2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque
, target_phys_addr_t addr
)
34 cpu_physical_memory_read(addr
, (void *) &ret
, 1);
38 void omap_badwidth_write8(void *opaque
, target_phys_addr_t addr
,
44 cpu_physical_memory_write(addr
, (void *) &val8
, 1);
47 uint32_t omap_badwidth_read16(void *opaque
, target_phys_addr_t addr
)
52 cpu_physical_memory_read(addr
, (void *) &ret
, 2);
56 void omap_badwidth_write16(void *opaque
, target_phys_addr_t addr
,
59 uint16_t val16
= value
;
62 cpu_physical_memory_write(addr
, (void *) &val16
, 2);
65 uint32_t omap_badwidth_read32(void *opaque
, target_phys_addr_t addr
)
70 cpu_physical_memory_read(addr
, (void *) &ret
, 4);
74 void omap_badwidth_write32(void *opaque
, target_phys_addr_t addr
,
78 cpu_physical_memory_write(addr
, (void *) &value
, 4);
82 struct omap_mpu_timer_s
{
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s
*timer
)
102 uint64_t distance
= qemu_get_clock_ns(vm_clock
) - timer
->time
;
104 if (timer
->st
&& timer
->enable
&& timer
->rate
)
105 return timer
->val
- muldiv64(distance
>> (timer
->ptv
+ 1),
106 timer
->rate
, get_ticks_per_sec());
111 static inline void omap_timer_sync(struct omap_mpu_timer_s
*timer
)
113 timer
->val
= omap_timer_read(timer
);
114 timer
->time
= qemu_get_clock_ns(vm_clock
);
117 static inline void omap_timer_update(struct omap_mpu_timer_s
*timer
)
121 if (timer
->enable
&& timer
->st
&& timer
->rate
) {
122 timer
->val
= timer
->reset_val
; /* Should skip this on clk enable */
123 expires
= muldiv64((uint64_t) timer
->val
<< (timer
->ptv
+ 1),
124 get_ticks_per_sec(), timer
->rate
);
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
132 if (expires
> (get_ticks_per_sec() >> 10) || timer
->ar
)
133 qemu_mod_timer(timer
->timer
, timer
->time
+ expires
);
135 qemu_bh_schedule(timer
->tick
);
137 qemu_del_timer(timer
->timer
);
140 static void omap_timer_fire(void *opaque
)
142 struct omap_mpu_timer_s
*timer
= opaque
;
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer
->irq
);
154 static void omap_timer_tick(void *opaque
)
156 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
158 omap_timer_sync(timer
);
159 omap_timer_fire(timer
);
160 omap_timer_update(timer
);
163 static void omap_timer_clk_update(void *opaque
, int line
, int on
)
165 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
167 omap_timer_sync(timer
);
168 timer
->rate
= on
? omap_clk_getrate(timer
->clk
) : 0;
169 omap_timer_update(timer
);
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s
*timer
)
174 omap_clk_adduser(timer
->clk
,
175 qemu_allocate_irqs(omap_timer_clk_update
, timer
, 1)[0]);
176 timer
->rate
= omap_clk_getrate(timer
->clk
);
179 static uint64_t omap_mpu_timer_read(void *opaque
, target_phys_addr_t addr
,
182 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
185 return omap_badwidth_read32(opaque
, addr
);
189 case 0x00: /* CNTL_TIMER */
190 return (s
->enable
<< 5) | (s
->ptv
<< 2) | (s
->ar
<< 1) | s
->st
;
192 case 0x04: /* LOAD_TIM */
195 case 0x08: /* READ_TIM */
196 return omap_timer_read(s
);
203 static void omap_mpu_timer_write(void *opaque
, target_phys_addr_t addr
,
204 uint64_t value
, unsigned size
)
206 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
209 return omap_badwidth_write32(opaque
, addr
, value
);
213 case 0x00: /* CNTL_TIMER */
215 s
->enable
= (value
>> 5) & 1;
216 s
->ptv
= (value
>> 2) & 7;
217 s
->ar
= (value
>> 1) & 1;
219 omap_timer_update(s
);
222 case 0x04: /* LOAD_TIM */
223 s
->reset_val
= value
;
226 case 0x08: /* READ_TIM */
235 static const MemoryRegionOps omap_mpu_timer_ops
= {
236 .read
= omap_mpu_timer_read
,
237 .write
= omap_mpu_timer_write
,
238 .endianness
= DEVICE_LITTLE_ENDIAN
,
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s
*s
)
243 qemu_del_timer(s
->timer
);
245 s
->reset_val
= 31337;
253 static struct omap_mpu_timer_s
*omap_mpu_timer_init(MemoryRegion
*system_memory
,
254 target_phys_addr_t base
,
255 qemu_irq irq
, omap_clk clk
)
257 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*)
258 g_malloc0(sizeof(struct omap_mpu_timer_s
));
262 s
->timer
= qemu_new_timer_ns(vm_clock
, omap_timer_tick
, s
);
263 s
->tick
= qemu_bh_new(omap_timer_fire
, s
);
264 omap_mpu_timer_reset(s
);
265 omap_timer_clk_setup(s
);
267 memory_region_init_io(&s
->iomem
, &omap_mpu_timer_ops
, s
,
268 "omap-mpu-timer", 0x100);
270 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
276 struct omap_watchdog_timer_s
{
277 struct omap_mpu_timer_s timer
;
285 static uint64_t omap_wd_timer_read(void *opaque
, target_phys_addr_t addr
,
288 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
291 return omap_badwidth_read16(opaque
, addr
);
295 case 0x00: /* CNTL_TIMER */
296 return (s
->timer
.ptv
<< 9) | (s
->timer
.ar
<< 8) |
297 (s
->timer
.st
<< 7) | (s
->free
<< 1);
299 case 0x04: /* READ_TIMER */
300 return omap_timer_read(&s
->timer
);
302 case 0x08: /* TIMER_MODE */
303 return s
->mode
<< 15;
310 static void omap_wd_timer_write(void *opaque
, target_phys_addr_t addr
,
311 uint64_t value
, unsigned size
)
313 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
316 return omap_badwidth_write16(opaque
, addr
, value
);
320 case 0x00: /* CNTL_TIMER */
321 omap_timer_sync(&s
->timer
);
322 s
->timer
.ptv
= (value
>> 9) & 7;
323 s
->timer
.ar
= (value
>> 8) & 1;
324 s
->timer
.st
= (value
>> 7) & 1;
325 s
->free
= (value
>> 1) & 1;
326 omap_timer_update(&s
->timer
);
329 case 0x04: /* LOAD_TIMER */
330 s
->timer
.reset_val
= value
& 0xffff;
333 case 0x08: /* TIMER_MODE */
334 if (!s
->mode
&& ((value
>> 15) & 1))
335 omap_clk_get(s
->timer
.clk
);
336 s
->mode
|= (value
>> 15) & 1;
337 if (s
->last_wr
== 0xf5) {
338 if ((value
& 0xff) == 0xa0) {
341 omap_clk_put(s
->timer
.clk
);
344 /* XXX: on T|E hardware somehow this has no effect,
345 * on Zire 71 it works as specified. */
347 qemu_system_reset_request();
350 s
->last_wr
= value
& 0xff;
358 static const MemoryRegionOps omap_wd_timer_ops
= {
359 .read
= omap_wd_timer_read
,
360 .write
= omap_wd_timer_write
,
361 .endianness
= DEVICE_NATIVE_ENDIAN
,
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s
*s
)
366 qemu_del_timer(s
->timer
.timer
);
368 omap_clk_get(s
->timer
.clk
);
374 s
->timer
.reset_val
= 0xffff;
379 omap_timer_update(&s
->timer
);
382 static struct omap_watchdog_timer_s
*omap_wd_timer_init(MemoryRegion
*memory
,
383 target_phys_addr_t base
,
384 qemu_irq irq
, omap_clk clk
)
386 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*)
387 g_malloc0(sizeof(struct omap_watchdog_timer_s
));
391 s
->timer
.timer
= qemu_new_timer_ns(vm_clock
, omap_timer_tick
, &s
->timer
);
392 omap_wd_timer_reset(s
);
393 omap_timer_clk_setup(&s
->timer
);
395 memory_region_init_io(&s
->iomem
, &omap_wd_timer_ops
, s
,
396 "omap-wd-timer", 0x100);
397 memory_region_add_subregion(memory
, base
, &s
->iomem
);
403 struct omap_32khz_timer_s
{
404 struct omap_mpu_timer_s timer
;
408 static uint64_t omap_os_timer_read(void *opaque
, target_phys_addr_t addr
,
411 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
412 int offset
= addr
& OMAP_MPUI_REG_MASK
;
415 return omap_badwidth_read32(opaque
, addr
);
420 return s
->timer
.reset_val
;
423 return omap_timer_read(&s
->timer
);
426 return (s
->timer
.ar
<< 3) | (s
->timer
.it_ena
<< 2) | s
->timer
.st
;
435 static void omap_os_timer_write(void *opaque
, target_phys_addr_t addr
,
436 uint64_t value
, unsigned size
)
438 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
439 int offset
= addr
& OMAP_MPUI_REG_MASK
;
442 return omap_badwidth_write32(opaque
, addr
, value
);
447 s
->timer
.reset_val
= value
& 0x00ffffff;
455 s
->timer
.ar
= (value
>> 3) & 1;
456 s
->timer
.it_ena
= (value
>> 2) & 1;
457 if (s
->timer
.st
!= (value
& 1) || (value
& 2)) {
458 omap_timer_sync(&s
->timer
);
459 s
->timer
.enable
= value
& 1;
460 s
->timer
.st
= value
& 1;
461 omap_timer_update(&s
->timer
);
470 static const MemoryRegionOps omap_os_timer_ops
= {
471 .read
= omap_os_timer_read
,
472 .write
= omap_os_timer_write
,
473 .endianness
= DEVICE_NATIVE_ENDIAN
,
476 static void omap_os_timer_reset(struct omap_32khz_timer_s
*s
)
478 qemu_del_timer(s
->timer
.timer
);
481 s
->timer
.reset_val
= 0x00ffffff;
488 static struct omap_32khz_timer_s
*omap_os_timer_init(MemoryRegion
*memory
,
489 target_phys_addr_t base
,
490 qemu_irq irq
, omap_clk clk
)
492 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*)
493 g_malloc0(sizeof(struct omap_32khz_timer_s
));
497 s
->timer
.timer
= qemu_new_timer_ns(vm_clock
, omap_timer_tick
, &s
->timer
);
498 omap_os_timer_reset(s
);
499 omap_timer_clk_setup(&s
->timer
);
501 memory_region_init_io(&s
->iomem
, &omap_os_timer_ops
, s
,
502 "omap-os-timer", 0x800);
503 memory_region_add_subregion(memory
, base
, &s
->iomem
);
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque
, target_phys_addr_t addr
,
512 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
516 return omap_badwidth_read16(opaque
, addr
);
520 case 0x14: /* IT_STATUS */
521 ret
= s
->ulpd_pm_regs
[addr
>> 2];
522 s
->ulpd_pm_regs
[addr
>> 2] = 0;
523 qemu_irq_lower(qdev_get_gpio_in(s
->ih
[1], OMAP_INT_GAUGE_32K
));
526 case 0x18: /* Reserved */
527 case 0x1c: /* Reserved */
528 case 0x20: /* Reserved */
529 case 0x28: /* Reserved */
530 case 0x2c: /* Reserved */
532 case 0x00: /* COUNTER_32_LSB */
533 case 0x04: /* COUNTER_32_MSB */
534 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
535 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
536 case 0x10: /* GAUGING_CTRL */
537 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
538 case 0x30: /* CLOCK_CTRL */
539 case 0x34: /* SOFT_REQ */
540 case 0x38: /* COUNTER_32_FIQ */
541 case 0x3c: /* DPLL_CTRL */
542 case 0x40: /* STATUS_REQ */
543 /* XXX: check clk::usecount state for every clock */
544 case 0x48: /* LOCL_TIME */
545 case 0x4c: /* APLL_CTRL */
546 case 0x50: /* POWER_CTRL */
547 return s
->ulpd_pm_regs
[addr
>> 2];
554 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s
*s
,
555 uint16_t diff
, uint16_t value
)
557 if (diff
& (1 << 4)) /* USB_MCLK_EN */
558 omap_clk_onoff(omap_findclk(s
, "usb_clk0"), (value
>> 4) & 1);
559 if (diff
& (1 << 5)) /* DIS_USB_PVCI_CLK */
560 omap_clk_onoff(omap_findclk(s
, "usb_w2fc_ck"), (~value
>> 5) & 1);
563 static inline void omap_ulpd_req_update(struct omap_mpu_state_s
*s
,
564 uint16_t diff
, uint16_t value
)
566 if (diff
& (1 << 0)) /* SOFT_DPLL_REQ */
567 omap_clk_canidle(omap_findclk(s
, "dpll4"), (~value
>> 0) & 1);
568 if (diff
& (1 << 1)) /* SOFT_COM_REQ */
569 omap_clk_canidle(omap_findclk(s
, "com_mclk_out"), (~value
>> 1) & 1);
570 if (diff
& (1 << 2)) /* SOFT_SDW_REQ */
571 omap_clk_canidle(omap_findclk(s
, "bt_mclk_out"), (~value
>> 2) & 1);
572 if (diff
& (1 << 3)) /* SOFT_USB_REQ */
573 omap_clk_canidle(omap_findclk(s
, "usb_clk0"), (~value
>> 3) & 1);
576 static void omap_ulpd_pm_write(void *opaque
, target_phys_addr_t addr
,
577 uint64_t value
, unsigned size
)
579 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
582 static const int bypass_div
[4] = { 1, 2, 4, 4 };
586 return omap_badwidth_write16(opaque
, addr
, value
);
590 case 0x00: /* COUNTER_32_LSB */
591 case 0x04: /* COUNTER_32_MSB */
592 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
593 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
594 case 0x14: /* IT_STATUS */
595 case 0x40: /* STATUS_REQ */
599 case 0x10: /* GAUGING_CTRL */
600 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
601 if ((s
->ulpd_pm_regs
[addr
>> 2] ^ value
) & 1) {
602 now
= qemu_get_clock_ns(vm_clock
);
605 s
->ulpd_gauge_start
= now
;
607 now
-= s
->ulpd_gauge_start
;
610 ticks
= muldiv64(now
, 32768, get_ticks_per_sec());
611 s
->ulpd_pm_regs
[0x00 >> 2] = (ticks
>> 0) & 0xffff;
612 s
->ulpd_pm_regs
[0x04 >> 2] = (ticks
>> 16) & 0xffff;
613 if (ticks
>> 32) /* OVERFLOW_32K */
614 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 2;
616 /* High frequency ticks */
617 ticks
= muldiv64(now
, 12000000, get_ticks_per_sec());
618 s
->ulpd_pm_regs
[0x08 >> 2] = (ticks
>> 0) & 0xffff;
619 s
->ulpd_pm_regs
[0x0c >> 2] = (ticks
>> 16) & 0xffff;
620 if (ticks
>> 32) /* OVERFLOW_HI_FREQ */
621 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 1;
623 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
624 qemu_irq_raise(qdev_get_gpio_in(s
->ih
[1], OMAP_INT_GAUGE_32K
));
627 s
->ulpd_pm_regs
[addr
>> 2] = value
;
630 case 0x18: /* Reserved */
631 case 0x1c: /* Reserved */
632 case 0x20: /* Reserved */
633 case 0x28: /* Reserved */
634 case 0x2c: /* Reserved */
636 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
637 case 0x38: /* COUNTER_32_FIQ */
638 case 0x48: /* LOCL_TIME */
639 case 0x50: /* POWER_CTRL */
640 s
->ulpd_pm_regs
[addr
>> 2] = value
;
643 case 0x30: /* CLOCK_CTRL */
644 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
645 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x3f;
646 omap_ulpd_clk_update(s
, diff
, value
);
649 case 0x34: /* SOFT_REQ */
650 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
651 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x1f;
652 omap_ulpd_req_update(s
, diff
, value
);
655 case 0x3c: /* DPLL_CTRL */
656 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
657 * omitted altogether, probably a typo. */
658 /* This register has identical semantics with DPLL(1:3) control
659 * registers, see omap_dpll_write() */
660 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
661 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x2fff;
662 if (diff
& (0x3ff << 2)) {
663 if (value
& (1 << 4)) { /* PLL_ENABLE */
664 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
665 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
667 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
670 omap_clk_setrate(omap_findclk(s
, "dpll4"), div
, mult
);
673 /* Enter the desired mode. */
674 s
->ulpd_pm_regs
[addr
>> 2] =
675 (s
->ulpd_pm_regs
[addr
>> 2] & 0xfffe) |
676 ((s
->ulpd_pm_regs
[addr
>> 2] >> 4) & 1);
678 /* Act as if the lock is restored. */
679 s
->ulpd_pm_regs
[addr
>> 2] |= 2;
682 case 0x4c: /* APLL_CTRL */
683 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
684 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0xf;
685 if (diff
& (1 << 0)) /* APLL_NDPLL_SWITCH */
686 omap_clk_reparent(omap_findclk(s
, "ck_48m"), omap_findclk(s
,
687 (value
& (1 << 0)) ? "apll" : "dpll4"));
695 static const MemoryRegionOps omap_ulpd_pm_ops
= {
696 .read
= omap_ulpd_pm_read
,
697 .write
= omap_ulpd_pm_write
,
698 .endianness
= DEVICE_NATIVE_ENDIAN
,
701 static void omap_ulpd_pm_reset(struct omap_mpu_state_s
*mpu
)
703 mpu
->ulpd_pm_regs
[0x00 >> 2] = 0x0001;
704 mpu
->ulpd_pm_regs
[0x04 >> 2] = 0x0000;
705 mpu
->ulpd_pm_regs
[0x08 >> 2] = 0x0001;
706 mpu
->ulpd_pm_regs
[0x0c >> 2] = 0x0000;
707 mpu
->ulpd_pm_regs
[0x10 >> 2] = 0x0000;
708 mpu
->ulpd_pm_regs
[0x18 >> 2] = 0x01;
709 mpu
->ulpd_pm_regs
[0x1c >> 2] = 0x01;
710 mpu
->ulpd_pm_regs
[0x20 >> 2] = 0x01;
711 mpu
->ulpd_pm_regs
[0x24 >> 2] = 0x03ff;
712 mpu
->ulpd_pm_regs
[0x28 >> 2] = 0x01;
713 mpu
->ulpd_pm_regs
[0x2c >> 2] = 0x01;
714 omap_ulpd_clk_update(mpu
, mpu
->ulpd_pm_regs
[0x30 >> 2], 0x0000);
715 mpu
->ulpd_pm_regs
[0x30 >> 2] = 0x0000;
716 omap_ulpd_req_update(mpu
, mpu
->ulpd_pm_regs
[0x34 >> 2], 0x0000);
717 mpu
->ulpd_pm_regs
[0x34 >> 2] = 0x0000;
718 mpu
->ulpd_pm_regs
[0x38 >> 2] = 0x0001;
719 mpu
->ulpd_pm_regs
[0x3c >> 2] = 0x2211;
720 mpu
->ulpd_pm_regs
[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
721 mpu
->ulpd_pm_regs
[0x48 >> 2] = 0x960;
722 mpu
->ulpd_pm_regs
[0x4c >> 2] = 0x08;
723 mpu
->ulpd_pm_regs
[0x50 >> 2] = 0x08;
724 omap_clk_setrate(omap_findclk(mpu
, "dpll4"), 1, 4);
725 omap_clk_reparent(omap_findclk(mpu
, "ck_48m"), omap_findclk(mpu
, "dpll4"));
728 static void omap_ulpd_pm_init(MemoryRegion
*system_memory
,
729 target_phys_addr_t base
,
730 struct omap_mpu_state_s
*mpu
)
732 memory_region_init_io(&mpu
->ulpd_pm_iomem
, &omap_ulpd_pm_ops
, mpu
,
733 "omap-ulpd-pm", 0x800);
734 memory_region_add_subregion(system_memory
, base
, &mpu
->ulpd_pm_iomem
);
735 omap_ulpd_pm_reset(mpu
);
738 /* OMAP Pin Configuration */
739 static uint64_t omap_pin_cfg_read(void *opaque
, target_phys_addr_t addr
,
742 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
745 return omap_badwidth_read32(opaque
, addr
);
749 case 0x00: /* FUNC_MUX_CTRL_0 */
750 case 0x04: /* FUNC_MUX_CTRL_1 */
751 case 0x08: /* FUNC_MUX_CTRL_2 */
752 return s
->func_mux_ctrl
[addr
>> 2];
754 case 0x0c: /* COMP_MODE_CTRL_0 */
755 return s
->comp_mode_ctrl
[0];
757 case 0x10: /* FUNC_MUX_CTRL_3 */
758 case 0x14: /* FUNC_MUX_CTRL_4 */
759 case 0x18: /* FUNC_MUX_CTRL_5 */
760 case 0x1c: /* FUNC_MUX_CTRL_6 */
761 case 0x20: /* FUNC_MUX_CTRL_7 */
762 case 0x24: /* FUNC_MUX_CTRL_8 */
763 case 0x28: /* FUNC_MUX_CTRL_9 */
764 case 0x2c: /* FUNC_MUX_CTRL_A */
765 case 0x30: /* FUNC_MUX_CTRL_B */
766 case 0x34: /* FUNC_MUX_CTRL_C */
767 case 0x38: /* FUNC_MUX_CTRL_D */
768 return s
->func_mux_ctrl
[(addr
>> 2) - 1];
770 case 0x40: /* PULL_DWN_CTRL_0 */
771 case 0x44: /* PULL_DWN_CTRL_1 */
772 case 0x48: /* PULL_DWN_CTRL_2 */
773 case 0x4c: /* PULL_DWN_CTRL_3 */
774 return s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2];
776 case 0x50: /* GATE_INH_CTRL_0 */
777 return s
->gate_inh_ctrl
[0];
779 case 0x60: /* VOLTAGE_CTRL_0 */
780 return s
->voltage_ctrl
[0];
782 case 0x70: /* TEST_DBG_CTRL_0 */
783 return s
->test_dbg_ctrl
[0];
785 case 0x80: /* MOD_CONF_CTRL_0 */
786 return s
->mod_conf_ctrl
[0];
793 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s
*s
,
794 uint32_t diff
, uint32_t value
)
797 if (diff
& (1 << 9)) /* BLUETOOTH */
798 omap_clk_onoff(omap_findclk(s
, "bt_mclk_out"),
800 if (diff
& (1 << 7)) /* USB.CLKO */
801 omap_clk_onoff(omap_findclk(s
, "usb.clko"),
806 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s
*s
,
807 uint32_t diff
, uint32_t value
)
810 if (diff
& (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
811 omap_clk_onoff(omap_findclk(s
, "mcbsp3.clkx"),
813 if (diff
& (1 << 1)) /* CLK32K */
814 omap_clk_onoff(omap_findclk(s
, "clk32k_out"),
819 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s
*s
,
820 uint32_t diff
, uint32_t value
)
822 if (diff
& (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
823 omap_clk_reparent(omap_findclk(s
, "uart3_ck"),
824 omap_findclk(s
, ((value
>> 31) & 1) ?
825 "ck_48m" : "armper_ck"));
826 if (diff
& (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
827 omap_clk_reparent(omap_findclk(s
, "uart2_ck"),
828 omap_findclk(s
, ((value
>> 30) & 1) ?
829 "ck_48m" : "armper_ck"));
830 if (diff
& (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
831 omap_clk_reparent(omap_findclk(s
, "uart1_ck"),
832 omap_findclk(s
, ((value
>> 29) & 1) ?
833 "ck_48m" : "armper_ck"));
834 if (diff
& (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
835 omap_clk_reparent(omap_findclk(s
, "mmc_ck"),
836 omap_findclk(s
, ((value
>> 23) & 1) ?
837 "ck_48m" : "armper_ck"));
838 if (diff
& (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
839 omap_clk_reparent(omap_findclk(s
, "com_mclk_out"),
840 omap_findclk(s
, ((value
>> 12) & 1) ?
841 "ck_48m" : "armper_ck"));
842 if (diff
& (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
843 omap_clk_onoff(omap_findclk(s
, "usb_hhc_ck"), (value
>> 9) & 1);
846 static void omap_pin_cfg_write(void *opaque
, target_phys_addr_t addr
,
847 uint64_t value
, unsigned size
)
849 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
853 return omap_badwidth_write32(opaque
, addr
, value
);
857 case 0x00: /* FUNC_MUX_CTRL_0 */
858 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
859 s
->func_mux_ctrl
[addr
>> 2] = value
;
860 omap_pin_funcmux0_update(s
, diff
, value
);
863 case 0x04: /* FUNC_MUX_CTRL_1 */
864 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
865 s
->func_mux_ctrl
[addr
>> 2] = value
;
866 omap_pin_funcmux1_update(s
, diff
, value
);
869 case 0x08: /* FUNC_MUX_CTRL_2 */
870 s
->func_mux_ctrl
[addr
>> 2] = value
;
873 case 0x0c: /* COMP_MODE_CTRL_0 */
874 s
->comp_mode_ctrl
[0] = value
;
875 s
->compat1509
= (value
!= 0x0000eaef);
876 omap_pin_funcmux0_update(s
, ~0, s
->func_mux_ctrl
[0]);
877 omap_pin_funcmux1_update(s
, ~0, s
->func_mux_ctrl
[1]);
880 case 0x10: /* FUNC_MUX_CTRL_3 */
881 case 0x14: /* FUNC_MUX_CTRL_4 */
882 case 0x18: /* FUNC_MUX_CTRL_5 */
883 case 0x1c: /* FUNC_MUX_CTRL_6 */
884 case 0x20: /* FUNC_MUX_CTRL_7 */
885 case 0x24: /* FUNC_MUX_CTRL_8 */
886 case 0x28: /* FUNC_MUX_CTRL_9 */
887 case 0x2c: /* FUNC_MUX_CTRL_A */
888 case 0x30: /* FUNC_MUX_CTRL_B */
889 case 0x34: /* FUNC_MUX_CTRL_C */
890 case 0x38: /* FUNC_MUX_CTRL_D */
891 s
->func_mux_ctrl
[(addr
>> 2) - 1] = value
;
894 case 0x40: /* PULL_DWN_CTRL_0 */
895 case 0x44: /* PULL_DWN_CTRL_1 */
896 case 0x48: /* PULL_DWN_CTRL_2 */
897 case 0x4c: /* PULL_DWN_CTRL_3 */
898 s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2] = value
;
901 case 0x50: /* GATE_INH_CTRL_0 */
902 s
->gate_inh_ctrl
[0] = value
;
905 case 0x60: /* VOLTAGE_CTRL_0 */
906 s
->voltage_ctrl
[0] = value
;
909 case 0x70: /* TEST_DBG_CTRL_0 */
910 s
->test_dbg_ctrl
[0] = value
;
913 case 0x80: /* MOD_CONF_CTRL_0 */
914 diff
= s
->mod_conf_ctrl
[0] ^ value
;
915 s
->mod_conf_ctrl
[0] = value
;
916 omap_pin_modconf1_update(s
, diff
, value
);
924 static const MemoryRegionOps omap_pin_cfg_ops
= {
925 .read
= omap_pin_cfg_read
,
926 .write
= omap_pin_cfg_write
,
927 .endianness
= DEVICE_NATIVE_ENDIAN
,
930 static void omap_pin_cfg_reset(struct omap_mpu_state_s
*mpu
)
932 /* Start in Compatibility Mode. */
934 omap_pin_funcmux0_update(mpu
, mpu
->func_mux_ctrl
[0], 0);
935 omap_pin_funcmux1_update(mpu
, mpu
->func_mux_ctrl
[1], 0);
936 omap_pin_modconf1_update(mpu
, mpu
->mod_conf_ctrl
[0], 0);
937 memset(mpu
->func_mux_ctrl
, 0, sizeof(mpu
->func_mux_ctrl
));
938 memset(mpu
->comp_mode_ctrl
, 0, sizeof(mpu
->comp_mode_ctrl
));
939 memset(mpu
->pull_dwn_ctrl
, 0, sizeof(mpu
->pull_dwn_ctrl
));
940 memset(mpu
->gate_inh_ctrl
, 0, sizeof(mpu
->gate_inh_ctrl
));
941 memset(mpu
->voltage_ctrl
, 0, sizeof(mpu
->voltage_ctrl
));
942 memset(mpu
->test_dbg_ctrl
, 0, sizeof(mpu
->test_dbg_ctrl
));
943 memset(mpu
->mod_conf_ctrl
, 0, sizeof(mpu
->mod_conf_ctrl
));
946 static void omap_pin_cfg_init(MemoryRegion
*system_memory
,
947 target_phys_addr_t base
,
948 struct omap_mpu_state_s
*mpu
)
950 memory_region_init_io(&mpu
->pin_cfg_iomem
, &omap_pin_cfg_ops
, mpu
,
951 "omap-pin-cfg", 0x800);
952 memory_region_add_subregion(system_memory
, base
, &mpu
->pin_cfg_iomem
);
953 omap_pin_cfg_reset(mpu
);
956 /* Device Identification, Die Identification */
957 static uint64_t omap_id_read(void *opaque
, target_phys_addr_t addr
,
960 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
963 return omap_badwidth_read32(opaque
, addr
);
967 case 0xfffe1800: /* DIE_ID_LSB */
969 case 0xfffe1804: /* DIE_ID_MSB */
972 case 0xfffe2000: /* PRODUCT_ID_LSB */
974 case 0xfffe2004: /* PRODUCT_ID_MSB */
977 case 0xfffed400: /* JTAG_ID_LSB */
978 switch (s
->mpu_model
) {
984 hw_error("%s: bad mpu model\n", __FUNCTION__
);
988 case 0xfffed404: /* JTAG_ID_MSB */
989 switch (s
->mpu_model
) {
995 hw_error("%s: bad mpu model\n", __FUNCTION__
);
1004 static void omap_id_write(void *opaque
, target_phys_addr_t addr
,
1005 uint64_t value
, unsigned size
)
1008 return omap_badwidth_write32(opaque
, addr
, value
);
1014 static const MemoryRegionOps omap_id_ops
= {
1015 .read
= omap_id_read
,
1016 .write
= omap_id_write
,
1017 .endianness
= DEVICE_NATIVE_ENDIAN
,
1020 static void omap_id_init(MemoryRegion
*memory
, struct omap_mpu_state_s
*mpu
)
1022 memory_region_init_io(&mpu
->id_iomem
, &omap_id_ops
, mpu
,
1023 "omap-id", 0x100000000ULL
);
1024 memory_region_init_alias(&mpu
->id_iomem_e18
, "omap-id-e18", &mpu
->id_iomem
,
1026 memory_region_add_subregion(memory
, 0xfffe1800, &mpu
->id_iomem_e18
);
1027 memory_region_init_alias(&mpu
->id_iomem_ed4
, "omap-id-ed4", &mpu
->id_iomem
,
1029 memory_region_add_subregion(memory
, 0xfffed400, &mpu
->id_iomem_ed4
);
1030 if (!cpu_is_omap15xx(mpu
)) {
1031 memory_region_init_alias(&mpu
->id_iomem_ed4
, "omap-id-e20",
1032 &mpu
->id_iomem
, 0xfffe2000, 0x800);
1033 memory_region_add_subregion(memory
, 0xfffe2000, &mpu
->id_iomem_e20
);
1037 /* MPUI Control (Dummy) */
1038 static uint64_t omap_mpui_read(void *opaque
, target_phys_addr_t addr
,
1041 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1044 return omap_badwidth_read32(opaque
, addr
);
1048 case 0x00: /* CTRL */
1049 return s
->mpui_ctrl
;
1050 case 0x04: /* DEBUG_ADDR */
1052 case 0x08: /* DEBUG_DATA */
1054 case 0x0c: /* DEBUG_FLAG */
1056 case 0x10: /* STATUS */
1059 /* Not in OMAP310 */
1060 case 0x14: /* DSP_STATUS */
1061 case 0x18: /* DSP_BOOT_CONFIG */
1063 case 0x1c: /* DSP_MPUI_CONFIG */
1071 static void omap_mpui_write(void *opaque
, target_phys_addr_t addr
,
1072 uint64_t value
, unsigned size
)
1074 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1077 return omap_badwidth_write32(opaque
, addr
, value
);
1081 case 0x00: /* CTRL */
1082 s
->mpui_ctrl
= value
& 0x007fffff;
1085 case 0x04: /* DEBUG_ADDR */
1086 case 0x08: /* DEBUG_DATA */
1087 case 0x0c: /* DEBUG_FLAG */
1088 case 0x10: /* STATUS */
1089 /* Not in OMAP310 */
1090 case 0x14: /* DSP_STATUS */
1092 case 0x18: /* DSP_BOOT_CONFIG */
1093 case 0x1c: /* DSP_MPUI_CONFIG */
1101 static const MemoryRegionOps omap_mpui_ops
= {
1102 .read
= omap_mpui_read
,
1103 .write
= omap_mpui_write
,
1104 .endianness
= DEVICE_NATIVE_ENDIAN
,
1107 static void omap_mpui_reset(struct omap_mpu_state_s
*s
)
1109 s
->mpui_ctrl
= 0x0003ff1b;
1112 static void omap_mpui_init(MemoryRegion
*memory
, target_phys_addr_t base
,
1113 struct omap_mpu_state_s
*mpu
)
1115 memory_region_init_io(&mpu
->mpui_iomem
, &omap_mpui_ops
, mpu
,
1116 "omap-mpui", 0x100);
1117 memory_region_add_subregion(memory
, base
, &mpu
->mpui_iomem
);
1119 omap_mpui_reset(mpu
);
1123 struct omap_tipb_bridge_s
{
1131 uint16_t enh_control
;
1134 static uint64_t omap_tipb_bridge_read(void *opaque
, target_phys_addr_t addr
,
1137 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1140 return omap_badwidth_read16(opaque
, addr
);
1144 case 0x00: /* TIPB_CNTL */
1146 case 0x04: /* TIPB_BUS_ALLOC */
1148 case 0x08: /* MPU_TIPB_CNTL */
1150 case 0x0c: /* ENHANCED_TIPB_CNTL */
1151 return s
->enh_control
;
1152 case 0x10: /* ADDRESS_DBG */
1153 case 0x14: /* DATA_DEBUG_LOW */
1154 case 0x18: /* DATA_DEBUG_HIGH */
1156 case 0x1c: /* DEBUG_CNTR_SIG */
1164 static void omap_tipb_bridge_write(void *opaque
, target_phys_addr_t addr
,
1165 uint64_t value
, unsigned size
)
1167 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1170 return omap_badwidth_write16(opaque
, addr
, value
);
1174 case 0x00: /* TIPB_CNTL */
1175 s
->control
= value
& 0xffff;
1178 case 0x04: /* TIPB_BUS_ALLOC */
1179 s
->alloc
= value
& 0x003f;
1182 case 0x08: /* MPU_TIPB_CNTL */
1183 s
->buffer
= value
& 0x0003;
1186 case 0x0c: /* ENHANCED_TIPB_CNTL */
1187 s
->width_intr
= !(value
& 2);
1188 s
->enh_control
= value
& 0x000f;
1191 case 0x10: /* ADDRESS_DBG */
1192 case 0x14: /* DATA_DEBUG_LOW */
1193 case 0x18: /* DATA_DEBUG_HIGH */
1194 case 0x1c: /* DEBUG_CNTR_SIG */
1203 static const MemoryRegionOps omap_tipb_bridge_ops
= {
1204 .read
= omap_tipb_bridge_read
,
1205 .write
= omap_tipb_bridge_write
,
1206 .endianness
= DEVICE_NATIVE_ENDIAN
,
1209 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s
*s
)
1211 s
->control
= 0xffff;
1214 s
->enh_control
= 0x000f;
1217 static struct omap_tipb_bridge_s
*omap_tipb_bridge_init(
1218 MemoryRegion
*memory
, target_phys_addr_t base
,
1219 qemu_irq abort_irq
, omap_clk clk
)
1221 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*)
1222 g_malloc0(sizeof(struct omap_tipb_bridge_s
));
1224 s
->abort
= abort_irq
;
1225 omap_tipb_bridge_reset(s
);
1227 memory_region_init_io(&s
->iomem
, &omap_tipb_bridge_ops
, s
,
1228 "omap-tipb-bridge", 0x100);
1229 memory_region_add_subregion(memory
, base
, &s
->iomem
);
1234 /* Dummy Traffic Controller's Memory Interface */
1235 static uint64_t omap_tcmi_read(void *opaque
, target_phys_addr_t addr
,
1238 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1242 return omap_badwidth_read32(opaque
, addr
);
1246 case 0x00: /* IMIF_PRIO */
1247 case 0x04: /* EMIFS_PRIO */
1248 case 0x08: /* EMIFF_PRIO */
1249 case 0x0c: /* EMIFS_CONFIG */
1250 case 0x10: /* EMIFS_CS0_CONFIG */
1251 case 0x14: /* EMIFS_CS1_CONFIG */
1252 case 0x18: /* EMIFS_CS2_CONFIG */
1253 case 0x1c: /* EMIFS_CS3_CONFIG */
1254 case 0x24: /* EMIFF_MRS */
1255 case 0x28: /* TIMEOUT1 */
1256 case 0x2c: /* TIMEOUT2 */
1257 case 0x30: /* TIMEOUT3 */
1258 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1259 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1260 return s
->tcmi_regs
[addr
>> 2];
1262 case 0x20: /* EMIFF_SDRAM_CONFIG */
1263 ret
= s
->tcmi_regs
[addr
>> 2];
1264 s
->tcmi_regs
[addr
>> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1265 /* XXX: We can try using the VGA_DIRTY flag for this */
1273 static void omap_tcmi_write(void *opaque
, target_phys_addr_t addr
,
1274 uint64_t value
, unsigned size
)
1276 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1279 return omap_badwidth_write32(opaque
, addr
, value
);
1283 case 0x00: /* IMIF_PRIO */
1284 case 0x04: /* EMIFS_PRIO */
1285 case 0x08: /* EMIFF_PRIO */
1286 case 0x10: /* EMIFS_CS0_CONFIG */
1287 case 0x14: /* EMIFS_CS1_CONFIG */
1288 case 0x18: /* EMIFS_CS2_CONFIG */
1289 case 0x1c: /* EMIFS_CS3_CONFIG */
1290 case 0x20: /* EMIFF_SDRAM_CONFIG */
1291 case 0x24: /* EMIFF_MRS */
1292 case 0x28: /* TIMEOUT1 */
1293 case 0x2c: /* TIMEOUT2 */
1294 case 0x30: /* TIMEOUT3 */
1295 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1296 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1297 s
->tcmi_regs
[addr
>> 2] = value
;
1299 case 0x0c: /* EMIFS_CONFIG */
1300 s
->tcmi_regs
[addr
>> 2] = (value
& 0xf) | (1 << 4);
1308 static const MemoryRegionOps omap_tcmi_ops
= {
1309 .read
= omap_tcmi_read
,
1310 .write
= omap_tcmi_write
,
1311 .endianness
= DEVICE_NATIVE_ENDIAN
,
1314 static void omap_tcmi_reset(struct omap_mpu_state_s
*mpu
)
1316 mpu
->tcmi_regs
[0x00 >> 2] = 0x00000000;
1317 mpu
->tcmi_regs
[0x04 >> 2] = 0x00000000;
1318 mpu
->tcmi_regs
[0x08 >> 2] = 0x00000000;
1319 mpu
->tcmi_regs
[0x0c >> 2] = 0x00000010;
1320 mpu
->tcmi_regs
[0x10 >> 2] = 0x0010fffb;
1321 mpu
->tcmi_regs
[0x14 >> 2] = 0x0010fffb;
1322 mpu
->tcmi_regs
[0x18 >> 2] = 0x0010fffb;
1323 mpu
->tcmi_regs
[0x1c >> 2] = 0x0010fffb;
1324 mpu
->tcmi_regs
[0x20 >> 2] = 0x00618800;
1325 mpu
->tcmi_regs
[0x24 >> 2] = 0x00000037;
1326 mpu
->tcmi_regs
[0x28 >> 2] = 0x00000000;
1327 mpu
->tcmi_regs
[0x2c >> 2] = 0x00000000;
1328 mpu
->tcmi_regs
[0x30 >> 2] = 0x00000000;
1329 mpu
->tcmi_regs
[0x3c >> 2] = 0x00000003;
1330 mpu
->tcmi_regs
[0x40 >> 2] = 0x00000000;
1333 static void omap_tcmi_init(MemoryRegion
*memory
, target_phys_addr_t base
,
1334 struct omap_mpu_state_s
*mpu
)
1336 memory_region_init_io(&mpu
->tcmi_iomem
, &omap_tcmi_ops
, mpu
,
1337 "omap-tcmi", 0x100);
1338 memory_region_add_subregion(memory
, base
, &mpu
->tcmi_iomem
);
1339 omap_tcmi_reset(mpu
);
1342 /* Digital phase-locked loops control */
1349 static uint64_t omap_dpll_read(void *opaque
, target_phys_addr_t addr
,
1352 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1355 return omap_badwidth_read16(opaque
, addr
);
1358 if (addr
== 0x00) /* CTL_REG */
1365 static void omap_dpll_write(void *opaque
, target_phys_addr_t addr
,
1366 uint64_t value
, unsigned size
)
1368 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1370 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1374 return omap_badwidth_write16(opaque
, addr
, value
);
1377 if (addr
== 0x00) { /* CTL_REG */
1378 /* See omap_ulpd_pm_write() too */
1379 diff
= s
->mode
& value
;
1380 s
->mode
= value
& 0x2fff;
1381 if (diff
& (0x3ff << 2)) {
1382 if (value
& (1 << 4)) { /* PLL_ENABLE */
1383 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1384 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1386 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1389 omap_clk_setrate(s
->dpll
, div
, mult
);
1392 /* Enter the desired mode. */
1393 s
->mode
= (s
->mode
& 0xfffe) | ((s
->mode
>> 4) & 1);
1395 /* Act as if the lock is restored. */
1402 static const MemoryRegionOps omap_dpll_ops
= {
1403 .read
= omap_dpll_read
,
1404 .write
= omap_dpll_write
,
1405 .endianness
= DEVICE_NATIVE_ENDIAN
,
1408 static void omap_dpll_reset(struct dpll_ctl_s
*s
)
1411 omap_clk_setrate(s
->dpll
, 1, 1);
1414 static struct dpll_ctl_s
*omap_dpll_init(MemoryRegion
*memory
,
1415 target_phys_addr_t base
, omap_clk clk
)
1417 struct dpll_ctl_s
*s
= g_malloc0(sizeof(*s
));
1418 memory_region_init_io(&s
->iomem
, &omap_dpll_ops
, s
, "omap-dpll", 0x100);
1423 memory_region_add_subregion(memory
, base
, &s
->iomem
);
1427 /* MPU Clock/Reset/Power Mode Control */
1428 static uint64_t omap_clkm_read(void *opaque
, target_phys_addr_t addr
,
1431 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1434 return omap_badwidth_read16(opaque
, addr
);
1438 case 0x00: /* ARM_CKCTL */
1439 return s
->clkm
.arm_ckctl
;
1441 case 0x04: /* ARM_IDLECT1 */
1442 return s
->clkm
.arm_idlect1
;
1444 case 0x08: /* ARM_IDLECT2 */
1445 return s
->clkm
.arm_idlect2
;
1447 case 0x0c: /* ARM_EWUPCT */
1448 return s
->clkm
.arm_ewupct
;
1450 case 0x10: /* ARM_RSTCT1 */
1451 return s
->clkm
.arm_rstct1
;
1453 case 0x14: /* ARM_RSTCT2 */
1454 return s
->clkm
.arm_rstct2
;
1456 case 0x18: /* ARM_SYSST */
1457 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
;
1459 case 0x1c: /* ARM_CKOUT1 */
1460 return s
->clkm
.arm_ckout1
;
1462 case 0x20: /* ARM_CKOUT2 */
1470 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s
*s
,
1471 uint16_t diff
, uint16_t value
)
1475 if (diff
& (1 << 14)) { /* ARM_INTHCK_SEL */
1476 if (value
& (1 << 14))
1479 clk
= omap_findclk(s
, "arminth_ck");
1480 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
1483 if (diff
& (1 << 12)) { /* ARM_TIMXO */
1484 clk
= omap_findclk(s
, "armtim_ck");
1485 if (value
& (1 << 12))
1486 omap_clk_reparent(clk
, omap_findclk(s
, "clkin"));
1488 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
1491 if (diff
& (3 << 10)) { /* DSPMMUDIV */
1492 clk
= omap_findclk(s
, "dspmmu_ck");
1493 omap_clk_setrate(clk
, 1 << ((value
>> 10) & 3), 1);
1495 if (diff
& (3 << 8)) { /* TCDIV */
1496 clk
= omap_findclk(s
, "tc_ck");
1497 omap_clk_setrate(clk
, 1 << ((value
>> 8) & 3), 1);
1499 if (diff
& (3 << 6)) { /* DSPDIV */
1500 clk
= omap_findclk(s
, "dsp_ck");
1501 omap_clk_setrate(clk
, 1 << ((value
>> 6) & 3), 1);
1503 if (diff
& (3 << 4)) { /* ARMDIV */
1504 clk
= omap_findclk(s
, "arm_ck");
1505 omap_clk_setrate(clk
, 1 << ((value
>> 4) & 3), 1);
1507 if (diff
& (3 << 2)) { /* LCDDIV */
1508 clk
= omap_findclk(s
, "lcd_ck");
1509 omap_clk_setrate(clk
, 1 << ((value
>> 2) & 3), 1);
1511 if (diff
& (3 << 0)) { /* PERDIV */
1512 clk
= omap_findclk(s
, "armper_ck");
1513 omap_clk_setrate(clk
, 1 << ((value
>> 0) & 3), 1);
1517 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s
*s
,
1518 uint16_t diff
, uint16_t value
)
1522 if (value
& (1 << 11)) { /* SETARM_IDLE */
1523 cpu_interrupt(&s
->cpu
->env
, CPU_INTERRUPT_HALT
);
1525 if (!(value
& (1 << 10))) /* WKUP_MODE */
1526 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1528 #define SET_CANIDLE(clock, bit) \
1529 if (diff & (1 << bit)) { \
1530 clk = omap_findclk(s, clock); \
1531 omap_clk_canidle(clk, (value >> bit) & 1); \
1533 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1534 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1535 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1536 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1537 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1538 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1539 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1540 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1541 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1542 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1543 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1544 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1545 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1546 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1549 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s
*s
,
1550 uint16_t diff
, uint16_t value
)
1554 #define SET_ONOFF(clock, bit) \
1555 if (diff & (1 << bit)) { \
1556 clk = omap_findclk(s, clock); \
1557 omap_clk_onoff(clk, (value >> bit) & 1); \
1559 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1560 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1561 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1562 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1563 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1564 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1565 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1566 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1567 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1568 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1569 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1572 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s
*s
,
1573 uint16_t diff
, uint16_t value
)
1577 if (diff
& (3 << 4)) { /* TCLKOUT */
1578 clk
= omap_findclk(s
, "tclk_out");
1579 switch ((value
>> 4) & 3) {
1581 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen3"));
1582 omap_clk_onoff(clk
, 1);
1585 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
1586 omap_clk_onoff(clk
, 1);
1589 omap_clk_onoff(clk
, 0);
1592 if (diff
& (3 << 2)) { /* DCLKOUT */
1593 clk
= omap_findclk(s
, "dclk_out");
1594 switch ((value
>> 2) & 3) {
1596 omap_clk_reparent(clk
, omap_findclk(s
, "dspmmu_ck"));
1599 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen2"));
1602 omap_clk_reparent(clk
, omap_findclk(s
, "dsp_ck"));
1605 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
1609 if (diff
& (3 << 0)) { /* ACLKOUT */
1610 clk
= omap_findclk(s
, "aclk_out");
1611 switch ((value
>> 0) & 3) {
1613 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
1614 omap_clk_onoff(clk
, 1);
1617 omap_clk_reparent(clk
, omap_findclk(s
, "arm_ck"));
1618 omap_clk_onoff(clk
, 1);
1621 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
1622 omap_clk_onoff(clk
, 1);
1625 omap_clk_onoff(clk
, 0);
1630 static void omap_clkm_write(void *opaque
, target_phys_addr_t addr
,
1631 uint64_t value
, unsigned size
)
1633 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1636 static const char *clkschemename
[8] = {
1637 "fully synchronous", "fully asynchronous", "synchronous scalable",
1638 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1642 return omap_badwidth_write16(opaque
, addr
, value
);
1646 case 0x00: /* ARM_CKCTL */
1647 diff
= s
->clkm
.arm_ckctl
^ value
;
1648 s
->clkm
.arm_ckctl
= value
& 0x7fff;
1649 omap_clkm_ckctl_update(s
, diff
, value
);
1652 case 0x04: /* ARM_IDLECT1 */
1653 diff
= s
->clkm
.arm_idlect1
^ value
;
1654 s
->clkm
.arm_idlect1
= value
& 0x0fff;
1655 omap_clkm_idlect1_update(s
, diff
, value
);
1658 case 0x08: /* ARM_IDLECT2 */
1659 diff
= s
->clkm
.arm_idlect2
^ value
;
1660 s
->clkm
.arm_idlect2
= value
& 0x07ff;
1661 omap_clkm_idlect2_update(s
, diff
, value
);
1664 case 0x0c: /* ARM_EWUPCT */
1665 s
->clkm
.arm_ewupct
= value
& 0x003f;
1668 case 0x10: /* ARM_RSTCT1 */
1669 diff
= s
->clkm
.arm_rstct1
^ value
;
1670 s
->clkm
.arm_rstct1
= value
& 0x0007;
1672 qemu_system_reset_request();
1673 s
->clkm
.cold_start
= 0xa;
1675 if (diff
& ~value
& 4) { /* DSP_RST */
1677 omap_tipb_bridge_reset(s
->private_tipb
);
1678 omap_tipb_bridge_reset(s
->public_tipb
);
1680 if (diff
& 2) { /* DSP_EN */
1681 clk
= omap_findclk(s
, "dsp_ck");
1682 omap_clk_canidle(clk
, (~value
>> 1) & 1);
1686 case 0x14: /* ARM_RSTCT2 */
1687 s
->clkm
.arm_rstct2
= value
& 0x0001;
1690 case 0x18: /* ARM_SYSST */
1691 if ((s
->clkm
.clocking_scheme
^ (value
>> 11)) & 7) {
1692 s
->clkm
.clocking_scheme
= (value
>> 11) & 7;
1693 printf("%s: clocking scheme set to %s\n", __FUNCTION__
,
1694 clkschemename
[s
->clkm
.clocking_scheme
]);
1696 s
->clkm
.cold_start
&= value
& 0x3f;
1699 case 0x1c: /* ARM_CKOUT1 */
1700 diff
= s
->clkm
.arm_ckout1
^ value
;
1701 s
->clkm
.arm_ckout1
= value
& 0x003f;
1702 omap_clkm_ckout1_update(s
, diff
, value
);
1705 case 0x20: /* ARM_CKOUT2 */
1711 static const MemoryRegionOps omap_clkm_ops
= {
1712 .read
= omap_clkm_read
,
1713 .write
= omap_clkm_write
,
1714 .endianness
= DEVICE_NATIVE_ENDIAN
,
1717 static uint64_t omap_clkdsp_read(void *opaque
, target_phys_addr_t addr
,
1720 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1723 return omap_badwidth_read16(opaque
, addr
);
1727 case 0x04: /* DSP_IDLECT1 */
1728 return s
->clkm
.dsp_idlect1
;
1730 case 0x08: /* DSP_IDLECT2 */
1731 return s
->clkm
.dsp_idlect2
;
1733 case 0x14: /* DSP_RSTCT2 */
1734 return s
->clkm
.dsp_rstct2
;
1736 case 0x18: /* DSP_SYSST */
1737 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
|
1738 (s
->cpu
->env
.halted
<< 6); /* Quite useless... */
1745 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s
*s
,
1746 uint16_t diff
, uint16_t value
)
1750 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1753 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s
*s
,
1754 uint16_t diff
, uint16_t value
)
1758 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1761 static void omap_clkdsp_write(void *opaque
, target_phys_addr_t addr
,
1762 uint64_t value
, unsigned size
)
1764 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1768 return omap_badwidth_write16(opaque
, addr
, value
);
1772 case 0x04: /* DSP_IDLECT1 */
1773 diff
= s
->clkm
.dsp_idlect1
^ value
;
1774 s
->clkm
.dsp_idlect1
= value
& 0x01f7;
1775 omap_clkdsp_idlect1_update(s
, diff
, value
);
1778 case 0x08: /* DSP_IDLECT2 */
1779 s
->clkm
.dsp_idlect2
= value
& 0x0037;
1780 diff
= s
->clkm
.dsp_idlect1
^ value
;
1781 omap_clkdsp_idlect2_update(s
, diff
, value
);
1784 case 0x14: /* DSP_RSTCT2 */
1785 s
->clkm
.dsp_rstct2
= value
& 0x0001;
1788 case 0x18: /* DSP_SYSST */
1789 s
->clkm
.cold_start
&= value
& 0x3f;
1797 static const MemoryRegionOps omap_clkdsp_ops
= {
1798 .read
= omap_clkdsp_read
,
1799 .write
= omap_clkdsp_write
,
1800 .endianness
= DEVICE_NATIVE_ENDIAN
,
1803 static void omap_clkm_reset(struct omap_mpu_state_s
*s
)
1805 if (s
->wdt
&& s
->wdt
->reset
)
1806 s
->clkm
.cold_start
= 0x6;
1807 s
->clkm
.clocking_scheme
= 0;
1808 omap_clkm_ckctl_update(s
, ~0, 0x3000);
1809 s
->clkm
.arm_ckctl
= 0x3000;
1810 omap_clkm_idlect1_update(s
, s
->clkm
.arm_idlect1
^ 0x0400, 0x0400);
1811 s
->clkm
.arm_idlect1
= 0x0400;
1812 omap_clkm_idlect2_update(s
, s
->clkm
.arm_idlect2
^ 0x0100, 0x0100);
1813 s
->clkm
.arm_idlect2
= 0x0100;
1814 s
->clkm
.arm_ewupct
= 0x003f;
1815 s
->clkm
.arm_rstct1
= 0x0000;
1816 s
->clkm
.arm_rstct2
= 0x0000;
1817 s
->clkm
.arm_ckout1
= 0x0015;
1818 s
->clkm
.dpll1_mode
= 0x2002;
1819 omap_clkdsp_idlect1_update(s
, s
->clkm
.dsp_idlect1
^ 0x0040, 0x0040);
1820 s
->clkm
.dsp_idlect1
= 0x0040;
1821 omap_clkdsp_idlect2_update(s
, ~0, 0x0000);
1822 s
->clkm
.dsp_idlect2
= 0x0000;
1823 s
->clkm
.dsp_rstct2
= 0x0000;
1826 static void omap_clkm_init(MemoryRegion
*memory
, target_phys_addr_t mpu_base
,
1827 target_phys_addr_t dsp_base
, struct omap_mpu_state_s
*s
)
1829 memory_region_init_io(&s
->clkm_iomem
, &omap_clkm_ops
, s
,
1830 "omap-clkm", 0x100);
1831 memory_region_init_io(&s
->clkdsp_iomem
, &omap_clkdsp_ops
, s
,
1832 "omap-clkdsp", 0x1000);
1834 s
->clkm
.arm_idlect1
= 0x03ff;
1835 s
->clkm
.arm_idlect2
= 0x0100;
1836 s
->clkm
.dsp_idlect1
= 0x0002;
1838 s
->clkm
.cold_start
= 0x3a;
1840 memory_region_add_subregion(memory
, mpu_base
, &s
->clkm_iomem
);
1841 memory_region_add_subregion(memory
, dsp_base
, &s
->clkdsp_iomem
);
1845 struct omap_mpuio_s
{
1849 qemu_irq handler
[16];
1871 static void omap_mpuio_set(void *opaque
, int line
, int level
)
1873 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1874 uint16_t prev
= s
->inputs
;
1877 s
->inputs
|= 1 << line
;
1879 s
->inputs
&= ~(1 << line
);
1881 if (((1 << line
) & s
->dir
& ~s
->mask
) && s
->clk
) {
1882 if ((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) {
1883 s
->ints
|= 1 << line
;
1884 qemu_irq_raise(s
->irq
);
1887 if ((s
->event
& (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1888 (s
->event
>> 1) == line
) /* PIN_SELECT */
1889 s
->latch
= s
->inputs
;
1893 static void omap_mpuio_kbd_update(struct omap_mpuio_s
*s
)
1896 uint8_t *row
, rows
= 0, cols
= ~s
->cols
;
1898 for (row
= s
->buttons
+ 4, i
= 1 << 4; i
; row
--, i
>>= 1)
1902 qemu_set_irq(s
->kbd_irq
, rows
&& !s
->kbd_mask
&& s
->clk
);
1903 s
->row_latch
= ~rows
;
1906 static uint64_t omap_mpuio_read(void *opaque
, target_phys_addr_t addr
,
1909 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1910 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1914 return omap_badwidth_read16(opaque
, addr
);
1918 case 0x00: /* INPUT_LATCH */
1921 case 0x04: /* OUTPUT_REG */
1924 case 0x08: /* IO_CNTL */
1927 case 0x10: /* KBR_LATCH */
1928 return s
->row_latch
;
1930 case 0x14: /* KBC_REG */
1933 case 0x18: /* GPIO_EVENT_MODE_REG */
1936 case 0x1c: /* GPIO_INT_EDGE_REG */
1939 case 0x20: /* KBD_INT */
1940 return (~s
->row_latch
& 0x1f) && !s
->kbd_mask
;
1942 case 0x24: /* GPIO_INT */
1946 qemu_irq_lower(s
->irq
);
1949 case 0x28: /* KBD_MASKIT */
1952 case 0x2c: /* GPIO_MASKIT */
1955 case 0x30: /* GPIO_DEBOUNCING_REG */
1958 case 0x34: /* GPIO_LATCH_REG */
1966 static void omap_mpuio_write(void *opaque
, target_phys_addr_t addr
,
1967 uint64_t value
, unsigned size
)
1969 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1970 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1975 return omap_badwidth_write16(opaque
, addr
, value
);
1979 case 0x04: /* OUTPUT_REG */
1980 diff
= (s
->outputs
^ value
) & ~s
->dir
;
1982 while ((ln
= ffs(diff
))) {
1985 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
1990 case 0x08: /* IO_CNTL */
1991 diff
= s
->outputs
& (s
->dir
^ value
);
1994 value
= s
->outputs
& ~s
->dir
;
1995 while ((ln
= ffs(diff
))) {
1998 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2003 case 0x14: /* KBC_REG */
2005 omap_mpuio_kbd_update(s
);
2008 case 0x18: /* GPIO_EVENT_MODE_REG */
2009 s
->event
= value
& 0x1f;
2012 case 0x1c: /* GPIO_INT_EDGE_REG */
2016 case 0x28: /* KBD_MASKIT */
2017 s
->kbd_mask
= value
& 1;
2018 omap_mpuio_kbd_update(s
);
2021 case 0x2c: /* GPIO_MASKIT */
2025 case 0x30: /* GPIO_DEBOUNCING_REG */
2026 s
->debounce
= value
& 0x1ff;
2029 case 0x00: /* INPUT_LATCH */
2030 case 0x10: /* KBR_LATCH */
2031 case 0x20: /* KBD_INT */
2032 case 0x24: /* GPIO_INT */
2033 case 0x34: /* GPIO_LATCH_REG */
2043 static const MemoryRegionOps omap_mpuio_ops
= {
2044 .read
= omap_mpuio_read
,
2045 .write
= omap_mpuio_write
,
2046 .endianness
= DEVICE_NATIVE_ENDIAN
,
2049 static void omap_mpuio_reset(struct omap_mpuio_s
*s
)
2061 s
->row_latch
= 0x1f;
2065 static void omap_mpuio_onoff(void *opaque
, int line
, int on
)
2067 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2071 omap_mpuio_kbd_update(s
);
2074 static struct omap_mpuio_s
*omap_mpuio_init(MemoryRegion
*memory
,
2075 target_phys_addr_t base
,
2076 qemu_irq kbd_int
, qemu_irq gpio_int
, qemu_irq wakeup
,
2079 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*)
2080 g_malloc0(sizeof(struct omap_mpuio_s
));
2083 s
->kbd_irq
= kbd_int
;
2085 s
->in
= qemu_allocate_irqs(omap_mpuio_set
, s
, 16);
2086 omap_mpuio_reset(s
);
2088 memory_region_init_io(&s
->iomem
, &omap_mpuio_ops
, s
,
2089 "omap-mpuio", 0x800);
2090 memory_region_add_subregion(memory
, base
, &s
->iomem
);
2092 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_mpuio_onoff
, s
, 1)[0]);
2097 qemu_irq
*omap_mpuio_in_get(struct omap_mpuio_s
*s
)
2102 void omap_mpuio_out_set(struct omap_mpuio_s
*s
, int line
, qemu_irq handler
)
2104 if (line
>= 16 || line
< 0)
2105 hw_error("%s: No GPIO line %i\n", __FUNCTION__
, line
);
2106 s
->handler
[line
] = handler
;
2109 void omap_mpuio_key(struct omap_mpuio_s
*s
, int row
, int col
, int down
)
2111 if (row
>= 5 || row
< 0)
2112 hw_error("%s: No key %i-%i\n", __FUNCTION__
, col
, row
);
2115 s
->buttons
[row
] |= 1 << col
;
2117 s
->buttons
[row
] &= ~(1 << col
);
2119 omap_mpuio_kbd_update(s
);
2122 /* MicroWire Interface */
2123 struct omap_uwire_s
{
2134 uWireSlave
*chip
[4];
2137 static void omap_uwire_transfer_start(struct omap_uwire_s
*s
)
2139 int chipselect
= (s
->control
>> 10) & 3; /* INDEX */
2140 uWireSlave
*slave
= s
->chip
[chipselect
];
2142 if ((s
->control
>> 5) & 0x1f) { /* NB_BITS_WR */
2143 if (s
->control
& (1 << 12)) /* CS_CMD */
2144 if (slave
&& slave
->send
)
2145 slave
->send(slave
->opaque
,
2146 s
->txbuf
>> (16 - ((s
->control
>> 5) & 0x1f)));
2147 s
->control
&= ~(1 << 14); /* CSRB */
2148 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2149 * a DRQ. When is the level IRQ supposed to be reset? */
2152 if ((s
->control
>> 0) & 0x1f) { /* NB_BITS_RD */
2153 if (s
->control
& (1 << 12)) /* CS_CMD */
2154 if (slave
&& slave
->receive
)
2155 s
->rxbuf
= slave
->receive(slave
->opaque
);
2156 s
->control
|= 1 << 15; /* RDRB */
2157 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2158 * a DRQ. When is the level IRQ supposed to be reset? */
2162 static uint64_t omap_uwire_read(void *opaque
, target_phys_addr_t addr
,
2165 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
2166 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2169 return omap_badwidth_read16(opaque
, addr
);
2173 case 0x00: /* RDR */
2174 s
->control
&= ~(1 << 15); /* RDRB */
2177 case 0x04: /* CSR */
2180 case 0x08: /* SR1 */
2182 case 0x0c: /* SR2 */
2184 case 0x10: /* SR3 */
2186 case 0x14: /* SR4 */
2188 case 0x18: /* SR5 */
2196 static void omap_uwire_write(void *opaque
, target_phys_addr_t addr
,
2197 uint64_t value
, unsigned size
)
2199 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
2200 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2203 return omap_badwidth_write16(opaque
, addr
, value
);
2207 case 0x00: /* TDR */
2208 s
->txbuf
= value
; /* TD */
2209 if ((s
->setup
[4] & (1 << 2)) && /* AUTO_TX_EN */
2210 ((s
->setup
[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2211 (s
->control
& (1 << 12)))) { /* CS_CMD */
2212 s
->control
|= 1 << 14; /* CSRB */
2213 omap_uwire_transfer_start(s
);
2217 case 0x04: /* CSR */
2218 s
->control
= value
& 0x1fff;
2219 if (value
& (1 << 13)) /* START */
2220 omap_uwire_transfer_start(s
);
2223 case 0x08: /* SR1 */
2224 s
->setup
[0] = value
& 0x003f;
2227 case 0x0c: /* SR2 */
2228 s
->setup
[1] = value
& 0x0fc0;
2231 case 0x10: /* SR3 */
2232 s
->setup
[2] = value
& 0x0003;
2235 case 0x14: /* SR4 */
2236 s
->setup
[3] = value
& 0x0001;
2239 case 0x18: /* SR5 */
2240 s
->setup
[4] = value
& 0x000f;
2249 static const MemoryRegionOps omap_uwire_ops
= {
2250 .read
= omap_uwire_read
,
2251 .write
= omap_uwire_write
,
2252 .endianness
= DEVICE_NATIVE_ENDIAN
,
2255 static void omap_uwire_reset(struct omap_uwire_s
*s
)
2265 static struct omap_uwire_s
*omap_uwire_init(MemoryRegion
*system_memory
,
2266 target_phys_addr_t base
,
2267 qemu_irq txirq
, qemu_irq rxirq
,
2271 struct omap_uwire_s
*s
= (struct omap_uwire_s
*)
2272 g_malloc0(sizeof(struct omap_uwire_s
));
2277 omap_uwire_reset(s
);
2279 memory_region_init_io(&s
->iomem
, &omap_uwire_ops
, s
, "omap-uwire", 0x800);
2280 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
2285 void omap_uwire_attach(struct omap_uwire_s
*s
,
2286 uWireSlave
*slave
, int chipselect
)
2288 if (chipselect
< 0 || chipselect
> 3) {
2289 fprintf(stderr
, "%s: Bad chipselect %i\n", __FUNCTION__
, chipselect
);
2293 s
->chip
[chipselect
] = slave
;
2296 /* Pseudonoise Pulse-Width Light Modulator */
2305 static void omap_pwl_update(struct omap_pwl_s
*s
)
2307 int output
= (s
->clk
&& s
->enable
) ? s
->level
: 0;
2309 if (output
!= s
->output
) {
2311 printf("%s: Backlight now at %i/256\n", __FUNCTION__
, output
);
2315 static uint64_t omap_pwl_read(void *opaque
, target_phys_addr_t addr
,
2318 struct omap_pwl_s
*s
= (struct omap_pwl_s
*) opaque
;
2319 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2322 return omap_badwidth_read8(opaque
, addr
);
2326 case 0x00: /* PWL_LEVEL */
2328 case 0x04: /* PWL_CTRL */
2335 static void omap_pwl_write(void *opaque
, target_phys_addr_t addr
,
2336 uint64_t value
, unsigned size
)
2338 struct omap_pwl_s
*s
= (struct omap_pwl_s
*) opaque
;
2339 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2342 return omap_badwidth_write8(opaque
, addr
, value
);
2346 case 0x00: /* PWL_LEVEL */
2350 case 0x04: /* PWL_CTRL */
2351 s
->enable
= value
& 1;
2360 static const MemoryRegionOps omap_pwl_ops
= {
2361 .read
= omap_pwl_read
,
2362 .write
= omap_pwl_write
,
2363 .endianness
= DEVICE_NATIVE_ENDIAN
,
2366 static void omap_pwl_reset(struct omap_pwl_s
*s
)
2375 static void omap_pwl_clk_update(void *opaque
, int line
, int on
)
2377 struct omap_pwl_s
*s
= (struct omap_pwl_s
*) opaque
;
2383 static struct omap_pwl_s
*omap_pwl_init(MemoryRegion
*system_memory
,
2384 target_phys_addr_t base
,
2387 struct omap_pwl_s
*s
= g_malloc0(sizeof(*s
));
2391 memory_region_init_io(&s
->iomem
, &omap_pwl_ops
, s
,
2393 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
2395 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_pwl_clk_update
, s
, 1)[0]);
2399 /* Pulse-Width Tone module */
2408 static uint64_t omap_pwt_read(void *opaque
, target_phys_addr_t addr
,
2411 struct omap_pwt_s
*s
= (struct omap_pwt_s
*) opaque
;
2412 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2415 return omap_badwidth_read8(opaque
, addr
);
2419 case 0x00: /* FRC */
2421 case 0x04: /* VCR */
2423 case 0x08: /* GCR */
2430 static void omap_pwt_write(void *opaque
, target_phys_addr_t addr
,
2431 uint64_t value
, unsigned size
)
2433 struct omap_pwt_s
*s
= (struct omap_pwt_s
*) opaque
;
2434 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2437 return omap_badwidth_write8(opaque
, addr
, value
);
2441 case 0x00: /* FRC */
2442 s
->frc
= value
& 0x3f;
2444 case 0x04: /* VRC */
2445 if ((value
^ s
->vrc
) & 1) {
2447 printf("%s: %iHz buzz on\n", __FUNCTION__
, (int)
2448 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2449 ((omap_clk_getrate(s
->clk
) >> 3) /
2450 /* Pre-multiplexer divider */
2451 ((s
->gcr
& 2) ? 1 : 154) /
2452 /* Octave multiplexer */
2453 (2 << (value
& 3)) *
2454 /* 101/107 divider */
2455 ((value
& (1 << 2)) ? 101 : 107) *
2457 ((value
& (1 << 3)) ? 49 : 55) *
2459 ((value
& (1 << 4)) ? 50 : 63) *
2460 /* 80/127 divider */
2461 ((value
& (1 << 5)) ? 80 : 127) /
2462 (107 * 55 * 63 * 127)));
2464 printf("%s: silence!\n", __FUNCTION__
);
2466 s
->vrc
= value
& 0x7f;
2468 case 0x08: /* GCR */
2477 static const MemoryRegionOps omap_pwt_ops
= {
2478 .read
=omap_pwt_read
,
2479 .write
= omap_pwt_write
,
2480 .endianness
= DEVICE_NATIVE_ENDIAN
,
2483 static void omap_pwt_reset(struct omap_pwt_s
*s
)
2490 static struct omap_pwt_s
*omap_pwt_init(MemoryRegion
*system_memory
,
2491 target_phys_addr_t base
,
2494 struct omap_pwt_s
*s
= g_malloc0(sizeof(*s
));
2498 memory_region_init_io(&s
->iomem
, &omap_pwt_ops
, s
,
2500 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
2504 /* Real-time Clock module */
2521 struct tm current_tm
;
2526 static void omap_rtc_interrupts_update(struct omap_rtc_s
*s
)
2528 /* s->alarm is level-triggered */
2529 qemu_set_irq(s
->alarm
, (s
->status
>> 6) & 1);
2532 static void omap_rtc_alarm_update(struct omap_rtc_s
*s
)
2534 s
->alarm_ti
= mktimegm(&s
->alarm_tm
);
2535 if (s
->alarm_ti
== -1)
2536 printf("%s: conversion failed\n", __FUNCTION__
);
2539 static uint64_t omap_rtc_read(void *opaque
, target_phys_addr_t addr
,
2542 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
2543 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2547 return omap_badwidth_read8(opaque
, addr
);
2551 case 0x00: /* SECONDS_REG */
2552 return to_bcd(s
->current_tm
.tm_sec
);
2554 case 0x04: /* MINUTES_REG */
2555 return to_bcd(s
->current_tm
.tm_min
);
2557 case 0x08: /* HOURS_REG */
2559 return ((s
->current_tm
.tm_hour
> 11) << 7) |
2560 to_bcd(((s
->current_tm
.tm_hour
- 1) % 12) + 1);
2562 return to_bcd(s
->current_tm
.tm_hour
);
2564 case 0x0c: /* DAYS_REG */
2565 return to_bcd(s
->current_tm
.tm_mday
);
2567 case 0x10: /* MONTHS_REG */
2568 return to_bcd(s
->current_tm
.tm_mon
+ 1);
2570 case 0x14: /* YEARS_REG */
2571 return to_bcd(s
->current_tm
.tm_year
% 100);
2573 case 0x18: /* WEEK_REG */
2574 return s
->current_tm
.tm_wday
;
2576 case 0x20: /* ALARM_SECONDS_REG */
2577 return to_bcd(s
->alarm_tm
.tm_sec
);
2579 case 0x24: /* ALARM_MINUTES_REG */
2580 return to_bcd(s
->alarm_tm
.tm_min
);
2582 case 0x28: /* ALARM_HOURS_REG */
2584 return ((s
->alarm_tm
.tm_hour
> 11) << 7) |
2585 to_bcd(((s
->alarm_tm
.tm_hour
- 1) % 12) + 1);
2587 return to_bcd(s
->alarm_tm
.tm_hour
);
2589 case 0x2c: /* ALARM_DAYS_REG */
2590 return to_bcd(s
->alarm_tm
.tm_mday
);
2592 case 0x30: /* ALARM_MONTHS_REG */
2593 return to_bcd(s
->alarm_tm
.tm_mon
+ 1);
2595 case 0x34: /* ALARM_YEARS_REG */
2596 return to_bcd(s
->alarm_tm
.tm_year
% 100);
2598 case 0x40: /* RTC_CTRL_REG */
2599 return (s
->pm_am
<< 3) | (s
->auto_comp
<< 2) |
2600 (s
->round
<< 1) | s
->running
;
2602 case 0x44: /* RTC_STATUS_REG */
2607 case 0x48: /* RTC_INTERRUPTS_REG */
2608 return s
->interrupts
;
2610 case 0x4c: /* RTC_COMP_LSB_REG */
2611 return ((uint16_t) s
->comp_reg
) & 0xff;
2613 case 0x50: /* RTC_COMP_MSB_REG */
2614 return ((uint16_t) s
->comp_reg
) >> 8;
2621 static void omap_rtc_write(void *opaque
, target_phys_addr_t addr
,
2622 uint64_t value
, unsigned size
)
2624 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
2625 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2630 return omap_badwidth_write8(opaque
, addr
, value
);
2634 case 0x00: /* SECONDS_REG */
2636 printf("RTC SEC_REG <-- %02x\n", value
);
2638 s
->ti
-= s
->current_tm
.tm_sec
;
2639 s
->ti
+= from_bcd(value
);
2642 case 0x04: /* MINUTES_REG */
2644 printf("RTC MIN_REG <-- %02x\n", value
);
2646 s
->ti
-= s
->current_tm
.tm_min
* 60;
2647 s
->ti
+= from_bcd(value
) * 60;
2650 case 0x08: /* HOURS_REG */
2652 printf("RTC HRS_REG <-- %02x\n", value
);
2654 s
->ti
-= s
->current_tm
.tm_hour
* 3600;
2656 s
->ti
+= (from_bcd(value
& 0x3f) & 12) * 3600;
2657 s
->ti
+= ((value
>> 7) & 1) * 43200;
2659 s
->ti
+= from_bcd(value
& 0x3f) * 3600;
2662 case 0x0c: /* DAYS_REG */
2664 printf("RTC DAY_REG <-- %02x\n", value
);
2666 s
->ti
-= s
->current_tm
.tm_mday
* 86400;
2667 s
->ti
+= from_bcd(value
) * 86400;
2670 case 0x10: /* MONTHS_REG */
2672 printf("RTC MTH_REG <-- %02x\n", value
);
2674 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
2675 new_tm
.tm_mon
= from_bcd(value
);
2676 ti
[0] = mktimegm(&s
->current_tm
);
2677 ti
[1] = mktimegm(&new_tm
);
2679 if (ti
[0] != -1 && ti
[1] != -1) {
2683 /* A less accurate version */
2684 s
->ti
-= s
->current_tm
.tm_mon
* 2592000;
2685 s
->ti
+= from_bcd(value
) * 2592000;
2689 case 0x14: /* YEARS_REG */
2691 printf("RTC YRS_REG <-- %02x\n", value
);
2693 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
2694 new_tm
.tm_year
+= from_bcd(value
) - (new_tm
.tm_year
% 100);
2695 ti
[0] = mktimegm(&s
->current_tm
);
2696 ti
[1] = mktimegm(&new_tm
);
2698 if (ti
[0] != -1 && ti
[1] != -1) {
2702 /* A less accurate version */
2703 s
->ti
-= (s
->current_tm
.tm_year
% 100) * 31536000;
2704 s
->ti
+= from_bcd(value
) * 31536000;
2708 case 0x18: /* WEEK_REG */
2709 return; /* Ignored */
2711 case 0x20: /* ALARM_SECONDS_REG */
2713 printf("ALM SEC_REG <-- %02x\n", value
);
2715 s
->alarm_tm
.tm_sec
= from_bcd(value
);
2716 omap_rtc_alarm_update(s
);
2719 case 0x24: /* ALARM_MINUTES_REG */
2721 printf("ALM MIN_REG <-- %02x\n", value
);
2723 s
->alarm_tm
.tm_min
= from_bcd(value
);
2724 omap_rtc_alarm_update(s
);
2727 case 0x28: /* ALARM_HOURS_REG */
2729 printf("ALM HRS_REG <-- %02x\n", value
);
2732 s
->alarm_tm
.tm_hour
=
2733 ((from_bcd(value
& 0x3f)) % 12) +
2734 ((value
>> 7) & 1) * 12;
2736 s
->alarm_tm
.tm_hour
= from_bcd(value
);
2737 omap_rtc_alarm_update(s
);
2740 case 0x2c: /* ALARM_DAYS_REG */
2742 printf("ALM DAY_REG <-- %02x\n", value
);
2744 s
->alarm_tm
.tm_mday
= from_bcd(value
);
2745 omap_rtc_alarm_update(s
);
2748 case 0x30: /* ALARM_MONTHS_REG */
2750 printf("ALM MON_REG <-- %02x\n", value
);
2752 s
->alarm_tm
.tm_mon
= from_bcd(value
);
2753 omap_rtc_alarm_update(s
);
2756 case 0x34: /* ALARM_YEARS_REG */
2758 printf("ALM YRS_REG <-- %02x\n", value
);
2760 s
->alarm_tm
.tm_year
= from_bcd(value
);
2761 omap_rtc_alarm_update(s
);
2764 case 0x40: /* RTC_CTRL_REG */
2766 printf("RTC CONTROL <-- %02x\n", value
);
2768 s
->pm_am
= (value
>> 3) & 1;
2769 s
->auto_comp
= (value
>> 2) & 1;
2770 s
->round
= (value
>> 1) & 1;
2771 s
->running
= value
& 1;
2773 s
->status
|= s
->running
<< 1;
2776 case 0x44: /* RTC_STATUS_REG */
2778 printf("RTC STATUSL <-- %02x\n", value
);
2780 s
->status
&= ~((value
& 0xc0) ^ 0x80);
2781 omap_rtc_interrupts_update(s
);
2784 case 0x48: /* RTC_INTERRUPTS_REG */
2786 printf("RTC INTRS <-- %02x\n", value
);
2788 s
->interrupts
= value
;
2791 case 0x4c: /* RTC_COMP_LSB_REG */
2793 printf("RTC COMPLSB <-- %02x\n", value
);
2795 s
->comp_reg
&= 0xff00;
2796 s
->comp_reg
|= 0x00ff & value
;
2799 case 0x50: /* RTC_COMP_MSB_REG */
2801 printf("RTC COMPMSB <-- %02x\n", value
);
2803 s
->comp_reg
&= 0x00ff;
2804 s
->comp_reg
|= 0xff00 & (value
<< 8);
2813 static const MemoryRegionOps omap_rtc_ops
= {
2814 .read
= omap_rtc_read
,
2815 .write
= omap_rtc_write
,
2816 .endianness
= DEVICE_NATIVE_ENDIAN
,
2819 static void omap_rtc_tick(void *opaque
)
2821 struct omap_rtc_s
*s
= opaque
;
2824 /* Round to nearest full minute. */
2825 if (s
->current_tm
.tm_sec
< 30)
2826 s
->ti
-= s
->current_tm
.tm_sec
;
2828 s
->ti
+= 60 - s
->current_tm
.tm_sec
;
2833 memcpy(&s
->current_tm
, localtime(&s
->ti
), sizeof(s
->current_tm
));
2835 if ((s
->interrupts
& 0x08) && s
->ti
== s
->alarm_ti
) {
2837 omap_rtc_interrupts_update(s
);
2840 if (s
->interrupts
& 0x04)
2841 switch (s
->interrupts
& 3) {
2844 qemu_irq_pulse(s
->irq
);
2847 if (s
->current_tm
.tm_sec
)
2850 qemu_irq_pulse(s
->irq
);
2853 if (s
->current_tm
.tm_sec
|| s
->current_tm
.tm_min
)
2856 qemu_irq_pulse(s
->irq
);
2859 if (s
->current_tm
.tm_sec
||
2860 s
->current_tm
.tm_min
|| s
->current_tm
.tm_hour
)
2863 qemu_irq_pulse(s
->irq
);
2873 * Every full hour add a rough approximation of the compensation
2874 * register to the 32kHz Timer (which drives the RTC) value.
2876 if (s
->auto_comp
&& !s
->current_tm
.tm_sec
&& !s
->current_tm
.tm_min
)
2877 s
->tick
+= s
->comp_reg
* 1000 / 32768;
2879 qemu_mod_timer(s
->clk
, s
->tick
);
2882 static void omap_rtc_reset(struct omap_rtc_s
*s
)
2892 s
->tick
= qemu_get_clock_ms(rtc_clock
);
2893 memset(&s
->alarm_tm
, 0, sizeof(s
->alarm_tm
));
2894 s
->alarm_tm
.tm_mday
= 0x01;
2896 qemu_get_timedate(&tm
, 0);
2897 s
->ti
= mktimegm(&tm
);
2899 omap_rtc_alarm_update(s
);
2903 static struct omap_rtc_s
*omap_rtc_init(MemoryRegion
*system_memory
,
2904 target_phys_addr_t base
,
2905 qemu_irq timerirq
, qemu_irq alarmirq
,
2908 struct omap_rtc_s
*s
= (struct omap_rtc_s
*)
2909 g_malloc0(sizeof(struct omap_rtc_s
));
2912 s
->alarm
= alarmirq
;
2913 s
->clk
= qemu_new_timer_ms(rtc_clock
, omap_rtc_tick
, s
);
2917 memory_region_init_io(&s
->iomem
, &omap_rtc_ops
, s
,
2919 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
2924 /* Multi-channel Buffered Serial Port interfaces */
2925 struct omap_mcbsp_s
{
2946 QEMUTimer
*source_timer
;
2947 QEMUTimer
*sink_timer
;
2950 static void omap_mcbsp_intr_update(struct omap_mcbsp_s
*s
)
2954 switch ((s
->spcr
[0] >> 4) & 3) { /* RINTM */
2956 irq
= (s
->spcr
[0] >> 1) & 1; /* RRDY */
2959 irq
= (s
->spcr
[0] >> 3) & 1; /* RSYNCERR */
2967 qemu_irq_pulse(s
->rxirq
);
2969 switch ((s
->spcr
[1] >> 4) & 3) { /* XINTM */
2971 irq
= (s
->spcr
[1] >> 1) & 1; /* XRDY */
2974 irq
= (s
->spcr
[1] >> 3) & 1; /* XSYNCERR */
2982 qemu_irq_pulse(s
->txirq
);
2985 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s
*s
)
2987 if ((s
->spcr
[0] >> 1) & 1) /* RRDY */
2988 s
->spcr
[0] |= 1 << 2; /* RFULL */
2989 s
->spcr
[0] |= 1 << 1; /* RRDY */
2990 qemu_irq_raise(s
->rxdrq
);
2991 omap_mcbsp_intr_update(s
);
2994 static void omap_mcbsp_source_tick(void *opaque
)
2996 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
2997 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3002 printf("%s: Rx FIFO overrun\n", __FUNCTION__
);
3004 s
->rx_req
= s
->rx_rate
<< bps
[(s
->rcr
[0] >> 5) & 7];
3006 omap_mcbsp_rx_newdata(s
);
3007 qemu_mod_timer(s
->source_timer
, qemu_get_clock_ns(vm_clock
) +
3008 get_ticks_per_sec());
3011 static void omap_mcbsp_rx_start(struct omap_mcbsp_s
*s
)
3013 if (!s
->codec
|| !s
->codec
->rts
)
3014 omap_mcbsp_source_tick(s
);
3015 else if (s
->codec
->in
.len
) {
3016 s
->rx_req
= s
->codec
->in
.len
;
3017 omap_mcbsp_rx_newdata(s
);
3021 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s
*s
)
3023 qemu_del_timer(s
->source_timer
);
3026 static void omap_mcbsp_rx_done(struct omap_mcbsp_s
*s
)
3028 s
->spcr
[0] &= ~(1 << 1); /* RRDY */
3029 qemu_irq_lower(s
->rxdrq
);
3030 omap_mcbsp_intr_update(s
);
3033 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s
*s
)
3035 s
->spcr
[1] |= 1 << 1; /* XRDY */
3036 qemu_irq_raise(s
->txdrq
);
3037 omap_mcbsp_intr_update(s
);
3040 static void omap_mcbsp_sink_tick(void *opaque
)
3042 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3043 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3048 printf("%s: Tx FIFO underrun\n", __FUNCTION__
);
3050 s
->tx_req
= s
->tx_rate
<< bps
[(s
->xcr
[0] >> 5) & 7];
3052 omap_mcbsp_tx_newdata(s
);
3053 qemu_mod_timer(s
->sink_timer
, qemu_get_clock_ns(vm_clock
) +
3054 get_ticks_per_sec());
3057 static void omap_mcbsp_tx_start(struct omap_mcbsp_s
*s
)
3059 if (!s
->codec
|| !s
->codec
->cts
)
3060 omap_mcbsp_sink_tick(s
);
3061 else if (s
->codec
->out
.size
) {
3062 s
->tx_req
= s
->codec
->out
.size
;
3063 omap_mcbsp_tx_newdata(s
);
3067 static void omap_mcbsp_tx_done(struct omap_mcbsp_s
*s
)
3069 s
->spcr
[1] &= ~(1 << 1); /* XRDY */
3070 qemu_irq_lower(s
->txdrq
);
3071 omap_mcbsp_intr_update(s
);
3072 if (s
->codec
&& s
->codec
->cts
)
3073 s
->codec
->tx_swallow(s
->codec
->opaque
);
3076 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s
*s
)
3079 omap_mcbsp_tx_done(s
);
3080 qemu_del_timer(s
->sink_timer
);
3083 static void omap_mcbsp_req_update(struct omap_mcbsp_s
*s
)
3085 int prev_rx_rate
, prev_tx_rate
;
3086 int rx_rate
= 0, tx_rate
= 0;
3087 int cpu_rate
= 1500000; /* XXX */
3089 /* TODO: check CLKSTP bit */
3090 if (s
->spcr
[1] & (1 << 6)) { /* GRST */
3091 if (s
->spcr
[0] & (1 << 0)) { /* RRST */
3092 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3093 (s
->pcr
& (1 << 8))) { /* CLKRM */
3094 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3095 rx_rate
= cpu_rate
/
3096 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3099 rx_rate
= s
->codec
->rx_rate
;
3102 if (s
->spcr
[1] & (1 << 0)) { /* XRST */
3103 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3104 (s
->pcr
& (1 << 9))) { /* CLKXM */
3105 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3106 tx_rate
= cpu_rate
/
3107 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3110 tx_rate
= s
->codec
->tx_rate
;
3113 prev_tx_rate
= s
->tx_rate
;
3114 prev_rx_rate
= s
->rx_rate
;
3115 s
->tx_rate
= tx_rate
;
3116 s
->rx_rate
= rx_rate
;
3119 s
->codec
->set_rate(s
->codec
->opaque
, rx_rate
, tx_rate
);
3121 if (!prev_tx_rate
&& tx_rate
)
3122 omap_mcbsp_tx_start(s
);
3123 else if (s
->tx_rate
&& !tx_rate
)
3124 omap_mcbsp_tx_stop(s
);
3126 if (!prev_rx_rate
&& rx_rate
)
3127 omap_mcbsp_rx_start(s
);
3128 else if (prev_tx_rate
&& !tx_rate
)
3129 omap_mcbsp_rx_stop(s
);
3132 static uint64_t omap_mcbsp_read(void *opaque
, target_phys_addr_t addr
,
3135 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3136 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3140 return omap_badwidth_read16(opaque
, addr
);
3144 case 0x00: /* DRR2 */
3145 if (((s
->rcr
[0] >> 5) & 7) < 3) /* RWDLEN1 */
3148 case 0x02: /* DRR1 */
3149 if (s
->rx_req
< 2) {
3150 printf("%s: Rx FIFO underrun\n", __FUNCTION__
);
3151 omap_mcbsp_rx_done(s
);
3154 if (s
->codec
&& s
->codec
->in
.len
>= 2) {
3155 ret
= s
->codec
->in
.fifo
[s
->codec
->in
.start
++] << 8;
3156 ret
|= s
->codec
->in
.fifo
[s
->codec
->in
.start
++];
3157 s
->codec
->in
.len
-= 2;
3161 omap_mcbsp_rx_done(s
);
3166 case 0x04: /* DXR2 */
3167 case 0x06: /* DXR1 */
3170 case 0x08: /* SPCR2 */
3172 case 0x0a: /* SPCR1 */
3174 case 0x0c: /* RCR2 */
3176 case 0x0e: /* RCR1 */
3178 case 0x10: /* XCR2 */
3180 case 0x12: /* XCR1 */
3182 case 0x14: /* SRGR2 */
3184 case 0x16: /* SRGR1 */
3186 case 0x18: /* MCR2 */
3188 case 0x1a: /* MCR1 */
3190 case 0x1c: /* RCERA */
3192 case 0x1e: /* RCERB */
3194 case 0x20: /* XCERA */
3196 case 0x22: /* XCERB */
3198 case 0x24: /* PCR0 */
3200 case 0x26: /* RCERC */
3202 case 0x28: /* RCERD */
3204 case 0x2a: /* XCERC */
3206 case 0x2c: /* XCERD */
3208 case 0x2e: /* RCERE */
3210 case 0x30: /* RCERF */
3212 case 0x32: /* XCERE */
3214 case 0x34: /* XCERF */
3216 case 0x36: /* RCERG */
3218 case 0x38: /* RCERH */
3220 case 0x3a: /* XCERG */
3222 case 0x3c: /* XCERH */
3230 static void omap_mcbsp_writeh(void *opaque
, target_phys_addr_t addr
,
3233 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3234 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3237 case 0x00: /* DRR2 */
3238 case 0x02: /* DRR1 */
3242 case 0x04: /* DXR2 */
3243 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
3246 case 0x06: /* DXR1 */
3247 if (s
->tx_req
> 1) {
3249 if (s
->codec
&& s
->codec
->cts
) {
3250 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 8) & 0xff;
3251 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 0) & 0xff;
3254 omap_mcbsp_tx_done(s
);
3256 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
3259 case 0x08: /* SPCR2 */
3260 s
->spcr
[1] &= 0x0002;
3261 s
->spcr
[1] |= 0x03f9 & value
;
3262 s
->spcr
[1] |= 0x0004 & (value
<< 2); /* XEMPTY := XRST */
3263 if (~value
& 1) /* XRST */
3265 omap_mcbsp_req_update(s
);
3267 case 0x0a: /* SPCR1 */
3268 s
->spcr
[0] &= 0x0006;
3269 s
->spcr
[0] |= 0xf8f9 & value
;
3270 if (value
& (1 << 15)) /* DLB */
3271 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__
);
3272 if (~value
& 1) { /* RRST */
3275 omap_mcbsp_rx_done(s
);
3277 omap_mcbsp_req_update(s
);
3280 case 0x0c: /* RCR2 */
3281 s
->rcr
[1] = value
& 0xffff;
3283 case 0x0e: /* RCR1 */
3284 s
->rcr
[0] = value
& 0x7fe0;
3286 case 0x10: /* XCR2 */
3287 s
->xcr
[1] = value
& 0xffff;
3289 case 0x12: /* XCR1 */
3290 s
->xcr
[0] = value
& 0x7fe0;
3292 case 0x14: /* SRGR2 */
3293 s
->srgr
[1] = value
& 0xffff;
3294 omap_mcbsp_req_update(s
);
3296 case 0x16: /* SRGR1 */
3297 s
->srgr
[0] = value
& 0xffff;
3298 omap_mcbsp_req_update(s
);
3300 case 0x18: /* MCR2 */
3301 s
->mcr
[1] = value
& 0x03e3;
3302 if (value
& 3) /* XMCM */
3303 printf("%s: Tx channel selection mode enable attempt\n",
3306 case 0x1a: /* MCR1 */
3307 s
->mcr
[0] = value
& 0x03e1;
3308 if (value
& 1) /* RMCM */
3309 printf("%s: Rx channel selection mode enable attempt\n",
3312 case 0x1c: /* RCERA */
3313 s
->rcer
[0] = value
& 0xffff;
3315 case 0x1e: /* RCERB */
3316 s
->rcer
[1] = value
& 0xffff;
3318 case 0x20: /* XCERA */
3319 s
->xcer
[0] = value
& 0xffff;
3321 case 0x22: /* XCERB */
3322 s
->xcer
[1] = value
& 0xffff;
3324 case 0x24: /* PCR0 */
3325 s
->pcr
= value
& 0x7faf;
3327 case 0x26: /* RCERC */
3328 s
->rcer
[2] = value
& 0xffff;
3330 case 0x28: /* RCERD */
3331 s
->rcer
[3] = value
& 0xffff;
3333 case 0x2a: /* XCERC */
3334 s
->xcer
[2] = value
& 0xffff;
3336 case 0x2c: /* XCERD */
3337 s
->xcer
[3] = value
& 0xffff;
3339 case 0x2e: /* RCERE */
3340 s
->rcer
[4] = value
& 0xffff;
3342 case 0x30: /* RCERF */
3343 s
->rcer
[5] = value
& 0xffff;
3345 case 0x32: /* XCERE */
3346 s
->xcer
[4] = value
& 0xffff;
3348 case 0x34: /* XCERF */
3349 s
->xcer
[5] = value
& 0xffff;
3351 case 0x36: /* RCERG */
3352 s
->rcer
[6] = value
& 0xffff;
3354 case 0x38: /* RCERH */
3355 s
->rcer
[7] = value
& 0xffff;
3357 case 0x3a: /* XCERG */
3358 s
->xcer
[6] = value
& 0xffff;
3360 case 0x3c: /* XCERH */
3361 s
->xcer
[7] = value
& 0xffff;
3368 static void omap_mcbsp_writew(void *opaque
, target_phys_addr_t addr
,
3371 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3372 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3374 if (offset
== 0x04) { /* DXR */
3375 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
3377 if (s
->tx_req
> 3) {
3379 if (s
->codec
&& s
->codec
->cts
) {
3380 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3381 (value
>> 24) & 0xff;
3382 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3383 (value
>> 16) & 0xff;
3384 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3385 (value
>> 8) & 0xff;
3386 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3387 (value
>> 0) & 0xff;
3390 omap_mcbsp_tx_done(s
);
3392 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
3396 omap_badwidth_write16(opaque
, addr
, value
);
3399 static void omap_mcbsp_write(void *opaque
, target_phys_addr_t addr
,
3400 uint64_t value
, unsigned size
)
3403 case 2: return omap_mcbsp_writeh(opaque
, addr
, value
);
3404 case 4: return omap_mcbsp_writew(opaque
, addr
, value
);
3405 default: return omap_badwidth_write16(opaque
, addr
, value
);
3409 static const MemoryRegionOps omap_mcbsp_ops
= {
3410 .read
= omap_mcbsp_read
,
3411 .write
= omap_mcbsp_write
,
3412 .endianness
= DEVICE_NATIVE_ENDIAN
,
3415 static void omap_mcbsp_reset(struct omap_mcbsp_s
*s
)
3417 memset(&s
->spcr
, 0, sizeof(s
->spcr
));
3418 memset(&s
->rcr
, 0, sizeof(s
->rcr
));
3419 memset(&s
->xcr
, 0, sizeof(s
->xcr
));
3420 s
->srgr
[0] = 0x0001;
3421 s
->srgr
[1] = 0x2000;
3422 memset(&s
->mcr
, 0, sizeof(s
->mcr
));
3423 memset(&s
->pcr
, 0, sizeof(s
->pcr
));
3424 memset(&s
->rcer
, 0, sizeof(s
->rcer
));
3425 memset(&s
->xcer
, 0, sizeof(s
->xcer
));
3430 qemu_del_timer(s
->source_timer
);
3431 qemu_del_timer(s
->sink_timer
);
3434 static struct omap_mcbsp_s
*omap_mcbsp_init(MemoryRegion
*system_memory
,
3435 target_phys_addr_t base
,
3436 qemu_irq txirq
, qemu_irq rxirq
,
3437 qemu_irq
*dma
, omap_clk clk
)
3439 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*)
3440 g_malloc0(sizeof(struct omap_mcbsp_s
));
3446 s
->sink_timer
= qemu_new_timer_ns(vm_clock
, omap_mcbsp_sink_tick
, s
);
3447 s
->source_timer
= qemu_new_timer_ns(vm_clock
, omap_mcbsp_source_tick
, s
);
3448 omap_mcbsp_reset(s
);
3450 memory_region_init_io(&s
->iomem
, &omap_mcbsp_ops
, s
, "omap-mcbsp", 0x800);
3451 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
3456 static void omap_mcbsp_i2s_swallow(void *opaque
, int line
, int level
)
3458 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3461 s
->rx_req
= s
->codec
->in
.len
;
3462 omap_mcbsp_rx_newdata(s
);
3466 static void omap_mcbsp_i2s_start(void *opaque
, int line
, int level
)
3468 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3471 s
->tx_req
= s
->codec
->out
.size
;
3472 omap_mcbsp_tx_newdata(s
);
3476 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s
*s
, I2SCodec
*slave
)
3479 slave
->rx_swallow
= qemu_allocate_irqs(omap_mcbsp_i2s_swallow
, s
, 1)[0];
3480 slave
->tx_start
= qemu_allocate_irqs(omap_mcbsp_i2s_start
, s
, 1)[0];
3483 /* LED Pulse Generators */
3496 static void omap_lpg_tick(void *opaque
)
3498 struct omap_lpg_s
*s
= opaque
;
3501 qemu_mod_timer(s
->tm
, qemu_get_clock_ms(vm_clock
) + s
->period
- s
->on
);
3503 qemu_mod_timer(s
->tm
, qemu_get_clock_ms(vm_clock
) + s
->on
);
3505 s
->cycle
= !s
->cycle
;
3506 printf("%s: LED is %s\n", __FUNCTION__
, s
->cycle
? "on" : "off");
3509 static void omap_lpg_update(struct omap_lpg_s
*s
)
3511 int64_t on
, period
= 1, ticks
= 1000;
3512 static const int per
[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3514 if (~s
->control
& (1 << 6)) /* LPGRES */
3516 else if (s
->control
& (1 << 7)) /* PERM_ON */
3519 period
= muldiv64(ticks
, per
[s
->control
& 7], /* PERCTRL */
3521 on
= (s
->clk
&& s
->power
) ? muldiv64(ticks
,
3522 per
[(s
->control
>> 3) & 7], 256) : 0; /* ONCTRL */
3525 qemu_del_timer(s
->tm
);
3526 if (on
== period
&& s
->on
< s
->period
)
3527 printf("%s: LED is on\n", __FUNCTION__
);
3528 else if (on
== 0 && s
->on
)
3529 printf("%s: LED is off\n", __FUNCTION__
);
3530 else if (on
&& (on
!= s
->on
|| period
!= s
->period
)) {
3542 static void omap_lpg_reset(struct omap_lpg_s
*s
)
3550 static uint64_t omap_lpg_read(void *opaque
, target_phys_addr_t addr
,
3553 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3554 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3557 return omap_badwidth_read8(opaque
, addr
);
3561 case 0x00: /* LCR */
3564 case 0x04: /* PMR */
3572 static void omap_lpg_write(void *opaque
, target_phys_addr_t addr
,
3573 uint64_t value
, unsigned size
)
3575 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3576 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3579 return omap_badwidth_write8(opaque
, addr
, value
);
3583 case 0x00: /* LCR */
3584 if (~value
& (1 << 6)) /* LPGRES */
3586 s
->control
= value
& 0xff;
3590 case 0x04: /* PMR */
3591 s
->power
= value
& 0x01;
3601 static const MemoryRegionOps omap_lpg_ops
= {
3602 .read
= omap_lpg_read
,
3603 .write
= omap_lpg_write
,
3604 .endianness
= DEVICE_NATIVE_ENDIAN
,
3607 static void omap_lpg_clk_update(void *opaque
, int line
, int on
)
3609 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3615 static struct omap_lpg_s
*omap_lpg_init(MemoryRegion
*system_memory
,
3616 target_phys_addr_t base
, omap_clk clk
)
3618 struct omap_lpg_s
*s
= (struct omap_lpg_s
*)
3619 g_malloc0(sizeof(struct omap_lpg_s
));
3621 s
->tm
= qemu_new_timer_ms(vm_clock
, omap_lpg_tick
, s
);
3625 memory_region_init_io(&s
->iomem
, &omap_lpg_ops
, s
, "omap-lpg", 0x800);
3626 memory_region_add_subregion(system_memory
, base
, &s
->iomem
);
3628 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_lpg_clk_update
, s
, 1)[0]);
3633 /* MPUI Peripheral Bridge configuration */
3634 static uint64_t omap_mpui_io_read(void *opaque
, target_phys_addr_t addr
,
3638 return omap_badwidth_read16(opaque
, addr
);
3641 if (addr
== OMAP_MPUI_BASE
) /* CMR */
3648 static void omap_mpui_io_write(void *opaque
, target_phys_addr_t addr
,
3649 uint64_t value
, unsigned size
)
3651 /* FIXME: infinite loop */
3652 omap_badwidth_write16(opaque
, addr
, value
);
3655 static const MemoryRegionOps omap_mpui_io_ops
= {
3656 .read
= omap_mpui_io_read
,
3657 .write
= omap_mpui_io_write
,
3658 .endianness
= DEVICE_NATIVE_ENDIAN
,
3661 static void omap_setup_mpui_io(MemoryRegion
*system_memory
,
3662 struct omap_mpu_state_s
*mpu
)
3664 memory_region_init_io(&mpu
->mpui_io_iomem
, &omap_mpui_io_ops
, mpu
,
3665 "omap-mpui-io", 0x7fff);
3666 memory_region_add_subregion(system_memory
, OMAP_MPUI_BASE
,
3667 &mpu
->mpui_io_iomem
);
3670 /* General chip reset */
3671 static void omap1_mpu_reset(void *opaque
)
3673 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
3675 omap_dma_reset(mpu
->dma
);
3676 omap_mpu_timer_reset(mpu
->timer
[0]);
3677 omap_mpu_timer_reset(mpu
->timer
[1]);
3678 omap_mpu_timer_reset(mpu
->timer
[2]);
3679 omap_wd_timer_reset(mpu
->wdt
);
3680 omap_os_timer_reset(mpu
->os_timer
);
3681 omap_lcdc_reset(mpu
->lcd
);
3682 omap_ulpd_pm_reset(mpu
);
3683 omap_pin_cfg_reset(mpu
);
3684 omap_mpui_reset(mpu
);
3685 omap_tipb_bridge_reset(mpu
->private_tipb
);
3686 omap_tipb_bridge_reset(mpu
->public_tipb
);
3687 omap_dpll_reset(mpu
->dpll
[0]);
3688 omap_dpll_reset(mpu
->dpll
[1]);
3689 omap_dpll_reset(mpu
->dpll
[2]);
3690 omap_uart_reset(mpu
->uart
[0]);
3691 omap_uart_reset(mpu
->uart
[1]);
3692 omap_uart_reset(mpu
->uart
[2]);
3693 omap_mmc_reset(mpu
->mmc
);
3694 omap_mpuio_reset(mpu
->mpuio
);
3695 omap_uwire_reset(mpu
->microwire
);
3696 omap_pwl_reset(mpu
->pwl
);
3697 omap_pwt_reset(mpu
->pwt
);
3698 omap_rtc_reset(mpu
->rtc
);
3699 omap_mcbsp_reset(mpu
->mcbsp1
);
3700 omap_mcbsp_reset(mpu
->mcbsp2
);
3701 omap_mcbsp_reset(mpu
->mcbsp3
);
3702 omap_lpg_reset(mpu
->led
[0]);
3703 omap_lpg_reset(mpu
->led
[1]);
3704 omap_clkm_reset(mpu
);
3705 cpu_reset(CPU(mpu
->cpu
));
3708 static const struct omap_map_s
{
3709 target_phys_addr_t phys_dsp
;
3710 target_phys_addr_t phys_mpu
;
3713 } omap15xx_dsp_mm
[] = {
3715 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3716 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3717 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3718 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3719 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3720 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3721 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3722 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3723 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3724 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3725 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3726 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3727 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3728 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3729 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3730 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3731 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3733 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3738 static void omap_setup_dsp_mapping(MemoryRegion
*system_memory
,
3739 const struct omap_map_s
*map
)
3743 for (; map
->phys_dsp
; map
++) {
3744 io
= g_new(MemoryRegion
, 1);
3745 memory_region_init_alias(io
, map
->name
,
3746 system_memory
, map
->phys_mpu
, map
->size
);
3747 memory_region_add_subregion(system_memory
, map
->phys_dsp
, io
);
3751 void omap_mpu_wakeup(void *opaque
, int irq
, int req
)
3753 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
3755 if (mpu
->cpu
->env
.halted
) {
3756 cpu_interrupt(&mpu
->cpu
->env
, CPU_INTERRUPT_EXITTB
);
3760 static const struct dma_irq_map omap1_dma_irq_map
[] = {
3761 { 0, OMAP_INT_DMA_CH0_6
},
3762 { 0, OMAP_INT_DMA_CH1_7
},
3763 { 0, OMAP_INT_DMA_CH2_8
},
3764 { 0, OMAP_INT_DMA_CH3
},
3765 { 0, OMAP_INT_DMA_CH4
},
3766 { 0, OMAP_INT_DMA_CH5
},
3767 { 1, OMAP_INT_1610_DMA_CH6
},
3768 { 1, OMAP_INT_1610_DMA_CH7
},
3769 { 1, OMAP_INT_1610_DMA_CH8
},
3770 { 1, OMAP_INT_1610_DMA_CH9
},
3771 { 1, OMAP_INT_1610_DMA_CH10
},
3772 { 1, OMAP_INT_1610_DMA_CH11
},
3773 { 1, OMAP_INT_1610_DMA_CH12
},
3774 { 1, OMAP_INT_1610_DMA_CH13
},
3775 { 1, OMAP_INT_1610_DMA_CH14
},
3776 { 1, OMAP_INT_1610_DMA_CH15
}
3779 /* DMA ports for OMAP1 */
3780 static int omap_validate_emiff_addr(struct omap_mpu_state_s
*s
,
3781 target_phys_addr_t addr
)
3783 return range_covers_byte(OMAP_EMIFF_BASE
, s
->sdram_size
, addr
);
3786 static int omap_validate_emifs_addr(struct omap_mpu_state_s
*s
,
3787 target_phys_addr_t addr
)
3789 return range_covers_byte(OMAP_EMIFS_BASE
, OMAP_EMIFF_BASE
- OMAP_EMIFS_BASE
,
3793 static int omap_validate_imif_addr(struct omap_mpu_state_s
*s
,
3794 target_phys_addr_t addr
)
3796 return range_covers_byte(OMAP_IMIF_BASE
, s
->sram_size
, addr
);
3799 static int omap_validate_tipb_addr(struct omap_mpu_state_s
*s
,
3800 target_phys_addr_t addr
)
3802 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr
);
3805 static int omap_validate_local_addr(struct omap_mpu_state_s
*s
,
3806 target_phys_addr_t addr
)
3808 return range_covers_byte(OMAP_LOCALBUS_BASE
, 0x1000000, addr
);
3811 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s
*s
,
3812 target_phys_addr_t addr
)
3814 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr
);
3817 struct omap_mpu_state_s
*omap310_mpu_init(MemoryRegion
*system_memory
,
3818 unsigned long sdram_size
,
3822 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*)
3823 g_malloc0(sizeof(struct omap_mpu_state_s
));
3825 qemu_irq dma_irqs
[6];
3827 SysBusDevice
*busdev
;
3833 s
->mpu_model
= omap310
;
3834 s
->cpu
= cpu_arm_init(core
);
3835 if (s
->cpu
== NULL
) {
3836 fprintf(stderr
, "Unable to find CPU definition\n");
3839 s
->sdram_size
= sdram_size
;
3840 s
->sram_size
= OMAP15XX_SRAM_SIZE
;
3842 s
->wakeup
= qemu_allocate_irqs(omap_mpu_wakeup
, s
, 1)[0];
3847 /* Memory-mapped stuff */
3848 memory_region_init_ram(&s
->emiff_ram
, "omap1.dram", s
->sdram_size
);
3849 vmstate_register_ram_global(&s
->emiff_ram
);
3850 memory_region_add_subregion(system_memory
, OMAP_EMIFF_BASE
, &s
->emiff_ram
);
3851 memory_region_init_ram(&s
->imif_ram
, "omap1.sram", s
->sram_size
);
3852 vmstate_register_ram_global(&s
->imif_ram
);
3853 memory_region_add_subregion(system_memory
, OMAP_IMIF_BASE
, &s
->imif_ram
);
3855 omap_clkm_init(system_memory
, 0xfffece00, 0xe1008000, s
);
3857 cpu_irq
= arm_pic_init_cpu(s
->cpu
);
3858 s
->ih
[0] = qdev_create(NULL
, "omap-intc");
3859 qdev_prop_set_uint32(s
->ih
[0], "size", 0x100);
3860 qdev_prop_set_ptr(s
->ih
[0], "clk", omap_findclk(s
, "arminth_ck"));
3861 qdev_init_nofail(s
->ih
[0]);
3862 busdev
= sysbus_from_qdev(s
->ih
[0]);
3863 sysbus_connect_irq(busdev
, 0, cpu_irq
[ARM_PIC_CPU_IRQ
]);
3864 sysbus_connect_irq(busdev
, 1, cpu_irq
[ARM_PIC_CPU_FIQ
]);
3865 sysbus_mmio_map(busdev
, 0, 0xfffecb00);
3866 s
->ih
[1] = qdev_create(NULL
, "omap-intc");
3867 qdev_prop_set_uint32(s
->ih
[1], "size", 0x800);
3868 qdev_prop_set_ptr(s
->ih
[1], "clk", omap_findclk(s
, "arminth_ck"));
3869 qdev_init_nofail(s
->ih
[1]);
3870 busdev
= sysbus_from_qdev(s
->ih
[1]);
3871 sysbus_connect_irq(busdev
, 0,
3872 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_15XX_IH2_IRQ
));
3873 /* The second interrupt controller's FIQ output is not wired up */
3874 sysbus_mmio_map(busdev
, 0, 0xfffe0000);
3876 for (i
= 0; i
< 6; i
++) {
3877 dma_irqs
[i
] = qdev_get_gpio_in(s
->ih
[omap1_dma_irq_map
[i
].ih
],
3878 omap1_dma_irq_map
[i
].intr
);
3880 s
->dma
= omap_dma_init(0xfffed800, dma_irqs
, system_memory
,
3881 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_DMA_LCD
),
3882 s
, omap_findclk(s
, "dma_ck"), omap_dma_3_1
);
3884 s
->port
[emiff
].addr_valid
= omap_validate_emiff_addr
;
3885 s
->port
[emifs
].addr_valid
= omap_validate_emifs_addr
;
3886 s
->port
[imif
].addr_valid
= omap_validate_imif_addr
;
3887 s
->port
[tipb
].addr_valid
= omap_validate_tipb_addr
;
3888 s
->port
[local
].addr_valid
= omap_validate_local_addr
;
3889 s
->port
[tipb_mpui
].addr_valid
= omap_validate_tipb_mpui_addr
;
3891 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3892 soc_dma_port_add_mem(s
->dma
, memory_region_get_ram_ptr(&s
->emiff_ram
),
3893 OMAP_EMIFF_BASE
, s
->sdram_size
);
3894 soc_dma_port_add_mem(s
->dma
, memory_region_get_ram_ptr(&s
->imif_ram
),
3895 OMAP_IMIF_BASE
, s
->sram_size
);
3897 s
->timer
[0] = omap_mpu_timer_init(system_memory
, 0xfffec500,
3898 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_TIMER1
),
3899 omap_findclk(s
, "mputim_ck"));
3900 s
->timer
[1] = omap_mpu_timer_init(system_memory
, 0xfffec600,
3901 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_TIMER2
),
3902 omap_findclk(s
, "mputim_ck"));
3903 s
->timer
[2] = omap_mpu_timer_init(system_memory
, 0xfffec700,
3904 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_TIMER3
),
3905 omap_findclk(s
, "mputim_ck"));
3907 s
->wdt
= omap_wd_timer_init(system_memory
, 0xfffec800,
3908 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_WD_TIMER
),
3909 omap_findclk(s
, "armwdt_ck"));
3911 s
->os_timer
= omap_os_timer_init(system_memory
, 0xfffb9000,
3912 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_OS_TIMER
),
3913 omap_findclk(s
, "clk32-kHz"));
3915 s
->lcd
= omap_lcdc_init(system_memory
, 0xfffec000,
3916 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_LCD_CTRL
),
3917 omap_dma_get_lcdch(s
->dma
),
3918 omap_findclk(s
, "lcd_ck"));
3920 omap_ulpd_pm_init(system_memory
, 0xfffe0800, s
);
3921 omap_pin_cfg_init(system_memory
, 0xfffe1000, s
);
3922 omap_id_init(system_memory
, s
);
3924 omap_mpui_init(system_memory
, 0xfffec900, s
);
3926 s
->private_tipb
= omap_tipb_bridge_init(system_memory
, 0xfffeca00,
3927 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_BRIDGE_PRIV
),
3928 omap_findclk(s
, "tipb_ck"));
3929 s
->public_tipb
= omap_tipb_bridge_init(system_memory
, 0xfffed300,
3930 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_BRIDGE_PUB
),
3931 omap_findclk(s
, "tipb_ck"));
3933 omap_tcmi_init(system_memory
, 0xfffecc00, s
);
3935 s
->uart
[0] = omap_uart_init(0xfffb0000,
3936 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_UART1
),
3937 omap_findclk(s
, "uart1_ck"),
3938 omap_findclk(s
, "uart1_ck"),
3939 s
->drq
[OMAP_DMA_UART1_TX
], s
->drq
[OMAP_DMA_UART1_RX
],
3942 s
->uart
[1] = omap_uart_init(0xfffb0800,
3943 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_UART2
),
3944 omap_findclk(s
, "uart2_ck"),
3945 omap_findclk(s
, "uart2_ck"),
3946 s
->drq
[OMAP_DMA_UART2_TX
], s
->drq
[OMAP_DMA_UART2_RX
],
3948 serial_hds
[0] ? serial_hds
[1] : NULL
);
3949 s
->uart
[2] = omap_uart_init(0xfffb9800,
3950 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_UART3
),
3951 omap_findclk(s
, "uart3_ck"),
3952 omap_findclk(s
, "uart3_ck"),
3953 s
->drq
[OMAP_DMA_UART3_TX
], s
->drq
[OMAP_DMA_UART3_RX
],
3955 serial_hds
[0] && serial_hds
[1] ? serial_hds
[2] : NULL
);
3957 s
->dpll
[0] = omap_dpll_init(system_memory
, 0xfffecf00,
3958 omap_findclk(s
, "dpll1"));
3959 s
->dpll
[1] = omap_dpll_init(system_memory
, 0xfffed000,
3960 omap_findclk(s
, "dpll2"));
3961 s
->dpll
[2] = omap_dpll_init(system_memory
, 0xfffed100,
3962 omap_findclk(s
, "dpll3"));
3964 dinfo
= drive_get(IF_SD
, 0, 0);
3966 fprintf(stderr
, "qemu: missing SecureDigital device\n");
3969 s
->mmc
= omap_mmc_init(0xfffb7800, system_memory
, dinfo
->bdrv
,
3970 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_OQN
),
3971 &s
->drq
[OMAP_DMA_MMC_TX
],
3972 omap_findclk(s
, "mmc_ck"));
3974 s
->mpuio
= omap_mpuio_init(system_memory
, 0xfffb5000,
3975 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_KEYBOARD
),
3976 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_MPUIO
),
3977 s
->wakeup
, omap_findclk(s
, "clk32-kHz"));
3979 s
->gpio
= qdev_create(NULL
, "omap-gpio");
3980 qdev_prop_set_int32(s
->gpio
, "mpu_model", s
->mpu_model
);
3981 qdev_prop_set_ptr(s
->gpio
, "clk", omap_findclk(s
, "arm_gpio_ck"));
3982 qdev_init_nofail(s
->gpio
);
3983 sysbus_connect_irq(sysbus_from_qdev(s
->gpio
), 0,
3984 qdev_get_gpio_in(s
->ih
[0], OMAP_INT_GPIO_BANK1
));
3985 sysbus_mmio_map(sysbus_from_qdev(s
->gpio
), 0, 0xfffce000);
3987 s
->microwire
= omap_uwire_init(system_memory
, 0xfffb3000,
3988 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_uWireTX
),
3989 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_uWireRX
),
3990 s
->drq
[OMAP_DMA_UWIRE_TX
], omap_findclk(s
, "mpuper_ck"));
3992 s
->pwl
= omap_pwl_init(system_memory
, 0xfffb5800,
3993 omap_findclk(s
, "armxor_ck"));
3994 s
->pwt
= omap_pwt_init(system_memory
, 0xfffb6000,
3995 omap_findclk(s
, "armxor_ck"));
3997 s
->i2c
[0] = qdev_create(NULL
, "omap_i2c");
3998 qdev_prop_set_uint8(s
->i2c
[0], "revision", 0x11);
3999 qdev_prop_set_ptr(s
->i2c
[0], "fclk", omap_findclk(s
, "mpuper_ck"));
4000 qdev_init_nofail(s
->i2c
[0]);
4001 busdev
= sysbus_from_qdev(s
->i2c
[0]);
4002 sysbus_connect_irq(busdev
, 0, qdev_get_gpio_in(s
->ih
[1], OMAP_INT_I2C
));
4003 sysbus_connect_irq(busdev
, 1, s
->drq
[OMAP_DMA_I2C_TX
]);
4004 sysbus_connect_irq(busdev
, 2, s
->drq
[OMAP_DMA_I2C_RX
]);
4005 sysbus_mmio_map(busdev
, 0, 0xfffb3800);
4007 s
->rtc
= omap_rtc_init(system_memory
, 0xfffb4800,
4008 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_RTC_TIMER
),
4009 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_RTC_ALARM
),
4010 omap_findclk(s
, "clk32-kHz"));
4012 s
->mcbsp1
= omap_mcbsp_init(system_memory
, 0xfffb1800,
4013 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_McBSP1TX
),
4014 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_McBSP1RX
),
4015 &s
->drq
[OMAP_DMA_MCBSP1_TX
], omap_findclk(s
, "dspxor_ck"));
4016 s
->mcbsp2
= omap_mcbsp_init(system_memory
, 0xfffb1000,
4017 qdev_get_gpio_in(s
->ih
[0],
4018 OMAP_INT_310_McBSP2_TX
),
4019 qdev_get_gpio_in(s
->ih
[0],
4020 OMAP_INT_310_McBSP2_RX
),
4021 &s
->drq
[OMAP_DMA_MCBSP2_TX
], omap_findclk(s
, "mpuper_ck"));
4022 s
->mcbsp3
= omap_mcbsp_init(system_memory
, 0xfffb7000,
4023 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_McBSP3TX
),
4024 qdev_get_gpio_in(s
->ih
[1], OMAP_INT_McBSP3RX
),
4025 &s
->drq
[OMAP_DMA_MCBSP3_TX
], omap_findclk(s
, "dspxor_ck"));
4027 s
->led
[0] = omap_lpg_init(system_memory
,
4028 0xfffbd000, omap_findclk(s
, "clk32-kHz"));
4029 s
->led
[1] = omap_lpg_init(system_memory
,
4030 0xfffbd800, omap_findclk(s
, "clk32-kHz"));
4032 /* Register mappings not currenlty implemented:
4033 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4034 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4035 * USB W2FC fffb4000 - fffb47ff
4036 * Camera Interface fffb6800 - fffb6fff
4037 * USB Host fffba000 - fffba7ff
4038 * FAC fffba800 - fffbafff
4039 * HDQ/1-Wire fffbc000 - fffbc7ff
4040 * TIPB switches fffbc800 - fffbcfff
4041 * Mailbox fffcf000 - fffcf7ff
4042 * Local bus IF fffec100 - fffec1ff
4043 * Local bus MMU fffec200 - fffec2ff
4044 * DSP MMU fffed200 - fffed2ff
4047 omap_setup_dsp_mapping(system_memory
, omap15xx_dsp_mm
);
4048 omap_setup_mpui_io(system_memory
, s
);
4050 qemu_register_reset(omap1_mpu_reset
, s
);