pci: add standard bridge device
[qemu/agraf.git] / softmmu_header.h
blob818d7b662efca9abd4ba2b8346c2a5c3ebe494fe
1 /*
2 * Software MMU support
4 * Generate inline load/store functions for one MMU mode and data
5 * size.
7 * Generate a store function as well as signed and unsigned loads. For
8 * 32 and 64 bit cases, also generate floating point functions with
9 * the same size.
11 * Not used directly but included from softmmu_exec.h and exec-all.h.
13 * Copyright (c) 2003 Fabrice Bellard
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #if DATA_SIZE == 8
29 #define SUFFIX q
30 #define USUFFIX q
31 #define DATA_TYPE uint64_t
32 #elif DATA_SIZE == 4
33 #define SUFFIX l
34 #define USUFFIX l
35 #define DATA_TYPE uint32_t
36 #elif DATA_SIZE == 2
37 #define SUFFIX w
38 #define USUFFIX uw
39 #define DATA_TYPE uint16_t
40 #define DATA_STYPE int16_t
41 #elif DATA_SIZE == 1
42 #define SUFFIX b
43 #define USUFFIX ub
44 #define DATA_TYPE uint8_t
45 #define DATA_STYPE int8_t
46 #else
47 #error unsupported data size
48 #endif
50 #if ACCESS_TYPE < (NB_MMU_MODES)
52 #define CPU_MMU_INDEX ACCESS_TYPE
53 #define MMUSUFFIX _mmu
55 #elif ACCESS_TYPE == (NB_MMU_MODES)
57 #define CPU_MMU_INDEX (cpu_mmu_index(env))
58 #define MMUSUFFIX _mmu
60 #elif ACCESS_TYPE == (NB_MMU_MODES + 1)
62 #define CPU_MMU_INDEX (cpu_mmu_index(env))
63 #define MMUSUFFIX _cmmu
65 #else
66 #error invalid ACCESS_TYPE
67 #endif
69 #if DATA_SIZE == 8
70 #define RES_TYPE uint64_t
71 #else
72 #define RES_TYPE uint32_t
73 #endif
75 #if ACCESS_TYPE == (NB_MMU_MODES + 1)
76 #define ADDR_READ addr_code
77 #else
78 #define ADDR_READ addr_read
79 #endif
81 /* generic load/store macros */
83 static inline RES_TYPE glue(glue(ld, USUFFIX), MEMSUFFIX)(target_ulong ptr)
85 int page_index;
86 RES_TYPE res;
87 target_ulong addr;
88 unsigned long physaddr;
89 int mmu_idx;
91 addr = ptr;
92 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
93 mmu_idx = CPU_MMU_INDEX;
94 if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ !=
95 (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
96 res = glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx);
97 } else {
98 physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
99 res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)physaddr);
101 return res;
104 #if DATA_SIZE <= 2
105 static inline int glue(glue(lds, SUFFIX), MEMSUFFIX)(target_ulong ptr)
107 int res, page_index;
108 target_ulong addr;
109 unsigned long physaddr;
110 int mmu_idx;
112 addr = ptr;
113 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
114 mmu_idx = CPU_MMU_INDEX;
115 if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ !=
116 (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
117 res = (DATA_STYPE)glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx);
118 } else {
119 physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
120 res = glue(glue(lds, SUFFIX), _raw)((uint8_t *)physaddr);
122 return res;
124 #endif
126 #if ACCESS_TYPE != (NB_MMU_MODES + 1)
128 /* generic store macro */
130 static inline void glue(glue(st, SUFFIX), MEMSUFFIX)(target_ulong ptr, RES_TYPE v)
132 int page_index;
133 target_ulong addr;
134 unsigned long physaddr;
135 int mmu_idx;
137 addr = ptr;
138 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
139 mmu_idx = CPU_MMU_INDEX;
140 if (unlikely(env->tlb_table[mmu_idx][page_index].addr_write !=
141 (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
142 glue(glue(__st, SUFFIX), MMUSUFFIX)(addr, v, mmu_idx);
143 } else {
144 physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
145 glue(glue(st, SUFFIX), _raw)((uint8_t *)physaddr, v);
149 #endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
151 #if ACCESS_TYPE != (NB_MMU_MODES + 1)
153 #if DATA_SIZE == 8
154 static inline float64 glue(ldfq, MEMSUFFIX)(target_ulong ptr)
156 union {
157 float64 d;
158 uint64_t i;
159 } u;
160 u.i = glue(ldq, MEMSUFFIX)(ptr);
161 return u.d;
164 static inline void glue(stfq, MEMSUFFIX)(target_ulong ptr, float64 v)
166 union {
167 float64 d;
168 uint64_t i;
169 } u;
170 u.d = v;
171 glue(stq, MEMSUFFIX)(ptr, u.i);
173 #endif /* DATA_SIZE == 8 */
175 #if DATA_SIZE == 4
176 static inline float32 glue(ldfl, MEMSUFFIX)(target_ulong ptr)
178 union {
179 float32 f;
180 uint32_t i;
181 } u;
182 u.i = glue(ldl, MEMSUFFIX)(ptr);
183 return u.f;
186 static inline void glue(stfl, MEMSUFFIX)(target_ulong ptr, float32 v)
188 union {
189 float32 f;
190 uint32_t i;
191 } u;
192 u.f = v;
193 glue(stl, MEMSUFFIX)(ptr, u.i);
195 #endif /* DATA_SIZE == 4 */
197 #endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
199 #undef RES_TYPE
200 #undef DATA_TYPE
201 #undef DATA_STYPE
202 #undef SUFFIX
203 #undef USUFFIX
204 #undef DATA_SIZE
205 #undef CPU_MMU_INDEX
206 #undef MMUSUFFIX
207 #undef ADDR_READ