2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-timer.h"
22 #ifdef CADENCE_TTC_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
31 #define COUNTER_INTR_IV 0x00000001
32 #define COUNTER_INTR_M1 0x00000002
33 #define COUNTER_INTR_M2 0x00000004
34 #define COUNTER_INTR_M3 0x00000008
35 #define COUNTER_INTR_OV 0x00000010
36 #define COUNTER_INTR_EV 0x00000020
38 #define COUNTER_CTRL_DIS 0x00000001
39 #define COUNTER_CTRL_INT 0x00000002
40 #define COUNTER_CTRL_DEC 0x00000004
41 #define COUNTER_CTRL_MATCH 0x00000008
42 #define COUNTER_CTRL_RST 0x00000010
44 #define CLOCK_CTRL_PS_EN 0x00000001
45 #define CLOCK_CTRL_PS_V 0x0000001e
54 uint16_t reg_interval
;
55 uint16_t reg_match
[3];
58 uint32_t reg_event_ctrl
;
62 unsigned int cpu_time_valid
;
70 CadenceTimerState timer
[3];
73 static void cadence_timer_update(CadenceTimerState
*s
)
75 qemu_set_irq(s
->irq
, !!(s
->reg_intr
& s
->reg_intr_en
));
78 static CadenceTimerState
*cadence_timer_from_addr(void *opaque
,
79 target_phys_addr_t offset
)
82 CadenceTTCState
*s
= (CadenceTTCState
*)opaque
;
84 index
= (offset
>> 2) % 3;
86 return &s
->timer
[index
];
89 static uint64_t cadence_timer_get_ns(CadenceTimerState
*s
, uint64_t timer_steps
)
91 /* timer_steps has max value of 0x100000000. double check it
92 * (or overflow can happen below) */
93 assert(timer_steps
<= 1ULL << 32);
95 uint64_t r
= timer_steps
* 1000000000ULL;
96 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
97 r
>>= 16 - (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
101 r
/= (uint64_t)s
->freq
;
105 static uint64_t cadence_timer_get_steps(CadenceTimerState
*s
, uint64_t ns
)
107 uint64_t to_divide
= 1000000000ULL;
110 /* for very large intervals (> 8s) do some division first to stop
111 * overflow (costs some prescision) */
112 while (r
>= 8ULL << 30 && to_divide
> 1) {
117 /* keep early-dividing as needed */
118 while (r
>= 8ULL << 30 && to_divide
> 1) {
122 r
*= (uint64_t)s
->freq
;
123 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
124 r
/= 1 << (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
131 /* determine if x is in between a and b, exclusive of a, inclusive of b */
133 static inline int64_t is_between(int64_t x
, int64_t a
, int64_t b
)
136 return x
> a
&& x
<= b
;
138 return x
< a
&& x
>= b
;
141 static void cadence_timer_run(CadenceTimerState
*s
)
144 int64_t event_interval
, next_value
;
146 assert(s
->cpu_time_valid
); /* cadence_timer_sync must be called first */
148 if (s
->reg_count
& COUNTER_CTRL_DIS
) {
149 s
->cpu_time_valid
= 0;
153 { /* figure out what's going to happen next (rollover or match) */
154 int64_t interval
= (uint64_t)((s
->reg_count
& COUNTER_CTRL_INT
) ?
155 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
156 next_value
= (s
->reg_count
& COUNTER_CTRL_DEC
) ? -1ULL : interval
;
157 for (i
= 0; i
< 3; ++i
) {
158 int64_t cand
= (uint64_t)s
->reg_match
[i
] << 16;
159 if (is_between(cand
, (uint64_t)s
->reg_value
, next_value
)) {
164 DB_PRINT("next timer event value: %09llx\n",
165 (unsigned long long)next_value
);
167 event_interval
= next_value
- (int64_t)s
->reg_value
;
168 event_interval
= (event_interval
< 0) ? -event_interval
: event_interval
;
170 qemu_mod_timer(s
->timer
, s
->cpu_time
+
171 cadence_timer_get_ns(s
, event_interval
));
174 static void cadence_timer_sync(CadenceTimerState
*s
)
178 int64_t interval
= ((s
->reg_count
& COUNTER_CTRL_INT
) ?
179 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
180 uint64_t old_time
= s
->cpu_time
;
182 s
->cpu_time
= qemu_get_clock_ns(vm_clock
);
183 DB_PRINT("cpu time: %lld ns\n", (long long)old_time
);
185 if (!s
->cpu_time_valid
|| old_time
== s
->cpu_time
) {
186 s
->cpu_time_valid
= 1;
190 r
= (int64_t)cadence_timer_get_steps(s
, s
->cpu_time
- old_time
);
191 x
= (int64_t)s
->reg_value
+ ((s
->reg_count
& COUNTER_CTRL_DEC
) ? -r
: r
);
193 for (i
= 0; i
< 3; ++i
) {
194 int64_t m
= (int64_t)s
->reg_match
[i
] << 16;
198 /* check to see if match event has occurred. check m +/- interval
199 * to account for match events in wrap around cases */
200 if (is_between(m
, s
->reg_value
, x
) ||
201 is_between(m
+ interval
, s
->reg_value
, x
) ||
202 is_between(m
- interval
, s
->reg_value
, x
)) {
203 s
->reg_intr
|= (2 << i
);
209 s
->reg_value
= (uint32_t)(x
% interval
);
211 if (s
->reg_value
!= x
) {
212 s
->reg_intr
|= (s
->reg_count
& COUNTER_CTRL_INT
) ?
213 COUNTER_INTR_IV
: COUNTER_INTR_OV
;
215 cadence_timer_update(s
);
218 static void cadence_timer_tick(void *opaque
)
220 CadenceTimerState
*s
= opaque
;
223 cadence_timer_sync(s
);
224 cadence_timer_run(s
);
227 static uint32_t cadence_ttc_read_imp(void *opaque
, target_phys_addr_t offset
)
229 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
232 cadence_timer_sync(s
);
233 cadence_timer_run(s
);
236 case 0x00: /* clock control */
241 case 0x0c: /* counter control */
246 case 0x18: /* counter value */
249 return (uint16_t)(s
->reg_value
>> 16);
251 case 0x24: /* reg_interval counter */
254 return s
->reg_interval
;
256 case 0x30: /* match 1 counter */
259 return s
->reg_match
[0];
261 case 0x3c: /* match 2 counter */
264 return s
->reg_match
[1];
266 case 0x48: /* match 3 counter */
269 return s
->reg_match
[2];
271 case 0x54: /* interrupt register */
274 /* cleared after read */
279 case 0x60: /* interrupt enable */
282 return s
->reg_intr_en
;
287 return s
->reg_event_ctrl
;
299 static uint64_t cadence_ttc_read(void *opaque
, target_phys_addr_t offset
,
302 uint32_t ret
= cadence_ttc_read_imp(opaque
, offset
);
304 DB_PRINT("addr: %08x data: %08x\n", offset
, ret
);
308 static void cadence_ttc_write(void *opaque
, target_phys_addr_t offset
,
309 uint64_t value
, unsigned size
)
311 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
313 DB_PRINT("addr: %08x data %08x\n", offset
, (unsigned)value
);
315 cadence_timer_sync(s
);
318 case 0x00: /* clock control */
321 s
->reg_clock
= value
& 0x3F;
324 case 0x0c: /* counter control */
327 if (value
& COUNTER_CTRL_RST
) {
330 s
->reg_count
= value
& 0x3f & ~COUNTER_CTRL_RST
;
333 case 0x24: /* interval register */
336 s
->reg_interval
= value
& 0xffff;
339 case 0x30: /* match register */
342 s
->reg_match
[0] = value
& 0xffff;
344 case 0x3c: /* match register */
347 s
->reg_match
[1] = value
& 0xffff;
349 case 0x48: /* match register */
352 s
->reg_match
[2] = value
& 0xffff;
355 case 0x54: /* interrupt register */
358 s
->reg_intr
&= (~value
& 0xfff);
361 case 0x60: /* interrupt enable */
364 s
->reg_intr_en
= value
& 0x3f;
367 case 0x6c: /* event control */
370 s
->reg_event_ctrl
= value
& 0x07;
377 cadence_timer_run(s
);
378 cadence_timer_update(s
);
381 static const MemoryRegionOps cadence_ttc_ops
= {
382 .read
= cadence_ttc_read
,
383 .write
= cadence_ttc_write
,
384 .endianness
= DEVICE_NATIVE_ENDIAN
,
387 static void cadence_timer_reset(CadenceTimerState
*s
)
392 static void cadence_timer_init(uint32_t freq
, CadenceTimerState
*s
)
394 memset(s
, 0, sizeof(CadenceTimerState
));
397 cadence_timer_reset(s
);
399 s
->timer
= qemu_new_timer_ns(vm_clock
, cadence_timer_tick
, s
);
402 static int cadence_ttc_init(SysBusDevice
*dev
)
404 CadenceTTCState
*s
= FROM_SYSBUS(CadenceTTCState
, dev
);
407 for (i
= 0; i
< 3; ++i
) {
408 cadence_timer_init(133000000, &s
->timer
[i
]);
409 sysbus_init_irq(dev
, &s
->timer
[i
].irq
);
412 memory_region_init_io(&s
->iomem
, &cadence_ttc_ops
, s
, "timer", 0x1000);
413 sysbus_init_mmio(dev
, &s
->iomem
);
418 static void cadence_timer_pre_save(void *opaque
)
420 cadence_timer_sync((CadenceTimerState
*)opaque
);
423 static int cadence_timer_post_load(void *opaque
, int version_id
)
425 CadenceTimerState
*s
= opaque
;
427 s
->cpu_time_valid
= 0;
428 cadence_timer_sync(s
);
429 cadence_timer_run(s
);
430 cadence_timer_update(s
);
434 static const VMStateDescription vmstate_cadence_timer
= {
435 .name
= "cadence_timer",
437 .minimum_version_id
= 1,
438 .minimum_version_id_old
= 1,
439 .pre_save
= cadence_timer_pre_save
,
440 .post_load
= cadence_timer_post_load
,
441 .fields
= (VMStateField
[]) {
442 VMSTATE_UINT32(reg_clock
, CadenceTimerState
),
443 VMSTATE_UINT32(reg_count
, CadenceTimerState
),
444 VMSTATE_UINT32(reg_value
, CadenceTimerState
),
445 VMSTATE_UINT16(reg_interval
, CadenceTimerState
),
446 VMSTATE_UINT16_ARRAY(reg_match
, CadenceTimerState
, 3),
447 VMSTATE_UINT32(reg_intr
, CadenceTimerState
),
448 VMSTATE_UINT32(reg_intr_en
, CadenceTimerState
),
449 VMSTATE_UINT32(reg_event_ctrl
, CadenceTimerState
),
450 VMSTATE_UINT32(reg_event
, CadenceTimerState
),
451 VMSTATE_END_OF_LIST()
455 static const VMStateDescription vmstate_cadence_ttc
= {
456 .name
= "cadence_TTC",
458 .minimum_version_id
= 1,
459 .minimum_version_id_old
= 1,
460 .fields
= (VMStateField
[]) {
461 VMSTATE_STRUCT_ARRAY(timer
, CadenceTTCState
, 3, 0,
462 vmstate_cadence_timer
,
464 VMSTATE_END_OF_LIST()
468 static void cadence_ttc_class_init(ObjectClass
*klass
, void *data
)
470 DeviceClass
*dc
= DEVICE_CLASS(klass
);
471 SysBusDeviceClass
*sdc
= SYS_BUS_DEVICE_CLASS(klass
);
473 sdc
->init
= cadence_ttc_init
;
474 dc
->vmsd
= &vmstate_cadence_ttc
;
477 static TypeInfo cadence_ttc_info
= {
478 .name
= "cadence_ttc",
479 .parent
= TYPE_SYS_BUS_DEVICE
,
480 .instance_size
= sizeof(CadenceTTCState
),
481 .class_init
= cadence_ttc_class_init
,
484 static void cadence_ttc_register_types(void)
486 type_register_static(&cadence_ttc_info
);
489 type_init(cadence_ttc_register_types
)