2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "disas/disas.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
26 //#define CONFIG_DEBUG_EXEC
28 bool qemu_cpu_has_work(CPUState
*cpu
)
30 return cpu_has_work(cpu
);
33 void cpu_loop_exit(CPUArchState
*env
)
35 CPUState
*cpu
= ENV_GET_CPU(env
);
37 cpu
->current_tb
= NULL
;
38 siglongjmp(env
->jmp_env
, 1);
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState
*env
, void *puc
)
47 /* XXX: restore cpu registers saved in host registers */
49 env
->exception_index
= -1;
50 siglongjmp(env
->jmp_env
, 1);
54 /* Execute a TB, and fix up the CPU state afterwards if necessary */
55 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
57 CPUArchState
*env
= cpu
->env_ptr
;
58 tcg_target_ulong next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
59 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
60 /* We didn't start executing this TB (eg because the instruction
61 * counter hit zero); we must restore the guest PC to the address
62 * of the start of the TB.
64 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
65 cpu_pc_from_tb(env
, tb
);
67 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
68 /* We were asked to stop executing TBs (probably a pending
69 * interrupt. We've now stopped, so clear the flag.
71 cpu
->tcg_exit_req
= 0;
76 /* Execute the code without caching the generated code. An interpreter
77 could be used if available. */
78 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
79 TranslationBlock
*orig_tb
)
81 CPUState
*cpu
= ENV_GET_CPU(env
);
84 /* Should never happen.
85 We only end up here when an existing TB is too long. */
86 if (max_cycles
> CF_COUNT_MASK
)
87 max_cycles
= CF_COUNT_MASK
;
89 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
92 /* execute the generated code */
93 cpu_tb_exec(cpu
, tb
->tc_ptr
);
94 cpu
->current_tb
= NULL
;
95 tb_phys_invalidate(tb
, -1);
99 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
101 target_ulong cs_base
,
104 TranslationBlock
*tb
, **ptb1
;
106 tb_page_addr_t phys_pc
, phys_page1
;
107 target_ulong virt_page2
;
109 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
111 /* find translated block using physical mappings */
112 phys_pc
= get_page_addr_code(env
, pc
);
113 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
114 h
= tb_phys_hash_func(phys_pc
);
115 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
121 tb
->page_addr
[0] == phys_page1
&&
122 tb
->cs_base
== cs_base
&&
123 tb
->flags
== flags
) {
124 /* check next page if needed */
125 if (tb
->page_addr
[1] != -1) {
126 tb_page_addr_t phys_page2
;
128 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
130 phys_page2
= get_page_addr_code(env
, virt_page2
);
131 if (tb
->page_addr
[1] == phys_page2
)
137 ptb1
= &tb
->phys_hash_next
;
140 /* if no translated code available, then translate it now */
141 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
144 /* Move the last found TB to the head of the list */
146 *ptb1
= tb
->phys_hash_next
;
147 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
148 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
150 /* we add the TB in the virtual pc hash table */
151 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
155 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
157 TranslationBlock
*tb
;
158 target_ulong cs_base
, pc
;
161 /* we record a subset of the CPU state. It will
162 always be the same before a given translated block
164 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
165 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
166 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
167 tb
->flags
!= flags
)) {
168 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
173 static CPUDebugExcpHandler
*debug_excp_handler
;
175 void cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
177 debug_excp_handler
= handler
;
180 static void cpu_handle_debug_exception(CPUArchState
*env
)
184 if (!env
->watchpoint_hit
) {
185 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
186 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
189 if (debug_excp_handler
) {
190 debug_excp_handler(env
);
194 /* main execution loop */
196 volatile sig_atomic_t exit_request
;
198 int cpu_exec(CPUArchState
*env
)
200 CPUState
*cpu
= ENV_GET_CPU(env
);
201 int ret
, interrupt_request
;
202 TranslationBlock
*tb
;
204 tcg_target_ulong next_tb
;
207 if (!cpu_has_work(cpu
)) {
214 cpu_single_env
= env
;
216 if (unlikely(exit_request
)) {
217 cpu
->exit_request
= 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
223 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
224 CC_OP
= CC_OP_EFLAGS
;
225 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env
->cc_op
= CC_OP_FLAGS
;
229 env
->cc_dest
= env
->sr
& 0xf;
230 env
->cc_x
= (env
->sr
>> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 env
->reserve_addr
= -1;
236 #elif defined(TARGET_LM32)
237 #elif defined(TARGET_MICROBLAZE)
238 #elif defined(TARGET_MIPS)
239 #elif defined(TARGET_OPENRISC)
240 #elif defined(TARGET_SH4)
241 #elif defined(TARGET_CRIS)
242 #elif defined(TARGET_S390X)
243 #elif defined(TARGET_XTENSA)
246 #error unsupported target CPU
248 env
->exception_index
= -1;
250 /* prepare setjmp context for exception handling */
252 if (sigsetjmp(env
->jmp_env
, 0) == 0) {
253 /* if an exception is pending, we execute it here */
254 if (env
->exception_index
>= 0) {
255 if (env
->exception_index
>= EXCP_INTERRUPT
) {
256 /* exit request from the cpu execution loop */
257 ret
= env
->exception_index
;
258 if (ret
== EXCP_DEBUG
) {
259 cpu_handle_debug_exception(env
);
263 #if defined(CONFIG_USER_ONLY)
264 /* if user mode only, we simulate a fake exception
265 which will be handled outside the cpu execution
267 #if defined(TARGET_I386)
270 ret
= env
->exception_index
;
274 env
->exception_index
= -1;
279 next_tb
= 0; /* force lookup of first TB */
281 interrupt_request
= env
->interrupt_request
;
282 if (unlikely(interrupt_request
)) {
283 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
284 /* Mask out external interrupts for this step. */
285 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
287 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
288 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
289 env
->exception_index
= EXCP_DEBUG
;
292 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
293 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
294 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
295 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
296 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
298 env
->exception_index
= EXCP_HLT
;
302 #if defined(TARGET_I386)
303 #if !defined(CONFIG_USER_ONLY)
304 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
305 env
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
306 apic_poll_irq(env
->apic_state
);
309 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
310 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
,
312 do_cpu_init(x86_env_get_cpu(env
));
313 env
->exception_index
= EXCP_HALTED
;
315 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
316 do_cpu_sipi(x86_env_get_cpu(env
));
317 } else if (env
->hflags2
& HF2_GIF_MASK
) {
318 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
319 !(env
->hflags
& HF_SMM_MASK
)) {
320 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
322 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
325 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
326 !(env
->hflags2
& HF2_NMI_MASK
)) {
327 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
328 env
->hflags2
|= HF2_NMI_MASK
;
329 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
331 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
332 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
333 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
335 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
336 (((env
->hflags2
& HF2_VINTR_MASK
) &&
337 (env
->hflags2
& HF2_HIF_MASK
)) ||
338 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
339 (env
->eflags
& IF_MASK
&&
340 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
342 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
344 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
345 intno
= cpu_get_pic_interrupt(env
);
346 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
347 do_interrupt_x86_hardirq(env
, intno
, 1);
348 /* ensure that no TB jump will be modified as
349 the program flow was changed */
351 #if !defined(CONFIG_USER_ONLY)
352 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
353 (env
->eflags
& IF_MASK
) &&
354 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
356 /* FIXME: this should respect TPR */
357 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
359 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
360 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
361 do_interrupt_x86_hardirq(env
, intno
, 1);
362 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
367 #elif defined(TARGET_PPC)
368 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
371 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
372 ppc_hw_interrupt(env
);
373 if (env
->pending_interrupts
== 0)
374 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
377 #elif defined(TARGET_LM32)
378 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
379 && (env
->ie
& IE_IE
)) {
380 env
->exception_index
= EXCP_IRQ
;
384 #elif defined(TARGET_MICROBLAZE)
385 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
386 && (env
->sregs
[SR_MSR
] & MSR_IE
)
387 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
388 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
389 env
->exception_index
= EXCP_IRQ
;
393 #elif defined(TARGET_MIPS)
394 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
395 cpu_mips_hw_interrupts_pending(env
)) {
397 env
->exception_index
= EXCP_EXT_INTERRUPT
;
402 #elif defined(TARGET_OPENRISC)
405 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
406 && (env
->sr
& SR_IEE
)) {
409 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
410 && (env
->sr
& SR_TEE
)) {
414 env
->exception_index
= idx
;
419 #elif defined(TARGET_SPARC)
420 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
421 if (cpu_interrupts_enabled(env
) &&
422 env
->interrupt_index
> 0) {
423 int pil
= env
->interrupt_index
& 0xf;
424 int type
= env
->interrupt_index
& 0xf0;
426 if (((type
== TT_EXTINT
) &&
427 cpu_pil_allowed(env
, pil
)) ||
429 env
->exception_index
= env
->interrupt_index
;
435 #elif defined(TARGET_ARM)
436 if (interrupt_request
& CPU_INTERRUPT_FIQ
437 && !(env
->uncached_cpsr
& CPSR_F
)) {
438 env
->exception_index
= EXCP_FIQ
;
442 /* ARMv7-M interrupt return works by loading a magic value
443 into the PC. On real hardware the load causes the
444 return to occur. The qemu implementation performs the
445 jump normally, then does the exception return when the
446 CPU tries to execute code at the magic address.
447 This will cause the magic PC value to be pushed to
448 the stack if an interrupt occurred at the wrong time.
449 We avoid this by disabling interrupts when
450 pc contains a magic address. */
451 if (interrupt_request
& CPU_INTERRUPT_HARD
452 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
453 || !(env
->uncached_cpsr
& CPSR_I
))) {
454 env
->exception_index
= EXCP_IRQ
;
458 #elif defined(TARGET_UNICORE32)
459 if (interrupt_request
& CPU_INTERRUPT_HARD
460 && !(env
->uncached_asr
& ASR_I
)) {
461 env
->exception_index
= UC32_EXCP_INTR
;
465 #elif defined(TARGET_SH4)
466 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
470 #elif defined(TARGET_ALPHA)
473 /* ??? This hard-codes the OSF/1 interrupt levels. */
474 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
476 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
477 idx
= EXCP_DEV_INTERRUPT
;
481 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
482 idx
= EXCP_CLK_INTERRUPT
;
486 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
487 idx
= EXCP_SMP_INTERRUPT
;
491 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
496 env
->exception_index
= idx
;
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request
& CPU_INTERRUPT_HARD
504 && (env
->pregs
[PR_CCS
] & I_FLAG
)
505 && !env
->locked_irq
) {
506 env
->exception_index
= EXCP_IRQ
;
510 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
511 unsigned int m_flag_archval
;
512 if (env
->pregs
[PR_VR
] < 32) {
513 m_flag_archval
= M_FLAG_V10
;
515 m_flag_archval
= M_FLAG_V32
;
517 if ((env
->pregs
[PR_CCS
] & m_flag_archval
)) {
518 env
->exception_index
= EXCP_NMI
;
523 #elif defined(TARGET_M68K)
524 if (interrupt_request
& CPU_INTERRUPT_HARD
525 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
526 < env
->pending_level
) {
527 /* Real hardware gets the interrupt vector via an
528 IACK cycle at this point. Current emulated
529 hardware doesn't rely on this, so we
530 provide/save the vector when the interrupt is
532 env
->exception_index
= env
->pending_vector
;
533 do_interrupt_m68k_hardirq(env
);
536 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
537 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
538 (env
->psw
.mask
& PSW_MASK_EXT
)) {
542 #elif defined(TARGET_XTENSA)
543 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
544 env
->exception_index
= EXC_IRQ
;
549 /* Don't use the cached interrupt_request value,
550 do_interrupt may have updated the EXITTB flag. */
551 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
552 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
553 /* ensure that no TB jump will be modified as
554 the program flow was changed */
558 if (unlikely(cpu
->exit_request
)) {
559 cpu
->exit_request
= 0;
560 env
->exception_index
= EXCP_INTERRUPT
;
563 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
564 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
565 /* restore flags in standard format */
566 #if defined(TARGET_I386)
567 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
569 log_cpu_state(env
, CPU_DUMP_CCOP
);
570 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
571 #elif defined(TARGET_M68K)
572 cpu_m68k_flush_flags(env
, env
->cc_op
);
573 env
->cc_op
= CC_OP_FLAGS
;
574 env
->sr
= (env
->sr
& 0xffe0)
575 | env
->cc_dest
| (env
->cc_x
<< 4);
576 log_cpu_state(env
, 0);
578 log_cpu_state(env
, 0);
581 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
582 spin_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
583 tb
= tb_find_fast(env
);
584 /* Note: we do it here to avoid a gcc bug on Mac OS X when
585 doing it in tb_find_slow */
586 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
587 /* as some TB could have been invalidated because
588 of memory exceptions while generating the code, we
589 must recompute the hash index here */
591 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
593 #ifdef CONFIG_DEBUG_EXEC
594 qemu_log_mask(CPU_LOG_EXEC
, "Trace %p [" TARGET_FMT_lx
"] %s\n",
596 lookup_symbol(tb
->pc
));
598 /* see if we can patch the calling TB. When the TB
599 spans two pages, we cannot safely do a direct
601 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
602 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
603 next_tb
& TB_EXIT_MASK
, tb
);
605 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
607 /* cpu_interrupt might be called while translating the
608 TB, but before it is linked into a potentially
609 infinite loop and becomes env->current_tb. Avoid
610 starting execution if there is a pending interrupt. */
611 cpu
->current_tb
= tb
;
613 if (likely(!cpu
->exit_request
)) {
615 /* execute the generated code */
616 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
617 switch (next_tb
& TB_EXIT_MASK
) {
618 case TB_EXIT_REQUESTED
:
619 /* Something asked us to stop executing
620 * chained TBs; just continue round the main
621 * loop. Whatever requested the exit will also
622 * have set something else (eg exit_request or
623 * interrupt_request) which we will handle
624 * next time around the loop.
626 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
629 case TB_EXIT_ICOUNT_EXPIRED
:
631 /* Instruction counter expired. */
633 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
634 insns_left
= env
->icount_decr
.u32
;
635 if (env
->icount_extra
&& insns_left
>= 0) {
636 /* Refill decrementer and continue execution. */
637 env
->icount_extra
+= insns_left
;
638 if (env
->icount_extra
> 0xffff) {
641 insns_left
= env
->icount_extra
;
643 env
->icount_extra
-= insns_left
;
644 env
->icount_decr
.u16
.low
= insns_left
;
646 if (insns_left
> 0) {
647 /* Execute remaining instructions. */
648 cpu_exec_nocache(env
, insns_left
, tb
);
650 env
->exception_index
= EXCP_INTERRUPT
;
660 cpu
->current_tb
= NULL
;
661 /* reset soft MMU for next block (it can currently
662 only be set by a memory fault) */
665 /* Reload env after longjmp - the compiler may have smashed all
666 * local variables as longjmp is marked 'noreturn'. */
667 env
= cpu_single_env
;
672 #if defined(TARGET_I386)
673 /* restore flags in standard format */
674 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
676 #elif defined(TARGET_ARM)
677 /* XXX: Save/restore host fpu exception state?. */
678 #elif defined(TARGET_UNICORE32)
679 #elif defined(TARGET_SPARC)
680 #elif defined(TARGET_PPC)
681 #elif defined(TARGET_LM32)
682 #elif defined(TARGET_M68K)
683 cpu_m68k_flush_flags(env
, env
->cc_op
);
684 env
->cc_op
= CC_OP_FLAGS
;
685 env
->sr
= (env
->sr
& 0xffe0)
686 | env
->cc_dest
| (env
->cc_x
<< 4);
687 #elif defined(TARGET_MICROBLAZE)
688 #elif defined(TARGET_MIPS)
689 #elif defined(TARGET_OPENRISC)
690 #elif defined(TARGET_SH4)
691 #elif defined(TARGET_ALPHA)
692 #elif defined(TARGET_CRIS)
693 #elif defined(TARGET_S390X)
694 #elif defined(TARGET_XTENSA)
697 #error unsupported target CPU
700 /* fail safe : never use cpu_single_env outside cpu_exec() */
701 cpu_single_env
= NULL
;