2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #define TARGET_LONG_BITS 32
24 #define ELF_MACHINE EM_ARM
26 #define CPUArchState struct CPUARMState
29 #include "qemu-common.h"
30 #include "exec/cpu-defs.h"
32 #include "fpu/softfloat.h"
34 #define TARGET_HAS_ICE 1
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
47 #define ARMV7M_EXCP_RESET 1
48 #define ARMV7M_EXCP_NMI 2
49 #define ARMV7M_EXCP_HARD 3
50 #define ARMV7M_EXCP_MEM 4
51 #define ARMV7M_EXCP_BUS 5
52 #define ARMV7M_EXCP_USAGE 6
53 #define ARMV7M_EXCP_SVC 11
54 #define ARMV7M_EXCP_DEBUG 12
55 #define ARMV7M_EXCP_PENDSV 14
56 #define ARMV7M_EXCP_SYSTICK 15
58 /* ARM-specific interrupt pending bits. */
59 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
62 typedef void ARMWriteCPFunc(void *opaque
, int cp_info
,
63 int srcreg
, int operand
, uint32_t value
);
64 typedef uint32_t ARMReadCPFunc(void *opaque
, int cp_info
,
65 int dstreg
, int operand
);
69 #define NB_MMU_MODES 2
71 /* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
79 typedef struct CPUARMState
{
80 /* Regs for current mode. */
82 /* Frequently accessed CPSR bits are stored separately for efficiency.
83 This contains all the other bits. Use cpsr_{read,write} to access
85 uint32_t uncached_cpsr
;
88 /* Banked registers. */
89 uint32_t banked_spsr
[6];
90 uint32_t banked_r13
[6];
91 uint32_t banked_r14
[6];
93 /* These hold r8-r12. */
97 /* cpsr flag cache for faster execution */
98 uint32_t CF
; /* 0 or 1 */
99 uint32_t VF
; /* V is the bit 31. All other bits are undefined */
100 uint32_t NF
; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF
; /* Z set if zero. */
102 uint32_t QF
; /* 0 or 1 */
103 uint32_t GE
; /* cpsr[19:16] */
104 uint32_t thumb
; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105 uint32_t condexec_bits
; /* IT bits. cpsr[15:10,26:25]. */
107 /* System control coprocessor (cp15) */
110 uint32_t c0_cssel
; /* Cache size selection. */
111 uint32_t c1_sys
; /* System control register. */
112 uint32_t c1_coproc
; /* Coprocessor access register. */
113 uint32_t c1_xscaleauxcr
; /* XScale auxiliary control register. */
114 uint32_t c1_scr
; /* secure config register. */
115 uint32_t c2_base0
; /* MMU translation table base 0. */
116 uint32_t c2_base0_hi
; /* MMU translation table base 0, high 32 bits */
117 uint32_t c2_base1
; /* MMU translation table base 0. */
118 uint32_t c2_base1_hi
; /* MMU translation table base 1, high 32 bits */
119 uint32_t c2_control
; /* MMU translation table base control. */
120 uint32_t c2_mask
; /* MMU translation table base selection mask. */
121 uint32_t c2_base_mask
; /* MMU translation table base 0 mask. */
122 uint32_t c2_data
; /* MPU data cachable bits. */
123 uint32_t c2_insn
; /* MPU instruction cachable bits. */
124 uint32_t c3
; /* MMU domain access control register
125 MPU write buffer control. */
126 uint32_t c5_insn
; /* Fault status registers. */
128 uint32_t c6_region
[8]; /* MPU base/size registers. */
129 uint32_t c6_insn
; /* Fault address registers. */
131 uint32_t c7_par
; /* Translation result. */
132 uint32_t c7_par_hi
; /* Translation result, high 32 bits */
133 uint32_t c9_insn
; /* Cache lockdown registers. */
135 uint32_t c9_pmcr
; /* performance monitor control register */
136 uint32_t c9_pmcnten
; /* perf monitor counter enables */
137 uint32_t c9_pmovsr
; /* perf monitor overflow status */
138 uint32_t c9_pmxevtyper
; /* perf monitor event type */
139 uint32_t c9_pmuserenr
; /* perf monitor user enable */
140 uint32_t c9_pminten
; /* perf monitor interrupt enables */
141 uint32_t c13_fcse
; /* FCSE PID. */
142 uint32_t c13_context
; /* Context ID. */
143 uint32_t c13_tls1
; /* User RW Thread register. */
144 uint32_t c13_tls2
; /* User RO Thread register. */
145 uint32_t c13_tls3
; /* Privileged Thread register. */
146 uint32_t c15_cpar
; /* XScale Coprocessor Access Register */
147 uint32_t c15_ticonfig
; /* TI925T configuration byte. */
148 uint32_t c15_i_max
; /* Maximum D-cache dirty line index. */
149 uint32_t c15_i_min
; /* Minimum D-cache dirty line index. */
150 uint32_t c15_threadid
; /* TI debugger thread-ID. */
151 uint32_t c15_config_base_address
; /* SCU base address. */
152 uint32_t c15_diagnostic
; /* diagnostic register */
153 uint32_t c15_power_diagnostic
;
154 uint32_t c15_power_control
; /* power control */
164 int pending_exception
;
167 /* Thumb-2 EE state. */
171 /* VFP coprocessor state. */
176 /* We store these fpcsr fields separately for convenience. */
180 /* scratch space when Tn are not sufficient. */
183 /* fp_status is the "normal" fp status. standard_fp_status retains
184 * values corresponding to the ARM "Standard FPSCR Value", ie
185 * default-NaN, flush-to-zero, round-to-nearest and is used by
186 * any operations (generally Neon) which the architecture defines
187 * as controlled by the standard FPSCR value rather than the FPSCR.
189 * To avoid having to transfer exception bits around, we simply
190 * say that the FPSCR cumulative exception flags are the logical
191 * OR of the flags in the two fp statuses. This relies on the
192 * only thing which needs to read the exception flags being
193 * an explicit FPSCR read.
195 float_status fp_status
;
196 float_status standard_fp_status
;
198 uint32_t exclusive_addr
;
199 uint32_t exclusive_val
;
200 uint32_t exclusive_high
;
201 #if defined(CONFIG_USER_ONLY)
202 uint32_t exclusive_test
;
203 uint32_t exclusive_info
;
206 /* iwMMXt coprocessor state. */
214 /* For mixed endian mode. */
217 #if defined(CONFIG_USER_ONLY)
218 /* For usermode syscall translation. */
224 /* These fields after the common ones so they are preserved on reset. */
226 /* Internal CPU feature flags. */
230 const struct arm_boot_info
*boot_info
;
235 ARMCPU
*cpu_arm_init(const char *cpu_model
);
236 void arm_translate_init(void);
237 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
);
238 int cpu_arm_exec(CPUARMState
*s
);
239 int bank_number(int mode
);
240 void switch_mode(CPUARMState
*, int);
241 uint32_t do_arm_semihosting(CPUARMState
*env
);
243 /* you can call this signal handler from your SIGBUS and SIGSEGV
244 signal handlers to inform the virtual CPU of exceptions. non zero
245 is returned if the signal was handled by the virtual CPU. */
246 int cpu_arm_signal_handler(int host_signum
, void *pinfo
,
248 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
250 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
252 static inline void cpu_set_tls(CPUARMState
*env
, target_ulong newtls
)
254 env
->cp15
.c13_tls2
= newtls
;
257 #define CPSR_M (0x1f)
258 #define CPSR_T (1 << 5)
259 #define CPSR_F (1 << 6)
260 #define CPSR_I (1 << 7)
261 #define CPSR_A (1 << 8)
262 #define CPSR_E (1 << 9)
263 #define CPSR_IT_2_7 (0xfc00)
264 #define CPSR_GE (0xf << 16)
265 #define CPSR_RESERVED (0xf << 20)
266 #define CPSR_J (1 << 24)
267 #define CPSR_IT_0_1 (3 << 25)
268 #define CPSR_Q (1 << 27)
269 #define CPSR_V (1 << 28)
270 #define CPSR_C (1 << 29)
271 #define CPSR_Z (1 << 30)
272 #define CPSR_N (1 << 31)
273 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
275 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
276 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
277 /* Bits writable in user mode. */
278 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
279 /* Execution state bits. MRS read as zero, MSR writes ignored. */
280 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
282 /* Return the current CPSR value. */
283 uint32_t cpsr_read(CPUARMState
*env
);
284 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
285 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
);
287 /* Return the current xPSR value. */
288 static inline uint32_t xpsr_read(CPUARMState
*env
)
292 return (env
->NF
& 0x80000000) | (ZF
<< 30)
293 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
294 | (env
->thumb
<< 24) | ((env
->condexec_bits
& 3) << 25)
295 | ((env
->condexec_bits
& 0xfc) << 8)
296 | env
->v7m
.exception
;
299 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
300 static inline void xpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
302 if (mask
& CPSR_NZCV
) {
303 env
->ZF
= (~val
) & CPSR_Z
;
305 env
->CF
= (val
>> 29) & 1;
306 env
->VF
= (val
<< 3) & 0x80000000;
309 env
->QF
= ((val
& CPSR_Q
) != 0);
310 if (mask
& (1 << 24))
311 env
->thumb
= ((val
& (1 << 24)) != 0);
312 if (mask
& CPSR_IT_0_1
) {
313 env
->condexec_bits
&= ~3;
314 env
->condexec_bits
|= (val
>> 25) & 3;
316 if (mask
& CPSR_IT_2_7
) {
317 env
->condexec_bits
&= 3;
318 env
->condexec_bits
|= (val
>> 8) & 0xfc;
321 env
->v7m
.exception
= val
& 0x1ff;
325 /* Return the current FPSCR value. */
326 uint32_t vfp_get_fpscr(CPUARMState
*env
);
327 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
);
330 ARM_CPU_MODE_USR
= 0x10,
331 ARM_CPU_MODE_FIQ
= 0x11,
332 ARM_CPU_MODE_IRQ
= 0x12,
333 ARM_CPU_MODE_SVC
= 0x13,
334 ARM_CPU_MODE_ABT
= 0x17,
335 ARM_CPU_MODE_UND
= 0x1b,
336 ARM_CPU_MODE_SYS
= 0x1f
339 /* VFP system registers. */
340 #define ARM_VFP_FPSID 0
341 #define ARM_VFP_FPSCR 1
342 #define ARM_VFP_MVFR1 6
343 #define ARM_VFP_MVFR0 7
344 #define ARM_VFP_FPEXC 8
345 #define ARM_VFP_FPINST 9
346 #define ARM_VFP_FPINST2 10
348 /* iwMMXt coprocessor control registers. */
349 #define ARM_IWMMXT_wCID 0
350 #define ARM_IWMMXT_wCon 1
351 #define ARM_IWMMXT_wCSSF 2
352 #define ARM_IWMMXT_wCASF 3
353 #define ARM_IWMMXT_wCGR0 8
354 #define ARM_IWMMXT_wCGR1 9
355 #define ARM_IWMMXT_wCGR2 10
356 #define ARM_IWMMXT_wCGR3 11
358 /* If adding a feature bit which corresponds to a Linux ELF
359 * HWCAP bit, remember to update the feature-bit-to-hwcap
360 * mapping in linux-user/elfload.c:get_elf_hwcap().
364 ARM_FEATURE_AUXCR
, /* ARM1026 Auxiliary control register. */
365 ARM_FEATURE_XSCALE
, /* Intel XScale extensions. */
366 ARM_FEATURE_IWMMXT
, /* Intel iwMMXt extension. */
371 ARM_FEATURE_MPU
, /* Only has Memory Protection Unit, not full MMU. */
373 ARM_FEATURE_VFP_FP16
,
375 ARM_FEATURE_THUMB_DIV
, /* divide supported in Thumb encoding */
376 ARM_FEATURE_M
, /* Microcontroller profile. */
377 ARM_FEATURE_OMAPCP
, /* OMAP specific CP15 ops handling. */
378 ARM_FEATURE_THUMB2EE
,
379 ARM_FEATURE_V7MP
, /* v7 Multiprocessing Extensions */
382 ARM_FEATURE_STRONGARM
,
383 ARM_FEATURE_VAPA
, /* cp15 VA to PA lookups */
384 ARM_FEATURE_ARM_DIV
, /* divide supported in ARM encoding */
385 ARM_FEATURE_VFP4
, /* VFPv4 (implies that NEON is v2) */
386 ARM_FEATURE_GENERIC_TIMER
,
387 ARM_FEATURE_MVFR
, /* Media and VFP Feature Registers 0 and 1 */
388 ARM_FEATURE_DUMMY_C15_REGS
, /* RAZ/WI all of cp15 crn=15 */
389 ARM_FEATURE_CACHE_TEST_CLEAN
, /* 926/1026 style test-and-clean ops */
390 ARM_FEATURE_CACHE_DIRTY_REG
, /* 1136/1176 cache dirty status register */
391 ARM_FEATURE_CACHE_BLOCK_OPS
, /* v6 optional cache block operations */
392 ARM_FEATURE_MPIDR
, /* has cp15 MPIDR */
393 ARM_FEATURE_PXN
, /* has Privileged Execute Never bit */
394 ARM_FEATURE_LPAE
, /* has Large Physical Address Extension */
397 static inline int arm_feature(CPUARMState
*env
, int feature
)
399 return (env
->features
& (1ULL << feature
)) != 0;
402 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
404 /* Interface between CPU and Interrupt controller. */
405 void armv7m_nvic_set_pending(void *opaque
, int irq
);
406 int armv7m_nvic_acknowledge_irq(void *opaque
);
407 void armv7m_nvic_complete_irq(void *opaque
, int irq
);
409 /* Interface for defining coprocessor registers.
410 * Registers are defined in tables of arm_cp_reginfo structs
411 * which are passed to define_arm_cp_regs().
414 /* When looking up a coprocessor register we look for it
415 * via an integer which encodes all of:
417 * Crn, Crm, opc1, opc2 fields
418 * 32 or 64 bit register (ie is it accessed via MRC/MCR
420 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
421 * (In this case crn and opc2 should be zero.)
423 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
424 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
425 ((crm) << 7) | ((opc1) << 3) | (opc2))
427 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
428 * special-behaviour cp reg and bits [15..8] indicate what behaviour
429 * it has. Otherwise it is a simple cp reg, where CONST indicates that
430 * TCG can assume the value to be constant (ie load at translate time)
431 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
432 * indicates that the TB should not be ended after a write to this register
433 * (the default is that the TB ends after cp writes). OVERRIDE permits
434 * a register definition to override a previous definition for the
435 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
436 * old must have the OVERRIDE bit set.
438 #define ARM_CP_SPECIAL 1
439 #define ARM_CP_CONST 2
440 #define ARM_CP_64BIT 4
441 #define ARM_CP_SUPPRESS_TB_END 8
442 #define ARM_CP_OVERRIDE 16
443 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
444 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
445 #define ARM_LAST_SPECIAL ARM_CP_WFI
446 /* Used only as a terminator for ARMCPRegInfo lists */
447 #define ARM_CP_SENTINEL 0xffff
448 /* Mask of only the flag bits in a type field */
449 #define ARM_CP_FLAG_MASK 0x1f
451 /* Return true if cptype is a valid type field. This is used to try to
452 * catch errors where the sentinel has been accidentally left off the end
453 * of a list of registers.
455 static inline bool cptype_valid(int cptype
)
457 return ((cptype
& ~ARM_CP_FLAG_MASK
) == 0)
458 || ((cptype
& ARM_CP_SPECIAL
) &&
459 (cptype
<= ARM_LAST_SPECIAL
));
463 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
464 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
465 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
466 * (ie any of the privileged modes in Secure state, or Monitor mode).
467 * If a register is accessible in one privilege level it's always accessible
468 * in higher privilege levels too. Since "Secure PL1" also follows this rule
469 * (ie anything visible in PL2 is visible in S-PL1, some things are only
470 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
471 * terminology a little and call this PL3.
473 * If access permissions for a register are more complex than can be
474 * described with these bits, then use a laxer set of restrictions, and
475 * do the more restrictive/complex check inside a helper function.
479 #define PL2_R (0x20 | PL3_R)
480 #define PL2_W (0x10 | PL3_W)
481 #define PL1_R (0x08 | PL2_R)
482 #define PL1_W (0x04 | PL2_W)
483 #define PL0_R (0x02 | PL1_R)
484 #define PL0_W (0x01 | PL1_W)
486 #define PL3_RW (PL3_R | PL3_W)
487 #define PL2_RW (PL2_R | PL2_W)
488 #define PL1_RW (PL1_R | PL1_W)
489 #define PL0_RW (PL0_R | PL0_W)
491 static inline int arm_current_pl(CPUARMState
*env
)
493 if ((env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_USR
) {
496 /* We don't currently implement the Virtualization or TrustZone
497 * extensions, so PL2 and PL3 don't exist for us.
502 typedef struct ARMCPRegInfo ARMCPRegInfo
;
504 /* Access functions for coprocessor registers. These should return
505 * 0 on success, or one of the EXCP_* constants if access should cause
506 * an exception (in which case *value is not written).
508 typedef int CPReadFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
510 typedef int CPWriteFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
512 /* Hook function for register reset */
513 typedef void CPResetFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
517 /* Definition of an ARM coprocessor register */
518 struct ARMCPRegInfo
{
519 /* Name of register (useful mainly for debugging, need not be unique) */
521 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
522 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
523 * 'wildcard' field -- any value of that field in the MRC/MCR insn
524 * will be decoded to this register. The register read and write
525 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
526 * used by the program, so it is possible to register a wildcard and
527 * then behave differently on read/write if necessary.
528 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
536 /* Register type: ARM_CP_* bits/values */
538 /* Access rights: PL*_[RW] */
540 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
541 * this register was defined: can be used to hand data through to the
542 * register read/write functions, since they are passed the ARMCPRegInfo*.
545 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
546 * fieldoffset is non-zero, the reset value of the register.
549 /* Offset of the field in CPUARMState for this register. This is not
551 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
552 * 2. both readfn and writefn are specified
554 ptrdiff_t fieldoffset
; /* offsetof(CPUARMState, field) */
555 /* Function for handling reads of this register. If NULL, then reads
556 * will be done by loading from the offset into CPUARMState specified
560 /* Function for handling writes of this register. If NULL, then writes
561 * will be done by writing to the offset into CPUARMState specified
565 /* Function for resetting the register. If NULL, then reset will be done
566 * by writing resetvalue to the field specified in fieldoffset. If
567 * fieldoffset is 0 then no reset will be done.
572 /* Macros which are lvalues for the field in CPUARMState for the
575 #define CPREG_FIELD32(env, ri) \
576 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
577 #define CPREG_FIELD64(env, ri) \
578 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
580 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
582 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
583 const ARMCPRegInfo
*regs
, void *opaque
);
584 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
585 const ARMCPRegInfo
*regs
, void *opaque
);
586 static inline void define_arm_cp_regs(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
588 define_arm_cp_regs_with_opaque(cpu
, regs
, 0);
590 static inline void define_one_arm_cp_reg(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
592 define_one_arm_cp_reg_with_opaque(cpu
, regs
, 0);
594 const ARMCPRegInfo
*get_arm_cp_reginfo(ARMCPU
*cpu
, uint32_t encoded_cp
);
596 /* CPWriteFn that can be used to implement writes-ignored behaviour */
597 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
599 /* CPReadFn that can be used for read-as-zero behaviour */
600 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
);
602 static inline bool cp_access_ok(CPUARMState
*env
,
603 const ARMCPRegInfo
*ri
, int isread
)
605 return (ri
->access
>> ((arm_current_pl(env
) * 2) + isread
)) & 1;
608 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
609 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
610 conventional cores (ie. Application or Realtime profile). */
612 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
614 #define ARM_CPUID_TI915T 0x54029152
615 #define ARM_CPUID_TI925T 0x54029252
617 #if defined(CONFIG_USER_ONLY)
618 #define TARGET_PAGE_BITS 12
620 /* The ARM MMU allows 1k pages. */
621 /* ??? Linux doesn't actually use these, and they're deprecated in recent
622 architecture revisions. Maybe a configure option to disable them. */
623 #define TARGET_PAGE_BITS 10
626 #define TARGET_PHYS_ADDR_SPACE_BITS 40
627 #define TARGET_VIRT_ADDR_SPACE_BITS 32
629 static inline CPUARMState
*cpu_init(const char *cpu_model
)
631 ARMCPU
*cpu
= cpu_arm_init(cpu_model
);
638 #define cpu_exec cpu_arm_exec
639 #define cpu_gen_code cpu_arm_gen_code
640 #define cpu_signal_handler cpu_arm_signal_handler
641 #define cpu_list arm_cpu_list
643 #define CPU_SAVE_VERSION 9
645 /* MMU modes definitions */
646 #define MMU_MODE0_SUFFIX _kernel
647 #define MMU_MODE1_SUFFIX _user
648 #define MMU_USER_IDX 1
649 static inline int cpu_mmu_index (CPUARMState
*env
)
651 return (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
? 1 : 0;
654 #if defined(CONFIG_USER_ONLY)
655 static inline void cpu_clone_regs(CPUARMState
*env
, target_ulong newsp
)
658 env
->regs
[13] = newsp
;
663 #include "exec/cpu-all.h"
665 /* Bit usage in the TB flags field: */
666 #define ARM_TBFLAG_THUMB_SHIFT 0
667 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
668 #define ARM_TBFLAG_VECLEN_SHIFT 1
669 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
670 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
671 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
672 #define ARM_TBFLAG_PRIV_SHIFT 6
673 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
674 #define ARM_TBFLAG_VFPEN_SHIFT 7
675 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
676 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
677 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
678 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
679 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
680 /* Bits 31..17 are currently unused. */
682 /* some convenience accessor macros */
683 #define ARM_TBFLAG_THUMB(F) \
684 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
685 #define ARM_TBFLAG_VECLEN(F) \
686 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
687 #define ARM_TBFLAG_VECSTRIDE(F) \
688 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
689 #define ARM_TBFLAG_PRIV(F) \
690 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
691 #define ARM_TBFLAG_VFPEN(F) \
692 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
693 #define ARM_TBFLAG_CONDEXEC(F) \
694 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
695 #define ARM_TBFLAG_BSWAP_CODE(F) \
696 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
698 static inline void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
699 target_ulong
*cs_base
, int *flags
)
704 *flags
= (env
->thumb
<< ARM_TBFLAG_THUMB_SHIFT
)
705 | (env
->vfp
.vec_len
<< ARM_TBFLAG_VECLEN_SHIFT
)
706 | (env
->vfp
.vec_stride
<< ARM_TBFLAG_VECSTRIDE_SHIFT
)
707 | (env
->condexec_bits
<< ARM_TBFLAG_CONDEXEC_SHIFT
)
708 | (env
->bswap_code
<< ARM_TBFLAG_BSWAP_CODE_SHIFT
);
709 if (arm_feature(env
, ARM_FEATURE_M
)) {
710 privmode
= !((env
->v7m
.exception
== 0) && (env
->v7m
.control
& 1));
712 privmode
= (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
;
715 *flags
|= ARM_TBFLAG_PRIV_MASK
;
717 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)) {
718 *flags
|= ARM_TBFLAG_VFPEN_MASK
;
722 static inline bool cpu_has_work(CPUState
*cpu
)
724 return cpu
->interrupt_request
&
725 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
| CPU_INTERRUPT_EXITTB
);
728 #include "exec/exec-all.h"
730 static inline void cpu_pc_from_tb(CPUARMState
*env
, TranslationBlock
*tb
)
732 env
->regs
[15] = tb
->pc
;
735 /* Load an instruction and return it in the standard little-endian order */
736 static inline uint32_t arm_ldl_code(CPUARMState
*env
, uint32_t addr
,
739 uint32_t insn
= cpu_ldl_code(env
, addr
);
741 return bswap32(insn
);
746 /* Ditto, for a halfword (Thumb) instruction */
747 static inline uint16_t arm_lduw_code(CPUARMState
*env
, uint32_t addr
,
750 uint16_t insn
= cpu_lduw_code(env
, addr
);
752 return bswap16(insn
);