem->memory_size) {
316 continue;
318 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
319 continue;
321 err = kvm_set_user_memory_region(s, mem);
322 if (err) {
323 return err;
326 return 0;
329 /* get kvm's dirty pages bitmap and update qemu's */
330 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
331 unsigned long *bitmap,
332 unsigned long offset,
333 unsigned long mem_size)
335 unsigned int i, j;
336 unsigned long page_number, addr, addr1, c;
337 ram_addr_t ram_addr;
338 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
339 HOST_LONG_BITS;
342 * bitmap-traveling is faster than memory-traveling (for addr...)
343 * especially when most of the memory is not dirty.
345 for (i = 0; i < len; i++) {
346 if (bitmap[i] != 0) {
347 c = leul_to_cpu(bitmap[i]);
348 do {
349 j = ffsl(c) - 1;
350 c &= ~(1ul << j);
351 page_number = i * HOST_LONG_BITS + j;
352 addr1 = page_number * TARGET_PAGE_SIZE;
353 addr = offset + addr1;
354 ram_addr = cpu_get_physical_page_desc(addr);
355 cpu_physical_memory_set_dirty(ram_addr);
356 } while (c != 0);
359 return 0;
362 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
365 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367 * This means all bits are set to dirty.
369 * @start_add: start of logged region.
370 * @end_addr: end of logged region.
372 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
373 target_phys_addr_t end_addr)
375 KVMState *s = kvm_state;
376 unsigned long size, allocated_size = 0;
377 KVMDirtyLog d;
378 KVMSlot *mem;
379 int ret = 0;
381 d.dirty_bitmap = NULL;
382 while (start_addr < end_addr) {
383 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
384 if (mem == NULL) {
385 break;
388 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
389 if (!d.dirty_bitmap) {
390 d.dirty_bitmap = qemu_malloc(size);
391 } else if (size > allocated_size) {
392 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
394 allocated_size = size;
395 memset(d.dirty_bitmap, 0, allocated_size);
397 d.slot = mem->slot;
399 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
400 DPRINTF("ioctl failed %d\n", errno);
401 ret = -1;
402 break;
405 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
406 mem->start_addr, mem->memory_size);
407 start_addr = mem->start_addr + mem->memory_size;
409 qemu_free(d.dirty_bitmap);
411 return ret;
414 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
416 int ret = -ENOSYS;
417 KVMState *s = kvm_state;
419 if (s->coalesced_mmio) {
420 struct kvm_coalesced_mmio_zone zone;
422 zone.addr = start;
423 zone.size = size;
425 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
428 return ret;
431 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
433 int ret = -ENOSYS;
434 KVMState *s = kvm_state;
436 if (s->coalesced_mmio) {
437 struct kvm_coalesced_mmio_zone zone;
439 zone.addr = start;
440 zone.size = size;
442 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
445 return ret;
448 int kvm_check_extension(KVMState *s, unsigned int extension)
450 int ret;
452 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
453 if (ret < 0) {
454 ret = 0;
457 return ret;
460 static int kvm_check_many_ioeventfds(void)
462 /* Userspace can use ioeventfd for io notification. This requires a host
463 * that supports eventfd(2) and an I/O thread; since eventfd does not
464 * support SIGIO it cannot interrupt the vcpu.
466 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
467 * can avoid creating too many ioeventfds.
469 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
470 int ioeventfds[7];
471 int i, ret = 0;
472 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
473 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
474 if (ioeventfds[i] < 0) {
475 break;
477 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
478 if (ret < 0) {
479 close(ioeventfds[i]);
480 break;
484 /* Decide whether many devices are supported or not */
485 ret = i == ARRAY_SIZE(ioeventfds);
487 while (i-- > 0) {
488 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
489 close(ioeventfds[i]);
491 return ret;
492 #else
493 return 0;
494 #endif
497 static const KVMCapabilityInfo *
498 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
500 while (list->name) {
501 if (!kvm_check_extension(s, list->value)) {
502 return list;
504 list++;
506 return NULL;
509 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
510 ram_addr_t phys_offset, bool log_dirty)
512 KVMState *s = kvm_state;
513 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
514 KVMSlot *mem, old;
515 int err;
517 /* kvm works in page size chunks, but the function may be called
518 with sub-page size and unaligned start address. */
519 size = TARGET_PAGE_ALIGN(size);
520 start_addr = TARGET_PAGE_ALIGN(start_addr);
522 /* KVM does not support read-only slots */
523 phys_offset &= ~IO_MEM_ROM;
525 while (1) {
526 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
527 if (!mem) {
528 break;
531 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
532 (start_addr + size <= mem->start_addr + mem->memory_size) &&
533 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
534 /* The new slot fits into the existing one and comes with
535 * identical parameters - update flags and done. */
536 kvm_slot_dirty_pages_log_change(mem, log_dirty);
537 return;
540 old = *mem;
542 /* unregister the overlapping slot */
543 mem->memory_size = 0;
544 err = kvm_set_user_memory_region(s, mem);
545 if (err) {
546 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
547 __func__, strerror(-err));
548 abort();
551 /* Workaround for older KVM versions: we can't join slots, even not by
552 * unregistering the previous ones and then registering the larger
553 * slot. We have to maintain the existing fragmentation. Sigh.
555 * This workaround assumes that the new slot starts at the same
556 * address as the first existing one. If not or if some overlapping
557 * slot comes around later, we will fail (not seen in practice so far)
558 * - and actually require a recent KVM version. */
559 if (s->broken_set_mem_region &&
560 old.start_addr == start_addr && old.memory_size < size &&
561 flags < IO_MEM_UNASSIGNED) {
562 mem = kvm_alloc_slot(s);
563 mem->memory_size = old.memory_size;
564 mem->start_addr = old.start_addr;
565 mem->phys_offset = old.phys_offset;
566 mem->flags = kvm_mem_flags(s, log_dirty);
568 err = kvm_set_user_memory_region(s, mem);
569 if (err) {
570 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
571 strerror(-err));
572 abort();
575 start_addr += old.memory_size;
576 phys_offset += old.memory_size;
577 size -= old.memory_size;
578 continue;
581 /* register prefix slot */
582 if (old.start_addr < start_addr) {
583 mem = kvm_alloc_slot(s);
584 mem->memory_size = start_addr - old.start_addr;
585 mem->start_addr = old.start_addr;
586 mem->phys_offset = old.phys_offset;
587 mem->flags = kvm_mem_flags(s, log_dirty);
589 err = kvm_set_user_memory_region(s, mem);
590 if (err) {
591 fprintf(stderr, "%s: error registering prefix slot: %s\n",
592 __func__, strerror(-err));
593 abort();
597 /* register suffix slot */
598 if (old.start_addr + old.memory_size > start_addr + size) {
599 ram_addr_t size_delta;
601 mem = kvm_alloc_slot(s);
602 mem->start_addr = start_addr + size;
603 size_delta = mem->start_addr - old.start_addr;
604 mem->memory_size = old.memory_size - size_delta;
605 mem->phys_offset = old.phys_offset + size_delta;
606 mem->flags = kvm_mem_flags(s, log_dirty);
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error registering suffix slot: %s\n",
611 __func__, strerror(-err));
612 abort();
617 /* in case the KVM bug workaround already "consumed" the new slot */
618 if (!size) {
619 return;
621 /* KVM does not need to know about this memory */
622 if (flags >= IO_MEM_UNASSIGNED) {
623 return;
625 mem = kvm_alloc_slot(s);
626 mem->memory_size = size;
627 mem->start_addr = start_addr;
628 mem->phys_offset = phys_offset;
629 mem->flags = kvm_mem_flags(s, log_dirty);
631 err = kvm_set_user_memory_region(s, mem);
632 if (err) {
633 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
634 strerror(-err));
635 abort();
639 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
640 target_phys_addr_t start_addr,
641 ram_addr_t size, ram_addr_t phys_offset,
642 bool log_dirty)
644 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
647 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
648 target_phys_addr_t start_addr,
649 target_phys_addr_t end_addr)
651 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
654 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
655 int enable)
657 return kvm_set_migration_log(enable);
660 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
661 .set_memory = kvm_client_set_memory,
662 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
663 .migration_log = kvm_client_migration_log,
664 .log_start = kvm_log_start,
665 .log_stop = kvm_log_stop,
668 int kvm_init(void)
670 static const char upgrade_note[] =
671 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
672 "(see http://sourceforge.net/projects/kvm).\n";
673 KVMState *s;
674 const KVMCapabilityInfo *missing_cap;
675 int ret;
676 int i;
678 s = qemu_mallocz(sizeof(KVMState));
680 #ifdef KVM_CAP_SET_GUEST_DEBUG
681 QTAILQ_INIT(&s->kvm_sw_breakpoints);
682 #endif
683 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
684 s->slots[i].slot = i;
686 s->vmfd = -1;
687 s->fd = qemu_open("/dev/kvm", O_RDWR);
688 if (s->fd == -1) {
689 fprintf(stderr, "Could not access KVM kernel module: %m\n");
690 ret = -errno;
691 goto err;
694 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
695 if (ret < KVM_API_VERSION) {
696 if (ret > 0) {
697 ret = -EINVAL;
699 fprintf(stderr, "kvm version too old\n");
700 goto err;
703 if (ret > KVM_API_VERSION) {
704 ret = -EINVAL;
705 fprintf(stderr, "kvm version not supported\n");
706 goto err;
709 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
710 if (s->vmfd < 0) {
711 #ifdef TARGET_S390X
712 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
713 "your host kernel command line\n");
714 #endif
715 goto err;
718 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
719 if (!missing_cap) {
720 missing_cap =
721 kvm_check_extension_list(s, kvm_arch_required_capabilities);
723 if (missing_cap) {
724 ret = -EINVAL;
725 fprintf(stderr, "kvm does not support %s\n%s",
726 missing_cap->name, upgrade_note);
727 goto err;
730 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
732 s->broken_set_mem_region = 1;
733 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
734 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
735 if (ret > 0) {
736 s->broken_set_mem_region = 0;
738 #endif
740 s->vcpu_events = 0;
741 #ifdef KVM_CAP_VCPU_EVENTS
742 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
743 #endif
745 s->robust_singlestep = 0;
746 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
747 s->robust_singlestep =
748 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
749 #endif
751 s->debugregs = 0;
752 #ifdef KVM_CAP_DEBUGREGS
753 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
754 #endif
756 s->xsave = 0;
757 #ifdef KVM_CAP_XSAVE
758 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
759 #endif
761 s->xcrs = 0;
762 #ifdef KVM_CAP_XCRS
763 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
764 #endif
766 ret = kvm_arch_init(s);
767 if (ret < 0) {
768 goto err;
771 kvm_state = s;
772 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
774 s->many_ioeventfds = kvm_check_many_ioeventfds();
776 return 0;
778 err:
779 if (s) {
780 if (s->vmfd != -1) {
781 close(s->vmfd);
783 if (s->fd != -1) {
784 close(s->fd);
787 qemu_free(s);
789 return ret;
792 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
793 uint32_t count)
795 int i;
796 uint8_t *ptr = data;
798 for (i = 0; i < count; i++) {
799 if (direction == KVM_EXIT_IO_IN) {
800 switch (size) {
801 case 1:
802 stb_p(ptr, cpu_inb(port));
803 break;
804 case 2:
805 stw_p(ptr, cpu_inw(port));
806 break;
807 case 4:
808 stl_p(ptr, cpu_inl(port));
809 break;
811 } else {
812 switch (size) {
813 case 1:
814 cpu_outb(port, ldub_p(ptr));
815 break;
816 case 2:
817 cpu_outw(port, lduw_p(ptr));
818 break;
819 case 4:
820 cpu_outl(port, ldl_p(ptr));
821 break;
825 ptr += size;
829 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
830 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
832 fprintf(stderr, "KVM internal error.");
833 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
834 int i;
836 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
837 for (i = 0; i < run->internal.ndata; ++i) {
838 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
839 i, (uint64_t)run->internal.data[i]);
841 } else {
842 fprintf(stderr, "\n");
844 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
845 fprintf(stderr, "emulation failure\n");
846 if (!kvm_arch_stop_on_emulation_error(env)) {
847 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
848 return EXCP_INTERRUPT;
851 /* FIXME: Should trigger a qmp message to let management know
852 * something went wrong.
854 return -1;
856 #endif
858 void kvm_flush_coalesced_mmio_buffer(void)
860 KVMState *s = kvm_state;
861 if (s->coalesced_mmio_ring) {
862 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
863 while (ring->first != ring->last) {
864 struct kvm_coalesced_mmio *ent;
866 ent = &ring->coalesced_mmio[ring->first];
868 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
869 smp_wmb();
870 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
875 static void do_kvm_cpu_synchronize_state(void *_env)
877 CPUState *env = _env;
879 if (!env->kvm_vcpu_dirty) {
880 kvm_arch_get_registers(env);
881 env->kvm_vcpu_dirty = 1;
885 void kvm_cpu_synchronize_state(CPUState *env)
887 if (!env->kvm_vcpu_dirty) {
888 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
892 void kvm_cpu_synchronize_post_reset(CPUState *env)
894 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
895 env->kvm_vcpu_dirty = 0;
898 void kvm_cpu_synchronize_post_init(CPUState *env)
900 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
901 env->kvm_vcpu_dirty = 0;
904 int kvm_cpu_exec(CPUState *env)
906 struct kvm_run *run = env->kvm_run;
907 int ret, run_ret;
909 DPRINTF("kvm_cpu_exec()\n");
911 if (kvm_arch_process_async_events(env)) {
912 env->exit_request = 0;
913 return EXCP_HLT;
916 cpu_single_env = env;
918 do {
919 if (env->kvm_vcpu_dirty) {
920 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
921 env->kvm_vcpu_dirty = 0;
924 kvm_arch_pre_run(env, run);
925 if (env->exit_request) {
926 DPRINTF("interrupt exit requested\n");
928 * KVM requires us to reenter the kernel after IO exits to complete
929 * instruction emulation. This self-signal will ensure that we
930 * leave ASAP again.
932 qemu_cpu_kick_self();
934 cpu_single_env = NULL;
935 qemu_mutex_unlock_iothread();
937 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
939 qemu_mutex_lock_iothread();
940 cpu_single_env = env;
941 kvm_arch_post_run(env, run);
943 kvm_flush_coalesced_mmio_buffer();
945 if (run_ret < 0) {
946 if (run_ret == -EINTR || run_ret == -EAGAIN) {
947 DPRINTF("io window exit\n");
948 ret = EXCP_INTERRUPT;
949 break;
951 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
952 abort();
955 switch (run->exit_reason) {
956 case KVM_EXIT_IO:
957 DPRINTF("handle_io\n");
958 kvm_handle_io(run->io.port,
959 (uint8_t *)run + run->io.data_offset,
960 run->io.direction,
961 run->io.size,
962 run->io.count);
963 ret = 0;
964 break;
965 case KVM_EXIT_MMIO:
966 DPRINTF("handle_mmio\n");
967 cpu_physical_memory_rw(run->mmio.phys_addr,
968 run->mmio.data,
969 run->mmio.len,
970 run->mmio.is_write);
971 ret = 0;
972 break;
973 case KVM_EXIT_IRQ_WINDOW_OPEN:
974 DPRINTF("irq_window_open\n");
975 ret = EXCP_INTERRUPT;
976 break;
977 case KVM_EXIT_SHUTDOWN:
978 DPRINTF("shutdown\n");
979 qemu_system_reset_request();
980 ret = EXCP_INTERRUPT;
981 break;
982 case KVM_EXIT_UNKNOWN:
983 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
984 (uint64_t)run->hw.hardware_exit_reason);
985 ret = -1;
986 break;
987 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
988 case KVM_EXIT_INTERNAL_ERROR:
989 ret = kvm_handle_internal_error(env, run);
990 break;
991 #endif
992 default:
993 DPRINTF("kvm_arch_handle_exit\n");
994 ret = kvm_arch_handle_exit(env, run);
995 break;
997 } while (ret == 0);
999 if (ret < 0) {
1000 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1001 vm_stop(VMSTOP_PANIC);
1004 env->exit_request = 0;
1005 cpu_single_env = NULL;
1006 return ret;
1009 int kvm_ioctl(KVMState *s, int type, ...)
1011 int ret;
1012 void *arg;
1013 va_list ap;
1015 va_start(ap, type);
1016 arg = va_arg(ap, void *);
1017 va_end(ap);
1019 ret = ioctl(s->fd, type, arg);
1020 if (ret == -1) {
1021 ret = -errno;
1023 return ret;
1026 int kvm_vm_ioctl(KVMState *s, int type, ...)
1028 int ret;
1029 void *arg;
1030 va_list ap;
1032 va_start(ap, type);
1033 arg = va_arg(ap, void *);
1034 va_end(ap);
1036 ret = ioctl(s->vmfd, type, arg);
1037 if (ret == -1) {
1038 ret = -errno;
1040 return ret;
1043 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1045 int ret;
1046 void *arg;
1047 va_list ap;
1049 va_start(ap, type);
1050 arg = va_arg(ap, void *);
1051 va_end(ap);
1053 ret = ioctl(env->kvm_fd, type, arg);
1054 if (ret == -1) {
1055 ret = -errno;
1057 return ret;
1060 int kvm_has_sync_mmu(void)
1062 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1065 int kvm_has_vcpu_events(void)
1067 return kvm_state->vcpu_events;
1070 int kvm_has_robust_singlestep(void)
1072 return kvm_state->robust_singlestep;
1075 int kvm_has_debugregs(void)
1077 return kvm_state->debugregs;
1080 int kvm_has_xsave(void)
1082 return kvm_state->xsave;
1085 int kvm_has_xcrs(void)
1087 return kvm_state->xcrs;
1090 int kvm_has_many_ioeventfds(void)
1092 if (!kvm_enabled()) {
1093 return 0;
1095 return kvm_state->many_ioeventfds;
1098 void kvm_setup_guest_memory(void *start, size_t size)
1100 if (!kvm_has_sync_mmu()) {
1101 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1103 if (ret) {
1104 perror("qemu_madvise");
1105 fprintf(stderr,
1106 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1107 exit(1);
1112 #ifdef KVM_CAP_SET_GUEST_DEBUG
1113 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1114 target_ulong pc)
1116 struct kvm_sw_breakpoint *bp;
1118 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1119 if (bp->pc == pc) {
1120 return bp;
1123 return NULL;
1126 int kvm_sw_breakpoints_active(CPUState *env)
1128 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1131 struct kvm_set_guest_debug_data {
1132 struct kvm_guest_debug dbg;
1133 CPUState *env;
1134 int err;
1137 static void kvm_invoke_set_guest_debug(void *data)
1139 struct kvm_set_guest_debug_data *dbg_data = data;
1140 CPUState *env = dbg_data->env;
1142 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1145 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1147 struct kvm_set_guest_debug_data data;
1149 data.dbg.control = reinject_trap;
1151 if (env->singlestep_enabled) {
1152 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1154 kvm_arch_update_guest_debug(env, &data.dbg);
1155 data.env = env;
1157 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1158 return data.err;
1161 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1162 target_ulong len, int type)
1164 struct kvm_sw_breakpoint *bp;
1165 CPUState *env;
1166 int err;
1168 if (type == GDB_BREAKPOINT_SW) {
1169 bp = kvm_find_sw_breakpoint(current_env, addr);
1170 if (bp) {
1171 bp->use_count++;
1172 return 0;
1175 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1176 if (!bp) {
1177 return -ENOMEM;
1180 bp->pc = addr;
1181 bp->use_count = 1;
1182 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1183 if (err) {
1184 free(bp);
1185 return err;
1188 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1189 bp, entry);
1190 } else {
1191 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1192 if (err) {
1193 return err;
1197 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1198 err = kvm_update_guest_debug(env, 0);
1199 if (err) {
1200 return err;
1203 return 0;
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1209 struct kvm_sw_breakpoint *bp;
1210 CPUState *env;
1211 int err;
1213 if (type == GDB_BREAKPOINT_SW) {
1214 bp = kvm_find_sw_breakpoint(current_env, addr);
1215 if (!bp) {
1216 return -ENOENT;
1219 if (bp->use_count > 1) {
1220 bp->use_count--;
1221 return 0;
1224 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1225 if (err) {
1226 return err;
1229 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1230 qemu_free(bp);
1231 } else {
1232 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1233 if (err) {
1234 return err;
1238 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1239 err = kvm_update_guest_debug(env, 0);
1240 if (err) {
1241 return err;
1244 return 0;
1247 void kvm_remove_all_breakpoints(CPUState *current_env)
1249 struct kvm_sw_breakpoint *bp, *next;
1250 KVMState *s = current_env->kvm_state;
1251 CPUState *env;
1253 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1254 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1255 /* Try harder to find a CPU that currently sees the breakpoint. */
1256 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1257 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1258 break;
1263 kvm_arch_remove_all_hw_breakpoints();
1265 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1266 kvm_update_guest_debug(env, 0);
1270 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1272 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1274 return -EINVAL;
1277 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1280 return -EINVAL;
1283 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1284 target_ulong len, int type)
1286 return -EINVAL;
1289 void kvm_remove_all_breakpoints(CPUState *current_env)
1292 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1294 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1296 struct kvm_signal_mask *sigmask;
1297 int r;
1299 if (!sigset) {
1300 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1303 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1305 sigmask->len = 8;
1306 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1307 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1308 free(sigmask);
1310 return r;
1313 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1315 #ifdef KVM_IOEVENTFD
1316 int ret;
1317 struct kvm_ioeventfd iofd;
1319 iofd.datamatch = val;
1320 iofd.addr = addr;
1321 iofd.len = 4;
1322 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1323 iofd.fd = fd;
1325 if (!kvm_enabled()) {
1326 return -ENOSYS;
1329 if (!assign) {
1330 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1333 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1335 if (ret < 0) {
1336 return -errno;
1339 return 0;
1340 #else
1341 return -ENOSYS;
1342 #endif
1345 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1347 #ifdef KVM_IOEVENTFD
1348 struct kvm_ioeventfd kick = {
1349 .datamatch = val,
1350 .addr = addr,
1351 .len = 2,
1352 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1353 .fd = fd,
1355 int r;
1356 if (!kvm_enabled()) {
1357 return -ENOSYS;
1359 if (!assign) {
1360 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1362 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1363 if (r < 0) {
1364 return r;
1366 return 0;
1367 #else
1368 return -ENOSYS;
1369 #endif
1372 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1374 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1377 int kvm_on_sigbus(int code, void *addr)
1379 return kvm_arch_on_sigbus(code, addr);